JPH11310806A - Production of copper-silver composite powder for electrically conductive paste - Google Patents

Production of copper-silver composite powder for electrically conductive paste

Info

Publication number
JPH11310806A
JPH11310806A JP10118390A JP11839098A JPH11310806A JP H11310806 A JPH11310806 A JP H11310806A JP 10118390 A JP10118390 A JP 10118390A JP 11839098 A JP11839098 A JP 11839098A JP H11310806 A JPH11310806 A JP H11310806A
Authority
JP
Japan
Prior art keywords
powder
copper
silver
weight
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10118390A
Other languages
Japanese (ja)
Inventor
Osamu Kajita
治 梶田
Motonori Nishida
元紀 西田
Masayoshi Yoshitake
正義 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP10118390A priority Critical patent/JPH11310806A/en
Publication of JPH11310806A publication Critical patent/JPH11310806A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing copper-silver composite powder for electrically conductive paste exhibiting electrical conductivity close to that of silver. SOLUTION: Copper powder is mixed with, by weight, 3 to 50% silver oxide, the copper powder is mechanically bonded to the silver oxide while pulverizing is executed, and, thereafter, reducing treatment is executed at 120 to 400 deg.C to obtain powder of <=100 μm particle size and >=2000 cm<2> /g specific surface area value in a BET method. In the process of the pulverizing, <=1% fatty acid is added, or before the reducing treatment, 0.1 to 2% fatty acid is added to mix, and the reducing treatment is executed at 150 to 500 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、導電ペースト用銅
銀複合粉の製造方法に関するものである。
The present invention relates to a method for producing a copper-silver composite powder for a conductive paste.

【0002】[0002]

【従来の技術】一般にポリマー型導電ペーストと言え
ば、導電性金属粉である銅粉あるいは銀粉を合成樹脂バ
インダーに分散させたタイプが主流である。これら導電
ペーストはプリント基板のスルーホールや導電回路、電
極の接着剤、電磁波シールド用等に多量に使用されてい
る。しかし、銅粉を分散したものは安価であるが銀のよ
うな優れた導電性を得ることが難しく、また酸化により
導電性が悪化し易い。
2. Description of the Related Art In general, a polymer type conductive paste is mainly of a type in which copper powder or silver powder, which is conductive metal powder, is dispersed in a synthetic resin binder. These conductive pastes are used in large quantities for through holes in printed circuit boards, conductive circuits, adhesives for electrodes, electromagnetic wave shielding, and the like. However, the one in which copper powder is dispersed is inexpensive, but it is difficult to obtain excellent conductivity like silver, and the conductivity is easily deteriorated by oxidation.

【0003】これらの問題を解決するために「導電性銅
ペースト」(特許番号第2654067号公報)が提案
されているが、銅粉を還元しながらペースト化するもの
であり還元性樹脂を使用する必要が有る等多くの制約が
あり、一般の樹脂や用途に対応出来るものでない。銀粉
を使用したものは優れた導電性が得られるものの、高価
格でありマイグレーションの問題が発生し易い。これら
の理由で銅粉に銀メッキした銅粉「銀めっき銅粉」(特
開平9−282935号公報)、銀メッキ銅粉を分散し
たペースト「導電性接着剤」(特開平7−138549
号公報)等が提案されている。
[0003] In order to solve these problems, "conductive copper paste" (Japanese Patent No. 2654067) has been proposed, but it is used to form a paste while reducing copper powder, and a reducing resin is used. There are many restrictions such as necessity, and it cannot be used for general resins and applications. Although the use of silver powder provides excellent conductivity, it is expensive and tends to cause migration problems. For these reasons, copper powder silver-plated on copper powder “silver-plated copper powder” (Japanese Patent Application Laid-Open No. 9-282935), and paste “conductive adhesive” in which silver-plated copper powder is dispersed (Japanese Patent Application Laid-Open No. 7-138549)
And the like have been proposed.

【0004】しかし、銀メッキ銅粉はメッキ液の廃液の
処理、粒子径の細かい比表面積の大きな粉にメッキ処理
するのは難しい等の問題を有している。銅合金粉の粒子
表面への銀濃度を高くした銅銀合金粉を使用したペース
ト「はんだ付け可能な銅系導電性ペースト」(特公平7
−109724号公報)が提案されているが、不活性ガ
スアトマイズ法で製造した金属粉を使用しているためや
はり高価であり、粒子径の小さい粉末では表面近傍と内
部の銀濃度に差がなくなる傾向がある。さらにアトマイ
ズ法では導電ペーストに使用できるような細かい粉を製
造するのが難しい。最近では電子機器の小型化傾向によ
り、吹き付け塗装法あるいはロールコータ法、スクリー
ン印刷法による電磁波シールド用途では、より塗装し易
く、かつ薄い塗膜が必要となってきた。また、スクリー
ン印刷方法による導電回路やジャンパー線では、より細
線パターンに対応出来る導電ペーストが要求されてきて
いる。ディスペンサーによる導電接着剤用途も部品の小
型化により接着面積が微細化し、より細かい粒子を分散
した導電ペーストが必要になってきている。
However, silver-plated copper powder has problems that it is difficult to treat a waste liquid of a plating solution and to plate a powder having a small particle diameter and a large specific surface area. “Solderable copper-based conductive paste” using copper-silver alloy powder with increased silver concentration on the surface of copper alloy powder particles
JP-A-109724) has been proposed, but it is still expensive because metal powder produced by an inert gas atomization method is used, and there is a tendency that there is no difference between the silver concentration in the vicinity of the surface and the silver concentration in the inside of a powder having a small particle diameter. There is. Further, it is difficult to produce a fine powder that can be used for a conductive paste by the atomizing method. Recently, due to the trend of miniaturization of electronic devices, it has become necessary to use a spray coating method, a roll coater method, and a screen printing method for electromagnetic wave shielding applications that require a thinner coating film that is easier to apply. In the case of a conductive circuit or a jumper wire formed by a screen printing method, a conductive paste capable of coping with a finer line pattern has been required. For conductive adhesive applications using dispensers, the bonding area has been reduced due to the downsizing of components, and a conductive paste in which finer particles are dispersed has become necessary.

【0005】[0005]

【発明が解決しようとする課題】従来まで導電ペースト
用に使用されてきた金属粉は、銀粉が主である。それ
は、優れた導電性が容易に得られるとともに信頼性にお
いて安定した性能が得られるためである。しかし銀粉は
高価であるとともに、回路の線間が狭くなればなるほど
マイグレーションの問題が発生し易く、新しい導電性金
属粉が待たれていた。銅粉に銀をメッキしたものや、表
面の銀濃度を高くしたものなどが新規な導電性金属粉と
して提案されてきたが、いずれも製造法上粒子径の小さ
いものが出来ず、最近の電子機器の小型化に対応できな
いものであった。すなわち、銀粉は粒子径を細かくして
も、また機械的に片状加工しても酸化の問題がほとんど
ないため、通常ペーストに使用している銀粉の粒子径は
細かい物が多い。
The metal powder which has hitherto been used for the conductive paste is mainly silver powder. This is because excellent conductivity is easily obtained and stable performance in reliability is obtained. However, silver powder is expensive and migration problems are more likely to occur as the lines between circuits become narrower, and new conductive metal powders have been awaited. Copper powder plated with silver and silver with a high silver concentration on the surface have been proposed as new conductive metal powders. It could not cope with downsizing of equipment. That is, even if the silver powder has a small particle diameter or is mechanically flaked, there is almost no problem of oxidation. Therefore, the silver powder usually used in the paste often has a small particle diameter.

【0006】しかし、銀メッキ銅粉は、メッキする粒子
径を細かくすると均一にメッキが出来ず、さらに形状が
片状であると銅粉表面に付着している油脂や比表面積が
大きすぎるために、均一にメッキする事が非常に難しく
なる。これら製造上の理由から、工業的に銀メッキは荒
い粒子しか行われていない。銀メッキ銅粉と類似の形態
の細かい粉末、あるいは片状でも導電性が得られれば、
薄膜化、塗膜外観の平滑性など最近のペーストに要求さ
れる性能をかなりの部分で満足させることができ、銀粉
の代わりに使用出来る。しかし、これまで銀の効果を十
分に生かしたこの様な特性を有する粉末はまだ見いだせ
ていない。そこで、本発明者等はポリマー型導電ペース
ト用として最近の塗装・印刷技術に対応出来る銅銀粉の
製造方法について研究を重ねた結果、銅粉に酸化銀を機
械的に接合して、その後還元性雰囲気中で低温還元処理
すれば、銅粉の表面に銀を多く含有した、銀に近い導電
性能を示す、細かい銅銀複合粉が出来ることを見いだし
た。
However, silver-plated copper powder cannot be uniformly plated if the particle diameter to be plated is small, and if the shape is flake-like, the fat or oil or the specific surface area adhering to the surface of the copper powder is too large. It is very difficult to plate uniformly. For these manufacturing reasons, silver plating is industrially performed with only coarse particles. If fine powder of similar form to silver-plated copper powder, or even flakes can obtain conductivity,
The performance required for recent pastes such as thinning and smoothness of the coating film appearance can be satisfied to a large extent, and can be used instead of silver powder. However, a powder having such characteristics, which makes full use of the effect of silver, has not been found yet. Accordingly, the present inventors have conducted research on a method of producing copper-silver powder capable of coping with recent coating and printing techniques for polymer-type conductive paste, and as a result, silver oxide was mechanically bonded to copper powder, and then reduced. It has been found that, when a low-temperature reduction treatment is performed in an atmosphere, a fine copper-silver composite powder containing a large amount of silver on the surface of the copper powder and having a conductive property close to that of silver can be formed.

【0007】[0007]

【課題を解決するための手段】本発明に関する導電ペー
スト用銅銀複合粉の製造方法とは、銅粉に対して3〜5
0重量%の酸化銀を加え、粉砕機にて粉砕加工しながら
銅粉に酸化銀を接合せしめる。目的とする大きさまで粉
砕加工した後、還元性雰囲気中で120〜400℃の温
度で還元処理する。その後篩などで、粒子径が100μm
以下になるように調整し,BET法比表面積値が200
0cm2/g以上の銅銀複合粉を得ることを特徴とする
ものである。銅粉に酸化銀を機械的に接合せしめた後
に、0.1〜2重量%の脂肪酸を混合被覆し、還元性雰
囲気中で150〜500℃の温度で還元処理する方法
は、脂肪酸の存在により、還元処理中の粉末凝集防止の
効果が有る。還元処理時間が長く必要であり、脂肪酸が
多く残留しないように処理する必要が有るが、分散性の
良い比表面積の大きい、細かい銅銀複合粉を容易に製造
することが出来る。また、粉砕加工する粉末に対して1
重量%以下の脂肪酸を添加し、粉砕加工しながら機械的
に銅粉に酸化銀を接合せしめ、しかる後に還元性雰囲気
中で150〜500℃の温度で還元処理すると、片状の
形状の導電ペースト用銅銀複合粉を容易に製造すること
が出来る。
The method for producing a copper-silver composite powder for a conductive paste according to the present invention is as follows.
0% by weight of silver oxide is added, and silver oxide is bonded to the copper powder while being pulverized by a pulverizer. After pulverizing to a desired size, reduction treatment is performed at a temperature of 120 to 400 ° C. in a reducing atmosphere. Then, with a sieve or the like, the particle size is 100 μm
The BET specific surface area was adjusted to 200 or less.
A copper-silver composite powder of 0 cm 2 / g or more is obtained. A method of mechanically bonding silver oxide to copper powder, mixing and coating 0.1 to 2% by weight of a fatty acid, and performing a reduction treatment in a reducing atmosphere at a temperature of 150 to 500 ° C depends on the presence of the fatty acid. This has the effect of preventing powder agglomeration during the reduction treatment. Although a long reduction treatment time is required and it is necessary to perform treatment so that a large amount of fatty acid does not remain, a fine copper-silver composite powder having a good specific surface area with good dispersibility can be easily produced. In addition, 1
% By weight or less fatty acid is added, silver oxide is mechanically bonded to copper powder while pulverizing, and then reduced at a temperature of 150 to 500 ° C. in a reducing atmosphere. Copper-silver composite powder can be easily manufactured.

【0008】[0008]

【発明の実施の形態】本発明の構成を詳しく説明すれば
次の通りである。本発明の出発原料である銅粉は、硫酸
銅の水溶液から電解法により析出した電解銅粉、水・ガ
ス・空気などで噴霧回収したアトマイズ銅粉、銅の酸化
物を高温還元した還元銅粉などが使用可能である。溶液
還元法などによって得られる細かい銅粉は、経済的にも
また本発明の効果の点からも好ましくない。酸化銀は、
例えば硝酸銀に水酸化ナトリウムを加え沈殿乾燥して得
られる、Ag2Oで表示される黒い粉末である。一般に
市販されている酸化銀の粒子径は0.5〜2μmと銅粉
に比較すると非常に細かい。同じような粒径でも銀粉だ
と、粉砕加工中に銀粉同士が凝集したり、銀粉自体が銅
粉よりも展延加工され大きな片状粉となるため、本発明
のような形態の銅銀複合粉とならない。銅粉に加える酸
化銀の量は、銅粉に対して3〜50重量%が良い。3重
量%より少ないと銀粉に近い導電性や導電ペーストとし
ての信頼性が得られない。50重量%よりも多いと、酸
化銀を銀に還元する時間が長くなり、銀粉とも価格的に
差がなくなり、またマイグレーションも少なくならず、
好ましくない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The construction of the present invention will be described in detail as follows. Copper powder, which is a starting material of the present invention, is an electrolytic copper powder precipitated by an electrolytic method from an aqueous solution of copper sulfate, an atomized copper powder spray-recovered with water, gas, air, or the like, and a reduced copper powder obtained by reducing copper oxide at a high temperature. Etc. can be used. Fine copper powder obtained by the solution reduction method or the like is not preferable from the viewpoint of economy and the effect of the present invention. Silver oxide is
For example, it is a black powder represented by Ag 2 O obtained by adding sodium hydroxide to silver nitrate and drying by precipitation. In general, the particle size of commercially available silver oxide is 0.5 to 2 μm, which is extremely fine as compared with copper powder. Even with the same particle size, if it is silver powder, the silver powder agglomerates during the pulverization process, or the silver powder itself is spread more than the copper powder and becomes a large flaky powder. Does not become powder. The amount of silver oxide added to the copper powder is preferably 3 to 50% by weight based on the copper powder. If it is less than 3% by weight, the conductivity close to that of silver powder and the reliability as a conductive paste cannot be obtained. If the content is more than 50% by weight, the time required to reduce silver oxide to silver becomes longer, the price does not differ from silver powder, and migration does not decrease.
Not preferred.

【0009】粉砕加工しながら機械的に銅粉に酸化銀を
接合せしめる方法は、ボールミル、振動ミル、アジテー
タミル、デイスクミル、などの粉砕機を使用して、粉砕
機中で粉砕加工しながら銅粉に酸化銀を物理的に接合さ
せれば良い。粉砕機の種類や粉砕時間を調整する事によ
り、目的とする粒子径、目的とするBET法比表面積値
を有する銅銀複合粉を製造することが出来る。銅粉に酸
化銀を接合させる工程において、脂肪酸は出来るだけ少
ない方がうまく接合させることが出来るので良い。しか
し、粉砕加工中に粉体が細かくなり凝集してきた場合や
出発原料が細かい時などには、粉砕加工する粉末に対し
て1重量%以下の脂肪酸を添加すれば良い。1重量%よ
り多いと銅粉に酸化銀がうまく接合出来ず、還元処理後
銅粉と銀粉が分離することが起こる。
A method of mechanically bonding silver oxide to copper powder while pulverizing is performed by using a pulverizer such as a ball mill, a vibration mill, an agitator mill, and a disk mill while pulverizing copper in a pulverizer. The silver oxide may be physically bonded to the powder. By adjusting the type of the pulverizer and the pulverization time, a copper-silver composite powder having a target particle diameter and a target BET specific surface area can be produced. In the step of bonding silver oxide to the copper powder, it is preferable that the amount of fatty acid is as small as possible, because the bonding can be performed well. However, when the powder becomes fine and agglomerated during the pulverizing process or when the starting material is fine, the fatty acid may be added in an amount of 1% by weight or less based on the powder to be pulverized. If the amount is more than 1% by weight, silver oxide cannot be bonded to the copper powder well, and the copper powder and the silver powder are separated after the reduction treatment.

【0010】一方、粉砕加工中に少量の脂肪酸を添加す
ることは、片状の銅銀複合粉を製造することが出来る。
銀が銅粉に分散した本発明の片状粉は全く新規な導電性
金属粉であり、平滑な塗膜や銀に近い導電性能が得られ
る。本発明の特徴の一つは、銅粉に酸化銀を粉砕加工し
て接合した粉体を低温で還元処理して、酸化銀を金属銀
にすることにある。しかし、還元処理中に酸化銀は隣の
粒子と凝集する傾向がある。特に粒子径が細かく、比表
面積が大きく、また銅粉の表面に酸化銀が多く存在すれ
ばするほど凝集が生じやすい。低温で長時間注意深く処
理する方法であれば還元処理中の凝集の問題はない。
On the other hand, by adding a small amount of fatty acid during the pulverizing process, a flaky copper-silver composite powder can be produced.
The flaky powder of the present invention in which silver is dispersed in copper powder is a completely novel conductive metal powder, and can provide a smooth coating film and a conductive property close to silver. One of the features of the present invention is that silver oxide is converted into metallic silver by subjecting a powder obtained by pulverizing silver oxide to copper powder to a reduction treatment at a low temperature. However, silver oxide tends to agglomerate with neighboring grains during the reduction treatment. In particular, the finer the particle diameter, the larger the specific surface area, and the more silver oxide is present on the surface of the copper powder, the more the aggregation tends to occur. There is no problem of agglomeration during the reduction treatment if the method is carried out carefully at a low temperature for a long time.

【0011】しかし、工業的には還元処理の前に0.1
〜2重量%の脂肪酸を混合被覆すれば、脂肪酸を飛散す
るのに還元時間が少し長くなるが還元処理中の凝集を少
なくすることが出来る。脂肪酸を混合被覆する方法はミ
キサーなどの混合機で、脂肪酸と粉末を機械的に混合す
れば良い。本発明で使用する脂肪酸はラウリン酸、パル
ミチン酸、ステアリン酸、オレイン酸など高級脂肪酸が
良い。低級脂肪酸は粉砕加工後あるいは還元処理中に悪
臭が出るため好ましくない。還元性雰囲気は、水素、一
酸化炭素、天然ガス、アンモニア分解ガスなど還元性気
体を流す方法が良い。
However, industrially, 0.1% is required before the reduction treatment.
If the fatty acid is mixed and coated with 22% by weight, the reduction time is slightly longer for scattering the fatty acid, but the aggregation during the reduction treatment can be reduced. The fatty acid may be mixed and coated by mechanically mixing the fatty acid and the powder with a mixer such as a mixer. The fatty acids used in the present invention are preferably higher fatty acids such as lauric acid, palmitic acid, stearic acid and oleic acid. Lower fatty acids are not preferred because they give off a bad smell after the pulverization or during the reduction treatment. As the reducing atmosphere, a method of flowing a reducing gas such as hydrogen, carbon monoxide, natural gas, or ammonia decomposition gas is preferable.

【0012】還元処理する温度は、理論的には銅粉に接
合した酸化銀が還元できる以上の温度であれば良い。そ
れは100℃よりも高い温度であれば酸化銀は還元を開
始するが、導電ペースト用粉末としてはベースとなる銅
粉の表面酸化膜も少ない方がよく、また酸化銀も十分に
還元する必要がある。導電ペースト用複合粉として還元
条件を検討した結果、本発明の還元温度は120〜40
0℃が良いことが判明した。それよりも低い温度である
と還元に非常に長時間かかるとともに、酸化銀の一部は
還元するが未還元の酸化銀や銅粉に多くの酸化膜が存在
し、本発明の目的とする優れた導電性を有する銅銀複合
粉が得られない。400℃より高い温度であると還元処
理中に粉末が凝集するため、分散不良を起こすとともに
導電性も悪くなる。脂肪酸を粉砕加工後に混合被覆、あ
るいは粉砕加工中に少量添加した場合は、還元温度を少
し高くする必要がある。脂肪酸が存在する場合は150
〜500℃で還元処理するのが好ましい。本発明の導電
ペースト用銅銀複合粉としては、脂肪酸の最終含有量は
少ない方が好ましい。脂肪酸が不純物として存在する
と、反応硬化するある種のエポキシ樹脂では硬化時間が
変化したり、塗膜物性を変化したり、また表面に残留し
た脂肪酸が導電性の悪化の原因にもなる。
The temperature for the reduction treatment is theoretically sufficient as long as the silver oxide bonded to the copper powder can be reduced. If the temperature is higher than 100 ° C., silver oxide starts to be reduced, but as a conductive paste powder, it is better that the surface oxide film of the copper powder as a base is small, and it is necessary to sufficiently reduce silver oxide. is there. As a result of examining the reduction conditions for the composite powder for the conductive paste, the reduction temperature of the present invention was 120 to 40.
0 ° C. proved to be good. If the temperature is lower than that, it takes a very long time to reduce, and a part of silver oxide is reduced but many oxide films are present on unreduced silver oxide or copper powder, which is an object of the present invention. A copper-silver composite powder having poor conductivity cannot be obtained. If the temperature is higher than 400 ° C., the powder agglomerates during the reduction treatment, so that poor dispersion is caused and conductivity is deteriorated. If the fatty acid is mixed and coated after the pulverization, or if a small amount is added during the pulverization, it is necessary to raise the reduction temperature slightly. 150 if fatty acids are present
It is preferable to carry out the reduction treatment at ~ 500 ° C. The copper-silver composite powder for a conductive paste of the present invention preferably has a lower final fatty acid content. When a fatty acid is present as an impurity, the curing time of a certain type of epoxy resin that is reactively hardened, the physical properties of the coating film are changed, and the fatty acid remaining on the surface causes deterioration of conductivity.

【0013】従って、出来るだけ脂肪酸は飛散し、残留
しないように還元条件を決める必要が有る。還元処理し
た銅銀複合粉は、粉砕加工中に展延加工された粗大粉
や、還元処理中に再凝集した粗大粉を多く含んでいる場
合がある。従って、還元処理後100μmで篩分する必
要がある。100μmよりも荒い粉が有るとペーストと
して使用した場合、スクリーンの目詰まりを生じる。篩
分方法は篩や風力分級機を使用すればよい。目的とする
BET法比表面積値を有する複合粉を得るためには、粉
砕機を選定し、粉砕加工時間等を調整すれば良い。優れ
た導電ペースト用複合粉としては比表面積値を2000
cm2/g以上にする必要がある。2000cm2/gよ
りも小さい値だと、導電性やペーストの粘度特性などが
悪くなる。最近のスクリーン印刷法で使用する場合に要
求されている性能は、粒子径が45μm以下であって、
BET法比表面積値は3000cm2/g以上の細かい
粉が好まれている。
Therefore, it is necessary to determine the reducing conditions so that fatty acids are scattered as much as possible and do not remain. The copper-silver composite powder that has been subjected to the reduction treatment may contain a large amount of coarse powder that has been spread during the pulverization process or a large amount of coarse powder that has re-agglomerated during the reduction treatment. Therefore, it is necessary to sieve at 100 μm after the reduction treatment. If a powder having a coarseness of more than 100 μm is used as a paste, screen clogging occurs. The sieving method may use a sieve or an air classifier. In order to obtain a composite powder having the desired BET specific surface area, a pulverizer may be selected, and the pulverization time and the like may be adjusted. Excellent specific surface area value of 2000 for composite powder for conductive paste
cm 2 / g or more. If the value is less than 2000 cm 2 / g, the conductivity and the viscosity characteristics of the paste will be deteriorated. The performance required for use in recent screen printing methods is that the particle size is 45 μm or less,
Fine powder having a BET specific surface area of 3000 cm 2 / g or more is preferred.

【0014】[0014]

【実施例】以下、実施例により本発明を具体的に説明す
るが、これにより本発明の範囲及び使用範囲が限定され
るものではない。
EXAMPLES The present invention will be described below in detail with reference to examples, but the scope and use of the present invention are not limited thereby.

【0015】(実施例1)平均粒子径25μmの樹枝状
形状の電解銅粉97重量部に、平均粒子径1μmの酸化
銀3重量部を計量・配合し振動ミルに投入した。スチー
ルボールを粉砕媒体として振動ミルで2時間粉砕加工し
た。その後、振動ミルから粉砕加工した粉末を取り出
し、水素雰囲気の還元炉で200℃60分間還元処理し
た。このようにして得た粉末を150メッシュの篩を用
いて、100μm以下の粒子径に調整し、BET法比表
面積値4100cm2/gの導電ペースト用銅銀複合粉
を製造した。このようにして製造した本発明の導電ペー
スト用銅銀複合粉の性能を確認するために、銅銀複合粉
75重量部、アクリル樹脂25重量部になるように混合
し、トルオールで希釈して導電ペーストを作成した。作
成したペーストをABS樹脂板にロールコータ法で印刷
し膜厚25μmの塗膜を作成し、比抵抗値を測定した。
その結果1.5×10ー4Ω・cmの良好な導電性を示し
た。
Example 1 3 parts by weight of silver oxide having an average particle diameter of 1 μm was weighed and blended with 97 parts by weight of a dendritic electrolytic copper powder having an average particle diameter of 25 μm and charged into a vibration mill. Pulverization was performed for 2 hours by a vibration mill using steel balls as a pulverizing medium. Thereafter, the pulverized powder was taken out of the vibration mill, and reduced in a reducing furnace in a hydrogen atmosphere at 200 ° C. for 60 minutes. The powder thus obtained was adjusted to a particle diameter of 100 μm or less using a 150-mesh sieve to produce a copper-silver composite powder for a conductive paste having a BET specific surface area of 4100 cm 2 / g. In order to confirm the performance of the copper-silver composite powder for a conductive paste of the present invention thus manufactured, 75 parts by weight of a copper-silver composite powder and 25 parts by weight of an acrylic resin were mixed and diluted with toluene to obtain a conductive powder. Paste created. The prepared paste was printed on an ABS resin plate by a roll coater method to form a coating film having a thickness of 25 μm, and the specific resistance value was measured.
As a result, good conductivity of 1.5 × 10 −4 Ω · cm was exhibited.

【0016】(実施例2)平均粒子径25μmの樹枝状
形状の電解銅粉90重量部に、平均粒子径1μmの酸化
銀10重量部を計量・配合し振動ミルに投入した。スチ
ールボールを粉砕媒体として振動ミルで2時間粉砕加工
した。その後、振動ミルから粉砕加工した粉末を取り出
し、水素雰囲気の還元炉で200℃60分間還元処理し
た。このようにして得た粉末を150メッシュの篩を用
いて、100μm以下の粒子径に調整し、BET法比表
面積値4500cm2/gの導電ペースト用銅銀複合粉
を製造した。このようにして製造した本発明の導電ペー
スト用銅銀複合粉の性能を確認するために、銅銀複合粉
75重量部、アクリル樹脂25重量部になるように混合
し、トルオールで希釈して導電ペーストを作成した。作
成したペーストをABS樹脂板にロールコータ法で印刷
し膜厚25μmの塗膜を作成し、比抵抗値を測定した。
その結果1.1×10ー4Ω・cmの良好な導電性を示し
た。
Example 2 10 parts by weight of silver oxide having an average particle diameter of 1 μm was weighed and blended with 90 parts by weight of dendritic electrolytic copper powder having an average particle diameter of 25 μm and charged into a vibration mill. Pulverization was performed for 2 hours by a vibration mill using steel balls as a pulverizing medium. Thereafter, the pulverized powder was taken out of the vibration mill, and reduced in a reducing furnace in a hydrogen atmosphere at 200 ° C. for 60 minutes. The powder thus obtained was adjusted to a particle diameter of 100 μm or less using a 150-mesh sieve to produce a copper-silver composite powder for a conductive paste having a BET specific surface area of 4500 cm 2 / g. In order to confirm the performance of the copper-silver composite powder for a conductive paste of the present invention thus manufactured, 75 parts by weight of a copper-silver composite powder and 25 parts by weight of an acrylic resin were mixed and diluted with toluene to obtain a conductive powder. Paste created. The prepared paste was printed on an ABS resin plate by a roll coater method to form a coating film having a thickness of 25 μm, and the specific resistance value was measured.
As a result, good conductivity of 1.1 × 10 −4 Ω · cm was exhibited.

【0017】(実施例3)平均粒子径25μmの樹枝状
形状の電解銅粉80重量部に、平均粒子径1μmの酸化
銀20重量部を計量・配合し振動ミルに投入した。スチ
ールボールを粉砕媒体として振動ミルで2時間粉砕加工
した。その後、振動ミルから粉砕加工した粉末を取り出
し、水素雰囲気の還元炉で200℃80分間還元処理し
た。このようにして得た粉末を150メッシュの篩を用
いて、100μm以下の粒子径に調整し、BET法比表
面積値5000cm2/gの導電ペースト用銅銀複合粉
を製造した。このようにして製造した本発明の導電ペー
スト用銅銀複合粉の性能を確認するために、銅銀複合粉
75重量部、アクリル樹脂25重量部になるように混合
し、トルオールで希釈して導電ペーストを作成した。作
成したペーストをABS樹脂板にロールコータ法で印刷
し膜厚25μmの塗膜を作成し、比抵抗値を測定した。
その結果1.1×10ー4Ω・cmの良好な導電性を示し
た。
Example 3 20 parts by weight of silver oxide having an average particle diameter of 1 μm was weighed and blended with 80 parts by weight of a dendritic electrolytic copper powder having an average particle diameter of 25 μm and charged into a vibration mill. Pulverization was performed for 2 hours by a vibration mill using steel balls as a pulverizing medium. Thereafter, the pulverized powder was taken out of the vibration mill, and reduced at 200 ° C. for 80 minutes in a reducing furnace in a hydrogen atmosphere. The powder thus obtained was adjusted to a particle diameter of 100 μm or less using a 150-mesh sieve to produce a copper-silver composite powder for a conductive paste having a BET specific surface area of 5000 cm 2 / g. In order to confirm the performance of the copper-silver composite powder for a conductive paste of the present invention thus manufactured, 75 parts by weight of a copper-silver composite powder and 25 parts by weight of an acrylic resin were mixed and diluted with toluene to obtain a conductive powder. Paste created. The prepared paste was printed on an ABS resin plate by a roll coater method to form a coating film having a thickness of 25 μm, and the specific resistance value was measured.
As a result, good conductivity of 1.1 × 10 −4 Ω · cm was exhibited.

【0018】(実施例4)平均粒子径25μmの樹枝状
形状の電解銅粉50重量部に、平均粒子径1μmの酸化
銀50重量部を計量・配合し振動ミルに投入した。スチ
ールボールを粉砕媒体として振動ミルで2時間粉砕加工
した。その後、振動ミルから粉砕加工した粉末を取り出
し、水素雰囲気の還元炉で200℃160分間還元処理
した。このようにして得た粉末を150メッシュの篩を
用いて、100μm以下の粒子径に調整し、BET法比
表面積値7800cm2/gの導電ペースト用銅銀複合
粉を製造した。このようにして製造した本発明の導電ペ
ースト用銅銀複合粉の性能を確認するために、銅銀複合
粉75重量部、アクリル樹脂25重量部になるように混
合し、トルオールで希釈して導電ペーストを作成した。
作成したペーストをABS樹脂板にロールコータ法で印
刷し膜厚25μmの塗膜を作成し、比抵抗値を測定し
た。その結果0.8×10ー4Ω・cmの良好な導電性を
示した。
Example 4 50 parts by weight of silver oxide having an average particle diameter of 1 μm were weighed and blended with 50 parts by weight of dendritic electrolytic copper powder having an average particle diameter of 25 μm, and then charged into a vibration mill. Pulverization was performed for 2 hours by a vibration mill using steel balls as a pulverizing medium. Thereafter, the pulverized powder was taken out of the vibration mill, and reduced at 200 ° C. for 160 minutes in a reducing furnace in a hydrogen atmosphere. The powder thus obtained was adjusted to a particle diameter of 100 μm or less using a 150-mesh sieve to produce a copper-silver composite powder for a conductive paste having a BET specific surface area of 7,800 cm 2 / g. In order to confirm the performance of the copper-silver composite powder for a conductive paste of the present invention thus manufactured, 75 parts by weight of a copper-silver composite powder and 25 parts by weight of an acrylic resin were mixed and diluted with toluene to obtain a conductive powder. Paste created.
The prepared paste was printed on an ABS resin plate by a roll coater method to form a coating film having a thickness of 25 μm, and the specific resistance value was measured. As a result, good conductivity of 0.8 × 10 −4 Ω · cm was exhibited.

【0019】(実施例5)平均粒子径15μmの樹枝状
形状の電解銅粉90重量部に、平均粒子径0.8μmの
酸化銀10重量部を計量・配合しアジテータミルに投入
した。スチールボールを粉砕媒体としてアジテータミル
で6時間粉砕加工した。その後、アジテータミルから粉
砕加工した粉末を取り出し、水素雰囲気の還元炉で還元
温度及び還元時間を変えて120℃180分間、150
℃120分、200℃90分、300℃60分、400
℃60分間還元処理した。このようにして得た粉末を3
25メッシュの篩を用いて45μm以下の粒子径に調整
した。 120℃180分間還元処理した粉末はBET法比表面
積値7400cm2/g、 150℃120分間還元処理した粉末はBET法比表面
積値7200cm2/g、 200℃90分間還元処理した粉末はBET法比表面積
値6400cm2/g、 300℃60分間還元処理した粉末はBET法比表面積
値5500cm2/g、 400℃60分間還元処理した粉末はBET法比表面積
値3200cm2/gであった。このようにして製造し
た本発明の導電ペースト用銅銀複合粉の性能を確認する
ために、銅銀複合粉75重量部、エポキシ樹脂10重量
部、エチルカルビトール15重量部及び硬化剤、反応促
進剤を適量添加し導電ペーストを作成した。作成したペ
ーストを200メッシュのスクリーンを使用してスクリ
ーン印刷方法で塗膜を作成し、比抵抗値を測定した。そ
の結果120℃180分還元処理したものは1.0×1
ー4Ω・cm、150℃120分還元処理したものは0.
8×10ー4Ω・cm、200℃90分還元処理したもの
は0.8×10ー4Ω・cm、300℃60分還元処理した
ものは 1.0×10ー4Ω・cm、400℃60分還元処
理したものは1.3×10ー4Ω・cmと、すべて良好な導
電性を示した。
Example 5 10 parts by weight of silver oxide having an average particle diameter of 0.8 μm was weighed and blended with 90 parts by weight of a dendritic electrolytic copper powder having an average particle diameter of 15 μm and charged into an agitator mill. The steel balls were pulverized for 6 hours using an agitator mill as a pulverizing medium. Thereafter, the pulverized powder was taken out of the agitator mill, and reduced at a temperature of 120 ° C. for 180 minutes by changing the reduction temperature and the reduction time in a reducing furnace in a hydrogen atmosphere.
120 ° C, 200 ° C for 90 minutes, 300 ° C for 60 minutes, 400
Reduction treatment was performed at 60 ° C. for 60 minutes. The powder obtained in this way is 3
The particle size was adjusted to 45 μm or less using a 25-mesh sieve. The powder reduced at 120 ° C. for 180 minutes has a specific surface area value of 7400 cm 2 / g, the powder reduced at 150 ° C. for 120 minutes has a specific surface area value of 7200 cm 2 / g, and the powder reduced at 200 ° C. for 90 minutes has a BET specific ratio. The powder subjected to the reduction treatment at a surface area of 6400 cm 2 / g at 300 ° C. for 60 minutes had a BET specific surface area of 5500 cm 2 / g, and the powder subjected to the reduction treatment at 400 ° C. for 60 minutes had a BET specific surface area of 3200 cm 2 / g. In order to confirm the performance of the copper-silver composite powder for a conductive paste of the present invention thus produced, 75 parts by weight of a copper-silver composite powder, 10 parts by weight of an epoxy resin, 15 parts by weight of ethyl carbitol, a curing agent, a reaction accelerator An appropriate amount of the agent was added to prepare a conductive paste. Using the prepared paste, a coating film was formed by a screen printing method using a 200-mesh screen, and the specific resistance value was measured. As a result, the product reduced at 120 ° C. for 180 minutes was 1.0 × 1
0.4-4 Ω · cm, reduced at 150 ° C for 120 min.
8 × 10 over 4 Ω · cm, 200 ℃ 90 minutes reduction treated ones 0.8 × 10 over 4 Ω · cm, 300 ℃ 60 minutes those reduction treatment 1.0 × 10 over 4 Ω · cm, 400 ° C. 60 minutes those reduction treatment and 1.3 × 10 over 4 Ω · cm, all showed good conductivity.

【0020】(実施例6)平均粒子径55μmの粒状形
状の空気アトマイズ銅粉80重量部に、平均粒子径1μ
mの酸化銀20重量部を計量・配合し振動ミルに投入し
た。スチールボールを粉砕媒体として振動ミルで1時間
粉砕加工し、銅粉表面に酸化銀を接合した。その後、振
動ミルから粉砕加工した粉末を取り出し、水素雰囲気の
還元炉で300℃80分間還元処理した。このようにし
て得た粉末を150メッシュの篩を用いて、100μm
以下の粒子径に調整し、BET法比表面積値2010c
2/gの導電ペースト用銅銀複合粉を製造した。この
ようにして製造した本発明の導電ペースト用銅銀複合粉
の性能を確認するために、銅銀複合粉75重量部アクリ
ル樹脂25重量部と、銅銀複合粉80重量部アクリル樹
脂20重量部になるように2種類の混合物を作成し、そ
の後トルオールで希釈して2種類の導電ペーストを作成
した。作成したペーストをABS樹脂板にロールコータ
法で印刷し膜厚70μmの塗膜を作成し、比抵抗値を測
定した。その結果銅銀粉含有量75重量部のペーストは
3.5×10ー4Ω・cmで有ったが、銅銀複合粉80重量
部のペーストは0.7×10ー4Ω・cmと銀粉に近い良好
な導電性を示した。本発明の導電ペースト用銅銀複合粉
の断面を観察すると、表面層の大部分が銀で被覆され、
スルーホール用として好ましい形態の粉末であった。
Example 6 An 80% by weight air-atomized copper powder having an average particle diameter of 55 μm was added to 80 parts by weight of an average particle diameter of 1 μm.
Then, 20 parts by weight of silver oxide was measured and blended and charged into a vibration mill. Using a steel ball as a crushing medium, crushing was performed for 1 hour by a vibration mill, and silver oxide was bonded to the surface of the copper powder. Thereafter, the pulverized powder was taken out of the vibration mill, and reduced in a reducing furnace in a hydrogen atmosphere at 300 ° C. for 80 minutes. The powder thus obtained was passed through a 150-mesh sieve,
Adjust to the following particle size, BET specific surface area value 2010c
A copper / silver composite powder for conductive paste of m 2 / g was produced. In order to confirm the performance of the copper-silver composite powder for a conductive paste of the present invention thus manufactured, 75 parts by weight of a copper-silver composite powder, 25 parts by weight of an acrylic resin, 80 parts by weight of a copper-silver composite powder, and 20 parts by weight of an acrylic resin Were prepared, and then diluted with toluene to prepare two types of conductive pastes. The prepared paste was printed on an ABS resin plate by a roll coater method to form a coating film having a thickness of 70 μm, and the specific resistance value was measured. As a result, the paste having a copper-silver powder content of 75 parts by weight was 3.5 × 10 −4 Ω · cm, while the paste having a copper-silver composite powder of 80 parts by weight was 0.7 × 10 −4 Ω · cm and the silver powder was 0.7 × 10 −4 Ω · cm. And good conductivity close to. When observing the cross section of the copper-silver composite powder for the conductive paste of the present invention, most of the surface layer is covered with silver,
The powder was in a preferred form for through holes.

【0021】(実施例7)平均粒子径55μmの粒状形
状の空気アトマイズ銅粉80重量部に、平均粒子径1μ
mの酸化銀20重量部を計量・配合し振動ミルに投入し
た。スチールボールを粉砕媒体として振動ミルで4時間
粉砕加工した。その後、振動ミルから粉砕加工した粉末
を取り出し、水素雰囲気の還元炉で300℃80分間還
元処理した。このようにして得た粉末を150メッシュ
の篩を用いて、100μm以下の粒子径に調整し、BE
T法比表面積値4200cm2/gの導電ペースト用銅銀
複合粉を製造した。このようにして製造した本発明の導
電ペースト用銅銀複合粉の性能を確認するために、銅銀
複合粉75重量部、アクリル樹脂25重量部になるよう
に混合し、トルオールで希釈して導電ペーストを作成し
た。作成したペーストをABS樹脂板にロールコータ法
で印刷し膜厚70μmの塗膜を作成し、比抵抗値を測定
した。その結果1.5×10ー4Ω・cmの良好な導電性
を示した。本発明の導電ペースト用銅銀複合粉の断面を
観察すると、細かい粒子では明確にならなかったが、粗
い粒子については表面が銀で被覆されているものが多く
認められた。
Example 7 An 80% by weight granular air atomized copper powder having an average particle size of 55 μm was added to an average particle size of 1 μm.
Then, 20 parts by weight of silver oxide was measured and blended and charged into a vibration mill. Pulverization was performed for 4 hours by a vibration mill using steel balls as a pulverizing medium. Thereafter, the pulverized powder was taken out of the vibration mill, and reduced in a reducing furnace in a hydrogen atmosphere at 300 ° C. for 80 minutes. The powder thus obtained was adjusted to a particle size of 100 μm or less using a 150-mesh sieve.
A copper-silver composite powder for a conductive paste having a T method specific surface area of 4,200 cm 2 / g was produced. In order to confirm the performance of the copper-silver composite powder for a conductive paste of the present invention thus manufactured, 75 parts by weight of a copper-silver composite powder and 25 parts by weight of an acrylic resin were mixed and diluted with toluene to obtain a conductive powder. Paste created. The prepared paste was printed on an ABS resin plate by a roll coater method to form a coating film having a thickness of 70 μm, and the specific resistance value was measured. As a result, good conductivity of 1.5 × 10 −4 Ω · cm was exhibited. When the cross section of the copper-silver composite powder for a conductive paste of the present invention was observed, fine particles were not clear, but many coarse particles whose surface was coated with silver were recognized.

【0022】(実施例8)平均粒子径15μmの樹枝状
形状の電解銅粉90重量部に、平均粒子径0.8μmの
酸化銀10重量部を計量・配合しアジテータミルに投入
した。スチールボールを粉砕媒体としてアジテータミル
で8時間粉砕加工した。その後、アジテータミルから粉
砕加工した粉末を取り出し、当該粉末に対して0.1重
量%のオレイン酸を加え、ミキサーにて脂肪酸を表面に
混合被覆した。その後、水素雰囲気の還元炉で150℃
180分間還元処理した。このようにして得た粉末を3
25メッシュの篩を用いて45μm以下の粒子径に調整
し、BET法比表面積値9400cm2/gの導電ペー
スト用銅銀複合粉を製造した。このようにして製造した
本発明の導電ペースト用銅銀複合粉の性能を確認するた
めに、銅銀複合粉75重量部、エポキシ樹脂10重量
部、エチルカルビトール15重量部及び硬化剤、反応促
進剤を適量添加し導電ペーストを作成した。作成したペ
ーストを200メッシュのスクリーンを使用してスクリ
ーン印刷方法で塗膜を作成し、比抵抗値を測定した。そ
の結果0.8×10ー4Ω・cmの良好な導電性を示した。
Example 8 90 parts by weight of dendritic copper powder having an average particle diameter of 15 μm was weighed and blended with 10 parts by weight of silver oxide having an average particle diameter of 0.8 μm, and then charged into an agitator mill. Pulverization was performed for 8 hours by an agitator mill using a steel ball as a pulverizing medium. Thereafter, the pulverized powder was taken out from the agitator mill, 0.1% by weight of oleic acid was added to the powder, and a fatty acid was mixed and coated on the surface with a mixer. Thereafter, 150 ° C. in a reducing furnace in a hydrogen atmosphere
The reduction treatment was performed for 180 minutes. The powder obtained in this way is 3
The particle diameter was adjusted to 45 μm or less using a 25-mesh sieve to produce a copper-silver composite powder for conductive paste having a BET specific surface area of 9400 cm 2 / g. In order to confirm the performance of the copper-silver composite powder for a conductive paste of the present invention thus produced, 75 parts by weight of a copper-silver composite powder, 10 parts by weight of an epoxy resin, 15 parts by weight of ethyl carbitol, a curing agent, a reaction accelerator An appropriate amount of the agent was added to prepare a conductive paste. Using the prepared paste, a coating film was formed by a screen printing method using a 200-mesh screen, and the specific resistance value was measured. As a result, good conductivity of 0.8 × 10 −4 Ω · cm was exhibited.

【0023】(実施例9)平均粒子径15μmの樹枝状
形状の電解銅粉90重量部に、平均粒子径0.8μmの
酸化銀10重量部を計量・配合しアジテータミルに投入
した。スチールボールを粉砕媒体としてアジテータミル
で8時間粉砕加工した。その後、アジテータミルから粉
砕加工した粉末を取り出し、当該粉末に対して0.5重
量%のパルミチン酸を加え、ミキサーにて脂肪酸を表面
に混合被覆した。その後、水素雰囲気の還元炉で300
℃100分間還元処理した。このようにして得た粉末を
325メッシュの篩を用いて45μm以下の粒子径に調
整し、BET法比表面積値8200cm2/gの導電ペ
ースト用銅銀複合粉を製造した。このようにして製造し
た本発明の導電ペースト用銅銀複合粉の性能を確認する
ために、銅銀複合粉75重量部、エポキシ樹脂10重量
部、エチルカルビトール15重量部及び硬化剤、反応促
進剤を適量添加し導電ペーストを作成した。作成したペ
ーストを200メッシュのスクリーンを使用してスクリ
ーン印刷方法で塗膜を作成し、比抵抗値を測定した。そ
の結果0.8×10ー4Ω・cmの良好な導電性を示した。
Example 9 10 parts by weight of silver oxide having an average particle diameter of 0.8 μm was weighed and blended with 90 parts by weight of a dendritic copper powder having an average particle diameter of 15 μm and charged into an agitator mill. Pulverization was performed for 8 hours by an agitator mill using a steel ball as a pulverizing medium. Thereafter, the pulverized powder was taken out from the agitator mill, and 0.5% by weight of palmitic acid was added to the powder, and a fatty acid was mixed and coated on the surface with a mixer. After that, 300 hours in a reducing furnace in a hydrogen atmosphere.
Reduction treatment was performed at 100 ° C. for 100 minutes. The powder thus obtained was adjusted to a particle size of 45 μm or less using a 325-mesh sieve to produce a copper-silver composite powder for a conductive paste having a BET specific surface area of 8,200 cm 2 / g. In order to confirm the performance of the copper-silver composite powder for a conductive paste of the present invention thus produced, 75 parts by weight of a copper-silver composite powder, 10 parts by weight of an epoxy resin, 15 parts by weight of ethyl carbitol, a curing agent, a reaction accelerator An appropriate amount of the agent was added to prepare a conductive paste. Using the prepared paste, a coating film was formed by a screen printing method using a 200-mesh screen, and the specific resistance value was measured. As a result, good conductivity of 0.8 × 10 −4 Ω · cm was exhibited.

【0024】(実施例10)平均粒子径15μmの樹枝
状形状の電解銅粉90重量部に、平均粒子径0.8μm
の酸化銀10重量部を計量・配合しアジテータミルに投
入した。スチールボールを粉砕媒体としてアジテータミ
ルで8時間粉砕加工した。その後、アジテータミルから
粉砕加工した粉末を取り出し、当該粉末に対して1.0
重量%のステアリン酸を加え、ミキサーにて脂肪酸を表
面に混合被覆した。その後、アンモニア分解ガス雰囲気
の還元炉で400℃120分間還元処理した。このよう
にして得た粉末を325メッシュの篩を用いて45μm
以下の粒子径に調整し、BET法比表面積値7100c
2/gの導電ペースト用銅銀複合粉を製造した。この
ようにして製造した本発明の導電ペースト用銅銀複合粉
の性能を確認するために、銅銀複合粉75重量部、エポ
キシ樹脂10重量部、エチルカルビトール15重量部及
び硬化剤、反応促進剤を適量添加し導電ペーストを作成
した。作成したペーストを200メッシュのスクリーン
を使用してスクリーン印刷方法で塗膜を作成し、比抵抗
値を測定した。その結果1.0×10ー4Ω・cmの良好な
導電性を示した。
Example 10 90 parts by weight of a dendritic copper powder having an average particle diameter of 15 μm was added to an average particle diameter of 0.8 μm.
Was weighed and blended and charged into an agitator mill. Pulverization was performed for 8 hours by an agitator mill using a steel ball as a pulverizing medium. Thereafter, the pulverized powder was taken out of the agitator mill, and the powder was 1.0
The stearic acid was added in a ratio of wt%, and the fatty acid was mixed and coated on the surface with a mixer. Thereafter, a reduction treatment was performed at 400 ° C. for 120 minutes in a reduction furnace in an ammonia decomposition gas atmosphere. The powder thus obtained was subjected to 45 μm
Adjusted to the following particle size, BET specific surface area value 7100c
A copper / silver composite powder for conductive paste of m 2 / g was produced. In order to confirm the performance of the copper-silver composite powder for a conductive paste of the present invention thus produced, 75 parts by weight of a copper-silver composite powder, 10 parts by weight of an epoxy resin, 15 parts by weight of ethyl carbitol, a curing agent, a reaction accelerator An appropriate amount of the agent was added to prepare a conductive paste. Using the prepared paste, a coating film was formed by a screen printing method using a 200-mesh screen, and the specific resistance value was measured. As a result, good conductivity of 1.0 × 10 −4 Ω · cm was exhibited.

【0025】(実施例11)平均粒子径15μmの樹枝
状形状の電解銅粉90重量部に、平均粒子径0.8μm
の酸化銀10重量部を計量・配合しアジテータミルに投
入した。スチールボールを粉砕媒体としてアジテータミ
ルで8時間粉砕加工した。その後、アジテータミルから
粉砕加工した粉末を取り出し、当該粉末に対して2.0
重量%のステアリン酸を加え、ミキサーにて脂肪酸を表
面に混合被覆した。その後、アンモニア分解ガス雰囲気
の還元炉で500℃90分間還元処理した。このように
して得た粉末を325メッシュの篩を用いて45μm以
下の粒子径に調整し、BET法比表面積値4300cm
2/gの導電ペースト用銅銀複合粉を製造した。このよ
うにして製造した本発明の導電ペースト用銅銀複合粉の
性能を確認するために、銅銀複合粉75重量部、エポキ
シ樹脂10重量部、エチルカルビトール15重量部及び
硬化剤、反応促進剤を適量添加し導電ペーストを作成し
た。作成したペーストを200メッシュのスクリーンを
使用してスクリーン印刷方法で塗膜を作成し、比抵抗値
を測定した。その結果1.2×10ー4Ω・cmの良好な導
電性を示した。
Example 11 90 parts by weight of a dendritic electrolytic copper powder having an average particle diameter of 15 μm was added to an average particle diameter of 0.8 μm.
Was weighed and blended and charged into an agitator mill. Pulverization was performed for 8 hours by an agitator mill using a steel ball as a pulverizing medium. Thereafter, the pulverized powder was taken out of the agitator mill, and the powder was 2.0
The stearic acid was added in a ratio of wt%, and the fatty acid was mixed and coated on the surface with a mixer. Thereafter, a reduction treatment was performed at 500 ° C. for 90 minutes in a reduction furnace in an ammonia decomposition gas atmosphere. The powder thus obtained was adjusted to a particle diameter of 45 μm or less using a 325 mesh sieve, and the BET specific surface area value was 4300 cm.
2 / g of a copper-silver composite powder for conductive paste was produced. In order to confirm the performance of the copper-silver composite powder for a conductive paste of the present invention thus produced, 75 parts by weight of a copper-silver composite powder, 10 parts by weight of an epoxy resin, 15 parts by weight of ethyl carbitol, a curing agent, a reaction accelerator An appropriate amount of the agent was added to prepare a conductive paste. Using the prepared paste, a coating film was formed by a screen printing method using a 200-mesh screen, and the specific resistance value was measured. As a result, good conductivity of 1.2 × 10 −4 Ω · cm was exhibited.

【0026】(実施例12)平均粒子径25μmの樹枝
状形状の電解銅粉80重量部に、平均粒子径1μmの酸
化銀20重量部を計量・配合し振動ミルに投入した。粉
砕助剤として、粉末に対して0.1重量%のオレイン酸
を振動ミル投入前にあらかじめ添加し、ミキサーで混合
した。スチールボールを粉砕媒体として振動ミルで3時
間粉砕加工した。その後、振動ミルから粉砕加工した粉
末を取り出し、水素雰囲気の還元炉で150℃180分
間還元処理した。このようにして得た粉末を150メッ
シュの篩を用いて、100μm以下の粒子径に調整し、
BET法比表面積値6500cm2/gの導電ペースト
用銅銀複合粉を製造した。このようにして製造した本発
明の導電ペースト用銅銀複合粉の性能を確認するため
に、銅銀複合粉75重量部、アクリル樹脂25重量部に
なるように混合し、トルオールで希釈して導電ペースト
を作成した。作成したペーストをABS樹脂板にロール
コータ法で印刷し膜厚25μmの塗膜を作成し、比抵抗
値を測定した。その結果塗膜表面が平滑で、しかも1.
5×10ー4Ω・cmの良好な導電性を示した。粉末の形
状を顕微鏡で見ると、すべて薄く展延加工された片状粉
であった。
Example 12 20 parts by weight of silver oxide having an average particle diameter of 1 μm was weighed and blended with 80 parts by weight of a dendritic electrolytic copper powder having an average particle diameter of 25 μm and charged into a vibration mill. As a grinding aid, 0.1% by weight of oleic acid with respect to the powder was added in advance before putting into a vibration mill, and mixed with a mixer. Pulverization was performed for 3 hours with a vibration mill using steel balls as a pulverizing medium. Thereafter, the pulverized powder was taken out of the vibration mill and reduced in a reducing furnace in a hydrogen atmosphere at 150 ° C. for 180 minutes. The powder thus obtained was adjusted to a particle diameter of 100 μm or less using a 150-mesh sieve,
A copper-silver composite powder for a conductive paste having a BET specific surface area of 6,500 cm 2 / g was produced. In order to confirm the performance of the copper-silver composite powder for a conductive paste of the present invention thus manufactured, 75 parts by weight of a copper-silver composite powder and 25 parts by weight of an acrylic resin were mixed and diluted with toluene to obtain a conductive powder. Paste created. The prepared paste was printed on an ABS resin plate by a roll coater method to form a coating film having a thickness of 25 μm, and the specific resistance value was measured. As a result, the coating film surface is smooth and 1.
It exhibited good conductivity of 5 × 10 −4 Ω · cm. When the shapes of the powders were observed with a microscope, all of the powders were thinly spread flaky powders.

【0027】(実施例13)平均粒子径25μmの樹枝
状形状の電解銅粉80重量部に、平均粒子径1μmの酸
化銀20重量部を計量・配合し振動ミルに投入した。粉
砕助剤として、粉末に対して0.2重量%のパルミチン
酸を振動ミル投入前にあらかじめ添加し、ミキサーで混
合した。スチールボールを粉砕媒体として振動ミルで3
時間粉砕加工した。その後、振動ミルから粉砕加工した
粉末を取り出し、水素雰囲気の還元炉で300℃80分
間還元処理した。このようにして得た粉末を150メッ
シュの篩を用いて、100μm以下の粒子径に調整し、
BET法比表面積値6800cm2/gの導電ペースト
用銅銀複合粉を製造した。このようにして製造した本発
明の導電ペースト用銅銀複合粉の性能を確認するため
に、銅銀複合粉75重量部、アクリル樹脂25重量部に
なるように混合し、トルオールで希釈して導電ペースト
を作成した。作成したペーストをABS樹脂板にロール
コータ法で印刷し膜厚25μmの塗膜を作成し、比抵抗
値を測定した。その結果塗膜表面が平滑で、しかも1.
5×10ー4Ω・cmの良好な導電性を示した。粉末の形
状を顕微鏡で見ると、すべて薄く展延加工された片状粉
であった。
Example 13 20 parts by weight of silver oxide having an average particle diameter of 1 μm was weighed and blended with 80 parts by weight of a dendritic electrolytic copper powder having an average particle diameter of 25 μm and charged into a vibration mill. As a grinding aid, 0.2% by weight of palmitic acid with respect to the powder was added before the addition to the vibration mill, and mixed with a mixer. 3 with a vibration mill using steel balls as grinding media
Crushed for hours. Thereafter, the pulverized powder was taken out of the vibration mill, and reduced in a reducing furnace in a hydrogen atmosphere at 300 ° C. for 80 minutes. The powder thus obtained was adjusted to a particle diameter of 100 μm or less using a 150-mesh sieve,
A copper-silver composite powder for a conductive paste having a BET specific surface area of 6,800 cm 2 / g was produced. In order to confirm the performance of the copper-silver composite powder for a conductive paste of the present invention thus manufactured, 75 parts by weight of a copper-silver composite powder and 25 parts by weight of an acrylic resin were mixed and diluted with toluene to obtain a conductive powder. Paste created. The prepared paste was printed on an ABS resin plate by a roll coater method to form a coating film having a thickness of 25 μm, and the specific resistance value was measured. As a result, the coating film surface is smooth and 1.
It exhibited good conductivity of 5 × 10 −4 Ω · cm. When the shapes of the powders were observed with a microscope, all of the powders were thinly spread flaky powders.

【0028】(実施例14)平均粒子径25μmの樹枝
状形状の電解銅粉80重量部に、平均粒子径1μmの酸
化銀20重量部を計量・配合し振動ミルに投入した。ス
チールボールを粉砕媒体として振動ミルで1時間粉砕加
工した後、粉砕助剤として粉末に対して0.5重量%の
ステアリン酸を添加しさらに3時間粉砕加工した。その
後、振動ミルから粉砕加工した粉末を取り出し、水素雰
囲気の還元炉で300℃120分間還元処理した。この
ようにして得た粉末を150メッシュの篩を用いて、1
00μm以下の粒子径に調整し、BET法比表面積値9
300cm2/gの導電ペースト用銅銀複合粉を製造し
た。このようにして製造した本発明の導電ペースト用銅
銀複合粉の性能を確認するために、銅銀複合粉75重量
部、アクリル樹脂25重量部になるように混合し、トル
オールで希釈して導電ペーストを作成した。作成したペ
ーストをABS樹脂板にロールコータ法で印刷し膜厚2
5μmの塗膜を作成し、比抵抗値を測定した。その結果
塗膜表面が平滑で、しかも1.4×10ー4Ω・cmの良好
な導電性を示した。
Example 14 20 parts by weight of silver oxide having an average particle diameter of 1 μm was weighed and blended with 80 parts by weight of a dendritic electrolytic copper powder having an average particle diameter of 25 μm and charged into a vibration mill. After grinding with a vibration mill for 1 hour using a steel ball as a grinding medium, 0.5% by weight of stearic acid with respect to the powder was added as a grinding aid, and grinding was further performed for 3 hours. Thereafter, the pulverized powder was taken out of the vibration mill, and reduced in a reducing furnace in a hydrogen atmosphere at 300 ° C. for 120 minutes. The powder thus obtained was passed through a 150-mesh sieve,
The particle size was adjusted to be not more than 00 μm, and the BET specific surface area was 9
A copper-silver composite powder for a conductive paste of 300 cm 2 / g was produced. In order to confirm the performance of the copper-silver composite powder for a conductive paste of the present invention thus manufactured, 75 parts by weight of a copper-silver composite powder and 25 parts by weight of an acrylic resin were mixed and diluted with toluene to obtain a conductive powder. Paste created. The prepared paste is printed on an ABS resin plate by a roll coater method, and the film thickness is 2
A coating film of 5 μm was formed, and the specific resistance value was measured. As a result, the coating film surface was smooth and showed good conductivity of 1.4 × 10 −4 Ω · cm.

【0029】(実施例15)平均粒子径25μmの樹枝
状形状の電解銅粉80重量部に、平均粒子径1μmの酸
化銀20重量部を計量・配合し振動ミルに投入した。ス
チールボールを粉砕媒体として振動ミルで1時間粉砕加
工した。その後粉砕助剤として粉末に対して0.2重量
%のステアリン酸を1時間毎に添加し、6時間まで粉砕
加工した。その後、振動ミルから粉砕加工した粉末を取
り出し、水素雰囲気の還元炉で250℃180分間還元
処理した。このようにして得た粉末を150メッシュの
篩を用いて、100μm以下の粒子径に調整し、BET
法比表面積値12500cm2/gの導電ペースト用銅
銀複合粉を製造した。このようにして製造した本発明の
導電ペースト用銅銀複合粉の性能を確認するために、銅
銀複合粉75重量部、アクリル樹脂25重量部になるよ
うに混合し、トルオールで希釈して導電ペーストを作成
した。作成したペーストをABS樹脂板にロールコータ
法で印刷し膜厚15μmの塗膜を作成し、比抵抗値を測
定した。その結果塗膜表面が緻密でしかも平滑で、1.
7×10ー4Ω・cmの良好な導電性を示した。
Example 15 20 parts by weight of silver oxide having an average particle diameter of 1 μm were weighed and blended with 80 parts by weight of a dendritic electrolytic copper powder having an average particle diameter of 25 μm and charged into a vibration mill. Pulverization was performed for 1 hour by a vibration mill using steel balls as a pulverizing medium. Thereafter, as a grinding aid, stearic acid of 0.2% by weight based on the powder was added every hour, and pulverization was performed for up to 6 hours. Thereafter, the pulverized powder was taken out from the vibration mill, and reduced in a reducing furnace in a hydrogen atmosphere at 250 ° C. for 180 minutes. The powder thus obtained was adjusted to a particle size of 100 μm or less using a 150-mesh sieve,
A copper-silver composite powder for a conductive paste having a specific surface area of 12,500 cm 2 / g was produced. In order to confirm the performance of the copper-silver composite powder for a conductive paste of the present invention thus manufactured, 75 parts by weight of a copper-silver composite powder and 25 parts by weight of an acrylic resin were mixed and diluted with toluene to obtain a conductive powder. Paste created. The prepared paste was printed on an ABS resin plate by a roll coater method to form a film having a thickness of 15 μm, and the specific resistance was measured. As a result, the coating film surface is dense and smooth, and 1.
Good conductivity of 7 × 10 −4 Ω · cm was exhibited.

【0030】(実施例16)平均粒子径25μmの樹枝
状形状の電解銅粉80重量部に、平均粒子径1μmの酸
化銀20重量部を計量・配合し振動ミルに投入した。ス
チールボールを粉砕媒体として振動ミルで10分間粉砕
加工した。その後粉砕助剤として粉末に対して0.5重
量%のオレイン酸を添加し、3時間粉砕加工した。その
後、振動ミルから粉砕加工した粉末を取り出し、粉末に
対して1.5重量%のステアリン酸を加えミキサーで混
合被覆した。しかる後に、水素雰囲気の還元炉で500
℃90分間還元処理した。このようにして得た粉末を1
50メッシュの篩を用いて、100μm以下の粒子径に
調整し、BET法比表面積値4800cm2/gの導電
ペースト用銅銀複合粉を製造した。このようにして製造
した本発明の導電ペースト用銅銀複合粉の性能を確認す
るために、銅銀複合粉75重量部、アクリル樹脂25重
量部になるように混合し、トルオールで希釈して導電ペ
ーストを作成した。作成したペーストをABS樹脂板に
ロールコータ法で印刷し膜厚25μmの塗膜を作成し、
比抵抗値を測定した。その結果1.5×10ー4Ω・cm
の良好な導電性を示した。塗膜外観も平滑で、粉末の形
状も片状で、かつ凝集物も非常に少なかった。
Example 16 20 parts by weight of silver oxide having an average particle diameter of 1 μm was weighed and blended with 80 parts by weight of a dendritic electrolytic copper powder having an average particle diameter of 25 μm and charged into a vibration mill. Pulverization was performed for 10 minutes by a vibration mill using steel balls as a pulverizing medium. Thereafter, 0.5% by weight of oleic acid was added to the powder as a grinding aid, and the mixture was ground for 3 hours. Thereafter, the pulverized powder was taken out from the vibration mill, and 1.5% by weight of stearic acid was added to the powder and mixed and coated with a mixer. After that, in a hydrogen atmosphere reducing furnace,
Reduction treatment was performed at 90 ° C. for 90 minutes. The powder thus obtained is
The particle diameter was adjusted to 100 μm or less using a 50-mesh sieve to produce a copper-silver composite powder for a conductive paste having a BET specific surface area of 4,800 cm 2 / g. In order to confirm the performance of the copper-silver composite powder for a conductive paste of the present invention thus manufactured, 75 parts by weight of a copper-silver composite powder and 25 parts by weight of an acrylic resin were mixed and diluted with toluene to obtain a conductive powder. Paste created. The prepared paste is printed on an ABS resin plate by a roll coater method to form a coating film having a thickness of 25 μm.
The specific resistance value was measured. As a result 1.5 × 10 over 4 Ω · cm
Showed good conductivity. The appearance of the coating film was smooth, the shape of the powder was flaky, and the amount of aggregates was very small.

【0031】[0031]

【発明の効果】本発明の方法によって得られる導電ペー
スト用銅銀複合粉は、従来の銀メッキ銅粉と異なり、粒
子径が細かくても、また片状形状でも銀粉に近い優れた
導電性能が得られ、しかも工業的に安価に製造出来る物
である。具体的な産業への利用方法としては、吹き付け
塗装法あるいはロールコータ法、スクリーン印刷法によ
る電磁波シールド用途では、比表面積が大きい粉末であ
るため非常に塗装し易く、しかも片状粉では塗膜表面が
平滑となり、かつ塗膜厚も薄く出来るようになった。ス
クリーン印刷方法による導電回路やジャンパー線では、
粒子径が小さく比表面積が大きいことはペースト中の単
位体積あたりの導電粒子の個数が増えることになり、印
刷方向や厚さ方向での導電性能のばらつきが無くなり、
安定した塗膜の形成が可能となった。
The copper-silver composite powder for conductive paste obtained by the method of the present invention, unlike conventional silver-plated copper powder, has excellent conductive properties close to silver powder even if the particle diameter is small and even in a flaky shape. It can be obtained and can be manufactured industrially at low cost. As a specific industrial application method, in the application of electromagnetic wave shielding by spray coating method, roll coater method, screen printing method, it is very easy to paint because the powder has a large specific surface area. Became smooth and the thickness of the coating film became thinner. For conductive circuits and jumper wires by screen printing,
When the particle diameter is small and the specific surface area is large, the number of conductive particles per unit volume in the paste increases, and there is no variation in conductive performance in the printing direction or thickness direction,
A stable coating film can be formed.

【0032】このように塗装性や印刷性が向上するばか
りか、塗膜表面の平滑性がはんだ付け性向上や、極細線
が必要なファインパターン用にも銀粉と同じような使用
ができるようになった。その他スルーホール用やディス
ペンサー用にも対応できるものとなった。もちろん本発
明の粉末は銅銀複合粉であるため、銀粉と比較するとマ
イグレーション発生の問題も少ない。このような導電ペ
ースト用銅銀複合粉が提供出来ることは、安価な導電ペ
ーストが製造出来るようになり、その使用範囲が広が
り、本発明の産業上への利用性は非常に大きいといえ
る。
As described above, not only the paintability and printability are improved, but also the smoothness of the coating film surface is improved so that the solderability is improved, and it can be used in the same manner as silver powder even for fine patterns requiring extra fine lines. became. In addition, it can be used for through holes and dispensers. Of course, since the powder of the present invention is a copper-silver composite powder, there is less problem of occurrence of migration as compared with silver powder. Providing such a copper-silver composite powder for a conductive paste makes it possible to produce an inexpensive conductive paste, expands its use range, and can be said to have a very large industrial applicability of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01B 1/00 H01B 1/00 Z 1/22 1/22 A H05K 1/09 H05K 1/09 A 9/00 9/00 W ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01B 1/00 H01B 1/00 Z 1/22 1/22 A H05K 1/09 H05K 1/09 A 9/00 9/00 W

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 銅粉に酸化銀を加え、粉砕加工しながら
機械的に銅粉に酸化銀を接合せしめて、しかる後に還元
性雰囲気中で120〜400℃の温度で還元処理するこ
とを特徴とする導電ペースト用銅銀複合粉の製造方法。
1. A method comprising adding silver oxide to copper powder, mechanically bonding the silver oxide to the copper powder while pulverizing, and then subjecting the copper powder to a reduction treatment at a temperature of 120 to 400 ° C. in a reducing atmosphere. Of producing a copper-silver composite powder for a conductive paste.
【請求項2】銅粉に酸化銀を加え、粉砕加工しながら機
械的に銅粉に酸化銀を接合せしめ、次いで粉砕加工した
当該粉末に対して0.1〜2重量%の脂肪酸を混合被覆
し、しかる後に還元性雰囲気中で150〜500℃の温
度で還元処理することを特徴とする導電ペースト用銅銀
複合粉の製造方法。
2. Silver oxide is added to copper powder, silver oxide is mechanically bonded to copper powder while pulverizing, and then 0.1 to 2% by weight of fatty acid is mixed and coated on the pulverized powder. And a reduction treatment in a reducing atmosphere at a temperature of 150 to 500 ° C. after that.
【請求項3】 銅粉に酸化銀を加え、粉砕加工する粉末
に対して1重量%以下の脂肪酸を添加しながら粉砕加工
して、機械的に銅粉に酸化銀を接合せしめ、しかる後に
還元性雰囲気中で150〜500℃の温度で還元処理す
ることを特徴とする導電ペースト用銅銀複合粉の製造方
法。
3. Addition of silver oxide to copper powder, pulverization while adding 1% by weight or less of fatty acid to the powder to be pulverized, mechanically bond the silver oxide to the copper powder, and then reduce. A method for producing a copper-silver composite powder for a conductive paste, comprising performing a reduction treatment at a temperature of 150 to 500 ° C. in a neutral atmosphere.
【請求項4】 請求項1,請求項2,請求項3記載の酸
化銀量が、銅粉に対して3〜50重量%であることを特
徴とする導電ペースト用銅銀複合粉の製造方法。
4. A method for producing a copper-silver composite powder for a conductive paste, wherein the amount of silver oxide according to claim 1, 2 or 3 is 3 to 50% by weight based on the copper powder. .
【請求項5】 請求項1、請求項2,請求項3記載の導
電ペースト用銅銀複合粉の粒子径が100μm以下で、
BET法比表面積値が2000cm2/g以上であるこ
とを特徴とする導電ペースト用銅銀複合粉の製造方法。
5. The copper-silver composite powder for a conductive paste according to claim 1, 2 or 3, having a particle size of 100 μm or less,
A method for producing a copper-silver composite powder for a conductive paste, wherein the BET specific surface area value is 2000 cm 2 / g or more.
JP10118390A 1998-04-28 1998-04-28 Production of copper-silver composite powder for electrically conductive paste Pending JPH11310806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10118390A JPH11310806A (en) 1998-04-28 1998-04-28 Production of copper-silver composite powder for electrically conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10118390A JPH11310806A (en) 1998-04-28 1998-04-28 Production of copper-silver composite powder for electrically conductive paste

Publications (1)

Publication Number Publication Date
JPH11310806A true JPH11310806A (en) 1999-11-09

Family

ID=14735506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10118390A Pending JPH11310806A (en) 1998-04-28 1998-04-28 Production of copper-silver composite powder for electrically conductive paste

Country Status (1)

Country Link
JP (1) JPH11310806A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330535A (en) * 2004-05-19 2005-12-02 Mitsui Mining & Smelting Co Ltd Silver compound-covered copper powder, method for producing the silver compound-covered copper powder, method for storing the silver compound-covered copper powder and conductive paste using the silver compound-covered copper powder
JP2006120716A (en) * 2004-10-19 2006-05-11 Rohm Co Ltd Semiconductor device
WO2007040195A1 (en) * 2005-10-03 2007-04-12 Mitsui Mining & Smelting Co., Ltd. Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder
JP2008106368A (en) * 2007-11-30 2008-05-08 Mitsui Mining & Smelting Co Ltd Silver compound-coated copper powder, method for producing the silver compound-coated copper powder, method for storing the silver compound-coated copper powder and conductive paste using the silver compound-coated copper powder
JP5124691B1 (en) * 2012-03-21 2013-01-23 有限会社 ナプラ Conductive fine powder, conductive paste and electronic parts
US20180376593A1 (en) * 2014-04-01 2018-12-27 Korea Electronics Technology Institute Ink composition for light sintering, wiring board using same and manufacturing method therefor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330535A (en) * 2004-05-19 2005-12-02 Mitsui Mining & Smelting Co Ltd Silver compound-covered copper powder, method for producing the silver compound-covered copper powder, method for storing the silver compound-covered copper powder and conductive paste using the silver compound-covered copper powder
JP2006120716A (en) * 2004-10-19 2006-05-11 Rohm Co Ltd Semiconductor device
JP4567410B2 (en) * 2004-10-19 2010-10-20 ローム株式会社 Semiconductor device
WO2007040195A1 (en) * 2005-10-03 2007-04-12 Mitsui Mining & Smelting Co., Ltd. Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder
JP2007100155A (en) * 2005-10-03 2007-04-19 Mitsui Mining & Smelting Co Ltd Silver nanoparticle-adhered silver-copper composite powder and method for producing the silver nanoparticle-adhered silver-copper composite powder
KR101301634B1 (en) * 2005-10-03 2013-08-29 미쓰이 긴조꾸 고교 가부시키가이샤 Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder
JP4666663B2 (en) * 2007-11-30 2011-04-06 三井金属鉱業株式会社 Silver compound-coated copper powder, method for producing the silver compound-coated copper powder, storage method for the silver compound-coated copper powder, and conductive paste using the silver compound-coated copper powder
JP2008106368A (en) * 2007-11-30 2008-05-08 Mitsui Mining & Smelting Co Ltd Silver compound-coated copper powder, method for producing the silver compound-coated copper powder, method for storing the silver compound-coated copper powder and conductive paste using the silver compound-coated copper powder
JP5124691B1 (en) * 2012-03-21 2013-01-23 有限会社 ナプラ Conductive fine powder, conductive paste and electronic parts
US20180376593A1 (en) * 2014-04-01 2018-12-27 Korea Electronics Technology Institute Ink composition for light sintering, wiring board using same and manufacturing method therefor
US20180376592A1 (en) * 2014-04-01 2018-12-27 Korea Electronics Technology Institute Ink composition for light sintering, wiring board using same and manufacturing method therefor
US10477681B2 (en) * 2014-04-01 2019-11-12 Korea Electronics Technology Institute Ink composition for light sintering, wiring board using same and manufacturing method therefor
US10477680B2 (en) * 2014-04-01 2019-11-12 Korea Electronics Technology Institute Ink composition for light sintering, wiring board using same and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP4363340B2 (en) Conductive silver paste and electromagnetic wave shielding member using the same
TWI236393B (en) Copper flake powder, method for producing copper flake powder, and conductive paste using copper flake powder
KR100988298B1 (en) Conductive powder and process for producing the same, conductive powder paste, and process for producing the conductive powder paste
JP5080731B2 (en) Fine silver particle-attached silver-copper composite powder and method for producing the fine silver particle-attached silver-copper composite powder
JP5181434B2 (en) Fine copper powder and method for producing the same
JP4178374B2 (en) Silver coated flake copper powder, method for producing the silver coated flake copper powder, and conductive paste using the silver coated flake copper powder
JP2011028985A (en) Method of manufacturing conductive paste, and the conductive paste
KR20100096111A (en) Copper powder for electrically conductive paste, and electrically conductive paste
US6632265B1 (en) Nickel powder, method for preparation thereof and conductive paste
JP5327582B2 (en) Reduction precipitation type spherical NiP fine particles and method for producing the same
JP4922793B2 (en) Mixed conductive powder and method for producing the same, conductive paste and method for producing the same
JPH11310806A (en) Production of copper-silver composite powder for electrically conductive paste
KR20130079315A (en) Copper powder for conductive paste, and conductive paste
JP2002245849A (en) Conductive filter for conductive paste and manufacturing method of the same
JP2002015622A (en) Copper powder for electro-conductive paste and its manufacturing method
JP4074369B2 (en) Method for producing flake copper alloy powder for conductive paste
JP4136106B2 (en) Flat micro copper powder and method for producing the same
JP4163278B2 (en) Method for producing flake copper powder for conductive paint
JP4230017B2 (en) Method for producing fine copper powder
JP3934869B2 (en) Fine copper powder for circuit formation
JP2003123537A (en) Mixed copper powder, method of manufacturing the mixed copper powder, copper paste using the mixed copper powder and printed circuit board using the copper paste
JP4524727B2 (en) Ni alloy grain for anisotropic conductive film and method for producing the same
JP2006131978A (en) SPHERICAL NiP FINE PARTICLE, METHOD FOR PRODUCING THE SAME AND ELECTRICALLY CONDUCTIVE PARTICLE FOR ANISOTROPIC ELECTRICALLY CONDUCTIVE FILM
JP2000328232A (en) Electrically conductive powder, its production and coating material using it
JPH09282935A (en) Silver-plated copper powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030