JP2009197317A - REDUCTION PRECIPITATION TYPE SPHERICAL NiP PARTICLE AND PRODUCTION METHOD THEREOF - Google Patents

REDUCTION PRECIPITATION TYPE SPHERICAL NiP PARTICLE AND PRODUCTION METHOD THEREOF Download PDF

Info

Publication number
JP2009197317A
JP2009197317A JP2008185209A JP2008185209A JP2009197317A JP 2009197317 A JP2009197317 A JP 2009197317A JP 2008185209 A JP2008185209 A JP 2008185209A JP 2008185209 A JP2008185209 A JP 2008185209A JP 2009197317 A JP2009197317 A JP 2009197317A
Authority
JP
Japan
Prior art keywords
spherical nip
particle size
aqueous solution
type spherical
precipitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008185209A
Other languages
Japanese (ja)
Other versions
JP5327582B2 (en
Inventor
Tsutomu Nosaka
勉 野坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008185209A priority Critical patent/JP5327582B2/en
Publication of JP2009197317A publication Critical patent/JP2009197317A/en
Application granted granted Critical
Publication of JP5327582B2 publication Critical patent/JP5327582B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/08Other phosphides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spherical NiP particle having excellent monodispersibility of the particle itself and production method thereof. <P>SOLUTION: Disclosed is a reduction-precipitation type spherical NiP particle having constituent with Ni as the body and P (preferably 1 to 15 mass%). The constituent includes Cu (preferably 0.01 to 18 mass%), or furthermore includes Sn (preferably 0.05 to 10 mass%). Also disclosed is a production method for the reduction-precipitation type spherical NiP particle having constituent with Ni as the body and P by mixing the mixed water solution composed of water solution of nickel salt, pH regulator and pH buffer with phosphorous water solution of reductant and reducing and precipitating the mixture, wherein the water solution of nickel salt is prepared by an alkaline method of selecting materials having Cu (preferable mol ratio of Ni/Cu=4.0 to 10000) or furthermore having Sn (preferable mol ratio of Ni/Sn=2.0 to 2000), and mixing the materials to make the pH value exceeds 7 when reduction-precipitation begins. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば、異方性導電フィルム用の導電粒子として使用される金属微小粒子の他には、基板等の配線形成に使用される材料としても好ましい金属微小粒子と、その製造方法に関するものである。   The present invention relates to, for example, metal microparticles that are also preferable as materials used for wiring formation on substrates and the like, in addition to metal microparticles used as conductive particles for anisotropic conductive films, and a method for producing the same. It is.

地上デジタル放送の普及に伴い、LCD(Liquid Crystal Display)、あるいはPDP(Plasma Display Panel)などのFPD(Flat Panel Display)が急激に伸長している。そのドライバICや微細な配線回路の電気的な接続には、異方性導電フィルムが多く使用されている。   With the spread of terrestrial digital broadcasting, LCD (Liquid Crystal Display) or PDP (Plasma Display Panel) and other FPDs (Flat Panel Display) are rapidly expanding. Many anisotropic conductive films are used for electrical connection of the driver ICs and fine wiring circuits.

異方性導電フィルムは熱硬化性または、熱可塑性の絶縁性樹脂フィルム中に、導電粒子を分散させた接着剤であり、相対する配線の間に配置した後に熱圧着することで、導電粒子を介して配線間の導通を取り、面方向の隣接した配線間では電気的絶縁性を保つ接続材料である。その導電粒子には、ポリスチレンやアクリルなどの樹脂ボールの表面にNi、Auなどの金属材料をめっきして導電性を持たせた導電性樹脂ボール、Ni、Cu、Al、Au、Agなどの金属粉末、あるいはその表面に金属めっきをした粉末などが広く用いられている。   An anisotropic conductive film is an adhesive in which conductive particles are dispersed in a thermosetting or thermoplastic insulating resin film, and the conductive particles are bonded by thermocompression after being placed between opposing wires. It is a connecting material that takes electrical conduction between wirings and maintains electrical insulation between adjacent wirings in the surface direction. The conductive particles include conductive resin balls obtained by plating the surface of resin balls such as polystyrene and acrylic with a metal material such as Ni and Au, and metals such as Ni, Cu, Al, Au, and Ag. Powders or powders whose surfaces are metal-plated are widely used.

異方性導電フィルムの導電粒子として一般的に用いられている導電性樹脂ボールは、熱圧着時の圧力と温度により樹脂ボールが弾性変形するため、配線との接触面積を大きくできるなどの利点を有している。しかし、樹脂ボールが絶縁体であるため良好な導通が得られにくいばかりでなく、特別な処理によって表面への金属めっきが行わなければならないため、非常に高価になるという欠点がある。   Conductive resin balls generally used as conductive particles in anisotropic conductive films have the advantage that the contact area with the wiring can be increased because the resin balls are elastically deformed by the pressure and temperature during thermocompression bonding. Have. However, since the resin ball is an insulator, not only good conduction is difficult to obtain, but also metal plating on the surface must be performed by a special treatment, so that there is a disadvantage that it is very expensive.

一方、Ni粉末などの金属粉末は、TCP(Tape Carrier Package)とFPC(Flexible Printed Circuit)の接続、TCPとPWB(Printed Wiring Board)の接続などの異方性導電フィルムに使用されている。TCPやFPC、PWBなどの回路基板は、Cu、あるいはその上にSnめっきなどを施した、比較的軟らかく、酸化膜ができやすい材質によって微細な配線回路が形成されている。金属粉末を用いた異方性導電フィルムは、上記、配線回路上の酸化膜を突き破って導通を確保できるなどの特長がある。しかしながら、例えばガスアトマイズ法により得られた金属粉末を異方性導電フィルム用導電粒子とする場合、粒度分布のシャープな粒子を得ることが非常に困難である。不揃いの大きさの粒子から、異方性導電フィルムの仕様に耐えうる粒子サイズへの分級処理は、高価となる問題点がある。   On the other hand, metal powder such as Ni powder is used for anisotropic conductive films such as TCP (Tape Carrier Package) and FPC (Flexible Printed Circuit) connection, and TCP and PWB (Printed Wiring Board) connection. Circuit boards such as TCP, FPC, and PWB have a fine wiring circuit made of Cu or Sn plating or the like that is relatively soft and easy to form an oxide film. The anisotropic conductive film using metal powder has the above-mentioned features such as the ability to ensure conduction by breaking through the oxide film on the wiring circuit. However, for example, when metal powder obtained by a gas atomizing method is used as conductive particles for anisotropic conductive film, it is very difficult to obtain particles having a sharp particle size distribution. There is a problem that classification processing from irregularly-sized particles to a particle size that can withstand the specifications of the anisotropic conductive film becomes expensive.

そこで、上記の課題を鑑みては、本発明者は回路基板の微細配線接続に用いる異方性導電フィルムについて、それに分散させる導電粒子を提案している(特許文献1)。この導電粒子は、優れた導電特性を有している一方、高硬度かつ均一な形状および粒度分布をも達成していることから、異方性導電フィルムに適するものとなっている。   Then, in view of said subject, this inventor has proposed the electroconductive particle disperse | distributed to it about the anisotropic conductive film used for the fine wiring connection of a circuit board (patent document 1). The conductive particles are suitable for anisotropic conductive films because they have excellent conductive properties while achieving high hardness and uniform shape and particle size distribution.

また、FPCあるいはガラス基板等への微細な回路配線の形成には、Agペーストによるスクリーン印刷法等が採用されている。この方法は、基板上に電気導電性の高いAgペーストで配線を印刷した後に、Agのエレクトロマイグレーションを防止するため、Ag配線をコートする形でカーボンペーストを積層印刷し、焼成して回路配線を形成する方法である。この方法に因れば、安価で大量に基板等を製造することが可能である。
特開2006−131978号公報
In addition, a screen printing method using an Ag paste or the like is employed to form fine circuit wiring on an FPC or a glass substrate. In this method, after wiring is printed on the substrate with Ag paste having high electrical conductivity, in order to prevent electromigration of Ag, the carbon paste is laminated and printed in the form of coating Ag wiring, and the circuit wiring is formed by baking. It is a method of forming. According to this method, it is possible to manufacture a large number of substrates at a low cost.
JP 2006-131978 A

上記の背景技術においては、例えば異方性導電フィルム用導電粒子に注視すると、特許文献1の方法は、上記の課題に一定の効果を示す有効な手法ではあるが、この種のNiP微小粒子では、導電性樹脂ボールと比較した場合、粒子サイズにばらつきがあり、改善の余地があった。   In the above background art, for example, when paying attention to the conductive particles for anisotropic conductive film, the method of Patent Document 1 is an effective technique showing a certain effect on the above problem, but with this type of NiP microparticles, When compared with conductive resin balls, there was variation in particle size, and there was room for improvement.

また、FPCや基板等への配線形成用材料として評価すれば、例えば配線間隔が0.2mm以下といった、より微細な配線を形成する場合には、スクリーン印刷の精度、すなわち、Ag配線とそれに積層するエレクトロマイグレーション防止用のカーボンペースト印刷時の位置ズレにより、高精度の配線回路の形成が困難であるという問題点がある。そこで、配線形成用材料においては、このエレクトロマイグレーションの課題からくる回路配線の精度劣化を解消すべく、Agペーストに代替する導電粒子が求められる。   Further, when evaluated as a material for forming a wiring on an FPC, a substrate, or the like, when forming a finer wiring, for example, with a wiring interval of 0.2 mm or less, the accuracy of screen printing, that is, the Ag wiring and the lamination thereof Therefore, there is a problem that it is difficult to form a highly accurate wiring circuit due to misalignment when printing carbon paste for preventing electromigration. Therefore, in the wiring forming material, there is a demand for conductive particles that can substitute for the Ag paste in order to eliminate the deterioration in accuracy of circuit wiring caused by the problem of electromigration.

本発明の目的は、特に異方性導電フィルムの導電粒子に使用するのに最適で、単分散性と導電特性に優れた球状NiP微小粒子およびその製造方法を提供することである。またこれに加えては、FPCあるいはガラス基板等の回路配線を形成するのに最適で、耐マイグレーション性と導電特性、ならびに低温焼結性にも優れた球状NiP微小粒子およびその製造方法を提供するものである。   An object of the present invention is to provide spherical NiP microparticles that are particularly suitable for use in conductive particles of an anisotropic conductive film and that are excellent in monodispersity and conductive properties, and a method for producing the same. In addition to this, spherical NiP microparticles that are optimal for forming circuit wiring such as FPC or glass substrate, and excellent in migration resistance, conductive properties, and low-temperature sinterability, and a method for producing the same are provided. Is.

本発明者は、高精度の微細回路に適用可能な異方性導電フィルム用の導電粒子について詳細に検討した。そして、基板等への回路配線を微細かつ高精度に形成できる材料としても、それに適した導電粒子を検討した。その結果、先に提案した特許文献1の異方性導電フィルム用導電粒子にCuを含む組成とすることで、更にはこれにSnをも含む組成とすることで、粒子サイズのばらつきを抑制することが可能であり、更に粒子自体の導電特性を向上させるという結果を得た。   This inventor examined in detail about the conductive particle for anisotropic conductive films applicable to a highly accurate fine circuit. And the conductive particle suitable for it as a material which can form the circuit wiring to a board | substrate etc. finely and with high precision was examined. As a result, by setting the conductive particles for anisotropic conductive film of Patent Document 1 previously proposed to have a composition containing Cu, and further to a composition containing Sn, the variation in particle size is suppressed. It was possible to improve the conductive properties of the particles themselves.

すなわち、本発明は、Niを主体にPを含む成分組成、例えば1〜15質量%のPを含む成分組成からなる球状NiP微小粒子において、その成分組成にはCuを含むことを特徴とする還元析出型球状NiP微小粒子である。また、その成分組成には、0.01〜18質量%のCuを含むことを特徴とする還元析出型球状NiP微小粒子である。   That is, the present invention relates to a component composition containing Ni as a main component and containing P, for example, spherical NiP microparticles comprising a component composition containing 1 to 15% by mass of P, and the component composition contains Cu. Precipitation spherical NiP fine particles. Further, the component composition is a reduced precipitation type spherical NiP fine particle characterized by containing 0.01 to 18% by mass of Cu.

更に、本発明は、前記のCuを含む成分組成に加えては、Snを含むことを特徴とする還元析出型球状NiP微小粒子であり、例えば0.05〜10質量%のSnを含むことを特徴とする還元析出型球状NiP微小粒子である。   Furthermore, the present invention is a reduction precipitation type spherical NiP microparticle characterized by containing Sn in addition to the component composition containing Cu, for example, containing 0.05 to 10% by mass of Sn. It is a characteristic reduction precipitation type spherical NiP fine particle.

そして、本発明の還元析出型球状NiP微小粒子に好ましくは、平均粒径d50が0.1〜70μmであり、かつその粒度分布が[(d90−d10)/d50]≦0.8(d90、d10、d50:積算分布曲線において、90体積%、10体積%、50体積%を示す粒子径)である。これにおいては、上記のCuを含むことで、特に平均粒径d50が1〜70μmの大径側での該粒度分布調整に有利である。そして、さらにはSnを含むことで、特に平均粒径d50が0.1〜10μmの小径側での該粒度分布調整に有利である。 Preferably, the reduced precipitation-type spherical NiP fine particles of the present invention preferably have an average particle size d 50 of 0.1 to 70 μm and a particle size distribution of [(d 90 −d 10 ) / d 50 ] ≦ 0. 8 (d 90 , d 10 , d 50 : particle diameters indicating 90% by volume, 10% by volume, and 50% by volume in the cumulative distribution curve). In this, by including the above-mentioned Cu, in particular an average particle size d 50 is advantageous in the particle size distribution adjusted in a large diameter side of 1~70Myuemu. Further, the inclusion of Sn is advantageous for adjusting the particle size distribution particularly on the small diameter side where the average particle diameter d 50 is 0.1 to 10 μm.

そして、本発明は、ニッケル塩の水溶液と、pH調製剤およびpH緩衝剤の混合水溶液と、リンを含む還元剤水溶液とを混合して還元析出させて、Niを主体にPを含む球状NiP微小粒子を製造する方法であって、前記ニッケル塩の水溶液はCuを含み、混合して還元析出を開始させる時のpHが7超のアルカリ性になるように調製することを特徴とする還元析出型球状NiP微小粒子の製造方法である。前記ニッケル塩の水溶液は、モル比にて、Ni/Cu=4.0〜10000となるよう、Cuを含むことが好ましい。   Then, the present invention mixes a nickel salt aqueous solution, a mixed aqueous solution of a pH adjusting agent and a pH buffering agent, and a reducing agent aqueous solution containing phosphorus to cause reduction precipitation, so that spherical NiP microparticles containing P mainly containing Ni. A method for producing particles, wherein the aqueous solution of nickel salt contains Cu, and is prepared so as to have an alkaline pH of more than 7 when mixed to start reduction precipitation. This is a method for producing NiP fine particles. The aqueous nickel salt solution preferably contains Cu so that Ni / Cu = 4.0 to 10,000 in terms of molar ratio.

更に、前記の還元析出させる際のニッケル塩の水溶液には、上記のCuに加えて、Snを含み、還元析出を開始させる時のpHが7超のアルカリ性となるように調製することを特徴とする還元析出型球状NiPの製造方法である。この時のニッケル塩の水溶液は、モル比にて、Ni/Sn=2.0〜2000となるSnを含むことが好ましい。   Furthermore, the aqueous solution of nickel salt at the time of reduction precipitation contains Sn in addition to the above-mentioned Cu, and is prepared so that the pH at the time of starting the reduction precipitation becomes alkaline exceeding 7. This is a method for producing reduced precipitation spherical NiP. It is preferable that the aqueous solution of nickel salt at this time contains Sn that satisfies Ni / Sn = 2.0 to 2000 in terms of molar ratio.

本発明のCu、あるいは更にSnを含む還元析出型球状NiP微小粒子は、その粒子が球状となっていることから、熱硬化性または熱可塑性の絶縁性樹脂フィルム中に配合した場合、粒子の凝集が少なく分散性が良好であり、異方性導電フィルムの導電粒子に使用した際に電極間のショートが抑制される。また、それとともに、従来良好な接続信頼性が得られにくかった材質であるAlやCr電極等の酸化皮膜を形成しやすい金属電極間の接続においても、低い接続抵抗と高い接続信頼性を得ることが可能となる。   The reduced precipitation type spherical NiP microparticles containing Cu or further Sn of the present invention have a spherical shape. Therefore, when the particles are blended in a thermosetting or thermoplastic insulating resin film, the particles are aggregated. And the dispersibility is good, and short-circuiting between electrodes is suppressed when used for conductive particles of an anisotropic conductive film. Along with that, low connection resistance and high connection reliability can be obtained even in the connection between metal electrodes that are easy to form an oxide film such as an Al or Cr electrode, which has been difficult to obtain good connection reliability. Is possible.

更に本発明の上記球状NiP微小粒子は、その成分組成が、Ni基の金属粒子であることから、耐マイグレーション性と導電特性に優れるとともに、微細で均一な粒子サイズを呈していることから、FPCあるいはガラス基板等の回路配線を形成する場合には、低温での焼結性が良好であり、基板へのダメージを少なくすることが可能となる。   Furthermore, the spherical NiP microparticles of the present invention are Ni-based metal particles, so that they have excellent migration resistance and conductive properties, and exhibit a fine and uniform particle size. Alternatively, when circuit wiring such as a glass substrate is formed, the sinterability at low temperatures is good, and damage to the substrate can be reduced.

本発明の特徴は、Niを主体に、少なくとも半金属であるPを必須に含有して構成された、例えば特許文献1に示されるような還元析出型球状NiP微小粒子のうちでは、これにCuが含有されたものは、粒子サイズのばらつき抑制に効果があることを、明らかにしたところにある。そして具体的には、そのCu含有量が0.01〜18質量%の成分組成としたところにある。   A feature of the present invention is that, among the reduction precipitation type spherical NiP fine particles as shown in, for example, Patent Document 1, which is composed mainly of Ni and essentially contains at least P, which is a metalloid, includes Cu. It has been clarified that the inclusion of is effective in suppressing variation in particle size. Specifically, the Cu content is in a component composition of 0.01 to 18% by mass.

また、本発明の特徴は、上記のCuを含む球状NiP微粒子に、Snを含有させることでも、同様のばらつき抑制効果が発揮されることを明らかにしたところにある。   In addition, the feature of the present invention is that it has been clarified that the same variation suppressing effect can be exhibited even when Sn is contained in the spherical NiP fine particles containing Cu.

そして、この通りのCuまたは、CuとSnの両元素を含んだ球状NiP微小粒子は、その平均粒径d50が0.1〜70μmであり、かつその粒度分布が[(d90−d10)/d50]≦0.8という、粒子サイズの揃った球状NiP微小粒子である。このとき、両含有元素においてCuを選択した球状NiP微小粒子は、平均粒径が1〜70μmといった大径側での上記ばらつき抑制効果に優れる。そして、CuとSnを同時に含有した球状NiP微粒子は、特に平均粒径が0.1〜10μmといった小径側での上記ばらつき抑制効果に優れる。 The spherical NiP microparticles containing Cu or both elements of Cu and Sn as described above have an average particle diameter d 50 of 0.1 to 70 μm and a particle size distribution of [(d 90 -d 10 ) / D 50 ] ≦ 0.8, spherical NiP microparticles having a uniform particle size. At this time, the spherical NiP microparticles in which Cu is selected in both of the contained elements are excellent in the above-described variation suppressing effect on the large diameter side with an average particle diameter of 1 to 70 μm. And the spherical NiP fine particle containing Cu and Sn simultaneously is excellent in the said dispersion | variation suppression effect in the small diameter side whose average particle diameter is 0.1-10 micrometers especially.

そして、本発明の球状NiP微小粒子を製造するにおいては、例えば、Cuまたは、CuとSnを含むニッケル塩の水溶液と、pH調製剤およびpH緩衝剤の混合水溶液と、リンを含む還元剤水溶液とを混合して還元析出させる無電解還元法により製造する方法であって、その還元析出を開始する混合水溶液のpHが7超のアルカリ性になるように調製することが好適である。前記Cuを含むニッケル塩の水溶液は、モル比にて、Ni/Cu=4.0〜10000となるよう、Cu量が調製されていることが望ましい。そして、前記Cuを含むニッケル塩の水溶液にSnを加えるのであれば、モル比にて、Ni/Sn=2.0〜2000となるように、Sn量が調製されていることが望ましい。   In producing the spherical NiP microparticles of the present invention, for example, an aqueous solution of a nickel salt containing Cu or Cu and Sn, a mixed aqueous solution of a pH adjusting agent and a pH buffer, and an aqueous reducing agent solution containing phosphorus. It is preferable to prepare such that the pH of the mixed aqueous solution that starts the reduction deposition becomes alkaline with a pH of more than 7. The aqueous solution of the nickel salt containing Cu preferably has a Cu amount adjusted so that Ni / Cu = 4.0 to 10,000 in terms of molar ratio. And if Sn is added to the aqueous solution of nickel salt containing Cu, it is desirable that the Sn amount is adjusted so that Ni / Sn = 2.0 to 2000 in terms of molar ratio.

先ず、本発明の球状NiP微小粒子は、Niを主体にPを必須に含む、例えば1〜15質量%のPを含むような成分組成が基本となる。これについては、異方性導電フィルム用の導電粒子として用いる場合、その必要な硬さと導電性を付与する有効な方法として、本発明者は、粒子の中心部分では結晶構造を有し、表層部分においては非結晶に金属間化合物を分散させた構造の球状NiP微小粒子を、特許文献1で提案している。   First, the spherical NiP microparticles of the present invention are based on a component composition that contains Ni as a main component and essentially contains P, for example, 1 to 15% by mass of P. About this, when using as an electrically conductive particle for anisotropic conductive films, as an effective method for imparting the necessary hardness and conductivity, the present inventor has a crystal structure in the center part of the particle, and a surface layer part. Discloses a spherical NiP fine particle having a structure in which an intermetallic compound is dispersed in an amorphous state.

そして、特許文献1の方法によれば、これは粒度分布の均一性確保に一定の効果を示す有効な手法であるが、本発明者は鋭意検討を重ねた結果、特許文献1の球状NiP微小粒子のうちでも、特にCuを添加したものこそ、粒子のばらつきが更に抑制され、導電性をも向上させることが可能であることをつきとめた。   And, according to the method of Patent Document 1, this is an effective technique showing a certain effect for ensuring the uniformity of the particle size distribution. Among the particles, it was found that the addition of Cu in particular can further suppress the dispersion of the particles and improve the conductivity.

本発明の、還元析出型球状NiP微小粒子においてのCu含有量は、0.01〜18質量%であることが望ましい。Cuの含有量を0.01質量%未満とした場合には、粒子のばらつきを抑制する効果が得られにくい。また、Cu含有量が18質量%を超えると、粒子同士が凝集しやすくなって単分散性が損なわれやすいばかりでなく、例えば異方性導電フィルムに適用した場合、それにより接続される回路基板の微細配線に適応しうる、例えば20μm以下サイズの粒子が得られにくい。更に望ましくは、0.40〜17質量%のCuを含む成分組成とすることにより、粒子サイズにばらつきが少なく、導電性に優れた金属微小粒子を得ることが容易となる。   The Cu content in the reduced precipitation type spherical NiP fine particles of the present invention is preferably 0.01 to 18% by mass. When the Cu content is less than 0.01% by mass, it is difficult to obtain the effect of suppressing particle variation. Further, when the Cu content exceeds 18% by mass, not only the particles are easily aggregated and the monodispersibility is easily impaired, but, for example, when applied to an anisotropic conductive film, a circuit board connected thereby. It is difficult to obtain particles having a size of, for example, 20 μm or less, which can be applied to the fine wiring of the above. More desirably, by using a component composition containing 0.40 to 17% by mass of Cu, it becomes easy to obtain metal microparticles with little variation in particle size and excellent conductivity.

更に、上記のCuを含む還元析出型NiP微小粒子に加えては、これにSnを添加することでも同様に、粒子サイズのばらつき抑制に効果がある。この場合、本発明の球状NiP微小粒子についてのSn含有量は、0.05〜10質量%であることが望ましい。Snの含有量を0.05質量%未満とした場合には、粒子のばらつきを抑制する効果が得られ難く、特に後述する小径側での同効果の恩恵が得られ難い。また、Sn含有量が10質量%を超えると、粒子が不定形となるばかりでなく、単分散性の粒子が得られ難い。更に望ましくは、0.25〜5質量%のSnを含む成分組成とすることにより、粒子サイズにばらつきが少なく、導電性に優れた金属微小粒子を得ることが容易となる。   Further, in addition to the above-described reduced precipitation type NiP microparticles containing Cu, addition of Sn to this also has an effect of suppressing variation in particle size. In this case, the Sn content of the spherical NiP fine particles of the present invention is desirably 0.05 to 10% by mass. When the Sn content is less than 0.05% by mass, it is difficult to obtain the effect of suppressing particle variation, and it is difficult to obtain the benefit of the same effect on the small diameter side, which will be described later. On the other hand, when the Sn content exceeds 10% by mass, not only the particles become amorphous, but also monodisperse particles are difficult to obtain. More preferably, by using a component composition containing 0.25 to 5% by mass of Sn, it becomes easy to obtain metal microparticles with little variation in particle size and excellent conductivity.

本発明のCuまたは、CuとSnの両元素を含む還元析出型球状NiP微小粒子の平均粒径は、d50の数値を0.1〜70μmとすることが望ましいが(d50:積算分布曲線において、50体積%を示す粒径)、この粒径は用途に応じて選定する必要がある。しかしながら、この粒径が0.1μm未満の場合には、粒子が凝集しやすくなるため、取り扱いが非常に困難となる。一方、平均粒径d50が70μmを超えると、粒子を成長させるに多大な時間を要し、効率良く均一な粒子を得ることが困難となる。好ましくは、50μm以下、さらには30μm以下とする。なお、20μmを超えると、異方性導電フィルム用の導電粒子や、FPC、基板等の配線形成に使用される材料としては、その機能上の使用が難しくなってくる。 The average particle size of Cu or reductive deposition type spherical NiP microparticles containing both elements of Cu and Sn of the present invention, it is desirable to 0.1~70μm the value of d 50 (d 50: cumulative distribution curve In this case, it is necessary to select the particle size according to the application. However, if the particle size is less than 0.1 μm, the particles are likely to aggregate, making handling very difficult. On the other hand, if the average particle size d 50 exceeds 70 μm, it takes a long time to grow the particles, and it becomes difficult to obtain uniform particles efficiently. Preferably, it is 50 μm or less, further 30 μm or less. In addition, when exceeding 20 micrometers, as a material used for wiring formation, such as conductive particles for anisotropic conductive films, FPC, and a board | substrate, the functional use will become difficult.

ここで、本発明の球状NiP微小粒子を、例えば異方性導電フィルム用導電粒子として用いる場合には、d50の数値を1〜20μmとすることが望ましい。この粒径が1μm未満であると、異方導電接続された時に、TCPやFPC、PWBなどの回路基板に形成されている微細配線の高さばらつきを緩衝できず接触が不安定となり、接続信頼性が低下する。一方、d50が20μmを超えると、配線間隔が数十μmといった狭ピッチの微細配線の接続において、絶縁性が低下し、安定した接続信頼性が確保できない可能性がある。よって、本発明の球状NiP微小粒子は、特に異方性導電フィルム用の導電粒子として最適にするためには、d50の値は1〜20μmが好ましく、更には1〜10μmを好ましいとするが、この粒径は異方性導電フィルムにより接続される配線間隔および電極の形状に合わせて任意に選定することが望ましい。 Here, the spherical NiP microparticles of the present invention, for example when used as an anisotropic conductive film for the conductive particles, it is desirable that the 1~20μm the value of d 50. When this particle size is less than 1 μm, the height variation of fine wiring formed on a circuit board such as TCP, FPC, PWB, etc. cannot be buffered when anisotropic conductive connection is made, and contact becomes unstable, and connection reliability Sex is reduced. On the other hand, if d 50 exceeds 20 μm, in the connection of fine wiring with a narrow pitch such that the wiring interval is several tens of μm, there is a possibility that the insulating property is lowered and stable connection reliability cannot be ensured. Therefore, in order to optimize the spherical NiP microparticles of the present invention particularly as the conductive particles for the anisotropic conductive film, the value of d 50 is preferably 1 to 20 μm, and more preferably 1 to 10 μm. It is desirable that the particle size is arbitrarily selected according to the wiring interval and the shape of the electrodes connected by the anisotropic conductive film.

そして、このd50が0.1〜70μmの範囲にある本発明の還元析出型球状NiP微小粒子においては、d50を上記の1μm以上、更には5μm以上の大径側に調整して、かつその時の粒子サイズのばらつき抑制効果に優れるのは、CuまたはSnの両含有元素のうちのCuを単独含有させたときである。 In the reduced precipitation type spherical NiP fine particles of the present invention in which d 50 is in the range of 0.1 to 70 μm, the d 50 is adjusted to the large diameter side of 1 μm or more, further 5 μm or more, and The effect of suppressing the variation in particle size at that time is when Cu of both contained elements of Cu or Sn is contained alone.

次に、本発明の球状NiP微小粒子を、FPCあるいはガラス基板等の回路配線を形成する材料として用いる場合であっても、その平均粒径d50は用途に合わせて任意に選定するが、0.1〜10μmとすることが望ましい。d50が10μmを超えると、微細な配線間隔に適用できない場合があり、また回路配線を形成する時の焼結温度が上昇して、基板へダメージを与える懸念がある。一方、d50が0.1μm未満であると、粒子の取り扱いが非常に困難となるばかりでなく、粒子自体が高価であることから、量産への対応が難しくなる。 Next, even when the spherical NiP fine particles of the present invention are used as a material for forming circuit wiring such as FPC or a glass substrate, the average particle diameter d 50 is arbitrarily selected according to the use. 1 to 10 μm is desirable. If d 50 exceeds 10 μm, it may not be applicable to a fine wiring interval, and there is a concern that the sintering temperature at the time of forming circuit wiring rises and damages the substrate. On the other hand, if d 50 is less than 0.1 μm, not only the handling of the particles becomes very difficult, but also the particles themselves are expensive, making it difficult to deal with mass production.

そして、上記のd50が0.1〜70μmの範囲にある本発明の還元析出型球状NiP微小粒子においては、今度はd50を上記の10μm以下、更には5μm未満の小径側に調整して、かつその時の粒子サイズのばらつき抑制効果に優れるのは、CuとSnの両元素を含有させたときである。 In the reduced precipitation type spherical NiP microparticles of the present invention in which the d 50 is in the range of 0.1 to 70 μm, the d 50 is adjusted to the small diameter side of 10 μm or less and further less than 5 μm. In addition, the effect of suppressing variation in particle size at that time is excellent when both elements of Cu and Sn are contained.

次に、本発明の還元析出型球状NiP微小粒子は、均一な粒度分布を呈しているところにも特徴がある。粒度分布が[(d90−d10)/d50]>0.8の場合には(d90、d10:積算分布曲線において、90体積%、10体積%を示す粒径)、例えば異方性導電接続された際に、導通に関与する粒子が少なくなるため、接続信頼性が低くなる可能性がある。よって、この式で与えられる粒度分布はできるだけ小さい値を取ることが望ましいが、この値を小さくするための分級処理等には多大なコストを要するため、粒度分布の[(d90−d10)/d50]は0.8以下であることが好ましい。より好ましくは、0.7以下である。 Next, the reduced precipitation type spherical NiP fine particles of the present invention are also characterized by a uniform particle size distribution. When the particle size distribution is [(d 90 -d 10 ) / d 50 ]> 0.8 (d 90 , d 10 : particle sizes indicating 90 vol% and 10 vol% in the integrated distribution curve), for example, different When the isotropic conductive connection is made, the number of particles involved in conduction is reduced, so that connection reliability may be lowered. Therefore, it is desirable that the particle size distribution given by this equation be as small as possible. However, since classification processing for reducing this value requires a great deal of cost, [(d 90 −d 10 ) of the particle size distribution is required. / D 50 ] is preferably 0.8 or less. More preferably, it is 0.7 or less.

本発明の球状NiP微小粒子の、好ましい製造方法について説明する。先ず、本発明者は、特許文献1において、ニッケル塩水溶液とPを含む還元剤水溶液とを混合して還元析出させることで、Niを主体にPを含む球状NiP微小粒子を製造する、すなわち無電解還元法を提案した。この還元析出の基本原理は、本発明の球状NiP微小粒子の製造にも利用することができるが、この場合、本発明で重要となるのは、そのニッケル塩水溶液中にCuイオンを添加することである。つまり、還元剤の酸化反応によって放出された自由電子により、Niイオンが還元されると共にCuが還元析出して、粒子サイズのばらつきの小さいCuを含んだNiP微小粒子を得ることが可能となる。   A preferred method for producing the spherical NiP fine particles of the present invention will be described. First, in the patent document 1, the present inventor manufactures spherical NiP microparticles mainly containing Ni by mixing a nickel salt aqueous solution and a reducing agent aqueous solution containing P to reduce precipitation. An electrolytic reduction method was proposed. The basic principle of this reduction precipitation can also be used for the production of the spherical NiP fine particles of the present invention. In this case, what is important in the present invention is to add Cu ions to the aqueous nickel salt solution. It is. That is, Ni ions are reduced and Cu is reduced and precipitated by free electrons released by the oxidizing reaction of the reducing agent, and it is possible to obtain NiP microparticles containing Cu with a small variation in particle size.

そして更に加えては、本発明の重要な特徴は、必要に応じて、上記のCuイオンを添加したニッケル塩水溶液中にSnイオンを添加するところにもある。これにより、還元析出反応の際には、Snも共析して、粒子サイズのばらつきが小さいSnを含んだNiP微小粒子を得ることが可能となる。   In addition, an important feature of the present invention is that Sn ions are added to the nickel salt aqueous solution to which the Cu ions are added, if necessary. As a result, during the reduction precipitation reaction, Sn is also co-deposited, and it is possible to obtain NiP microparticles containing Sn with a small variation in particle size.

上記の反応メカニズムについて詳細に説明する。本発明の採用する無電解還元法では、ニッケル塩の水溶液とリンを含む還元剤水溶液とを混合した直後の、反応の初期過程において、先ず、リンを含む還元剤、すなわちホスフィン酸の酸化反応が起こる。その酸化反応の進行に伴い、溶液内に生成されたホスホン酸イオンが蓄積され、その限界濃度に達すると、ホスホン酸イオンと遊離Niイオンとが結合して、球状NiP微小粒子の核となるホスホン酸ニッケルを生成する。そして、上記の核の表面、すなわちNi表面においてホスフィン酸イオンは触媒活性を示し、反応の素過程である水素の脱離反応を経て酸化反応を起こす。その酸化反応の際に放出された自由電子により、Ni、Cu、および/またはSnの金属イオンが連続して還元析出し、目標とする球状NiP微小粒子を形成する。   The above reaction mechanism will be described in detail. In the electroless reduction method employed by the present invention, immediately after mixing an aqueous solution of nickel salt and an aqueous reducing agent solution containing phosphorus, an oxidation reaction of a reducing agent containing phosphorus, that is, phosphinic acid, is first performed. Occur. As the oxidation reaction proceeds, phosphonate ions generated in the solution are accumulated. When the limit concentration is reached, phosphonate ions and free Ni ions are combined to form phosphones serving as nuclei of spherical NiP microparticles. Produces nickel acid. The phosphinic acid ion exhibits catalytic activity on the surface of the nucleus, that is, the Ni surface, and causes an oxidation reaction through a hydrogen elimination reaction, which is an elementary process of the reaction. By free electrons released during the oxidation reaction, Ni, Cu, and / or Sn metal ions are continuously reduced and deposited to form target spherical NiP microparticles.

ところで、一般的な無電解Ni−Pめっきにおいては、被めっき物以外にめっき皮膜が析出したり、めっき液の自然分解の防止のために、チオ尿素などの硫黄化合物、あるいはPb、Bi、Tl、Sbなどの重金属イオンなどが安定剤として用いられている。上記の安定剤は、めっき液の自然分解の原因となる沈殿物に、Niよりも優先して吸着し、触媒毒として作用するものである。そして、SnおよびCuは、上記の重金属に次いで、触媒活性を低下させる元素として知られている。本発明の球状NiP微小粒子を製造するにおいては、ニッケル塩の水溶液に、Cuまたは、CuとSnを添加することによって、無電解還元法の反応途中過程において、その触媒毒の作用により、後発のホスホン酸ニッケルの生成が抑制できているものと判断している。そして、この結果としては、本発明の製造方法によって得られた球状NiP微小粒子の、その断面における成分分布を分析したところ、その中心部にはCuまたは、CuとSnの両イオンが濃密に分布していることを確認している(後述する図3〜6および9〜13のFE−SEM(電界放出型走査電子顕微鏡)像の通り)。   By the way, in general electroless Ni-P plating, a plating film is deposited in addition to an object to be plated, or a sulfur compound such as thiourea or Pb, Bi, Tl is used to prevent spontaneous decomposition of the plating solution. Heavy metal ions such as Sb are used as stabilizers. The above stabilizer is adsorbed preferentially over Ni to precipitates that cause spontaneous decomposition of the plating solution, and acts as a catalyst poison. And Sn and Cu are known as an element which reduces catalyst activity next to said heavy metal. In the production of the spherical NiP microparticles of the present invention, by adding Cu or Cu and Sn to an aqueous solution of nickel salt, the reaction of the catalyst poisons during the course of the electroless reduction process causes the subsequent reaction. It is judged that the production of nickel phosphonate can be suppressed. And as a result, when the component distribution in the cross section of the spherical NiP microparticles obtained by the production method of the present invention was analyzed, Cu or both ions of Cu and Sn were densely distributed in the center. (As shown in FE-SEM (field emission scanning electron microscope) images of FIGS. 3 to 6 and 9 to 13 described later).

更に加えては、上記の作用において、特に粒子サイズのばらつき抑制に適当な条件としては、前記ニッケル塩の水溶液に、モル比にて、Ni/Cu=4.0〜10000となるようCuを調製添加したときを設定した。Ni/Cu比が低くなると、個々の粒子サイズ自体は大きく調製できる一方では、粒度分布としてのばらつきは小さくなる傾向が認められる。また、同比が高くなると、個々の粒子サイズ自体は小さく調製できる一方では、やはり粒度分布としてのばらつきは小さくなる傾向が認められる。上記のモル比においては、Ni/Cu=約4.56に調製したニッケル塩の水溶液を使用した時の還元析出反応が100%完遂すれば、得られた球状NiP微小粒子に含まれる理論Cu量は、同P含有量が約7質量%の時で、18質量%である。また、Ni/Cu=約9999に調製したニッケル塩の水溶液を使用した時の還元析出反応が100%完遂すれば、得られた球状NiP微小粒子に含まれる理論Cu量は、同P含有量が約7質量%の時で、0.01質量%である。   In addition, in the above action, as an appropriate condition particularly for suppressing variation in particle size, Cu is prepared in an aqueous solution of the nickel salt so that Ni / Cu = 4.0 to 10,000 in molar ratio. The time of addition was set. When the Ni / Cu ratio is lowered, the individual particle sizes themselves can be prepared larger, while the variation in the particle size distribution tends to be reduced. In addition, when the ratio is increased, individual particle sizes themselves can be prepared to be small, while variation in the particle size distribution tends to be reduced. In the above molar ratio, the theoretical Cu content contained in the obtained spherical NiP microparticles should be 100% when the reductive precipitation reaction when using an aqueous solution of nickel salt prepared to Ni / Cu = about 4.56 is completed 100%. Is 18% by mass when the P content is about 7% by mass. Moreover, if the reduction precipitation reaction when using an aqueous solution of nickel salt prepared to Ni / Cu = about 9999 is completed 100%, the theoretical Cu amount contained in the obtained spherical NiP microparticles is the same as the P content. At about 7% by mass, it is 0.01% by mass.

また、Cuを含むニッケル塩の水溶液に、更にSnを添加した時には、Cuの単独添加のときに比して、より小径側における粒子サイズのばらつき抑制効果に優れるが、この作用は、モル比にて、Ni/Sn=2.0〜2000となるようSnを調製添加したときを設定した。Ni/Sn比が低くなると、個々の粒子サイズ自体は小さく調製できる一方では、粒度分布としてのばらつきは小さくなる傾向が認められる。また、同比が高くなると、個々の粒子サイズ自体は大きく調製できる一方では、やはり粒度分布としてのばらつきは小さくなる傾向が認められる。   In addition, when Sn is further added to an aqueous solution of nickel salt containing Cu, the effect of suppressing variation in particle size on the smaller diameter side is superior to that when Cu is added alone. Then, the time when Sn was prepared and added so that Ni / Sn = 2.0 to 2000 was set. When the Ni / Sn ratio is lowered, the individual particle sizes themselves can be prepared to be small, while the variation in the particle size distribution tends to be small. In addition, when the ratio is increased, individual particle sizes themselves can be prepared larger, while the variation in particle size distribution tends to be reduced.

そして、これらの方法において、もう一つ重要となるのが、還元析出を開始させる時のpHの調製である。これが7超のアルカリ性になるように調製することで、析出反応を速やかに進行させ、Cuまたは、CuとSnを含んだNiP微小粒子を効率良く得ることが可能となる。また、この作用効果に併せては、本微小粒子の反応初期にあたる中心部のP濃度を低くすることをも可能とする(同図3〜6および9〜13の通り)。これについては、本微小粒子の導電性および硬度を向上させるためには有利な手法として、特許文献1でも説明している。   In these methods, another important factor is the adjustment of the pH when starting the reduction precipitation. By preparing it so that it becomes more than 7 alkaline, the precipitation reaction can proceed rapidly, and NiP microparticles containing Cu or Cu and Sn can be obtained efficiently. In addition to this action and effect, it is also possible to lower the P concentration in the central portion corresponding to the initial reaction of the present microparticles (as shown in FIGS. 3 to 6 and 9 to 13). This is also described in Patent Document 1 as an advantageous technique for improving the conductivity and hardness of the fine particles.

なお、上記の手法によって提供される、本発明のCuまたは、CuとSnを含む還元析出型NiP微小粒子であっても、特許文献1に同様、それは更なる硬度付与のための加熱処理や、および/または、接続抵抗を低くするためのAu等の表面被覆処理を施してもよい。   In addition, even if it is the reduced precipitation type NiP microparticles containing Cu or Cu and Sn of the present invention provided by the above-mentioned method, as in Patent Document 1, it is a heat treatment for further imparting hardness, And / or a surface coating treatment such as Au for lowering the connection resistance may be performed.

(実施例1)
硫酸ニッケル六水和物と硫酸銅五水和物とを、NiとCuのモル比がNi/Cu=239となるよう調製して、純水に溶解し、金属塩水溶液を15(dm)作製した。次に、酢酸ナトリウムを純水に溶解して、1.0(kmol/m)の濃度とし、更に水酸化ナトリウムを加えてpH調製水溶液を15(dm)作製した。そして、上記の金属塩水溶液とpH調製水溶液を撹拌混合し、30(dm)の混合水溶液とし、pHを測定すると8.1の値を示した。そして、上記の混合水溶液をNガスでバブリングしながら外部ヒーターにより343(K)に加熱保持し、撹拌を続けた。
(Example 1)
Nickel sulfate hexahydrate and copper sulfate pentahydrate are prepared so that the molar ratio of Ni and Cu is Ni / Cu = 239, dissolved in pure water, and an aqueous metal salt solution of 15 (dm 3 ). Produced. Next, sodium acetate was dissolved in pure water to a concentration of 1.0 (kmol / m 3 ), and sodium hydroxide was further added to prepare 15 (dm 3 ) of pH adjusted aqueous solution. And said metal salt aqueous solution and pH adjustment aqueous solution were stirred and mixed, and it was set as the mixed aqueous solution of 30 (dm < 3 >), and the value of 8.1 was shown when pH was measured. The mixed aqueous solution was heated and held at 343 (K) by an external heater while bubbling with N 2 gas, and stirring was continued.

次に、純水に1.8(kmol/m)の濃度でホスフィン酸ナトリウムを溶解した還元剤水溶液を15(dm)作製し、こちらも外部ヒーターによって343(K)に加熱した。そして、上記、30(dm)の混合水溶液と15(dm)の還元剤水溶液を、温度が343±1(K)となるように調製した後に混合し、無電解還元法によって微小粒子を得た。 Next, 15 (dm 3 ) of a reducing agent aqueous solution in which sodium phosphinate was dissolved in pure water at a concentration of 1.8 (kmol / m 3 ) was prepared, and this was also heated to 343 (K) by an external heater. Then, the mixed aqueous solution of 30 (dm 3 ) and the reducing agent aqueous solution of 15 (dm 3 ) described above are mixed after being prepared so that the temperature becomes 343 ± 1 (K), and fine particles are formed by an electroless reduction method. Obtained.

上記のようにして得られた微小粒子を乾燥させた後、レーザー回折散乱法による粒度分布計で粒子サイズを測定した。平均粒径d50の値は3.7μmで、d90とd10はそれぞれ、5.3μmと2.8μmあり、[(d90−d10)/d50]の式で与えられる粒度分布は0.68であった。粒子の形状をSEM(走査型電子顕微鏡)で観察した結果は図1の通りであり、単分散の球形状であることが確認された。そして、微小粒子の成分組成を分析した結果は、下記の表1に示す通り、Cuが0.40質量%含まれたNiP微小粒子であった。 After drying the microparticles obtained as described above, the particle size was measured with a particle size distribution meter by a laser diffraction scattering method. The average particle size d 50 is 3.7 μm, d 90 and d 10 are 5.3 μm and 2.8 μm, respectively, and the particle size distribution given by the formula [(d 90 −d 10 ) / d 50 ] is It was 0.68. The result of observing the shape of the particles with an SEM (scanning electron microscope) is as shown in FIG. 1 and was confirmed to be a monodispersed spherical shape. And the result of having analyzed the component composition of the microparticles was NiP microparticles containing 0.40% by mass of Cu as shown in Table 1 below.

(実施例2)
硫酸ニッケル六水和物と硫酸銅五水和物との割合を、NiとCuのモル比がNi/Cu=5となるように調製し、金属塩水溶液、pH調製水溶液と還元剤水溶液の液量を、それぞれ0.25(dm)とした以外は、実施例1と同様にして、無電解還元法により微小粒子を作製した。なお、混合水溶液のpHは9.0であった。
(Example 2)
The ratio of nickel sulfate hexahydrate and copper sulfate pentahydrate was adjusted so that the molar ratio of Ni and Cu was Ni / Cu = 5, and the solution of metal salt aqueous solution, pH adjustment aqueous solution and reducing agent aqueous solution Fine particles were produced by the electroless reduction method in the same manner as in Example 1 except that the amount was 0.25 (dm 3 ). The pH of the mixed aqueous solution was 9.0.

そして、レーザー回折散乱法により、粒径の分布を確認したところ、平均粒径d50値が8.9μm、[(d90−d10)/d50]値が0.58であり、図2のSEM写真に示す球状NiP微小粒子を得た。また、粒子の断面観察試料を作製し、FE−SEM(電界放出型走査電子顕微鏡)により各元素の分布を観察したところ、図3〜6の通り、粒子中心から外側に向かって約2/3より内側に、Cuが濃密に分布していることが確認された。なお、成分組成の分析結果は、表1に示す通りの、Cuが14.36質量%であることが確認された。 The particle size distribution was confirmed by the laser diffraction scattering method. The average particle size d 50 value was 8.9 μm, and the [(d 90 −d 10 ) / d 50 ] value was 0.58. Spherical NiP fine particles shown in the SEM photograph were obtained. Moreover, when the cross-sectional observation sample of a particle was produced and the distribution of each element was observed with FE-SEM (field emission scanning electron microscope), as shown in FIGS. It was confirmed that Cu was densely distributed inside. The analysis results of the component composition confirmed that Cu was 14.36% by mass as shown in Table 1.

(実施例3)
硫酸ニッケル六水和物と硫酸銅五水和物の割合を、モル比にてNi/Cu=39となるように調製し、そして、pH緩衝剤を酢酸ナトリウムとマレイン酸二ナトリウムとし、それぞれの濃度を0.65(kmol/m)、0.175(kmol/m)に変更してpH調製水溶液を調製した以外は、実施例1と同様にして、無電解還元法により微小粒子を製造した。なお、混合水溶液のpHは8.2であった。
Example 3
The ratio of nickel sulfate hexahydrate and copper sulfate pentahydrate was adjusted so that the molar ratio was Ni / Cu = 39, and the pH buffer was sodium acetate and disodium maleate, Except for changing the concentration to 0.65 (kmol / m 3 ) and 0.175 (kmol / m 3 ) to prepare a pH adjusted aqueous solution, in the same manner as in Example 1, fine particles were obtained by an electroless reduction method. Manufactured. The pH of the mixed aqueous solution was 8.2.

得られた微小粒子の粒径を、レーザー回折散乱法の粒度分布計により測定した結果、平均粒径d50値は67.1μmで、[(d90−d10)/d50]値は0.51であった。また、上記の微小粒子をSEMにより観察した結果は図7の通りであり、単分散の球形状であることが確認された。なお、成分組成の分析結果は、表1に示す通りの、Cuが2.750質量%であることが確認された。 As a result of measuring the particle size of the obtained microparticles with a particle size distribution meter of the laser diffraction scattering method, the average particle size d 50 value was 67.1 μm, and the [(d 90 −d 10 ) / d 50 ] value was 0. .51. Moreover, the result of observing the above-mentioned microparticles with an SEM is as shown in FIG. 7 and was confirmed to be a monodispersed spherical shape. The analysis result of the component composition confirmed that Cu was 2.750% by mass as shown in Table 1.

(実施例4)
特許文献1に従い、Cuを添加しないニッケル塩水溶液と、水酸化ナトリウム0.9(kmol/m)および酢酸ナトリウム1.0(kmol/m)の混合水溶液を、それぞれ0.25(dm)作製し、外部から加熱しながら撹拌を行ない、2液を混合して混合水溶液とし、Nガスを流してバブリングを行なって、混合水溶液の温度が343±1(K)となるように調製した。
(Example 4)
According to Patent Document 1, a nickel salt aqueous solution to which no Cu is added and a mixed aqueous solution of sodium hydroxide 0.9 (kmol / m 3 ) and sodium acetate 1.0 (kmol / m 3 ) are each 0.25 (dm 3 ) Prepare and stir while heating from the outside, mix the two liquids to make a mixed aqueous solution, bubbling with N 2 gas flowing, and adjusting the temperature of the mixed aqueous solution to 343 ± 1 (K) did.

一方で、純水に1.8(kmol/m)の濃度でホスフィン酸ナトリウムを溶解した還元剤水溶液を0.25(dm)作製し、こちらも外部ヒーターによって343(K)に加熱し、実施例1と同様な方法により、球状NiP微小粒子を得た。レーザー回折散乱法により、粒度分布を確認したところ平均粒径d50値が2.9μm、[(d90−d10)/d50]値は0.76であった。そして、表1の成分組成の分析結果から、Cuは不純物のレベル(0.001質量%未満)でしか確認されなかった。 On the other hand, a reducing agent aqueous solution in which sodium phosphinate is dissolved at a concentration of 1.8 (kmol / m 3 ) in pure water is prepared to 0.25 (dm 3 ), and this is also heated to 343 (K) by an external heater. Spherical NiP fine particles were obtained by the same method as in Example 1. When the particle size distribution was confirmed by a laser diffraction scattering method, the average particle size d 50 value was 2.9 μm, and the [(d 90 -d 10 ) / d 50 ] value was 0.76. And from the analysis result of the component composition of Table 1, Cu was confirmed only at the level of impurities (less than 0.001% by mass).

(実施例5)
硫酸ニッケル六水和物、硫酸銅五水和物とすず酸ナトリウム三水和物とを用い、Ni/Cuがモル比にて24、Ni/Snがモル比にて4.8となるように調製した以外は、実施例1と同様にして、無電解還元法により微小粒子を作製した。なお、混合水溶液のpHは9.6であった。
(Example 5)
Using nickel sulfate hexahydrate, copper sulfate pentahydrate and sodium stannate trihydrate so that Ni / Cu has a molar ratio of 24 and Ni / Sn has a molar ratio of 4.8. Fine particles were produced by the electroless reduction method in the same manner as in Example 1 except that it was prepared. The pH of the mixed aqueous solution was 9.6.

そして、レーザー回折散乱法により、粒径の分布を確認したところ、平均粒径d50値が1.2μm、[(d90−d10)/d50]値が0.67であり、図8のSEM写真に示す球状NiP微小粒子を得た。また、粒子の断面観察試料を作製し、FE−SEMにより各元素の分布を観察したところ、図9〜13の通り、CuとSnが分布していることが確認された。なお、成分組成の分析結果は、表1に示す通りの、Cuが3.96質量%で、Snが0.67質量%であることが確認された。 Then, when the particle size distribution was confirmed by the laser diffraction scattering method, the average particle size d 50 value was 1.2 μm, and the [(d 90 -d 10 ) / d 50 ] value was 0.67. Spherical NiP fine particles shown in the SEM photograph were obtained. Moreover, when the cross-sectional observation sample of a particle was produced and the distribution of each element was observed by FE-SEM, it was confirmed that Cu and Sn are distributed as FIGS. The analysis results of the component composition confirmed that Cu was 3.96 mass% and Sn was 0.67 mass% as shown in Table 1.

均一な粒子サイズを有する本発明の球状NiP微小粒子は、異方性導電フィルム用の導電粒子の他には、同様な特性を必要とする異方性導電ペーストやヒートシールコネクタなどの、導電粒子としても適用できる。   The spherical NiP microparticles of the present invention having a uniform particle size are conductive particles such as anisotropic conductive pastes and heat seal connectors that require similar characteristics in addition to conductive particles for anisotropic conductive films. It can also be applied.

本発明の球状NiP微小粒子の一例を示す電子顕微鏡写真である。It is an electron micrograph which shows an example of the spherical NiP microparticles of the present invention. 本発明の球状NiP微小粒子の一例を示す電子顕微鏡写真である。It is an electron micrograph which shows an example of the spherical NiP microparticles of the present invention. 本発明の球状NiP微小粒子の断面構造の一例を示す、電子顕微鏡写真である。It is an electron micrograph which shows an example of the cross-sectional structure of the spherical NiP microparticles | fine-particles of this invention. 図3の断面に観察される、Ni濃度分布のマッピング写真である。It is a mapping photograph of Ni concentration distribution observed in the cross section of FIG. 図3の断面に観察される、Cu濃度分布のマッピング写真である。It is a mapping photograph of Cu concentration distribution observed in the cross section of FIG. 図3の断面に観察される、P濃度分布のマッピング写真である。It is a mapping photograph of P concentration distribution observed in the cross section of FIG. 本発明の球状NiP微小粒子の一例を示す電子顕微鏡写真である。It is an electron micrograph which shows an example of the spherical NiP microparticles of the present invention. 本発明の球状NiP微小粒子の一例を示す電子顕微鏡写真である。It is an electron micrograph which shows an example of the spherical NiP microparticles of the present invention. 本発明の球状NiP微小粒子の断面構造の一例を示す、電子顕微鏡写真である。It is an electron micrograph which shows an example of the cross-sectional structure of the spherical NiP microparticles | fine-particles of this invention. 図9の断面に観察される、Ni濃度分布のマッピング写真である。10 is a mapping photograph of Ni concentration distribution observed in the cross section of FIG. 9. 図9の断面に観察される、Cu濃度分布のマッピング写真である。It is a mapping photograph of Cu concentration distribution observed in the cross section of FIG. 図9の断面に観察される、Sn濃度分布のマッピング写真である。10 is a mapping photograph of Sn concentration distribution observed in the cross section of FIG. 9. 図9の断面に観察される、P濃度分布のマッピング写真である。FIG. 10 is a mapping photograph of P concentration distribution observed in the cross section of FIG. 9. FIG.

Claims (12)

Niを主体にPを含む成分組成からなる球状NiP微小粒子において、その成分組成にはCuを含むことを特徴とする還元析出型球状NiP微小粒子。 A reduction precipitation spherical NiP microparticle comprising a Ni-based spherical NiP microparticle having a component composition containing P, the component composition including Cu. Niを主体に1〜15質量%のPを含む成分組成からなることを特徴とする請求項1に記載の還元析出型球状NiP微小粒子。 2. The reduced precipitation type spherical NiP fine particles according to claim 1, comprising a component composition mainly containing Ni and containing 1 to 15% by mass of P. 成分組成には、0.01〜18質量%のCuを含むことを特徴とする請求項1または2に記載の還元析出型球状NiP微小粒子。 The reduced precipitation type spherical NiP fine particles according to claim 1, wherein the component composition contains 0.01 to 18% by mass of Cu. 成分組成には、Snを含むことを特徴とする請求項1ないし3のいずれかに記載の還元析出型球状NiP微小粒子。 The reduced precipitation type spherical NiP microparticles according to any one of claims 1 to 3, wherein the component composition contains Sn. 成分組成には、0.05〜10質量%のSnを含むことを特徴とする請求項4に記載の還元析出型球状NiP微小粒子。 5. The reduced precipitation type spherical NiP fine particles according to claim 4, wherein the component composition contains 0.05 to 10 mass% of Sn. 平均粒径d50が0.1〜70μmであり、かつその粒度分布が[(d90−d10)/d50]≦0.8(d90、d10、d50:積算分布曲線において、90体積%、10体積%、50体積%を示す粒子径)であることを特徴とする請求項1ないし5のいずれかに記載の還元析出型球状NiP微小粒子。 The average particle size d 50 is 0.1~70Myuemu, and the particle size distribution [(d 90 -d 10) / d 50] ≦ 0.8 (d 90, d 10, d 50: In cumulative distribution curve, The reduced precipitation-type spherical NiP microparticles according to any one of claims 1 to 5, wherein the particle size is 90% by volume, 10% by volume, and 50% by volume. 平均粒径d50が1〜70μmであり、かつその粒度分布が[(d90−d10)/d50]≦0.8(d90、d10、d50:積算分布曲線において、90体積%、10体積%、50体積%を示す粒子径)であることを特徴とする請求項1ないし3のいずれかに記載の還元析出型球状NiP微小粒子。 The average particle diameter d 50 is 1 to 70 μm, and the particle size distribution is [(d 90 −d 10 ) / d 50 ] ≦ 0.8 (d 90 , d 10 , d 50 : 90 volumes in the integrated distribution curve. The reduced precipitation type spherical NiP fine particles according to any one of claims 1 to 3, wherein the particle diameter is 1%, 10% by volume, or 50% by volume. 平均粒径d50が0.1〜10μmであり、かつその粒度分布が[(d90−d10)/d50]≦0.8(d90、d10、d50:積算分布曲線において、90体積%、10体積%、50体積%を示す粒子径)であることを特徴とする請求項4または5に記載の還元析出型球状NiP微小粒子。 The average particle size d 50 is 0.1 to 10 μm and the particle size distribution is [(d 90 −d 10 ) / d 50 ] ≦ 0.8 (d 90 , d 10 , d 50 : The reduced precipitation-type spherical NiP microparticles according to claim 4 or 5, wherein the particle size is 90% by volume, 10% by volume, and 50% by volume. ニッケル塩の水溶液と、pH調製剤およびpH緩衝剤の混合水溶液と、リンを含む還元剤水溶液とを混合して還元析出させて、Niを主体にPを含む球状NiP微小粒子を製造する方法であって、前記ニッケル塩の水溶液はCuを含み、混合して還元析出を開始させる時のpHが7超のアルカリ性となるように調製することを特徴とする還元析出型球状NiP微小粒子の製造方法。 A method of producing spherical NiP microparticles mainly containing Ni by mixing an aqueous solution of a nickel salt, a mixed aqueous solution of a pH adjusting agent and a pH buffering agent, and a reducing agent aqueous solution containing phosphorus, followed by reduction precipitation. A method for producing reduced precipitation type spherical NiP microparticles, characterized in that the aqueous solution of nickel salt contains Cu, and is prepared so as to be alkaline with a pH of more than 7 when mixing and starting reduction precipitation . 前記ニッケル塩の水溶液は、モル比にて、Ni/Cu=4.0〜10000となるCuを含むことを特徴とする請求項9に記載の還元析出型球状NiP微小粒子の製造方法。 The method for producing reduced precipitation-type spherical NiP microparticles according to claim 9, wherein the nickel salt aqueous solution contains Cu in a molar ratio of Ni / Cu = 4.0 to 10,000. 前記ニッケル塩の水溶液はSnを含むことを特徴とする請求項9または10に記載の還元析出型球状NiP微小粒子の製造方法。 The method for producing reduced precipitation-type spherical NiP microparticles according to claim 9 or 10, wherein the nickel salt aqueous solution contains Sn. 前記ニッケル塩の水溶液は、モル比にて、Ni/Sn=2.0〜2000となるSnを含むことを特徴とする請求項11に記載の還元析出型球状NiP微小粒子の製造方法。 The method for producing reduced precipitation-type spherical NiP microparticles according to claim 11, wherein the nickel salt aqueous solution contains Sn at a molar ratio of Ni / Sn = 2.0 to 2000.
JP2008185209A 2007-10-18 2008-07-16 Reduction precipitation type spherical NiP fine particles and method for producing the same Active JP5327582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008185209A JP5327582B2 (en) 2007-10-18 2008-07-16 Reduction precipitation type spherical NiP fine particles and method for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007271636 2007-10-18
JP2007271636 2007-10-18
JP2008014701 2008-01-25
JP2008014701 2008-01-25
JP2008185209A JP5327582B2 (en) 2007-10-18 2008-07-16 Reduction precipitation type spherical NiP fine particles and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013092036A Division JP5622127B2 (en) 2007-10-18 2013-04-25 Reduction precipitation type spherical NiP fine particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009197317A true JP2009197317A (en) 2009-09-03
JP5327582B2 JP5327582B2 (en) 2013-10-30

Family

ID=40763450

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008185209A Active JP5327582B2 (en) 2007-10-18 2008-07-16 Reduction precipitation type spherical NiP fine particles and method for producing the same
JP2013092036A Active JP5622127B2 (en) 2007-10-18 2013-04-25 Reduction precipitation type spherical NiP fine particles and method for producing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013092036A Active JP5622127B2 (en) 2007-10-18 2013-04-25 Reduction precipitation type spherical NiP fine particles and method for producing the same

Country Status (4)

Country Link
JP (2) JP5327582B2 (en)
KR (4) KR101075823B1 (en)
CN (1) CN101412111B (en)
TW (1) TWI431121B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150101376A (en) 2014-02-26 2015-09-03 히다찌긴조꾸가부시끼가이사 Conductive Particle, Conductive Powder, Conductive Polymer Composition, and Anisotropic Conductive Sheet
WO2016027597A1 (en) * 2014-08-18 2016-02-25 日立金属株式会社 Solder-coated ball and method for manufacturing same
JP2016084504A (en) * 2014-10-24 2016-05-19 日立金属株式会社 Conductive particle, conductive powder, conductive polymer composition and anisotropic conductive sheet
JP2017014545A (en) * 2015-06-29 2017-01-19 新日鉄住金化学株式会社 Nickel fine particle-containing composition and manufacturing method therefor
WO2022210217A1 (en) * 2021-03-30 2022-10-06 日立金属株式会社 Conductive metal particle production method and conductive metal particles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141485A1 (en) * 2014-03-17 2015-09-24 日立金属株式会社 Catalytic pd particles, catalytic pd powder, and method for producing catalytic pd particles
CN113134623B (en) * 2021-04-28 2022-06-03 西北工业大学 Water-soluble amorphous noble metal nano particle and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119606A (en) * 1984-11-15 1986-06-06 Aisin Seiki Co Ltd Production of amorphous metallic powder
JP2001279306A (en) * 2000-03-30 2001-10-10 Akita Pref Gov Shigen Gijutsu Kaihatsu Kiko METHOD FOR MANUFACTURING SPHERICAL Ni-P AMORPHOUS METAL POWDER
JP2002302701A (en) * 2001-01-31 2002-10-18 Shin Etsu Chem Co Ltd Composite fine particle, electroconductive paste and electroconductive film
JP2002363603A (en) * 2000-04-26 2002-12-18 Hitachi Metals Ltd Ni ALLOY GRAIN FOR ANISOTROPIC ELECTRICALLY CONDUCTIVE FILM AND PRODUCTION METHOD THEREFOR
JP2006131978A (en) * 2004-11-09 2006-05-25 Akita Pref Gov Shigen Gijutsu Kaihatsu Kiko SPHERICAL NiP FINE PARTICLE, METHOD FOR PRODUCING THE SAME AND ELECTRICALLY CONDUCTIVE PARTICLE FOR ANISOTROPIC ELECTRICALLY CONDUCTIVE FILM

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372968C (en) * 2003-04-03 2008-03-05 南开大学 NiP amorphous alloy and prep. thereof
WO2006006688A1 (en) * 2004-07-15 2006-01-19 Sekisui Chemical Co., Ltd. Conductive microparticle, process for producing the same and anisotropic conductive material
CN101003897A (en) * 2006-01-20 2007-07-25 佛山市顺德区汉达精密电子科技有限公司 Method for processing chemical plating Ni-Gu-P alloy on surface of magnesium alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119606A (en) * 1984-11-15 1986-06-06 Aisin Seiki Co Ltd Production of amorphous metallic powder
JP2001279306A (en) * 2000-03-30 2001-10-10 Akita Pref Gov Shigen Gijutsu Kaihatsu Kiko METHOD FOR MANUFACTURING SPHERICAL Ni-P AMORPHOUS METAL POWDER
JP2002363603A (en) * 2000-04-26 2002-12-18 Hitachi Metals Ltd Ni ALLOY GRAIN FOR ANISOTROPIC ELECTRICALLY CONDUCTIVE FILM AND PRODUCTION METHOD THEREFOR
JP2002302701A (en) * 2001-01-31 2002-10-18 Shin Etsu Chem Co Ltd Composite fine particle, electroconductive paste and electroconductive film
JP2006131978A (en) * 2004-11-09 2006-05-25 Akita Pref Gov Shigen Gijutsu Kaihatsu Kiko SPHERICAL NiP FINE PARTICLE, METHOD FOR PRODUCING THE SAME AND ELECTRICALLY CONDUCTIVE PARTICLE FOR ANISOTROPIC ELECTRICALLY CONDUCTIVE FILM

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013031478; Chun-Han Chen,et.al.: 'Role of Cu2+ as an Additive in an Electroless Nickel?Phosphorus Plating System:? A Stabilizer or a C' Chemistry of Materials Vol.18(13), 2006, P.2959-2968 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150101376A (en) 2014-02-26 2015-09-03 히다찌긴조꾸가부시끼가이사 Conductive Particle, Conductive Powder, Conductive Polymer Composition, and Anisotropic Conductive Sheet
JP2015160958A (en) * 2014-02-26 2015-09-07 日立金属株式会社 Conductive particle, conductive powder, conductive polymer composition and anisotropic conductive sheet
KR101690696B1 (en) 2014-02-26 2016-12-28 히다찌긴조꾸가부시끼가이사 Conductive Particle, Conductive Powder, Conductive Polymer Composition, and Anisotropic Conductive Sheet
WO2016027597A1 (en) * 2014-08-18 2016-02-25 日立金属株式会社 Solder-coated ball and method for manufacturing same
JP2016041439A (en) * 2014-08-18 2016-03-31 日立金属株式会社 Solder coating ball, and manufacturing method therefor
JP2016084504A (en) * 2014-10-24 2016-05-19 日立金属株式会社 Conductive particle, conductive powder, conductive polymer composition and anisotropic conductive sheet
KR20170073650A (en) 2014-10-24 2017-06-28 히다찌긴조꾸가부시끼가이사 Conductive particles, conductive powder, conductive polymer composition and anisotropic conductive sheet
JP2017014545A (en) * 2015-06-29 2017-01-19 新日鉄住金化学株式会社 Nickel fine particle-containing composition and manufacturing method therefor
WO2022210217A1 (en) * 2021-03-30 2022-10-06 日立金属株式会社 Conductive metal particle production method and conductive metal particles
JP7380947B2 (en) 2021-03-30 2023-11-15 株式会社プロテリアル Method for producing conductive metal particles and conductive metal particles

Also Published As

Publication number Publication date
KR20110093753A (en) 2011-08-18
TWI431121B (en) 2014-03-21
KR101075823B1 (en) 2011-10-25
KR20090039615A (en) 2009-04-22
JP5622127B2 (en) 2014-11-12
KR20130116061A (en) 2013-10-22
JP5327582B2 (en) 2013-10-30
KR101538012B1 (en) 2015-07-22
CN101412111A (en) 2009-04-22
KR101433799B1 (en) 2014-08-25
CN101412111B (en) 2013-03-06
TW200927951A (en) 2009-07-01
JP2013177690A (en) 2013-09-09
KR20140107160A (en) 2014-09-04

Similar Documents

Publication Publication Date Title
JP5622127B2 (en) Reduction precipitation type spherical NiP fine particles and method for producing the same
US7491445B2 (en) Electroconductive fine particle and anisotropically electroconductive material comprising non-crystal and crystal nickel plating layers and method of making thereof
JP2007242307A (en) Conductive particulate and anisotropic conductive material
JP5074837B2 (en) Method for producing flat silver powder, flat silver powder, and conductive paste
JP2006225692A (en) Tin-coated copper powder and composite electrically conductive paste using the tin-coated copper powder
EP3187279A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet each of which uses same
WO2019059266A1 (en) Metal-containing particle, connection material, connection structure, method for manufacturing connection structure, conduction inspection member, and conduction inspection device
KR100880742B1 (en) Spherical NiP micro-particles and producing method thereof, conductive particles for anisotropic conductive film
JP5975054B2 (en) Conductive particle, anisotropic conductive adhesive, connection structure, and method for producing conductive particle
WO2005123308A1 (en) Copper-containing tin powder and method for producing the copper-containing tin powder, and electroconductive paste using the copper-containing tin powder
WO2006118182A1 (en) Tin powder, process for producing tin powder, and tin powder-containing elctrically conductive paste
JP2004111253A (en) Conductive composition for electrical connection of electronic device, and electron device
JP4217271B2 (en) Conductive fine particles and anisotropic conductive materials
JP2004156062A (en) Double layer-coated copper powder, method for production thereof, and conductive paste obtained by using the same
JP2016096031A (en) Silver coated particle and manufacturing method therefor
JP4881013B2 (en) Conductive powder, conductive paste and electrical circuit
JP2008069457A (en) Drop-shaped copper powder, method for producing drop-shaped copper powder, and electrically conductive paste
JP5943019B2 (en) Conductive particles, conductive powder, conductive polymer composition and anisotropic conductive sheet
JP4942090B2 (en) Method for producing spherical nickel fine particles and method for producing conductive particles for anisotropic conductive film
EP3210696B1 (en) Conductive particles, conductive powder, conductive polymer composition and anisotropic conductive sheet
JP2015004079A (en) Nickel powder and production method of the same
KR20170038549A (en) Alloy Conductive particles, manufacturing method of the same, and conductive materials including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130711

R150 Certificate of patent or registration of utility model

Ref document number: 5327582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350