JP4230017B2 - Method for producing fine copper powder - Google Patents

Method for producing fine copper powder Download PDF

Info

Publication number
JP4230017B2
JP4230017B2 JP24533498A JP24533498A JP4230017B2 JP 4230017 B2 JP4230017 B2 JP 4230017B2 JP 24533498 A JP24533498 A JP 24533498A JP 24533498 A JP24533498 A JP 24533498A JP 4230017 B2 JP4230017 B2 JP 4230017B2
Authority
JP
Japan
Prior art keywords
copper powder
fine copper
pulverized
average particle
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24533498A
Other languages
Japanese (ja)
Other versions
JP2000080408A (en
Inventor
健三 塙
和明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP24533498A priority Critical patent/JP4230017B2/en
Priority to PCT/JP1999/004683 priority patent/WO2004101201A1/en
Priority to US09/530,320 priority patent/US6395332B1/en
Publication of JP2000080408A publication Critical patent/JP2000080408A/en
Priority to US10/029,912 priority patent/US6673134B2/en
Application granted granted Critical
Publication of JP4230017B2 publication Critical patent/JP4230017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、微小銅粉の製造方法に関し、詳しくは導電性ペースト、導電性接着剤に用いられたときに好適な特性を示し、しかも安価、かつ簡便な微小銅粉の製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
近年、OA機器、携帯通信機器等の電子部品実装技術においてチップ部品、接点材料等の分野で使用される導電性ペーストとしては、銀あるいは銀−パラジウムを主成分とする導電性金属粉末あるいはフレークを樹脂バインダー、もしくはガラスフリット等に配合したものがある。さらに導電性ペーストは、プリント配線基板のスルーホール用、配線クロスオーバー用、電極用等にも使用されている。これら銀あるいは銀−パラジウムを主成分とする導電性金属粉末あるいはフレークを使用する導電性ペーストは導電性に優れ、かつ耐酸化性にも優れているが、銀、パラジウム等の金属粉末は高価であり、また安定した入手が困難であり、しかも耐マイグレーション性に問題がある。そこで、高価な銀、パラジウムに代えて、安価でかつ導電性に優れた銅粉の需要が高まってきている。
【0003】
この銅粉の製造方法には、アトマイズ法、電解法、湿式合成法等が採用されている。これらの製造方法の中でアトマイズ法、電解法によって得られる銅粉は、主に粉末冶金用に用いられ、その平均粒径は数十μm程度である。一方、湿式合成法においては、平均粒径が0.2〜4μm程度の粒径が揃った粒度分布の狭い銅粉が得られるが、高コストであり、経済性に問題がある。
【0004】
電子機器等の小型化、軽量化に伴って、導電性回路もファインピッチ化され、これに伴ってプリント配線基板のスルーホール用導電性ペーストに用いられる銅粉もより微小化されたもの、具体的には平均粒径10μm以下、好ましくは平均粒径3〜5μm程度の銅粉が要求されている。上記のように湿式合成法においては、このような平均粒径の銅粉は得られるが、経済的に不利であり、工業的製造方法とはいい難い。また、アトマイズ法により得られた銅粉の平均粒径は、上記のように一般に数十μmであり、これから10μm以下の銅粉を分級した場合には、収率が悪く、結果的にコスト高となる。
【0005】
上記要求に対応すべく、平均粒径20〜35μm程度の電解銅粉をアトマイザーにより粉砕することによって、平均粒径8μm程度の銅粉が得られているが、導電性ペースト用銅粉としてさらなる微小なものが要求されている。また、高圧水アトマイザーを用いることによって、平均粒径5μm程度の銅粉は得られるが、製造歩留りが悪く、経済的に不利である。
【0006】
特開昭62−199705号公報及び特開平2−182809号公報には、電解銅粉を銅粉粒子相互の衝突で解砕、微粉化し、平均粒径10μm以下の微小銅粉を得ることが記載されている。すなわち、粒子相互を衝突する方式のジェットミルを用いて電解銅粉を解砕、微粉化する方法が記載されている。しかし、この方法においては、得られた微小銅粉を用いた導電性ペーストは、導電性等の特性に劣るといった問題があった。
【0007】
従って、本発明の目的は、導電性ペースト、導電性接着剤に用いられたときに好適な特性、特に良好な導電性を示し、しかも安価、かつ簡便な微小銅粉の製造方法を提供することにある。
【0008】
【発明が解決しようとする課題】
本発明者等は、検討の結果、油脂を被覆した特定性状の樹枝状電解銅粉を、衝突板方式ジェットミルによって粉砕、微粉化することによって、上記目的が達成し得ることを知見した。
【0009】
本発明は、上記知見に基づきなされたもので、平均粒径20〜35μm、嵩密度0.5〜0.8g/cm3 の樹枝状電解銅粉に油脂を添加、混合し、該電解銅粉表面に油脂を被覆した後、衝突板方式ジェットミルによって粉砕、微粉化することを特徴とする微小銅粉の製造方法を提供するものである。
【0010】
【発明の実施の形態】
本発明において用いられる樹枝状電解銅粉は、平均粒径が20〜35μm、嵩密度が0.5〜0.8g/cm3 、好ましくは0.60〜0.75g/cm3 のものである。平均粒径が上記範囲を外れた場合には、良好な微小銅粉は得られない。また、嵩密度が0.5g/cm3 未満では粉砕中に燃えだす恐れがあり、0.8g/cm3 を超えると平均粒径3〜5μmの微小銅粉は得られない。
【0011】
このような樹枝状電解銅粉は、CuSO4 ・5H2 O:5〜50g/l、H2 SO4 :50〜150g/lの液組成で、電解密度5〜10A/dm2 、液温20〜60℃の条件で陰極に直接析出させることにより得られる。電解により得られた樹枝状電解銅粉は、酸洗、水洗等の処理が施される。
【0012】
その後、上記樹枝状電解銅粉には、防錆処理のために油脂が添加、混合され、該電解銅粉表面に油脂が均一に被覆される。油脂の添加量は、電解銅粉に対して0.1〜5重量%であることが望ましい。このような油脂としては、飽和脂肪酸又は不飽和脂肪酸が好ましく用いられる。飽和脂肪酸としてはラウリン酸、パルミチン酸、ステアリン酸等が挙げられ、不飽和脂肪酸としてはオレイン酸、リノール酸等が挙げられる。
【0013】
次に、本発明では、表面に油脂が被覆された樹枝状電解銅粉を衝突板方式ジェットミルによって粉砕、微粉化する。この衝突板方式ジェットミルは、供給された電解銅粉を圧縮空気により粉砕室内の衝突板に衝突させ、粉砕、微粉化させるものである。粉砕、微粉化された銅粉は、分級機により分級され、目的とする微小銅粉は排出されてサイクロンやバグフィルターで回収される。一方、粗銅粉は粉砕室にフィードバックして再度粉砕、微粉化される。このような衝突板方式ジェットミルとしては、日本ニューマチック工業(株)社製のIDS式ジェットミルを例示することができる。
【0014】
上記した特開昭62−199705号公報及び特開平2−182809号公報には、粒子相互を衝突する方式のジェットミル、例えば日本ニューマチック工業(株)社製のPJM式ジェットミルを用いて樹枝状電解銅粉を解砕、微粉化することが記載されている。しかし、この方法では、衝突板方式ジェットミルを用いた場合に比べて、同一原料を用いた場合に粒径の小さいものが得られない、得られた微小銅粉を導電性ペースト等に用いたときに、良好な導電性が得られない等の問題が生じる。
【0015】
所望の平均粒径を有する微小銅粉は、電解銅粉を供給する速度と粉砕機における分級機の設定とを適宜調整することにより得られる。例えば供給速度を小さくして分級機設定を微粉側に設定すれば微小銅粉が得られる。また、原料として嵩密度の小さい電解銅粉を用いることによっても微小銅粉が得られる。平均粒径3〜5μmの微小銅粉を得るためには、供給速度を遅くすることが望ましい。また、平均粒径5μmを超える微小粉を得るには、供給速度を速めればよい。
【0016】
このようにして得られた微小銅粉は、粒状又は粒状と枝状が混在したもので、その平均粒径は3〜5μmのものが好ましい。
【0017】
本発明の製造方法により得られた微小銅粉は単独で、或いは他の銅粉と組み合わせてスルーホール基板用や電子部品電極用導電性ペーストや導電性接着剤に用いられる。特に導電性回路のファインピッチ化に伴うスルーホール基板用導電性ペーストに好適に用いられる。
【0018】
【実施例】
以下、実施例等に基づき本発明を具体的に説明する。
【0019】
〔実施例1〕
平均粒径28.2μm、嵩密度0.63g/cm3 の樹枝状電解銅粉100重量部に対して油脂(オレイン酸)1重量部を添加し、2時間混合した後、衝突板方式ジェットミル(日本ニューマチック工業(株)社製のIDS式ジェットミル、IDS−5)によって、粉砕圧力6kg/cm3 、供給速度3.4kg/hrの条件で粉砕、微粉化し、微小銅粉を得た。得られた微小銅粉は概ね粒状で、平均粒径は3.37μm、回収率は89%であった。原料として用いた樹枝状電解銅粉及び得られた微小銅粉の走査電子顕微鏡写真を図1及び図2にそれぞれ示す。
【0020】
このようにして得られた微小銅粉85重量部、レゾール型フェノール樹脂16重量部、溶剤(ブチルセロソルブ)6重量部を加え、3本ロールミルでペースト化した後、ガラスエポキシ基板上にスクリーン印刷し、エアーオーブン中にて150℃、30分熱硬化した。この導電性ペーストの比抵抗は1.2×10-4Ω・cmであった。
【0021】
〔比較例1〕
平均粒径14.4μm、嵩密度1.34g/cm3 の樹枝状電解銅粉100重量部に対して油脂(オレイン酸)1重量部を添加し、2時間混合した後、衝突板方式ジェットミル(日本ニューマチック工業(株)社製のIDS式ジェットミル、IDS−5)によって、粉砕圧力6kg/cm3 、供給速度1.2kg/hrの条件で粉砕、微粉化し、銅粉を得た。得られた銅粉は概ね粒状であったが、平均粒径は11.2μmと微小銅粉は得られなかった。また、回収率は78%と低いものであった。
【0022】
〔比較例2〕
衝突板方式ジェットミルに代えて、粒子相互を衝突する方式のジェットミル(日本ニューマチック工業(株)社製のPJM式ジェットミル)を用いた以外は、実施例1と同様にして微小銅粉を得た。この微小銅粉の平均粒径は5.8μm、回収率は60%であった。このようにして得られた微小銅粉を用いて実施例1と同様にペースト化した後、ガラスエポキシ基板上にスクリーン印刷し、エアーオーブン中にて熱硬化した。この導電性ペーストの比抵抗は3.0×10-4Ω・cmであった。
【0023】
〔実施例2〕
平均粒径30.3μm、嵩密度0.74g/cm3 の樹枝状電解銅粉100重量部に対して油脂(オレイン酸)1重量部を添加し、2時間混合した後、衝突板方式ジェットミル(日本ニューマチック工業(株)社製のIDS式ジェットミル、IDS−5)によって、粉砕圧力6kg/cm3 、供給速度6.7kg/hrの条件で粉砕、微粉化し、微小銅粉を得た。得られた微小銅粉は粒状と枝状の混在したもので、平均粒径は4.43μm、回収率は97%であった。
【0024】
このようにして得られた微小銅粉86重量部、レゾール型フェノール樹脂14重量部、溶剤(ブチルセロソルブ)6重量部を加え、実施例1と同様にペースト化した後、ガラスエポキシ基板上にスクリーン印刷し、エアーオーブン中にて熱硬化した。この導電性ペーストの比抵抗は1.0×10-4Ω・cmであった。
【0025】
【発明の効果】
以上説明したように、本発明の製造方法によって、導電性ペースト、導電性接着剤等に用いられたときに好適な特性、特に良好な導電性を示す微小銅粉が、安価、かつ簡便に得られる。
【図面の簡単な説明】
【図1】図1は、実施例1における樹枝状電解銅粉の走査電子顕微鏡写真。
【図2】図2は、実施例1における微小銅粉の走査電子顕微鏡写真。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a fine copper powder, and more particularly to a method for producing a fine copper powder which exhibits suitable characteristics when used in a conductive paste or a conductive adhesive, and which is inexpensive and simple.
[0002]
[Prior art and problems to be solved by the invention]
In recent years, conductive metal powders or flakes mainly composed of silver or silver-palladium are used as conductive pastes used in the field of chip components, contact materials, etc. in electronic component mounting technology such as OA equipment and portable communication equipment. Some are blended with resin binder or glass frit. Furthermore, the conductive paste is also used for through holes in printed wiring boards, wiring crossovers, electrodes, and the like. Conductive metal powder or conductive paste using flakes mainly composed of silver or silver-palladium is excellent in conductivity and oxidation resistance, but metal powder such as silver and palladium is expensive. In addition, stable acquisition is difficult, and there is a problem in migration resistance. Therefore, in place of expensive silver and palladium, there is an increasing demand for inexpensive and excellent conductive copper powder.
[0003]
An atomizing method, an electrolytic method, a wet synthesis method, or the like is employed as a method for producing the copper powder. Among these production methods, the copper powder obtained by the atomizing method and the electrolytic method is mainly used for powder metallurgy, and the average particle size is about several tens of μm. On the other hand, in the wet synthesis method, copper powder having a narrow particle size distribution with an average particle size of about 0.2 to 4 μm can be obtained, but it is expensive and has a problem in economic efficiency.
[0004]
Along with the downsizing and weight reduction of electronic devices, etc., the conductive circuit has become finer pitch, and with this, the copper powder used for the conductive paste for through-holes of printed wiring boards has become even smaller. Specifically, copper powder having an average particle size of 10 μm or less, preferably about 3 to 5 μm is required. As described above, in the wet synthesis method, copper powder having such an average particle diameter can be obtained, but it is economically disadvantageous and is difficult to say as an industrial production method. Moreover, the average particle diameter of the copper powder obtained by the atomization method is generally several tens of μm as described above. When the copper powder of 10 μm or less is classified from this, the yield is poor, resulting in high cost. It becomes.
[0005]
In order to meet the above requirements, copper powder having an average particle size of about 8 μm is obtained by pulverizing electrolytic copper powder having an average particle size of about 20 to 35 μm with an atomizer. Something is required. Moreover, by using a high-pressure water atomizer, copper powder having an average particle size of about 5 μm can be obtained, but the production yield is poor, which is economically disadvantageous.
[0006]
JP-A-62-299705 and JP-A-2-182809 describe that electrolytic copper powder is pulverized and pulverized by collision between copper powder particles to obtain fine copper powder having an average particle size of 10 μm or less. Has been. That is, a method is described in which electrolytic copper powder is pulverized and pulverized using a jet mill in which particles collide with each other. However, in this method, there is a problem that the obtained conductive paste using the fine copper powder is inferior in properties such as conductivity.
[0007]
Accordingly, an object of the present invention is to provide a method for producing fine copper powder that is suitable for use in conductive pastes and conductive adhesives, particularly exhibits good conductivity, and is inexpensive and simple. It is in.
[0008]
[Problems to be solved by the invention]
As a result of the study, the present inventors have found that the above-mentioned object can be achieved by pulverizing and pulverizing the dendritic electrolytic copper powder coated with oil and fat with a collision plate type jet mill.
[0009]
The present invention has been made on the basis of the above knowledge, and fats and oils are added to and mixed with a dendritic electrolytic copper powder having an average particle diameter of 20 to 35 μm and a bulk density of 0.5 to 0.8 g / cm 3. The present invention provides a method for producing fine copper powder characterized in that after the surface is coated with fats and oils, it is pulverized and pulverized by a collision plate type jet mill.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The dendritic electrolytic copper powder used in the present invention has an average particle size of 20 to 35 μm and a bulk density of 0.5 to 0.8 g / cm 3 , preferably 0.60 to 0.75 g / cm 3. . When the average particle size is out of the above range, good fine copper powder cannot be obtained. The bulk density is less than 0.5 g / cm 3 may result in out burning during grinding, fine copper powder having an average particle size 3~5μm exceeds 0.8 g / cm 3 can not be obtained.
[0011]
Such dendritic electrolytic copper powder, CuSO 4 · 5H 2 O: 5~50g / l, H 2 SO 4: in a liquid composition of 50 to 150 g / l, the electrolyte density 5~10A / dm 2, a liquid temperature 20 It can be obtained by directly depositing on the cathode under the condition of -60 ° C. The dendritic electrolytic copper powder obtained by electrolysis is subjected to treatments such as pickling and rinsing.
[0012]
Thereafter, fats and oils are added to and mixed with the dendritic electrolytic copper powder for rust prevention treatment, and the surface of the electrolytic copper powder is uniformly coated with the fats and oils. As for the addition amount of fats and oils, it is desirable that it is 0.1 to 5 weight% with respect to electrolytic copper powder. As such fats and oils, saturated fatty acids or unsaturated fatty acids are preferably used. Examples of saturated fatty acids include lauric acid, palmitic acid, and stearic acid, and examples of unsaturated fatty acids include oleic acid and linoleic acid.
[0013]
Next, in the present invention, dendritic electrolytic copper powder whose surface is coated with fats and oils is pulverized and pulverized by a collision plate type jet mill. In this collision plate type jet mill, the supplied electrolytic copper powder is made to collide with the collision plate in the pulverization chamber by compressed air to be pulverized and pulverized. The pulverized and pulverized copper powder is classified by a classifier, and the target fine copper powder is discharged and collected by a cyclone or a bag filter. On the other hand, the coarse copper powder is fed back to the crushing chamber and pulverized and pulverized again. As such a collision plate type jet mill, an IDS type jet mill manufactured by Nippon Pneumatic Industry Co., Ltd. can be exemplified.
[0014]
JP-A-62-199705 and JP-A-2-182809 described above use a jet mill that collides particles with each other, such as a PJM jet mill manufactured by Nippon Pneumatic Industry Co., Ltd. It describes that the electrolytic copper powder is pulverized and pulverized. However, in this method, compared to the case of using a collision plate type jet mill, when the same raw material is used, a small particle size cannot be obtained, and the obtained fine copper powder is used for a conductive paste or the like. At times, problems such as inability to obtain good conductivity arise.
[0015]
The fine copper powder having a desired average particle diameter can be obtained by appropriately adjusting the speed of supplying the electrolytic copper powder and the setting of the classifier in the pulverizer. For example, by reducing the supply speed and setting the classifier setting to the fine powder side, a fine copper powder can be obtained. Moreover, a fine copper powder can also be obtained by using an electrolytic copper powder having a low bulk density as a raw material. In order to obtain a fine copper powder having an average particle diameter of 3 to 5 μm, it is desirable to slow the supply rate. Moreover, what is necessary is just to increase a supply rate, in order to obtain the fine powder exceeding average particle diameter 5 micrometers.
[0016]
The fine copper powder thus obtained is granular or a mixture of grains and branches, and the average particle diameter is preferably 3 to 5 μm.
[0017]
The fine copper powder obtained by the production method of the present invention is used alone or in combination with other copper powders for conductive pastes and conductive adhesives for through-hole substrates and electronic component electrodes. In particular, it is suitably used as a conductive paste for through-hole substrates that accompanies fine pitches in conductive circuits.
[0018]
【Example】
Hereinafter, the present invention will be specifically described based on examples and the like.
[0019]
[Example 1]
After adding 1 part by weight of oil (oleic acid) to 100 parts by weight of dendritic electrolytic copper powder having an average particle size of 28.2 μm and a bulk density of 0.63 g / cm 3 , mixing for 2 hours, a collision plate type jet mill (Nippon Pneumatic Industrial Co., Ltd. IDS jet mill, IDS-5) was pulverized and pulverized under the conditions of a pulverization pressure of 6 kg / cm 3 and a supply rate of 3.4 kg / hr to obtain a fine copper powder. . The obtained fine copper powder was almost granular, the average particle size was 3.37 μm, and the recovery rate was 89%. Scanning electron micrographs of the dendritic electrolytic copper powder used as a raw material and the obtained fine copper powder are shown in FIGS. 1 and 2, respectively.
[0020]
After adding 85 parts by weight of the fine copper powder thus obtained, 16 parts by weight of a resol type phenolic resin, 6 parts by weight of a solvent (butyl cellosolve) and making a paste with a three roll mill, screen printing on a glass epoxy substrate, Thermal curing was performed at 150 ° C. for 30 minutes in an air oven. The specific resistance of this conductive paste was 1.2 × 10 −4 Ω · cm.
[0021]
[Comparative Example 1]
1 part by weight of oil (oleic acid) is added to 100 parts by weight of dendritic electrolytic copper powder having an average particle size of 14.4 μm and a bulk density of 1.34 g / cm 3 , and mixed for 2 hours. (Nippon Pneumatic Industry Co., Ltd. IDS jet mill, IDS-5) was pulverized and pulverized under the conditions of a pulverization pressure of 6 kg / cm 3 and a supply rate of 1.2 kg / hr to obtain copper powder. The obtained copper powder was almost granular, but the average particle size was 11.2 μm and a fine copper powder was not obtained. The recovery rate was as low as 78%.
[0022]
[Comparative Example 2]
Fine copper powder in the same manner as in Example 1 except that instead of the collision plate type jet mill, a jet mill (PJM type jet mill manufactured by Nippon Pneumatic Industry Co., Ltd.) that collides particles with each other was used. Got. This fine copper powder had an average particle size of 5.8 μm and a recovery rate of 60%. The fine copper powder thus obtained was used to form a paste in the same manner as in Example 1, and then screen-printed on a glass epoxy substrate and thermally cured in an air oven. The specific resistance of this conductive paste was 3.0 × 10 −4 Ω · cm.
[0023]
[Example 2]
1 part by weight of fat (oleic acid) is added to 100 parts by weight of dendritic electrolytic copper powder having an average particle size of 30.3 μm and a bulk density of 0.74 g / cm 3 , and mixed for 2 hours. (Nippon Pneumatic Kogyo Co., Ltd. IDS jet mill, IDS-5) was pulverized and pulverized under conditions of a pulverization pressure of 6 kg / cm 3 and a supply speed of 6.7 kg / hr to obtain a fine copper powder. . The obtained fine copper powder was a mixture of particles and branches, the average particle size was 4.43 μm, and the recovery rate was 97%.
[0024]
After adding 86 parts by weight of the fine copper powder thus obtained, 14 parts by weight of a resol-type phenol resin, and 6 parts by weight of a solvent (butyl cellosolve), a paste was formed in the same manner as in Example 1 and then screen-printed on a glass epoxy substrate. And heat-cured in an air oven. The specific resistance of this conductive paste was 1.0 × 10 −4 Ω · cm.
[0025]
【The invention's effect】
As described above, by the production method of the present invention, a fine copper powder exhibiting suitable characteristics, particularly good conductivity, when used in a conductive paste, a conductive adhesive or the like can be obtained inexpensively and easily. It is done.
[Brief description of the drawings]
1 is a scanning electron micrograph of dendritic electrolytic copper powder in Example 1. FIG.
FIG. 2 is a scanning electron micrograph of the fine copper powder in Example 1.

Claims (1)

平均粒径20〜35μm、嵩密度0.5〜0.8g/cm3の樹枝状電解銅粉に油脂を添加、混合し、該電解銅粉表面に油脂を被覆した後、衝突板方式ジェットミルによって粉砕、微粉化することを特徴とする微小銅粉の製造方法。Oil and fat are added to and mixed with dendritic electrolytic copper powder having an average particle size of 20 to 35 μm and bulk density of 0.5 to 0.8 g / cm 3 , and the surface of the electrolytic copper powder is coated with oil and fat. A method for producing a fine copper powder, characterized in that the fine copper powder is pulverized and pulverized.
JP24533498A 1998-08-31 1998-08-31 Method for producing fine copper powder Expired - Fee Related JP4230017B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP24533498A JP4230017B2 (en) 1998-08-31 1998-08-31 Method for producing fine copper powder
PCT/JP1999/004683 WO2004101201A1 (en) 1998-08-31 1999-08-30 Fine copper powder and method for producing the same
US09/530,320 US6395332B1 (en) 1998-08-31 1999-08-30 Fine copper powder and process for producing the same
US10/029,912 US6673134B2 (en) 1998-08-31 2001-12-31 Fine copper powder and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24533498A JP4230017B2 (en) 1998-08-31 1998-08-31 Method for producing fine copper powder

Publications (2)

Publication Number Publication Date
JP2000080408A JP2000080408A (en) 2000-03-21
JP4230017B2 true JP4230017B2 (en) 2009-02-25

Family

ID=17132129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24533498A Expired - Fee Related JP4230017B2 (en) 1998-08-31 1998-08-31 Method for producing fine copper powder

Country Status (1)

Country Link
JP (1) JP4230017B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5181434B2 (en) * 2006-07-10 2013-04-10 住友金属鉱山株式会社 Fine copper powder and method for producing the same
JP2009215652A (en) * 2009-03-19 2009-09-24 Nippon Mining & Metals Co Ltd Electrolytic copper powder and its production method
JP5320442B2 (en) * 2011-07-13 2013-10-23 三井金属鉱業株式会社 Dendritic copper powder
JP6001796B2 (en) * 2014-06-16 2016-10-05 三井金属鉱業株式会社 Copper powder, method for producing the same, and conductive composition containing the same
US20170145225A1 (en) 2014-07-07 2017-05-25 Sumitomo Metal Mining Co., Ltd. Copper powder and electrically conductive paste, electrically conductive coating, electrically conductive sheet, and antistatic coating using same
RU2736108C1 (en) * 2019-12-30 2020-11-11 Акционерное общество "Уралэлектромедь" Method of producing copper ultrafine electrolytic powder

Also Published As

Publication number Publication date
JP2000080408A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
JP5181434B2 (en) Fine copper powder and method for producing the same
WO2004101201A1 (en) Fine copper powder and method for producing the same
JP5937730B2 (en) Method for producing copper powder
WO2007034833A1 (en) Pasty silver particle composition, process for producing solid silver, solid silver, joining method, and process for producing printed wiring board
WO2012147945A1 (en) Tabular silver particle, manufacturing method therefor, paste using same, and printed circuit using paste
JP2010013726A (en) Copper powder for electroconductive paste, and electroconductive paste
JP5092630B2 (en) Fine silver powder, method for producing the same, and dispersion liquid for conductive paste using the fine silver powder
JP4178374B2 (en) Silver coated flake copper powder, method for producing the silver coated flake copper powder, and conductive paste using the silver coated flake copper powder
JP4230017B2 (en) Method for producing fine copper powder
JP4922793B2 (en) Mixed conductive powder and method for producing the same, conductive paste and method for producing the same
JP4136106B2 (en) Flat micro copper powder and method for producing the same
EP3248713B1 (en) Electroconductive microparticles
EP3246115B1 (en) Silver powder
JP7208842B2 (en) Easily crushable copper powder and its production method
JP2002015622A (en) Copper powder for electro-conductive paste and its manufacturing method
WO2020059291A1 (en) Easily-crushable copper powder and manufacturing method therefor
JPH11310806A (en) Production of copper-silver composite powder for electrically conductive paste
JP4074369B2 (en) Method for producing flake copper alloy powder for conductive paste
JP4163278B2 (en) Method for producing flake copper powder for conductive paint
JP5953003B2 (en) Conductive paste for ceramic multilayer circuit boards
JP2015043429A (en) Conductive paste for ceramic multilayer circuit board
JPH07233403A (en) Copper powder for through hole forming electric conductive composition
JPS6017392B2 (en) Conductive paint using silver-copper composite powder
JPH04183801A (en) Manufacture of fine spherical copper powder
JPS60226570A (en) Copper powder for electrically-conductive coating compound and its preparation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees