JP4074369B2 - Method for producing flake copper alloy powder for conductive paste - Google Patents

Method for producing flake copper alloy powder for conductive paste Download PDF

Info

Publication number
JP4074369B2
JP4074369B2 JP07153998A JP7153998A JP4074369B2 JP 4074369 B2 JP4074369 B2 JP 4074369B2 JP 07153998 A JP07153998 A JP 07153998A JP 7153998 A JP7153998 A JP 7153998A JP 4074369 B2 JP4074369 B2 JP 4074369B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy powder
weight
conductive paste
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07153998A
Other languages
Japanese (ja)
Other versions
JPH11273454A (en
Inventor
治 梶田
元紀 西田
浩嗣 後田
正義 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP07153998A priority Critical patent/JP4074369B2/en
Publication of JPH11273454A publication Critical patent/JPH11273454A/en
Application granted granted Critical
Publication of JP4074369B2 publication Critical patent/JP4074369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Paints Or Removers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、導電ペースト用片状銅合金粉の製造方法に関するものである。
【0002】
【従来の技術】
一般にポリマー型導電ペーストと言えば、導電性金属粉である銅粉あるいは銀粉を合成樹脂バインダーに分散させたタイプが主流である。これら導電ペーストはプリント基板のスルーホールや導電回路、電極の接着剤、電磁波シールド用等に多量に使用されている。
【0003】
しかし、銅粉を分散したものは安価であるが銀のような優れた導電性を得ることが難しく、また酸化により導電性が低下し易い。これらの問題を解決するために「導電性銅ペースト」(特許公報第2654067号)が提案されているが、銅粉を還元しながらペースト化するもので還元性樹脂を使用する必要が有る等多くの制約があり、あらゆる用途に対応出来ないものである。銀粉を使用したものは優れた導電性が得られるものの、高価格でありマイグレーションの問題が発生し易いことから銅粉に銀メッキした銅粉「銀めっき銅粉」(特開平9−282935号公報)、銀メッキ銅粉を分散したペースト「導電性接着剤」(特開平7−138549号公報)等が提案されているが、銀メッキ銅粉はメッキ液の廃液処理、粒子径の細かい比表面積の大きな粉末へのメッキ処理は難しい等の問題を有している。銅合金粉の粒子表面への銀濃度を高くした銅銀合金粉を使用したペースト「はんだ付け可能な銅系導電性ペースト」(特公平7−109724号公報)が提案されているが、不活性ガスアトマイズ法で製造した金属粉を使用しているためやはり高価であり、粒子径の小さい粉末では表面近傍と内部の銀濃度に差がなくなる傾向がある。最近では電子機器の小型化傾向により、吹き付け塗装あるいはロールコータ法、スクリーン印刷法による電磁波シールド用では、より塗装し易く、かつ薄い塗膜が要求されてきている。スクリーン印刷方法による導電回路やジャンパー線では、より細線パターンに対応出来る導電ペーストが要求されてきている。ディスペンサーによる導電接着剤用も部品の小型化により接着面積が微細化し、より細かい粒子を分散したペーストが必要になってきている。
【0004】
【発明が解決しようとする課題】
従来まで導電ペースト用に使用されてきた金属粉は、銀粉が主である。
それは、優れた導電性が容易に得られるとともに信頼性において安定した性能が得られるためである。しかし銀粉は高価であるとともに、回路の線間が狭くなればなるほどマイグレーションの問題が発生し易く、新しい導電性金属粉が待たれていた。銅粉に銀をメッキしたものや、表面の銀濃度を高くしたものなどが新規な導電性金属粉として提案されてきたが、いずれも製造法上粒子径の小さいものが出来ず、最近の電子機器の小型化に対応できないものであった。
すなわち、銀粉は粒子径を細かくしても、機械的に片状加工しても酸化の問題がそれほどないため導電ペースト用として多くの用途に問題なく使用されている。
【0005】
しかし、銀メッキ銅粉は、メッキする粒子径を細かくする事が出来ず、さらに形状が片状であると比表面積が大きくなるため均一にメッキする事が出来ない。したがって、銀メッキは荒い粒子のみ行われている。形状を片状にすれば、薄膜化、細線化などペーストに要求される性能をかなりの部分で満足させることが解っている。しかし、これまで銀の効果を十分に生かした片状銅合金粉はまだ実用化されていない。
そこで、本発明者等はポリマー型導電ペースト用として使用できる片状銅合金粉の製造方法について研究を重ねた結果、特定の銅銀合金粉に脂肪酸を加え機械的に片状加工し、しかる後に還元性雰囲気中で還元処理すれば、最近のペースト要求性能に対応出来る導電ペースト用片状銅合金粉が出来ることを見いだした。
【0006】
【課題を解決するための手段】
本発明に関する導電ペースト用片状銅合金粉の製造方法とは、銀を3から75重量%含有した銅合金粉に対して、0.05から2重量%の脂肪酸を加えて機械的に片状加工し、しかる後に還元性雰囲気中で、150℃から500℃の温度で還元処理し、粒子径が100μm以下で,BET法比表面積値が2000cm2/g以上の粉末を得ることを特徴とするものである。
【0007】
【発明の実施の形態】
本発明の構成を詳しく説明すれば次の通りである。
本発明の出発原料である銅合金粉は、銀を3から75重量%含有する必要がある。特性を損なわなければアルミニウム、亜鉛、錫、鉛などの第三金属成分を添加しても良いが、銀の含有量はこの範囲が必要である。3重量%より少ないと銀粉に近い導電性やペーストとしての信頼性が得られない。75重量%よりも多いと銀粉と価格的に差がなくなり、またマイグレーションも少なくならない。工業的に好ましい銀含有量は5から70重量%である。
【0008】
銅合金粉の製造方法はアトマイズ法を用いれば容易に製造できる。合金箔や切削粉も出発原料にすることが出来るが、工業的にアトマイズ法が良い。アトマイズ法には不活性ガスアトマイズ法、空気アトマイズ法、水アトマイズ法、オイルアトマイズ法等があるが、本発明の場合高価なガスを使用する不活性ガスアトマイズ法でなくてよく、水や、空気を使用したアトマイズ法で良い。
機械的に片状加工するときに加える脂肪酸の量は、銅合金粉に対して0.05重 量%から2重量%必要である。0.05重量%より少ないと片状加工中に凝集するとともに、還元処理中に強く凝集し再分散出来ず導電ペースト用片状銅合金粉とならない。2重量%より多く加えると片状化が難しく、還元処理時間が長くかかり良くない。脂肪酸量を粉砕加工中に多くすることが出来ない場合は、片状加工した後にミキサーなどの混合機で脂肪酸と片状銅合金粉を混合すれば良い。工業的に好ましい量は0.1から1重量%である。
脂肪酸を加え機械的に片状加工する方法は、ボールミル、振動ミル、アジテータミル、デイスクミル、などの粉砕機で粉砕しながら片状加工すれば良い。粉砕機の種類や粉砕時間を調整する事により、目的とする粒子径、BET法比表面積値の片状銅合金粉を得ることが出来る。
脂肪酸はラウリン酸、パルミチン酸、ステアリン酸、オレイン酸など高級脂肪酸が良い。低級脂肪酸は還元処理中に悪臭が出るため好ましくない。
還元性雰囲気は、水素、一酸化炭素、天然ガス、アンモニア分解ガスなど還元性気体を流す方法が良い。
【0009】
還元処理する温度は150℃から500℃が良い。150℃より低い温度であると非常に長時間かかるとともに、優れた導電性を有する片状銅合金粉が得られない。500℃より高い温度であると還元処理中に片状銅合金粉が脂肪酸で被覆していても凝集するため塗装性、スクリーン印刷性や導電性も悪くなり、導電ペースト用片状銅合金粉として使用できないものとなる。工業的には200℃から450℃が好ましい。
還元処理した片状銅合金粉は粗大粉や凝集粉を多く含んでいる場合があるので、100μmで篩い分けする必要がある。100μmよりも荒い粉が有るとペーストとして使用した場合、スクリーンの目詰まりを生じる。BET法比表面積値は粉砕加工時間等を調整して2000cm2/g以上にする必要がある。2000cm2/gよりも小さい値だと性能的に粒状のアトマイズ粉と同レベルで、片状粉にした効果が少なく、最近の加工技術に対応出来るペースト用粉末とならない。最近のスクリーン印刷法でのペースト要求性能に対応できる好ましい値は、粒子径が45μm以下であって、BET法比表面積値は3000cm2/g以上である。
【0010】
【実施例】
以下、実施例により本発明を具体的に説明するが、これにより本発明の範囲及び使用範囲が限定されるものではない。
(実施例1)
銅97重量%、銀3重量%になるように調整した金属を坩堝で溶解し、空気アトマイズ法で本発明の出発原料の銅合金粉を作成した。このようにして作成した銅合金粉1000gに対して、5gのステアリン酸を加え、振動ミルで2時間粉砕し片状加工した。しかる後に水素雰囲気の還元炉で300℃20分間還元処理した。このようにして得た片状粉末を150メッシュの篩を用いて100μm以下の粒子径にし、BET法比表面積値3000cm2/gの導電ペースト用片状銅合金粉を製造した。
このようにして製造した本発明の導電ペースト用片状銅合金粉の性能を確認するために銅合金粉75重量部、アクリル樹脂25重量部になるように混合し、トルオールで希釈して導電ペーストを作成した。作成したペーストをABS樹脂板にロールコータ法で印刷し膜厚25μmの塗膜を作成し、比抵抗値を測定した。
その結果3.0×10ー4Ω・cmの良好な導電性を示した。
【0011】
(実施例2)
銅95重量%、銀5重量%になるように調整した金属を坩堝で溶解し、空気アトマイズ法で本発明の出発原料の銅合金粉を作成した。このようにして作成した銅合金粉1000gに対して、5gのステアリン酸を加え、振動ミルで2時間粉砕し片状加工した。しかる後に水素雰囲気の還元炉で300℃20分間還元処理した。このようにして得た片状粉末を150メッシュの篩を用いて100μm以下の粒子径にし、BET法比表面積値3050cm2/gの導電ペースト用片状銅合金粉を製造した。
このようにして製造した本発明の導電ペースト用片状銅合金粉の性能を確認するために銅合金粉75重量部、アクリル樹脂25重量部になるように混合し、トルオールで希釈して導電ペーストを作成した。作成したペーストをABS樹脂板にロールコータ法で印刷し膜厚25μmの塗膜を作成し、比抵抗値を測定した。
その結果2.5×10ー4Ω・cmの良好な導電性を示した。
【0012】
(実施例3)
銅90重量%、銀10重量%になるように調整した金属を坩堝で溶解し、空気アトマイズ法で本発明の出発原料の銅合金粉を作成した。このようにして作成した銅合金粉1000gに対して、5gのステアリン酸を加え、振動ミルで2時間粉砕し片状加工した。しかる後に水素雰囲気の還元炉で300℃20分間還元処理した。このようにして得た片状粉末を150メッシュの篩を用いて100μm以下の粒子径にし、BET法比表面積値3050cm2/gの導電ペースト用片状銅合金粉を製造した。
このようにして製造した本発明の導電ペースト用片状銅合金粉の性能を確認するために銅合金粉75重量部、アクリル樹脂25重量部になるように混合し、トルオールで希釈して導電ペーストを作成した。作成したペーストをABS樹脂板にロールコータ法で印刷し膜厚25μmの塗膜を作成し、比抵抗値を測定した。
その結果2.0×10ー4Ω・cmの良好な導電性を示した。
【0013】
(実施例4)
銅80重量%、銀20重量%になるように調整した金属を坩堝で溶解し、空気アトマイズ法で本発明の出発原料の銅合金粉を作成した。このようにして作成した銅合金粉1000gに対して、5gのステアリン酸を加え、振動ミルで2時間粉砕し片状加工した。しかる後に水素雰囲気の還元炉で300℃20分間還元処理した。このようにして得た片状粉末を150メッシュの篩を用いて100μm以下の粒子径にし、BET法比表面積値3200cm2/gの導電ペースト用片状銅合金粉を製造した。
このようにして製造した本発明の導電ペースト用片状銅合金粉の性能を確認するために銅合金粉75重量部、アクリル樹脂25重量部になるように混合し、トルオールで希釈して導電ペーストを作成した。作成したペーストをABS樹脂板にロールコータ法で印刷し膜厚25μmの塗膜を作成し、比抵抗値を測定した。
その結果2.0×10ー4Ω・cmの良好な導電性を示した。
【0014】
(実施例5)
銅50重量%、銀50重量%になるように調整した金属を坩堝で溶解し、空気アトマイズ法で本発明の出発原料の銅合金粉を作成した。このようにして作成した銅合金粉1000gに対して、5gのステアリン酸を加え、振動ミルで2時間粉砕し片状加工した。しかる後に水素雰囲気の還元炉で300℃20分間還元処理した。
このようにして得た片状粉末を150メッシュの篩を用いて100μm以下の粒子径にし、BET法比表面積値3500cm2/gの導電ペースト用片状銅合金粉を製造した。このようにして製造した本発明の導電ペースト用片状銅合金粉の性能を確認するために銅合金粉75重量部、アクリル樹脂25重量部になるように混合し、トルオールで希釈して導電ペーストを作成した。作成したペーストをABS樹脂板にロールコータ法で印刷し膜厚25μmの塗膜を作成し、比抵抗値を測定した。その結果1.8×10ー4Ω・cmの良好な導電性を示した。
【0015】
(実施例6)
銅30重量%、銀70重量%になるように調整した金属を坩堝で溶解し、空気アトマイズ法で本発明の出発原料の銅合金粉を作成した。このようにして作成した銅合金粉1000gに対して、5gのステアリン酸を加え、振動ミルで2時間粉砕し片状加工した。しかる後に水素雰囲気の還元炉で300℃20分間還元処理した。
このようにして得た片状粉末を150メッシュの篩を用いて100μm以下の粒子径にし、BET法比表面積値4000cm2/gの導電ペースト用片状銅合金粉を製造した。このようにして製造した本発明の導電ペースト用片状銅合金粉の性能を確認するために銅合金粉75重量部、アクリル樹脂25重量部になるように混合し、トルオールで希釈して導電ペーストを作成した。作成したペーストをABS樹脂板にロールコータ法で印刷し膜厚25μmの塗膜を作成し、比抵抗値を測定した。その結果1.5×10ー4Ω・cmの良好な導電性を示した。
【0016】
(実施例7)
銅25重量%、銀75重量%になるように調整した金属を坩堝で溶解し、空気アトマイズ法で本発明の出発原料の銅合金粉を作成した。このようにして作成した銅合金粉1000gに対して、5gのステアリン酸を加え、振動ミルで2時間粉砕し片状加工した。しかる後に水素雰囲気の還元炉で300℃20分間還元処理した。
このようにして得た片状粉末を150メッシュの篩を用いて100μm以下の粒子径にし、BET法比表面積値4100cm2/gの導電ペースト用片状銅合金粉を製造した。このようにして製造した本発明の導電ペースト用片状銅合金粉の性能を確認するために銅合金粉75重量部、アクリル樹脂25重量部になるように混合し、トルオールで希釈して導電ペーストを作成した。作成したペーストをABS樹脂板にロールコータ法で印刷し膜厚25μmの塗膜を作成し、比抵抗値を測定した。その結果1.5×10ー4Ω・cmの良好な導電性を示した。
【0017】
(実施例8)
銅90重量%、銀10重量%になるように調整した金属を坩堝で溶解し、空気アトマイズ法で本発明の出発原料の銅合金粉を作成した。このようにして作成した銅合金粉1000gに対して、20gのステアリン酸を加え、ボールミルで8時間粉砕し片状加工した。しかる後に水素雰囲気の還元炉で500℃10分間還元処理した。
このようにして得た片状粉末を150メッシュの篩を用いて100μm以下の粒子径にし、BET法比表面積値5000cm2/gの導電ペースト用片状銅合金粉を製造した。このようにして製造した本発明の導電ペースト用片状銅合金粉の性能を確認するために銅合金粉75重量部、アクリル樹脂25重量部になるように混合し、トルオールで希釈して導電ペーストを作成した。作成したペーストをABS樹脂板にロールコータ法で印刷し膜厚25μmの塗膜を作成し、比抵抗値を測定した。その結果2.0×10ー4Ω・cmの良好な導電性を示した。
【0018】
(実施例9)
銅50重量%、銀50重量%になるように調整した金属を坩堝で溶解し、空気アトマイズ法で本発明の出発原料の銅合金粉を作成した。このようにして作成した銅合金粉1000gに対して、20gのステアリン酸を加え、ボールミルで8時間粉砕し片状加工した。しかる後に水素雰囲気の還元炉で500℃10分間還元処理した。このようにして得た片状粉末を150メッシュの篩を用いて100μm以下の粒子径にし、BET法比表面積値6000cm2/gの導電ペースト用片状銅合金粉を製造した。
このようにして製造した本発明の導電ペースト用片状銅合金粉の性能を確認するために銅合金粉75重量部、アクリル樹脂25重量部になるように混合し、トルオールで希釈して導電ペーストを作成した。作成したペーストをABS樹脂板にロールコータ法で印刷し膜厚25μmの塗膜を作成し、比抵抗値を測定した。
その結果1.6×10ー4Ω・cmの良好な導電性を示した。
【0019】
(実施例10)
銅90重量%、銀10重量%になるように調整した金属を坩堝で溶解し、空気アトマイズ法で本発明の出発原料の銅合金粉を作成した。このようにして作成した銅合金粉1000gに対して、0.5gのステアリン酸を加え、ボールミルで1時間粉砕し片状加工した。しかる後に水素雰囲気の還元炉で150℃60分間還元処理した。このようにして得た片状粉末を150メッシュの篩いを用いて100μm以下の粒子径にし、BET法比表面積値2000cm2/gの導電ペースト用片状銅合金粉を製造した。
このようにして製造した本発明の導電ペースト用片状銅合金粉の性能を確認するために銅合金粉75重量部、アクリル樹脂25重量部になるように混合し、トルオールで希釈して導電ペーストを作成した。作成したペーストをABS樹脂板にロールコータ法で印刷し膜厚25μmの塗膜を作成し、比抵抗値を測定した。
その結果4.0×10ー4Ω・cmの良好な導電性を示した。
【0020】
(実施例11)
銅50重量%、銀50重量%になるように調整した金属を坩堝で溶解し、空気アトマイズ法で本発明の出発原料の銅合金粉を作成した。このようにして作成した銅合金粉1000gに対して、0.5gのステアリン酸を加え、ボールミルで1時間粉砕し片状加工した。しかる後に水素雰囲気の還元炉で150℃60分間還元処理した。
このようにして得た片状粉末を150メッシュの篩を用いて100μm以下の粒子径にし、BET法比表面積値2500cm2/gの導電ペースト用片状銅合金粉を製造した。このようにして製造した本発明の導電ペースト用片状銅合金粉の性能を確認するために銅合金粉75重量部、アクリル樹脂25重量部になるように混合し、トルオールで希釈して導電ペーストを作成した。作成したペーストをABS樹脂板にロールコータ法で印刷し膜厚25μmの塗膜を作成し、比抵抗値を測定した。その結果3.0×10ー4Ω・cmの良好な導電性を示した。
【0021】
(実施例12)
銅90重量%、銀10重量%になるように調整した金属を坩堝で溶解し、空気アトマイズ法で本発明の出発原料の銅合金粉を作成した。このようにして作成した銅合金粉1000gに対して、5gのラウリン酸を加え、振動ミルで4時間粉砕し片状加工した。しかる後にアンモニア分解ガス雰囲気の還元炉で200℃80分間還元処理した。
このようにして得た片状粉末を325メッシュの篩を用いて45μm以下の粒子径にし、BET法比表面積値7000cm2/gの導電ペースト用片状銅合金粉を製造した。このようにして製造した本発明の導電ペースト用片状銅合金粉の性能を確認するために銅合金粉75重量部、エポキシ樹脂10重量部、エチルカルビトール15重量部及び硬化剤、反応促進剤を適量添加し銅ペーストを作成した。作成したペーストを200メッシュのスクリーンを使用してスクリーン印刷方法で塗膜を作成し、比抵抗値を測定した。
その結果0.9×10ー4Ω・cmの良好な導電性を示した。
【0022】
(実施例13)
銅90重量%、銀10重量%になるように調整した金属を坩堝で溶解し、空気アトマイズ法で本発明の出発原料の銅合金粉を作成した。このようにして作成した銅合金粉1000gに対して、5gのパルミチン酸を加え、振動ミルで4時間粉砕し片状加工した。しかる後にアンモニア分解ガス雰囲気の還元炉で200℃80分間還元処理した。このようにして得た片状粉末を325メッシュの篩を用いて45μm以下の粒子径にし、BET法比表面積値6800cm2/gの導電ペースト用片状銅合金粉を製造した。
このようにして製造した本発明の導電ペースト用片状銅合金粉の性能を確認するために銅合金粉75重量部、エポキシ樹脂10重量部、エチルカルビトール15重量部及び硬化剤、反応促進剤を適量添加し銅ペーストを作成した。作成したペーストを200メッシュのスクリーンを使用してスクリーン印刷方法で塗膜を作成し、比抵抗値を測定した。
その結果0.9×10ー4Ω・cmの良好な導電性を示した。
【0023】
(実施例14)
銅90重量%、銀10重量%になるように調整した金属を坩堝で溶解し、空気アトマイズ法で本発明の出発原料の銅合金粉を作成した。このようにして作成した銅合金粉1000gに対して、5gのステアリン酸を加え、振動ミルで4時間粉砕し片状加工した。しかる後にアンモニア分解ガス雰囲気の還元炉で200℃80分間還元処理した。このようにして得た片状粉末を325メッシュの篩を用いて45μm以下の粒子径にし、BET法比表面積値7200cm2/gの導電ペースト用片状銅合金粉を製造した。
このようにして製造した本発明の導電ペースト用片状銅合金粉の性能を確認するために銅合金粉75重量部、エポキシ樹脂10重量部、エチルカルビトール15重量部及び硬化剤、反応促進剤を適量添加し銅ペーストを作成した。作成したペーストを200メッシュのスクリーンを使用してスクリーン印刷方法で塗膜を作成し、比抵抗値を測定した。
その結果0.9×10ー4Ω・cmの良好な導電性を示した。
【0024】
(実施例15)
銅90重量%、銀10重量%になるように調整した金属を坩堝で溶解し、空気アトマイズ法で本発明の出発原料の銅合金粉を作成した。このようにして作成した銅合金粉1000gに対して、5gのオレイン酸を加え、振動ミルで4時間粉砕し片状加工した。しかる後にアンモニア分解ガス雰囲気の還元炉で200℃80分間還元処理した。
このようにして得た片状粉末を325メッシュの篩を用いて45μm以下の粒子径にし、BET法比表面積値7400cm2/gの導電ペースト用片状銅合金粉を製造した。このようにして製造した本発明の導電ペースト用片状銅合金粉の性能を確認するために銅合金粉75重量部、エポキシ樹脂10重量部、エチルカルビトール15重量部及び硬化剤、反応促進剤を適量添加し銅ペーストを作成した。作成したペーストを200メッシュのスクリーンを使用してスクリーン印刷方法で塗膜を作成し、比抵抗値を測定した。
その結果0.9×10ー4Ω・cmの良好な導電性を示した。
【0025】
(実施例16)
銅80重量%、銀20重量%になるように調整した金属を坩堝で溶解し、水アトマイズ法で本発明の出発原料の銅合金粉を作成した。このようにして作成した銅合金粉1000gに対して、5gのラウリン酸を加え、振動ミルで4時間粉砕し片状加工した。しかる後にアンモニア分解ガス雰囲気の還元炉で200℃80分間還元処理した。このようにして得た片状粉末を325メッシュの篩を用いて45μm以下の粒子径にし、BET法比表面積値7500cm2/gの導電ペースト用片状銅合金粉を製造した。
このようにして製造した本発明の導電ペースト用片状銅合金粉の性能を確認するために銅合金粉75重量部、エポキシ樹脂10重量部、エチルカルビトール15重量部及び硬化剤、反応促進剤を適量添加し銅ペーストを作成した。作成したペーストを200メッシュのスクリーンを使用してスクリーン印刷方法で塗膜を作成し、比抵抗値を測定した。
その結果0.9×10ー4Ω・cmの良好な導電性を示した。
【0026】
(実施例17)
銅80重量%、銀20重量%になるように調整した金属を坩堝で溶解し、水アトマイズ法で本発明の出発原料の銅合金粉を作成した。このようにして作成した銅合金粉1000gに対して、5gのパルミチン酸を加え、振動ミルで4時間粉砕し片状加工した。しかる後にアンモニア分解ガス雰囲気の還元炉で200℃80分間還元処理した。このようにして得た片状粉末を325メッシュの篩を用いて45μm以下の粒子径にし、BET法比表面積値7400cm2/gの導電ペースト用片状銅合金粉を製造した。
このようにして製造した本発明の導電ペースト用片状銅合金粉の性能を確認するために銅合金粉75重量部、エポキシ樹脂10重量部、エチルカルビトール15重量部及び硬化剤、反応促進剤を適量添加し銅ペーストを作成した。作成したペーストを200メッシュのスクリーンを使用してスクリーン印刷方法で塗膜を作成し、比抵抗値を測定した。
その結果0.9×10ー4Ω・cmの良好な導電性を示した。
【0027】
(実施例18)
銅80重量%、銀20重量%になるように調整した金属を坩堝で溶解し、水アトマイズ法で本発明の出発原料の銅合金粉を作成した。このようにして作成した銅合金粉1000gに対して、5gのステアリン酸を加え、振動ミルで4時間粉砕し片状加工した。しかる後にアンモニア分解ガス雰囲気の還元炉で200℃80分間還元処理した。このようにして得た片状粉末を325メッシュの篩を用いて45μm以下の粒子径にし、BET法比表面積値7600cm2/gの導電ペースト用片状銅合金粉を製造した。
このようにして製造した本発明の導電ペースト用片状銅合金粉の性能を確認するために銅合金粉75重量部、エポキシ樹脂10重量部、エチルカルビトール15重量部及び硬化剤、反応促進剤を適量添加し銅ペーストを作成した。作成したペーストを200メッシュのスクリーンを使用してスクリーン印刷方法で塗膜を作成し、比抵抗値を測定した。
その結果0.8×10ー4Ω・cmの良好な導電性を示した。
【0028】
(実施例19)
銅80重量%、銀20重量%になるように調整した金属を坩堝で溶解し、水アトマイズ法で本発明の出発原料の銅合金粉を作成した。このようにして作成した銅合金粉1000gに対して、5gのオレイン酸を加え、振動ミルで4時間粉砕し片状加工した。しかる後にアンモニア分解ガス雰囲気の還元炉で200℃80分間還元処理した。
このようにして得た片状粉末を325メッシュの篩を用いて45μm以下の粒子径にし、BET法比表面積値7900cm2/gの導電ペースト用片状銅合金粉を製造した。このようにして製造した本発明の導電ペースト用片状銅合金粉の性能を確認するために銅合金粉75重量部、エポキシ樹脂10重量部、エチルカルビトール15重量部及び硬化剤、反応促進剤を適量添加し銅ペーストを作成した。作成したペーストを200メッシュのスクリーンを使用してスクリーン印刷方法で塗膜を作成し、比抵抗値を測定した。
その結果0.9×10ー4Ω・cmの良好な導電性を示した。
【0029】
(実施例20)
銅50重量%、銀50重量%になるように調整した金属を坩堝で溶解し、空気アトマイズ法で本発明の出発原料の銅合金粉を作成した。このようにして作成した銅合金粉1000gに対して、20gのステアリン酸を加え、アジテータミルで2時間粉砕し片状加工した。しかる後に水素雰囲気の還元炉で450℃30分間還元処理した。
このようにして得た片状粉末を風力分級機を用いて75μm以下の粒子径にし、BET法比表面積値5500cm2/gの導電ペースト用片状銅合金粉を製造した。このようにして製造した本発明の導電ペースト用片状銅合金粉の性能を確認するために銅合金粉75重量部、アクリル樹脂25重量部になるように混合し、トルオールで希釈して導電ペーストを作成した。作成したペーストをABS樹脂板にロールコータ法で印刷し膜厚25μmの塗膜を作成し、比抵抗値を測定した。その結果2.0×10ー4Ω・cmの良好な導電性を示した。
【0030】
(実施例21)
銅50重量%、銀50重量%になるように調整した金属を坩堝で溶解し、空気アトマイズ法で本発明の出発原料の銅合金粉を作成した。このようにして作成した銅合金粉1000gに対して、5gのステアリン酸を加え、アジテータミルで1.5時間粉砕し片状加工した。片状加工した粉末1000gに15gのステアリンをさらに加えミキサーで5分間撹拌混合した。しかる後に水素雰囲気の還元炉で450℃30分間還元処理した。このようにして得た片状粉末を風力分級機を用いて75μm以下の粒子径にし、BET法比表面積値6500cm2/gの導電ペースト用片状銅合金粉を製造した。
このようにして製造した本発明の導電ペースト用片状銅合金粉の性能を確認するために銅合金粉75重量部、アクリル樹脂25重量部になるように混合し、トルオールで希釈して導電ペーストを作成した。作成したペーストをABS樹脂板にロールコータ法で印刷し膜厚25μmの塗膜を作成し、比抵抗値を測定した。
その結果2.0×10ー4Ω・cmの良好な導電性を示した。
【0031】
【発明の効果】
本発明の方法によって得られる導電ペースト用片状銅合金粉は、従来の粒状粉と異なり片状でありながら銀粉と同じような性能が得られ、かつ細かい粒子径まで工業的に、安価に製造することが出来るようになった。具体的な効果として、吹き付け塗装あるいはロールコータ法、スクリーン印刷法による電磁波シールド用では、片状粉であるため沈降速度が遅く、表面積が大きいため非常に塗装し易く、しかも塗膜表面が平滑で、かつ塗膜厚も薄くできるようになった。
スクリーン印刷方法による導電回路やジャンパー線では、粒子径が小さく表面積が大きい事は、ペーストの単位体積あたりの銅粉個数が増えるため、樹脂の中に銅粉が均一に分散し易くなり、導電性の安定した塗膜形成が可能となった。
このようにスクリーン印刷性の向上、塗膜表面の平滑性、細線が必要なファインパターン用に使用できるばかりか、ディスペンサー用にも対応できるものとなった。もちろん銅合金粉であるため銀粉と比較するとマイグレーションも少ない。このような導電ペースト用片状銅合金粉が提供出来るようになることで、安価な導電ペーストの使用範囲が広がり、本発明の産業上への利用性は非常に大きいといえる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a piece-like copper alloy powder for a conductive paste.
[0002]
[Prior art]
Generally speaking, a polymer type conductive paste is mainly a type in which copper powder or silver powder, which is a conductive metal powder, is dispersed in a synthetic resin binder. These conductive pastes are used in large amounts for printed circuit board through holes, conductive circuits, electrode adhesives, electromagnetic wave shields, and the like.
[0003]
However, copper powder dispersed is inexpensive, but it is difficult to obtain excellent conductivity such as silver, and the conductivity tends to decrease due to oxidation. In order to solve these problems, a “conductive copper paste” (Patent Publication No. 2654067) has been proposed. However, it is necessary to use a reducing resin to make a paste while reducing copper powder. There is a limitation of this, and it can not correspond to all uses. Although using silver powder can provide excellent conductivity, it is expensive and easily causes migration problems. Therefore, a copper powder silver-plated copper powder "silver-plated copper powder" (Japanese Patent Laid-Open No. 9-282935) ), Paste "conductive adhesive" in which silver-plated copper powder is dispersed (Japanese Patent Laid-Open No. 7-138549) has been proposed. There is a problem that it is difficult to plate a large powder. A paste “a solderable copper-based conductive paste” (Japanese Patent Publication No. 7-109724) using a copper silver alloy powder having a high silver concentration on the particle surface of the copper alloy powder has been proposed. Since the metal powder manufactured by the gas atomization method is used, it is still expensive, and the powder having a small particle diameter tends to have no difference in the silver concentration in the vicinity of the surface and inside. In recent years, due to the trend toward miniaturization of electronic devices, it has been required to use a thin coating film that is easier to paint for electromagnetic shielding by spray coating, roll coater method, or screen printing method. For conductive circuits and jumper wires by the screen printing method, there has been a demand for a conductive paste that can cope with a finer line pattern. For conductive adhesives using dispensers, the adhesive area has become finer due to the miniaturization of parts, and a paste in which finer particles are dispersed has become necessary.
[0004]
[Problems to be solved by the invention]
Conventionally, silver powder is the main metal powder used for conductive pastes.
This is because excellent conductivity can be easily obtained and stable performance in reliability can be obtained. However, silver powder is expensive, and as the distance between circuit lines becomes narrower, migration problems are more likely to occur, and a new conductive metal powder has been awaited. Copper powders plated with silver and high surface silver concentrations have been proposed as new conductive metal powders, but none of them have a small particle size due to the manufacturing method, It could not cope with downsizing of equipment.
In other words, silver powder is used for many purposes as a conductive paste without any problem of oxidation even if the particle diameter is fine or mechanically processed into a piece.
[0005]
However, the silver-plated copper powder cannot make the particle diameter to be plated fine, and if the shape is flaky, the specific surface area becomes large, so that it cannot be uniformly plated. Therefore, only rough particles are used for silver plating. It has been found that if the shape is made into a single piece, the performance required for the paste, such as thinning and thinning, is satisfied in a considerable part. However, so far, a flake copper alloy powder that fully utilizes the effect of silver has not been put into practical use.
Therefore, as a result of repeated research on a method for producing a flaky copper alloy powder that can be used as a polymer-type conductive paste, the inventors have added a fatty acid to a specific copper silver alloy powder and mechanically flaked it. It has been found that if the reduction treatment is performed in a reducing atmosphere, a piece of copper alloy powder for conductive paste that can meet the recent required paste performance can be obtained.
[0006]
[Means for Solving the Problems]
The method for producing a flaky copper alloy powder for an electrically conductive paste according to the present invention is a mechanically flaky powder by adding 0.05 to 2% by weight of a fatty acid to a copper alloy powder containing 3 to 75% by weight of silver. Processed and then reduced in a reducing atmosphere at a temperature of 150 ° C. to 500 ° C., the particle diameter is 100 μm or less, and the BET specific surface area value is 2000 cm. 2 / G or more powder is obtained.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The configuration of the present invention will be described in detail as follows.
The copper alloy powder as the starting material of the present invention needs to contain 3 to 75% by weight of silver. A third metal component such as aluminum, zinc, tin, or lead may be added as long as the characteristics are not impaired, but the silver content needs to be within this range. If it is less than 3% by weight, conductivity close to silver powder and reliability as a paste cannot be obtained. If it exceeds 75% by weight, there will be no difference in price from silver powder, and migration will not be reduced. The industrially preferred silver content is 5 to 70% by weight.
[0008]
The copper alloy powder can be easily manufactured by using the atomizing method. Although alloy foil and cutting powder can be used as starting materials, the atomizing method is industrially good. The atomization method includes an inert gas atomization method, an air atomization method, a water atomization method, and an oil atomization method. The atomization method is good.
The amount of fatty acid added when mechanically chopping is 0.05 to 2% by weight with respect to the copper alloy powder. If it is less than 0.05% by weight, it aggregates during the flake processing and strongly aggregates during the reduction treatment, and cannot be redispersed and does not become a flake copper alloy powder for conductive paste. If it is added in an amount of more than 2% by weight, it is difficult to form a piece, and it takes a long time for the reduction treatment. If the amount of fatty acid cannot be increased during pulverization, the fatty acid and the flake copper alloy powder may be mixed with a mixer such as a mixer after flaking. The industrially preferred amount is 0.1 to 1% by weight.
As a method of mechanically processing a piece by adding a fatty acid, the piece may be processed while being pulverized by a pulverizer such as a ball mill, a vibration mill, an agitator mill, or a disk mill. By adjusting the type and pulverization time of the pulverizer, a flake copper alloy powder having a target particle diameter and BET specific surface area can be obtained.
The fatty acid is preferably a higher fatty acid such as lauric acid, palmitic acid, stearic acid, or oleic acid. Lower fatty acids are not preferred because they produce a bad odor during the reduction process.
The reducing atmosphere is preferably a method of flowing a reducing gas such as hydrogen, carbon monoxide, natural gas, or ammonia decomposition gas.
[0009]
The temperature for the reduction treatment is preferably 150 ° C. to 500 ° C. When the temperature is lower than 150 ° C., it takes a very long time, and a flake copper alloy powder having excellent conductivity cannot be obtained. If the temperature is higher than 500 ° C., even if the flake copper alloy powder is coated with a fatty acid during the reduction treatment, the paintability, screen printability and conductivity are deteriorated, and the flake copper alloy powder for the conductive paste is deteriorated. It cannot be used. Industrially, 200 ° C to 450 ° C is preferable.
Since the reduced copper-like alloy powder may contain a large amount of coarse powder and agglomerated powder, it must be sieved at 100 μm. If the powder is rougher than 100 μm, the screen may be clogged when used as a paste. BET method specific surface area value is 2000cm by adjusting grinding time etc. 2 / G or more is necessary. 2000cm 2 If the value is less than / g, it is the same level as granular atomized powder in terms of performance, and there is little effect in the form of flake powder, and it does not become a paste powder that can be applied to recent processing techniques. A preferable value that can correspond to the required paste performance in the recent screen printing method is a particle diameter of 45 μm or less, and a BET specific surface area value of 3000 cm. 2 / G or more.
[0010]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this does not limit the range and use range of this invention.
Example 1
Metals adjusted to 97 wt% copper and 3 wt% silver were dissolved in a crucible, and a copper alloy powder as a starting material of the present invention was prepared by an air atomization method. To 1000 g of the copper alloy powder thus prepared, 5 g of stearic acid was added, and pulverized by a vibration mill for 2 hours to be processed into a piece. Thereafter, reduction treatment was performed at 300 ° C. for 20 minutes in a reduction furnace in a hydrogen atmosphere. The flaky powder thus obtained was made to have a particle size of 100 μm or less using a 150 mesh sieve, and the BET specific surface area value was 3000 cm. 2 / G of copper alloy powder for conductive paste was produced.
In order to confirm the performance of the thus produced flake copper alloy powder for conductive paste of the present invention, 75 parts by weight of copper alloy powder and 25 parts by weight of acrylic resin were mixed, diluted with toluol and conductive paste It was created. The prepared paste was printed on an ABS resin plate by a roll coater method to prepare a coating film having a film thickness of 25 μm, and the specific resistance value was measured.
As a result, 3.0 × 10 -4 Good conductivity of Ω · cm was exhibited.
[0011]
(Example 2)
The metal adjusted so that it might become 95 weight% of copper and 5 weight% of silver was melt | dissolved with the crucible, and the copper alloy powder of the starting material of this invention was created with the air atomization method. To 1000 g of the copper alloy powder thus prepared, 5 g of stearic acid was added, and pulverized by a vibration mill for 2 hours to be processed into a piece. Thereafter, reduction treatment was performed at 300 ° C. for 20 minutes in a reduction furnace in a hydrogen atmosphere. The flaky powder thus obtained was made to have a particle diameter of 100 μm or less using a 150-mesh sieve, and the BET specific surface area value was 3050 cm. 2 / G of copper alloy powder for conductive paste was produced.
In order to confirm the performance of the thus produced flake copper alloy powder for conductive paste of the present invention, 75 parts by weight of copper alloy powder and 25 parts by weight of acrylic resin were mixed, diluted with toluol and conductive paste It was created. The prepared paste was printed on an ABS resin plate by a roll coater method to prepare a coating film having a film thickness of 25 μm, and the specific resistance value was measured.
As a result 2.5 × 10 -4 Good conductivity of Ω · cm was exhibited.
[0012]
(Example 3)
The metal adjusted so that it might become 90 weight% of copper and 10 weight% of silver was melt | dissolved with the crucible, and the copper alloy powder of the starting material of this invention was created by the air atomization method. To 1000 g of the copper alloy powder thus prepared, 5 g of stearic acid was added, and pulverized by a vibration mill for 2 hours to be processed into a piece. Thereafter, reduction treatment was performed at 300 ° C. for 20 minutes in a reduction furnace in a hydrogen atmosphere. The flaky powder thus obtained was made to have a particle diameter of 100 μm or less using a 150-mesh sieve, and the BET specific surface area value was 3050 cm. 2 / G of copper alloy powder for conductive paste was produced.
In order to confirm the performance of the thus produced flake copper alloy powder for conductive paste of the present invention, 75 parts by weight of copper alloy powder and 25 parts by weight of acrylic resin were mixed, diluted with toluol and conductive paste It was created. The prepared paste was printed on an ABS resin plate by a roll coater method to prepare a coating film having a film thickness of 25 μm, and the specific resistance value was measured.
As a result 2.0 × 10 -4 Good conductivity of Ω · cm was exhibited.
[0013]
Example 4
The metal adjusted so that it might become 80 weight% of copper and 20 weight% of silver was melt | dissolved with the crucible, and the copper alloy powder of the starting material of this invention was created with the air atomization method. To 1000 g of the copper alloy powder thus prepared, 5 g of stearic acid was added, and pulverized by a vibration mill for 2 hours to be processed into a piece. Thereafter, reduction treatment was performed at 300 ° C. for 20 minutes in a reduction furnace in a hydrogen atmosphere. The flaky powder thus obtained was made to have a particle diameter of 100 μm or less using a 150 mesh sieve, and a BET specific surface area value of 3200 cm. 2 / G of copper alloy powder for conductive paste was produced.
In order to confirm the performance of the thus produced flake copper alloy powder for conductive paste of the present invention, 75 parts by weight of copper alloy powder and 25 parts by weight of acrylic resin were mixed, diluted with toluol and conductive paste It was created. The prepared paste was printed on an ABS resin plate by a roll coater method to prepare a coating film having a film thickness of 25 μm, and the specific resistance value was measured.
As a result 2.0 × 10 -4 Good conductivity of Ω · cm was exhibited.
[0014]
(Example 5)
The metal adjusted so that it might become 50 weight% of copper and 50 weight% of silver was melt | dissolved with the crucible, and the copper alloy powder of the starting material of this invention was created with the air atomization method. To 1000 g of the copper alloy powder thus prepared, 5 g of stearic acid was added, and pulverized by a vibration mill for 2 hours to be processed into a piece. Thereafter, reduction treatment was performed at 300 ° C. for 20 minutes in a reduction furnace in a hydrogen atmosphere.
The flaky powder thus obtained was made to have a particle size of 100 μm or less using a 150 mesh sieve, and the BET specific surface area value was 3500 cm. 2 / G of copper alloy powder for conductive paste was produced. In order to confirm the performance of the thus produced flake copper alloy powder for conductive paste of the present invention, 75 parts by weight of copper alloy powder and 25 parts by weight of acrylic resin were mixed, diluted with toluol and conductive paste It was created. The prepared paste was printed on an ABS resin plate by a roll coater method to prepare a coating film having a film thickness of 25 μm, and the specific resistance value was measured. As a result 1.8 × 10 -4 Good conductivity of Ω · cm was exhibited.
[0015]
(Example 6)
The metal adjusted so that it might become 30 weight% of copper and 70 weight% of silver was melt | dissolved with the crucible, and the copper alloy powder of the starting material of this invention was created with the air atomization method. To 1000 g of the copper alloy powder thus prepared, 5 g of stearic acid was added, and pulverized by a vibration mill for 2 hours to be processed into a piece. Thereafter, reduction treatment was performed at 300 ° C. for 20 minutes in a reduction furnace in a hydrogen atmosphere.
The flaky powder thus obtained was made to have a particle size of 100 μm or less using a 150 mesh sieve, and the BET specific surface area value 4000 cm. 2 / G of copper alloy powder for conductive paste was produced. In order to confirm the performance of the thus-produced flake copper alloy powder for conductive paste of the present invention, 75 parts by weight of copper alloy powder and 25 parts by weight of acrylic resin were mixed, diluted with toluol and conductive paste It was created. The prepared paste was printed on an ABS resin plate by a roll coater method to prepare a coating film having a film thickness of 25 μm, and the specific resistance value was measured. As a result 1.5 × 10 -4 Good conductivity of Ω · cm was exhibited.
[0016]
(Example 7)
The metal adjusted so that it might become 25 weight% of copper and 75 weight% of silver was melt | dissolved with the crucible, and the copper alloy powder of the starting material of this invention was created with the air atomization method. To 1000 g of the copper alloy powder thus prepared, 5 g of stearic acid was added, and pulverized by a vibration mill for 2 hours to be processed into a piece. Thereafter, reduction treatment was performed at 300 ° C. for 20 minutes in a reduction furnace in a hydrogen atmosphere.
The flaky powder thus obtained was made to have a particle diameter of 100 μm or less using a 150-mesh sieve, and a BET specific surface area value of 4100 cm. 2 / G of copper alloy powder for conductive paste was produced. In order to confirm the performance of the thus-produced flake copper alloy powder for conductive paste of the present invention, 75 parts by weight of copper alloy powder and 25 parts by weight of acrylic resin were mixed, diluted with toluol and conductive paste It was created. The prepared paste was printed on an ABS resin plate by a roll coater method to prepare a coating film having a film thickness of 25 μm, and the specific resistance value was measured. As a result 1.5 × 10 -4 Good conductivity of Ω · cm was exhibited.
[0017]
(Example 8)
The metal adjusted so that it might become 90 weight% of copper and 10 weight% of silver was melt | dissolved with the crucible, and the copper alloy powder of the starting material of this invention was created by the air atomization method. 20 g of stearic acid was added to 1000 g of the copper alloy powder thus prepared, and pulverized with a ball mill for 8 hours to be processed into a piece. Thereafter, reduction treatment was performed at 500 ° C. for 10 minutes in a reduction furnace in a hydrogen atmosphere.
The flaky powder thus obtained was made to have a particle diameter of 100 μm or less using a 150 mesh sieve, and the BET specific surface area value was 5000 cm. 2 / G of copper alloy powder for conductive paste was produced. In order to confirm the performance of the thus produced flake copper alloy powder for conductive paste of the present invention, 75 parts by weight of copper alloy powder and 25 parts by weight of acrylic resin were mixed, diluted with toluol and conductive paste It was created. The prepared paste was printed on an ABS resin plate by a roll coater method to prepare a coating film having a film thickness of 25 μm, and the specific resistance value was measured. As a result 2.0 × 10 -4 Good conductivity of Ω · cm was exhibited.
[0018]
Example 9
The metal adjusted so that it might become 50 weight% of copper and 50 weight% of silver was melt | dissolved with the crucible, and the copper alloy powder of the starting material of this invention was created with the air atomization method. 20 g of stearic acid was added to 1000 g of the copper alloy powder thus prepared, and pulverized with a ball mill for 8 hours to be processed into a piece. Thereafter, reduction treatment was performed at 500 ° C. for 10 minutes in a reduction furnace in a hydrogen atmosphere. The flaky powder thus obtained was made to have a particle diameter of 100 μm or less using a 150-mesh sieve, and the BET specific surface area value was 6000 cm. 2 / G of copper alloy powder for conductive paste was produced.
In order to confirm the performance of the thus-produced flake copper alloy powder for conductive paste of the present invention, 75 parts by weight of copper alloy powder and 25 parts by weight of acrylic resin were mixed, diluted with toluol and conductive paste It was created. The prepared paste was printed on an ABS resin plate by a roll coater method to prepare a coating film having a film thickness of 25 μm, and the specific resistance value was measured.
As a result 1.6 × 10 -4 Good conductivity of Ω · cm was exhibited.
[0019]
(Example 10)
The metal adjusted so that it might become 90 weight% of copper and 10 weight% of silver was melt | dissolved with the crucible, and the copper alloy powder of the starting material of this invention was created with the air atomization method. 0.5 g of stearic acid was added to 1000 g of the copper alloy powder thus prepared, and crushed with a ball mill for 1 hour to be processed into a piece. Thereafter, reduction treatment was performed at 150 ° C. for 60 minutes in a reduction furnace in a hydrogen atmosphere. The flaky powder thus obtained was made to have a particle diameter of 100 μm or less using a 150 mesh sieve, and the BET specific surface area value was 2000 cm. 2 / G of copper alloy powder for conductive paste was produced.
In order to confirm the performance of the thus produced flake copper alloy powder for conductive paste of the present invention, 75 parts by weight of copper alloy powder and 25 parts by weight of acrylic resin were mixed, diluted with toluol and conductive paste It was created. The prepared paste was printed on an ABS resin plate by a roll coater method to prepare a coating film having a film thickness of 25 μm, and the specific resistance value was measured.
As a result 4.0 × 10 -4 Good conductivity of Ω · cm was exhibited.
[0020]
(Example 11)
The metal adjusted so that it might become 50 weight% of copper and 50 weight% of silver was melt | dissolved with the crucible, and the copper alloy powder of the starting material of this invention was created with the air atomization method. 0.5 g of stearic acid was added to 1000 g of the copper alloy powder thus prepared, and crushed with a ball mill for 1 hour to be processed into a piece. Thereafter, reduction treatment was performed at 150 ° C. for 60 minutes in a reduction furnace in a hydrogen atmosphere.
The flaky powder thus obtained was made to have a particle diameter of 100 μm or less using a 150 mesh sieve, and the BET specific surface area value was 2500 cm. 2 / G of copper alloy powder for conductive paste was produced. In order to confirm the performance of the thus produced flake copper alloy powder for conductive paste of the present invention, 75 parts by weight of copper alloy powder and 25 parts by weight of acrylic resin were mixed, diluted with toluol and conductive paste It was created. The prepared paste was printed on an ABS resin plate by a roll coater method to prepare a coating film having a film thickness of 25 μm, and the specific resistance value was measured. As a result, 3.0 × 10 -4 Good conductivity of Ω · cm was exhibited.
[0021]
(Example 12)
The metal adjusted so that it might become 90 weight% of copper and 10 weight% of silver was melt | dissolved with the crucible, and the copper alloy powder of the starting material of this invention was created by the air atomization method. 5 g of lauric acid was added to 1000 g of the copper alloy powder thus prepared, and pulverized with a vibration mill for 4 hours to be processed into a piece. Thereafter, reduction treatment was performed at 200 ° C. for 80 minutes in a reduction furnace in an ammonia decomposition gas atmosphere.
The flaky powder thus obtained was made to have a particle diameter of 45 μm or less using a 325 mesh sieve, and the BET specific surface area value was 7000 cm. 2 A piece-like copper alloy powder for conductive paste was produced. In order to confirm the performance of the flake copper alloy powder for conductive paste of the present invention thus produced, 75 parts by weight of copper alloy powder, 10 parts by weight of epoxy resin, 15 parts by weight of ethyl carbitol, a curing agent, and a reaction accelerator An appropriate amount of was added to make a copper paste. A coating film was prepared from the prepared paste by a screen printing method using a 200-mesh screen, and a specific resistance value was measured.
As a result 0.9 × 10 -4 Good conductivity of Ω · cm was exhibited.
[0022]
(Example 13)
The metal adjusted so that it might become 90 weight% of copper and 10 weight% of silver was melt | dissolved with the crucible, and the copper alloy powder of the starting material of this invention was created by the air atomization method. 5 g of palmitic acid was added to 1000 g of the copper alloy powder thus prepared, and pulverized with a vibration mill for 4 hours to be processed into a piece. Thereafter, reduction treatment was performed at 200 ° C. for 80 minutes in a reduction furnace in an ammonia decomposition gas atmosphere. The flaky powder thus obtained was made to have a particle diameter of 45 μm or less using a 325 mesh sieve, and the BET specific surface area value was 6800 cm. 2 / G of copper alloy powder for conductive paste was produced.
In order to confirm the performance of the flake copper alloy powder for conductive paste of the present invention thus produced, 75 parts by weight of copper alloy powder, 10 parts by weight of epoxy resin, 15 parts by weight of ethyl carbitol, a curing agent, and a reaction accelerator An appropriate amount of was added to make a copper paste. A coating film was prepared from the prepared paste by a screen printing method using a 200-mesh screen, and a specific resistance value was measured.
As a result 0.9 × 10 -4 Good conductivity of Ω · cm was exhibited.
[0023]
(Example 14)
The metal adjusted so that it might become 90 weight% of copper and 10 weight% of silver was melt | dissolved with the crucible, and the copper alloy powder of the starting material of this invention was created by the air atomization method. 5 g of stearic acid was added to 1000 g of the copper alloy powder thus prepared, and pulverized with a vibration mill for 4 hours to form a piece. Thereafter, reduction treatment was performed at 200 ° C. for 80 minutes in a reduction furnace in an ammonia decomposition gas atmosphere. The flaky powder thus obtained was made into a particle diameter of 45 μm or less using a 325 mesh sieve, and the BET specific surface area value was 7200 cm. 2 / G of copper alloy powder for conductive paste was produced.
In order to confirm the performance of the flake copper alloy powder for conductive paste of the present invention thus produced, 75 parts by weight of copper alloy powder, 10 parts by weight of epoxy resin, 15 parts by weight of ethyl carbitol, a curing agent, and a reaction accelerator An appropriate amount of was added to make a copper paste. A coating film was prepared from the prepared paste by a screen printing method using a 200-mesh screen, and a specific resistance value was measured.
As a result 0.9 × 10 -4 Good conductivity of Ω · cm was exhibited.
[0024]
(Example 15)
The metal adjusted so that it might become 90 weight% of copper and 10 weight% of silver was melt | dissolved with the crucible, and the copper alloy powder of the starting material of this invention was created by the air atomization method. 5 g of oleic acid was added to 1000 g of the copper alloy powder thus prepared, and pulverized with a vibration mill for 4 hours to be processed into a piece. Thereafter, reduction treatment was performed at 200 ° C. for 80 minutes in a reduction furnace in an ammonia decomposition gas atmosphere.
The flaky powder thus obtained was made into a particle diameter of 45 μm or less using a 325 mesh sieve, and the BET specific surface area value was 7400 cm. 2 A piece-like copper alloy powder for conductive paste was produced. In order to confirm the performance of the flake copper alloy powder for conductive paste of the present invention thus produced, 75 parts by weight of copper alloy powder, 10 parts by weight of epoxy resin, 15 parts by weight of ethyl carbitol, a curing agent, and a reaction accelerator An appropriate amount of was added to make a copper paste. A coating film was prepared from the prepared paste by a screen printing method using a 200-mesh screen, and a specific resistance value was measured.
As a result 0.9 × 10 -4 Good conductivity of Ω · cm was exhibited.
[0025]
(Example 16)
The metal adjusted so that it might become 80 weight% of copper and 20 weight% of silver was melt | dissolved with the crucible, and the copper alloy powder of the starting material of this invention was created with the water atomization method. 5 g of lauric acid was added to 1000 g of the copper alloy powder thus prepared, and pulverized with a vibration mill for 4 hours to be processed into a piece. Thereafter, reduction treatment was performed at 200 ° C. for 80 minutes in a reduction furnace in an ammonia decomposition gas atmosphere. The flaky powder thus obtained was made to have a particle diameter of 45 μm or less using a 325 mesh sieve, and the BET specific surface area value was 7500 cm. 2 / G of copper alloy powder for conductive paste was produced.
In order to confirm the performance of the flake copper alloy powder for conductive paste of the present invention thus produced, 75 parts by weight of copper alloy powder, 10 parts by weight of epoxy resin, 15 parts by weight of ethyl carbitol, a curing agent, and a reaction accelerator An appropriate amount of was added to make a copper paste. A coating film was prepared from the prepared paste by a screen printing method using a 200-mesh screen, and a specific resistance value was measured.
As a result 0.9 × 10 -4 Good conductivity of Ω · cm was exhibited.
[0026]
(Example 17)
The metal adjusted so that it might become 80 weight% of copper and 20 weight% of silver was melt | dissolved with the crucible, and the copper alloy powder of the starting material of this invention was created with the water atomization method. 5 g of palmitic acid was added to 1000 g of the copper alloy powder thus prepared, and pulverized with a vibration mill for 4 hours to be processed into a piece. Thereafter, reduction treatment was performed at 200 ° C. for 80 minutes in a reduction furnace in an ammonia decomposition gas atmosphere. The flaky powder thus obtained was made into a particle diameter of 45 μm or less using a 325 mesh sieve, and the BET specific surface area value was 7400 cm. 2 / G of copper alloy powder for conductive paste was produced.
In order to confirm the performance of the flake copper alloy powder for conductive paste of the present invention thus produced, 75 parts by weight of copper alloy powder, 10 parts by weight of epoxy resin, 15 parts by weight of ethyl carbitol, a curing agent, and a reaction accelerator An appropriate amount of was added to make a copper paste. A coating film was prepared from the prepared paste by a screen printing method using a 200-mesh screen, and a specific resistance value was measured.
As a result 0.9 × 10 -4 Good conductivity of Ω · cm was exhibited.
[0027]
(Example 18)
The metal adjusted so that it might become 80 weight% of copper and 20 weight% of silver was melt | dissolved with the crucible, and the copper alloy powder of the starting material of this invention was created with the water atomization method. 5 g of stearic acid was added to 1000 g of the copper alloy powder thus prepared, and pulverized with a vibration mill for 4 hours to form a piece. Thereafter, reduction treatment was performed at 200 ° C. for 80 minutes in a reduction furnace in an ammonia decomposition gas atmosphere. The flaky powder thus obtained was made to have a particle diameter of 45 μm or less using a 325 mesh sieve, and the BET specific surface area value was 7600 cm. 2 / G of copper alloy powder for conductive paste was produced.
In order to confirm the performance of the flake copper alloy powder for conductive paste of the present invention thus produced, 75 parts by weight of copper alloy powder, 10 parts by weight of epoxy resin, 15 parts by weight of ethyl carbitol, a curing agent, and a reaction accelerator An appropriate amount of was added to make a copper paste. A coating film was prepared from the prepared paste by a screen printing method using a 200-mesh screen, and a specific resistance value was measured.
As a result 0.8 × 10 -4 Good conductivity of Ω · cm was exhibited.
[0028]
(Example 19)
The metal adjusted so that it might become 80 weight% of copper and 20 weight% of silver was melt | dissolved with the crucible, and the copper alloy powder of the starting material of this invention was created with the water atomization method. 5 g of oleic acid was added to 1000 g of the copper alloy powder thus prepared, and pulverized with a vibration mill for 4 hours to be processed into a piece. Thereafter, reduction treatment was performed at 200 ° C. for 80 minutes in a reduction furnace in an ammonia decomposition gas atmosphere.
The flaky powder thus obtained was made to have a particle diameter of 45 μm or less using a 325 mesh sieve, and the BET specific surface area value was 7900 cm. 2 A piece-like copper alloy powder for conductive paste was produced. In order to confirm the performance of the flake copper alloy powder for conductive paste of the present invention thus produced, 75 parts by weight of copper alloy powder, 10 parts by weight of epoxy resin, 15 parts by weight of ethyl carbitol, a curing agent, and a reaction accelerator An appropriate amount of was added to make a copper paste. A coating film was prepared from the prepared paste by a screen printing method using a 200-mesh screen, and a specific resistance value was measured.
As a result 0.9 × 10 -4 Good conductivity of Ω · cm was exhibited.
[0029]
(Example 20)
The metal adjusted so that it might become 50 weight% of copper and 50 weight% of silver was melt | dissolved with the crucible, and the copper alloy powder of the starting material of this invention was created with the air atomization method. 20 g of stearic acid was added to 1000 g of the copper alloy powder prepared as described above, and pulverized with an agitator mill for 2 hours to be processed into a piece. Thereafter, reduction treatment was performed at 450 ° C. for 30 minutes in a reduction furnace in a hydrogen atmosphere.
The flake powder thus obtained was made into a particle size of 75 μm or less using an air classifier, and the BET specific surface area value was 5500 cm. 2 A piece-like copper alloy powder for conductive paste was produced. In order to confirm the performance of the thus produced flake copper alloy powder for conductive paste of the present invention, 75 parts by weight of copper alloy powder and 25 parts by weight of acrylic resin were mixed, diluted with toluol and conductive paste It was created. The prepared paste was printed on an ABS resin plate by a roll coater method to prepare a coating film having a film thickness of 25 μm, and the specific resistance value was measured. As a result 2.0 × 10 -4 Good conductivity of Ω · cm was exhibited.
[0030]
(Example 21)
The metal adjusted so that it might become 50 weight% of copper and 50 weight% of silver was melt | dissolved with the crucible, and the copper alloy powder of the starting material of this invention was created with the air atomization method. To 1000 g of the copper alloy powder thus prepared, 5 g of stearic acid was added, and pulverized by an agitator mill for 1.5 hours. 15 g of stearin was further added to 1000 g of the piece-processed powder, and the mixture was stirred and mixed with a mixer for 5 minutes. Thereafter, reduction treatment was performed at 450 ° C. for 30 minutes in a reduction furnace in a hydrogen atmosphere. The flaky powder thus obtained was made into a particle size of 75 μm or less using an air classifier, and a BET specific surface area value of 6500 cm. 2 / G of copper alloy powder for conductive paste was produced.
In order to confirm the performance of the thus produced flake copper alloy powder for conductive paste of the present invention, 75 parts by weight of copper alloy powder and 25 parts by weight of acrylic resin were mixed, diluted with toluol and conductive paste It was created. The prepared paste was printed on an ABS resin plate by a roll coater method to prepare a coating film having a film thickness of 25 μm, and the specific resistance value was measured.
As a result 2.0 × 10 -4 Good conductivity of Ω · cm was exhibited.
[0031]
【The invention's effect】
Unlike the conventional granular powder, the flake copper alloy powder for conductive paste obtained by the method of the present invention has the same performance as that of silver powder while being in the form of a piece, and is industrially manufactured to a fine particle diameter at a low cost. I can do it now. As a specific effect, for electromagnetic wave shielding by spray coating or roll coater method, screen printing method, it is a flake powder, so the sedimentation speed is slow, the surface area is large, it is very easy to paint, and the coating surface is smooth. In addition, the coating thickness can be reduced.
In conductive circuits and jumper wires by the screen printing method, the fact that the particle size is small and the surface area is large increases the number of copper powders per unit volume of the paste, making it easier for copper powder to be uniformly dispersed in the resin. It was possible to form a stable coating film.
Thus, it can be used not only for fine patterns that require improved screen printability, smoothness of the coating film surface and fine lines, but also for dispensers. Of course, since it is a copper alloy powder, there is less migration compared to silver powder. By providing such a piece-like copper alloy powder for conductive paste, it can be said that the use range of an inexpensive conductive paste is widened and the industrial applicability of the present invention is very large.

Claims (2)

銀を3から75重量%含有した銅合金粉に対して、0.05から2重量%の脂肪酸を加えて機械的に片状加工し、しかる後に還元性雰囲気中で、150℃から500℃の温度で還元処理することを特徴とする導電ペースト用片状銅合金粉の製造方法。 To a copper alloy powder containing 3 to 75% by weight of silver , 0.05 to 2% by weight of a fatty acid is added and mechanically processed into a piece, and then in a reducing atmosphere at 150 to 500 ° C. A method for producing a flake copper alloy powder for conductive paste, characterized by performing a reduction treatment at a temperature. 請求項1記載の導電ペースト用銅合金粉の粒子径が100μm以下で,BET法比表面積値が2000cm2/g以上であることを特徴とする導電ペースト用片状銅合金粉の製造方法。  A method for producing a flaky copper alloy powder for a conductive paste, wherein the copper alloy powder for a conductive paste according to claim 1 has a particle diameter of 100 µm or less and a BET specific surface area value of 2000 cm 2 / g or more.
JP07153998A 1998-03-20 1998-03-20 Method for producing flake copper alloy powder for conductive paste Expired - Fee Related JP4074369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07153998A JP4074369B2 (en) 1998-03-20 1998-03-20 Method for producing flake copper alloy powder for conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07153998A JP4074369B2 (en) 1998-03-20 1998-03-20 Method for producing flake copper alloy powder for conductive paste

Publications (2)

Publication Number Publication Date
JPH11273454A JPH11273454A (en) 1999-10-08
JP4074369B2 true JP4074369B2 (en) 2008-04-09

Family

ID=13463659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07153998A Expired - Fee Related JP4074369B2 (en) 1998-03-20 1998-03-20 Method for producing flake copper alloy powder for conductive paste

Country Status (1)

Country Link
JP (1) JP4074369B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI461470B (en) * 2008-08-11 2014-11-21 Osaka Municipal Tech Res Inst Composite nanoparticles and method for the production thereof
JP6855292B2 (en) * 2016-03-16 2021-04-07 Dowaエレクトロニクス株式会社 Ag-Cu alloy powder and its manufacturing method
EP3243914B1 (en) 2016-05-13 2018-10-17 Heraeus Deutschland GmbH & Co. KG Method of manufacturing particulate ruthenium

Also Published As

Publication number Publication date
JPH11273454A (en) 1999-10-08

Similar Documents

Publication Publication Date Title
JP4954885B2 (en) Conductive powder and method for producing the same, conductive powder paste, and method for producing conductive powder paste
JP4660701B2 (en) Silver-coated copper powder, method for producing the same, and conductive paste
KR101301634B1 (en) Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder
JP5181434B2 (en) Fine copper powder and method for producing the same
KR102295909B1 (en) Silver-coated alloy powder, conductive paste, electronic components and electrical devices
KR100480863B1 (en) Copper fine powder and method for preparing the same
JP2016028176A (en) Method for manufacturing copper powder
US6632265B1 (en) Nickel powder, method for preparation thereof and conductive paste
CN105788703B (en) A kind of anti-oxidant silver-bearing copper slurry for being used to be electromagnetically shielded and preparation method thereof
WO2004101201A1 (en) Fine copper powder and method for producing the same
JP2009197317A (en) REDUCTION PRECIPITATION TYPE SPHERICAL NiP PARTICLE AND PRODUCTION METHOD THEREOF
JP4074369B2 (en) Method for producing flake copper alloy powder for conductive paste
JPH11264001A (en) Flake copper powder and its production
JPH11310806A (en) Production of copper-silver composite powder for electrically conductive paste
JP2010275638A (en) Silver-coated copper powder and conductive paste
JP2002015622A (en) Copper powder for electro-conductive paste and its manufacturing method
JP2004027246A (en) Copper powder for conductive paste, and its manufacturing method
JP2020196928A (en) Silver-coated alloy powder, alloy powder, metal-powder producing method, silver-coated metal powder producing method, conductive paste, and conductive-paste producing method
JP4163278B2 (en) Method for producing flake copper powder for conductive paint
JP4136106B2 (en) Flat micro copper powder and method for producing the same
KR20200026262A (en) Conductive paste
JP4230017B2 (en) Method for producing fine copper powder
JP2000021235A (en) Copper-base conductive paste
JPH10188670A (en) Flat conductive metal powder, its manufacture, and conductive paste with flat conductive metal powder
JPH07233403A (en) Copper powder for through hole forming electric conductive composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees