JP6001796B2 - Copper powder, method for producing the same, and conductive composition containing the same - Google Patents

Copper powder, method for producing the same, and conductive composition containing the same Download PDF

Info

Publication number
JP6001796B2
JP6001796B2 JP2015547184A JP2015547184A JP6001796B2 JP 6001796 B2 JP6001796 B2 JP 6001796B2 JP 2015547184 A JP2015547184 A JP 2015547184A JP 2015547184 A JP2015547184 A JP 2015547184A JP 6001796 B2 JP6001796 B2 JP 6001796B2
Authority
JP
Japan
Prior art keywords
copper
copper powder
particles
less
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015547184A
Other languages
Japanese (ja)
Other versions
JPWO2015194347A1 (en
Inventor
坂上 貴彦
貴彦 坂上
陽一 小神
陽一 小神
圭 穴井
圭 穴井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Application granted granted Critical
Publication of JP6001796B2 publication Critical patent/JP6001796B2/en
Publication of JPWO2015194347A1 publication Critical patent/JPWO2015194347A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Chemically Coating (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は銅粉に関する。また本発明は銅粉の製造方法、及びそれを含む導電性組成物に関する。   The present invention relates to copper powder. Moreover, this invention relates to the manufacturing method of copper powder, and the electroconductive composition containing it.

銅粉は、電子デバイスの外部電極とプリント配線基板のプリント配線との間の電気的導通を図るために用いられる。またプリント配線基板の配線層や、多層プリント配線基板に設けられた貫通スルーホール内や非貫通孔であるビア内等を充填する層間接続材用の導電ペーストにも用いられる。その他、EMIシールドや電子デバイス接続に用いられる導電シート、コンデンサーやアルミナ基板といったセラミック焼成電子部品等の配線ペースト等のように、銅粉は様々な用途に用いられ、具体的な用途に応じて例えば適切な形状の銅粉が採用されている。   Copper powder is used to achieve electrical continuity between the external electrode of the electronic device and the printed wiring of the printed wiring board. It is also used for a conductive paste for an interlayer connection material that fills a wiring layer of a printed wiring board, a through-through hole provided in a multilayer printed wiring board, a via that is a non-through hole, or the like. In addition, copper powder is used in various applications such as conductive paste used for EMI shielding and electronic device connection, wiring paste for ceramic fired electronic parts such as capacitors and alumina substrates, etc. Appropriately shaped copper powder is used.

上述の銅粉は通常、バインダ樹脂や有機溶媒と混合された導電性組成物の形態、例えば導電性ペーストの形態で用いられることが多い。導電性組成物から形成される導体の導電性は、該導電性組成物に含まれる銅粉の割合に依存するところ、同じ割合の銅粉を含有させた場合であっても、銅粒子の形状によって導体の導電性が影響を受ける。例えば球状の銅粒子からなる銅粉の場合、導体の導電性は銅粉の含有割合に大きく影響され、銅粉の含有割合を大きくしないと導電性を高めることが容易でない。これとは対照的に、樹枝状の銅粒子からなる銅粉は、球状の粒子に比べると、導体の導電性に対する銅粉の含有割合の影響が小さい。つまり導体の導電性は、銅粉の含有割合に依存しにくい。この理由は、樹枝状の銅粒子は、球状の銅粒子に比べて粒子どうしの接触点が多くなるからである。しかし、樹枝状の銅粉はタップ密度が低いことに起因して、導電性組成物中に高含有割合で含有させることが容易でない。また樹枝状の銅粉は凝集が強く、分散性の良好な導電性組成物を調製することが容易でなく、また該導電性組成物から形成される導体膜を薄膜化することも容易でない。更に小径のビア内を充填しづらく、微細配線への対応も困難である。   The copper powder is usually used in the form of a conductive composition mixed with a binder resin or an organic solvent, for example, in the form of a conductive paste. The conductivity of the conductor formed from the conductive composition depends on the proportion of the copper powder contained in the conductive composition. Even when the same proportion of copper powder is contained, the shape of the copper particles Affects the conductivity of the conductor. For example, in the case of copper powder composed of spherical copper particles, the conductivity of the conductor is greatly influenced by the content ratio of the copper powder, and it is not easy to increase the conductivity unless the content ratio of the copper powder is increased. In contrast, copper powder made of dendritic copper particles is less affected by the content of copper powder on the conductivity of the conductor than spherical particles. In other words, the conductivity of the conductor is unlikely to depend on the content ratio of the copper powder. This is because dendritic copper particles have more contact points between particles than spherical copper particles. However, dendritic copper powder is not easy to be contained in a high content ratio in the conductive composition due to the low tap density. Further, dendritic copper powder is strongly aggregated and it is not easy to prepare a conductive composition with good dispersibility, and it is not easy to reduce the thickness of a conductor film formed from the conductive composition. Furthermore, it is difficult to fill the inside of a small diameter via, and it is difficult to cope with fine wiring.

球状や樹枝状の銅粉のほかに、棒状の銅粉も知られている。例えば特許文献1には、樹枝状銅粉を解砕して得られた棒状の銅粉が記載されている。この銅粉は、樹枝状銅粉の解砕によって生じた解砕片が凝集して、あたかも棒状の形状を呈するものである。   In addition to spherical and dendritic copper powder, rod-shaped copper powder is also known. For example, Patent Document 1 describes a rod-shaped copper powder obtained by crushing dendritic copper powder. In this copper powder, crushed pieces generated by crushing dendritic copper powder are aggregated to form a rod-like shape.

US5409520AUS5409520A

特許文献1に記載の棒状の銅粒子は、上述のとおり解砕片が凝集したものなのでタップ密度が高く、一次粒子が粗大であるため、球状の銅粒子と同様に、銅粉の含有割合を大きくしないと導体の導電性を高めることが容易でない。また、平均粒径が10μm前後という比較的大粒径のものなので、導体膜を薄膜化することが容易でなく、小径のビア内を充填することも容易でないほか、微細配線のパターン形成も容易でない。   Since the bar-shaped copper particles described in Patent Document 1 are agglomerated pieces as described above, since the tap density is high and the primary particles are coarse, the content ratio of the copper powder is increased similarly to the spherical copper particles. Otherwise, it is not easy to increase the conductivity of the conductor. In addition, since the average particle size is a relatively large particle size of around 10 μm, it is not easy to reduce the thickness of the conductor film, it is not easy to fill the inside of a small diameter via, and it is easy to form a pattern of fine wiring Not.

したがって本発明の課題は銅粉の改良にあり、具体的には導体の導電性が銅粉の含有割合に依存しにくく、また導体膜の薄膜化が容易であり、小径のビア内の充填性が良好であり、微細配線パターン形成も容易な銅粉を提供することにある。   Therefore, the object of the present invention is to improve the copper powder. Specifically, the conductivity of the conductor is less dependent on the content of the copper powder, the conductor film can be easily thinned, and the filling property in a small-diameter via is easy. It is desirable to provide a copper powder that is good and can easily form a fine wiring pattern.

本発明は、銅粒子、又は銅芯材の表面に銅以外の金属が被覆されてなる粒子からなり、一次粒子の投影像に外接される最小長方形における長辺の長さ/短辺の長さの値が3以上20以下である棒状の形状を有する粒子を個数基準で35%以上含む銅粉であって、
一次粒子を画像解析した投影面積円相当径が0.1μm以上4.0μm以下であり、
〔最大径×最大径×π÷(4×投影面積)〕で定義される一次粒子の画像解析による形状係数の値が1.8以上3.5以下である銅粉を提供するものである。
The present invention, copper particles, or Ri Do on the surface of the copper core of particles metal other than copper is coated, the length of the length / short side of the long side at the minimum rectangle circumscribed to the projected image of the primary particles A copper powder containing 35% or more of particles having a rod-like shape with a value of 3 or more and 20 or less on a number basis ,
The projected area equivalent circle diameter obtained by image analysis of the primary particles is 0.1 μm or more and 4.0 μm or less,
The present invention provides a copper powder having a shape factor value of 1.8 or more and 3.5 or less by image analysis of primary particles defined by [maximum diameter × maximum diameter × π ÷ (4 × projected area)].

また本発明は、銅粒子、又は銅芯材の表面に銅以外の金属が被覆されてなる粒子からなる銅粉であって、
20mmΦの面積に0.63kNの実荷重を加えたときの圧粉密度をρ0.63とし、そのときの圧粉比抵抗をR0.63としたとき、ρ0.63の値が3.0g/cm以上5.0g/cm以下であり、R0.63の値が9.0×10−1Ωcm以下である銅粉を提供するものである。
Moreover, the present invention is a copper powder comprising copper particles or particles formed by coating a metal other than copper on the surface of a copper core material,
When the powder density when an actual load of 0.63 kN is applied to an area of 20 mmΦ is ρ 0.63 and the powder specific resistance at that time is R 0.63 , the value of ρ 0.63 is 3. A copper powder having a value of 0 g / cm 3 or more and 5.0 g / cm 3 or less and an R 0.63 value of 9.0 × 10 −1 Ωcm or less is provided.

更に本発明は、銅粒子、又は銅芯材の表面に銅以外の金属が被覆されてなる粒子からなる銅粉であって、
100質量部の前記銅粉と10質量部の樹脂とから形成された導電膜の比抵抗をR10とし、100質量部の前記銅粉と15質量部の樹脂とから形成された導電膜の比抵抗をR15としたとき、R10の値が1×10−4Ωcm以下であり、R15/R10の値が10以下である銅粉を提供するものである。
Furthermore, the present invention is a copper powder comprising copper particles or particles formed by coating a metal other than copper on the surface of a copper core material,
The specific resistance of the conductive film formed from 100 parts by mass of the copper powder and 10 parts by mass of resin is defined as R 10, and the ratio of the conductive film formed from 100 parts by mass of the copper powder and 15 parts by mass of resin. when the resistance was R 15, the value of R 10 is not more than 1 × 10 -4 Ωcm, in which the value of R 15 / R 10 to provide a copper powder is 10 or less.

図1は、本発明の銅粉の原料となる銅粉を示す模式図、及び原料の銅粉から本発明の銅粉が製造される過程を示す模式図である。FIG. 1 is a schematic diagram showing a copper powder as a raw material for the copper powder of the present invention, and a schematic diagram showing a process for producing the copper powder of the present invention from the raw material copper powder. 図2は、実施例1で用いた原料の銅粉の走査型電子顕微鏡像である。2 is a scanning electron microscope image of the raw material copper powder used in Example 1. FIG. 図3は、実施例4で得られた銅粉の走査型電子顕微鏡像である。FIG. 3 is a scanning electron microscope image of the copper powder obtained in Example 4. 図4は、図3に示す顕微鏡像に基づいて作成した粒子の塗りつぶし画像である。FIG. 4 is a filled image of particles created based on the microscopic image shown in FIG.

以下本発明を、その好ましい実施形態に基づき説明する。本発明の銅粉は、銅粒子からなるか、又は銅芯材の表面に銅以外の金属が被覆されてなる粒子からなるものである。本発明の銅粉はこれらの粒子からなり、場合によっては微量の不可避不純物を含むものである。また、必要に応じ、銅粉以外の粉体等を含有させてもよい。以下、特に断らない限り、便宜上これらの粒子を総称して単に「銅粒子」と言う。   Hereinafter, the present invention will be described based on preferred embodiments thereof. The copper powder of the present invention consists of copper particles or particles in which the surface of the copper core material is coated with a metal other than copper. The copper powder of the present invention comprises these particles, and in some cases contains a trace amount of inevitable impurities. Moreover, you may contain powder other than copper powder etc. as needed. Hereinafter, unless otherwise specified, these particles are collectively referred to simply as “copper particles” for convenience.

本発明の銅粉を構成する銅粒子は、その一次粒子を画像解析した投影面積円相当径が0.1μm以上4.0μm以下であることが好ましく、0.3μm以上3.5μm以下であることが更に好ましく、0.5μm以上3.0μm以下であることが一層好ましい。このように、本発明における銅粒子は微粒の範疇に属するものである。一次粒子の粒径をこの範囲内に設定することで、本発明の銅粉を用いて形成された導電膜はその厚みを薄くすることができる。これとともに、小径のビア、例えば開口部の最大直径が10μm以上50μm以下といった小径のビア中に本発明の銅粉を首尾よく充填させることができる。更に、高い導電性を得ることが可能である。これとは対照的に、例えば樹枝状の形状を有する銅粒子からなる銅粉は、銅粒子の粒径が大きいことに起因して小径のビアに充填することが非常に困難である。投影面積円相当径とは、Heywood径とも呼ばれるものであり、粒子の投影面積と同じ面積を持つ円の直径のことである。投影面積円相当径は20個以上の粒子を対象として測定し、その相加平均値をもって測定値とする。   The copper particles constituting the copper powder of the present invention preferably have a projected area equivalent circle diameter of 0.1 μm or more and 4.0 μm or less, and 0.3 μm or more and 3.5 μm or less obtained by image analysis of the primary particles. Is more preferably 0.5 μm or more and 3.0 μm or less. Thus, the copper particles in the present invention belong to the category of fine particles. By setting the particle size of the primary particles within this range, the conductive film formed using the copper powder of the present invention can be thinned. At the same time, the copper powder of the present invention can be successfully filled into small-diameter vias, for example, small-diameter vias having a maximum diameter of 10 μm or more and 50 μm or less. Furthermore, high conductivity can be obtained. In contrast, for example, copper powder made of copper particles having a dendritic shape is very difficult to fill into a small-diameter via due to the large particle size of the copper particles. The projected area equivalent circle diameter is also called the Heywood diameter and is the diameter of a circle having the same area as the projected area of the particles. The projected area equivalent circle diameter is measured for 20 or more particles, and the arithmetic average value is taken as the measured value.

本発明の銅粉を構成する銅粒子は、〔最大径×最大径×π÷(4×投影面積)〕で定義される一次粒子の画像解析による形状係数の値が1.8以上3.5以下であることが好ましく、1.9以上3.3以下であることが更に好ましく、2.0以上3.0以下であることが一層好ましい。形状係数は1が最小値である。形状係数が1である場合、その粒子の投影形状は円形であり、この値が1から大きくなるに連れて粒子は次第に細長い形状になる。したがって、本発明の銅粉を構成する銅粒子における形状係数が上述の範囲内であることは、該銅粒子が細長い棒状の形状であることを意味している。前記形状係数の値が上述の範囲であることで、導電性組成物が、それに含まれる銅粉の割合に依存を受けにくい高導電性を保持し得るものとなるとともに、導電性組成物の調製時に銅粒子に破断が生じづらい剛直な棒状粒子とすることができる。形状係数は、任意の20個以上の個々の粒子について最大径及び投影面積を測定し、それらに基づき個々の粒子の形状係数を求め、その相加平均値をもって測定値とする。なお、最大径とは粒子の投影最大径のことであり、具体的には一次粒子の投影像に外接される最小長方形における長辺の長さを言う。前記式に基づき形状係数を算出するときは、最大径の単位と、投影面積の単位とを一致させる必要があることは言うまでもない(例えば最大径の単位がμmである場合には、投影面積の単位はμmである。)。The copper particles constituting the copper powder of the present invention have a shape factor value of 1.8 or more and 3.5 by image analysis of primary particles defined by [maximum diameter × maximum diameter × π ÷ (4 × projected area)]. Preferably, it is 1.9 or more and 3.3 or less, more preferably 2.0 or more and 3.0 or less. As for the shape factor, 1 is the minimum value. When the shape factor is 1, the projected shape of the particle is a circle, and as this value increases from 1, the particle becomes gradually elongated. Therefore, the fact that the shape factor of the copper particles constituting the copper powder of the present invention is within the above range means that the copper particles have an elongated rod shape. When the value of the shape factor is in the above range, the conductive composition can maintain high conductivity that is not easily dependent on the ratio of the copper powder contained therein, and the conductive composition is prepared. Sometimes it is possible to obtain rigid rod-like particles in which copper particles are less likely to break. For the shape factor, the maximum diameter and projected area of any 20 or more individual particles are measured, the shape factor of each particle is obtained based on them, and the arithmetic average value is used as the measured value. The maximum diameter is the maximum projected diameter of the particle, and specifically refers to the length of the long side of the minimum rectangle circumscribed by the projected image of the primary particle. Needless to say, when calculating the shape factor based on the above formula, it is necessary to match the unit of the maximum diameter with the unit of the projected area (for example, when the unit of the maximum diameter is μm, The unit is μm 2 ).

本発明においては、粒子の形状に関する二以上のパラメータの組み合わせによって、本発明の銅粉を構成する銅粒子の形状を一層正確に表現することが望ましい。この観点から、本発明の銅粉を構成する銅粒子は、形状係数の値が上述の範囲であることに加えて、投影面積円相当径/周長円相当径の値が0.40以上0.65以下であることが好ましく、0.42以上0.63以下であることが更に好ましく、0.45以上0.62以下であることが一層好ましい。投影面積円相当径/周長円相当径の値も、上述の形状係数と同様に、粒子の形状の指標となるものであり、1が最大値である。この値が1である場合、その粒子の投影形状は円形であり、この値が1から小さくなるに連れて粒子は次第に細長い形状になる。したがって、本発明の銅粉を構成する銅粒子における投影面積円相当径/周長円相当径の値が上述の範囲内であることは、該銅粒子が細長い棒状の形状であることを意味している。前記「投影面積円相当径/周長円相当径」の値が所定の範囲であることで、導電性組成物中の銅粉含有割合に依存を受けにくい高い導電性を保持できるとともに、ペースト加工時に粒子の破断の少ない剛直な棒状粒子とすることができる。投影面積円相当径/周長円相当径の値は、任意の20個以上の個々の粒子について投影面積円相当径/周長円相当径の値を測定し、その相加平均値をもって測定値とする。周長円相当径とは、粒子の周長と同じ周長を持つ円の直径のことである。   In the present invention, it is desirable to more accurately represent the shape of the copper particles constituting the copper powder of the present invention by a combination of two or more parameters relating to the shape of the particles. From this viewpoint, the copper particles constituting the copper powder of the present invention have a shape factor value in the above-described range, and a projected area equivalent circle diameter / circular ellipse equivalent diameter value of 0.40 or more and 0. Is preferably .65 or less, more preferably 0.42 or more and 0.63 or less, and still more preferably 0.45 or more and 0.62 or less. Similarly to the shape factor described above, the value of the projected area equivalent circle diameter / circumferential ellipse equivalent diameter is also an index of the shape of the particle, and 1 is the maximum value. When this value is 1, the projected shape of the particle is circular, and as the value decreases from 1, the particle becomes increasingly elongated. Therefore, the value of the projected area equivalent circle diameter / circumferential ellipse equivalent diameter in the copper particles constituting the copper powder of the present invention within the above-mentioned range means that the copper particles have an elongated rod-like shape. ing. When the value of “projected area equivalent circle diameter / circumferential ellipse equivalent diameter” is within a predetermined range, high conductivity that is not easily dependent on the copper powder content in the conductive composition can be maintained, and paste processing can be performed. Sometimes it can be a rigid rod-like particle with few breaks. The projected area equivalent circle diameter / circumferential ellipse equivalent diameter value is a value obtained by measuring the projected area equivalent circle diameter / circumferential circle equivalent diameter value for any 20 or more individual particles, and calculating the arithmetic average value thereof. And The circumference equivalent circle diameter is the diameter of a circle having the same circumference as the circumference of the particle.

これまでに説明してきたパラメータの算出の基礎となる粒子の投影面積、投影周長、及び投影最大径は、本発明の銅粉の電子顕微鏡像に基づき、個々の粒子を作業者の目視によって塗りつぶした塗りつぶし画像を作成し、この塗りつぶし画像を用いた二値化ソフトウェア解析で決定される。観察視野内で複数の粒子が重なり合っている場合には、その重なり合っている粒子を作業者の目視によって個々の粒子に仮想的に分離して、分離された粒子ごとに輪郭を取り、粒子占有エリアを黒色に塗りつぶした後二値化処理を行った画像を作成するものとする。ソフトウェア解析には、例えば株式会社マウンテックから入手可能なコンピュータソフトウェアである画像解析式粒度分布ソフトウェアMac−VIEWを用いて自動解析することで算出できる。   The projected area, projected circumference, and projected maximum diameter of the particles, which are the basis for calculating the parameters described so far, are based on the electron microscopic image of the copper powder of the present invention, and the individual particles are filled by visual inspection of the operator. This is determined by binarization software analysis using the filled image. When multiple particles overlap in the observation field of view, the overlapping particles are virtually separated into individual particles by visual inspection of the operator, and an outline is taken for each separated particle. An image that has been binarized after being painted black is created. For the software analysis, for example, calculation can be performed by automatic analysis using image analysis type particle size distribution software Mac-VIEW which is computer software available from Mountec Co., Ltd.

先に述べたとおり、本発明の銅粉を構成する銅粒子はその形状が略棒状である。本発明の銅粉は、かかる略棒状の形状を有する銅粒子を個数基準で35%以上含んでいることが好ましく、60%以上含んでいることが銅粉含有率に対する導電性能の安定化の観点で好ましい。この割合は、本発明の銅粉を電子顕微鏡観察し、任意の20個以上の粒子を対象として、投影面積円相当径/周長円相当径の値が上述の範囲を満たすものの個数を計測し、総粒子数に占める割合を算出することで求める。ここで、「略棒状」とは、前記の最大径を求めるときに用いる前記の最小長方形における長辺の長さ/短辺の長さの値が、好ましくは3以上20以下、更に好ましくは3以上15以下である形状のことを言う。   As described above, the copper particles constituting the copper powder of the present invention have a substantially rod shape. The copper powder of the present invention preferably contains 35% or more of copper particles having such a substantially rod-like shape on a number basis, and the inclusion of 60% or more is a viewpoint of stabilizing the conductive performance with respect to the copper powder content. Is preferable. This ratio is obtained by observing the copper powder of the present invention with an electron microscope, and measuring the number of particles having a projected area equivalent circle diameter / circular ellipse equivalent diameter satisfying the above range for any 20 or more particles. It is obtained by calculating the proportion of the total number of particles. Here, “substantially rod-like” means that the value of the length of the long side / the length of the short side in the minimum rectangle used when obtaining the maximum diameter is preferably 3 or more and 20 or less, more preferably 3 The shape which is 15 or less is said.

略棒状の形状を有する銅粒子からなる本発明の銅粉は、該銅粒子の棒状形状に起因して嵩高なものである。これとは対照的に、球状の形状をした銅粒子からなる銅粉は、密に充填されることから、同質量で比較した場合、本発明の銅粉よりも嵩が低く、導電性能がばらつきやすいものとなる。また、樹枝状の形状をした銅粒子からなる銅粉は、同質量で比較した場合、本発明の銅粉よりも嵩が高くなりすぎてしまい、また粒子間の凝集が強くなってしまう。具体的には、本発明の銅粉は、20mmΦの面積に0.63kNの実荷重を加えたときの圧粉密度をρ0.63としたとき、ρ0.63の値が好ましくは3.0g/cm以上5.0g/cm以下である。この範囲であると、低い濃度でも導電ペーストにしたときに十分な導電性を発現させることができ、かつ、樹脂への分散性も高いものとすることができる。以上の観点より、ρ0.63の値は、更に好ましくは3.1g/cm以上4.7g/cm以下であり、一層好ましくは更に好ましくは3.3g/cm以上4.3g/cm以下である。The copper powder of the present invention comprising copper particles having a substantially rod-like shape is bulky due to the rod-like shape of the copper particles. In contrast, since copper powder made of copper particles having a spherical shape is closely packed, when compared with the same mass, the bulk is lower than the copper powder of the present invention, and the conductive performance varies. It will be easy. Moreover, when compared with the same mass, the copper powder composed of the dendritic copper particles becomes too bulky than the copper powder of the present invention, and the aggregation between the particles becomes strong. Specifically, the copper powder of the present invention preferably has a value of ρ 0.63 when the powder density when an actual load of 0.63 kN is applied to an area of 20 mmΦ is ρ 0.63 . It is 0 g / cm 3 or more and 5.0 g / cm 3 or less. Within this range, sufficient conductivity can be achieved when the conductive paste is made even at a low concentration, and the dispersibility in the resin can be high. From the above viewpoint, the value of ρ 0.63 is more preferably 3.1 g / cm 3 or more and 4.7 g / cm 3 or less, and still more preferably 3.3 g / cm 3 or more and 4.3 g / cm 3. cm 3 or less.

また、本発明の銅粉は、銅粒子の棒状形状に起因して、低圧縮状態であっても粉体抵抗が低いものである。これとは対照的に、球状の形状をした銅粒子からなる銅粉は、粒子どうしの接触点の数が少ないことに起因して、低圧縮状態では粉体抵抗を十分に低くすることは容易でなく、高圧縮状態になって初めて低抵抗を示す。具体的には、本発明の銅粉は、20mmΦの面積に0.63kNの実荷重を加えたときの圧粉比抵抗をR0.63としたとき、R0.63の値が好ましくは9.0×10−1Ωcm以下であり、更に好ましくは5.0×10−1Ωcm以下であり、一層好ましくは5.0×10−1Ωcm以下である。Moreover, the copper powder of the present invention has a low powder resistance even in a low compression state due to the rod-like shape of the copper particles. In contrast, copper powder composed of spherical copper particles makes it easy to reduce the powder resistance sufficiently in the low compression state due to the small number of contact points between the particles. Instead, it shows low resistance only when it is in a highly compressed state. Specifically, the copper powder of the present invention preferably has a value of R 0.63 of R 0.63 when the powder specific resistance when an actual load of 0.63 kN is applied to an area of 20 mmΦ is R 0.63. .0 × and the 10 -1 [Omega] cm or less, more preferably 5.0 × 10 -1 Ωcm or less, or less and more preferably 5.0 × 10 -1 Ωcm.

なお、上述の圧粉密度及び圧粉比抵抗の測定条件を、20mmΦ(直径20mmの円形)の面積に0.63kNの実荷重を加えたときとした理由は、例えば本発明の銅粉を導電体組成物として用いた場合に、該組成物の硬化の初期段階のような比較的低い圧縮応力程度でも、銅粒子どうしは互いに接触し導電パスのネットワークを形成する必要があり、その圧縮応力の指標とされる値が本発明の測定条件に相当すると考えられることによるものである。   Note that the measurement conditions for the above-mentioned powder density and powder specific resistance were set when an actual load of 0.63 kN was applied to an area of 20 mmΦ (circular shape with a diameter of 20 mm). When used as a body composition, copper particles must be in contact with each other to form a network of conductive paths even at a relatively low compressive stress level, such as the initial stage of curing of the composition. This is because the value used as the index is considered to correspond to the measurement condition of the present invention.

上述の圧粉密度及び圧粉比抵抗は、次の方法で測定される。圧粉抵抗測定装置の直径20mmのプローブシリンダへ、予め質量を測定した銅粉を5〜7g投入する。油圧ジャッキによって徐々にプローブシリンダに荷重を加えたときの試料厚み及び抵抗率測定器(4探針法)をモニターする。圧粉抵抗値は荷重を加えたときの試料厚み、シリンダ面積、抵抗値により算出される。一方、圧粉密度は、測定質量と試料厚みから算出される。本発明ではシリンダ荷重が0.63kNのときの圧粉密度及び圧粉比抵抗を算出する。具体的な装置名としては、圧粉抵抗測定システム(三菱化学PD−41)と搭載される抵抗測定器(三菱化学MCP−T600)などが挙げられる。   The above-mentioned compact density and compact specific resistance are measured by the following method. 5 to 7 g of copper powder whose mass has been measured in advance is put into a probe cylinder having a diameter of 20 mm of the dust resistance measuring apparatus. The sample thickness and resistivity measuring instrument (4-probe method) when a load is gradually applied to the probe cylinder by a hydraulic jack is monitored. The dust resistance value is calculated from the sample thickness, the cylinder area, and the resistance value when a load is applied. On the other hand, the green density is calculated from the measured mass and the sample thickness. In the present invention, the dust density and the dust resistivity when the cylinder load is 0.63 kN are calculated. Specific examples of the device name include a dust resistance measurement system (Mitsubishi Chemical PD-41) and a resistance measurement device (Mitsubishi Chemical MCP-T600) mounted.

本発明の銅粉をバインダ樹脂と混合して導電性組成物を調製すると、該導電性組成物から形成される導体の抵抗が、該導電性組成物中の該銅粉の含有割合に大きく依存せず、抵抗値を低く保つことが可能である。つまり導体の導電性は、銅粉の含有割合に依存しにくいことが、本発明者らの検討の結果判明した。この理由は、略棒状の形状を有する銅粒子からなる本発明の銅粉は、該銅粒子の形状に異方性があり、低荷重下でも低抵抗を達成できることに起因しているのではないかと、本発明者は推測している。これとは対照的に、球状の形状をした銅粒子からなる銅粉は、粒子形状が等方的であることに起因して、銅粉を高配合しないと粒子間の接触を十分に確保することができず、導体の抵抗を低下させることができない。具体的には、本発明の銅粉においては、銅粉100質量部と10質量部のバインダ樹脂とから形成された導電膜の比抵抗をR10としたとき、R10の値が1×10−4Ωcm以下であることが好ましく、8×10−4Ωcm以下であることが更に好ましく、5×10−5Ωcm以下であることが一層好ましい。また、100質量部と15質量部のバインダ樹脂とから形成された導電膜の比抵抗をR15としたとき、R15/R10の値が10以下であることが好ましく、7以下であることが更に好ましく、5以下であることが一層好ましい。When the conductive composition is prepared by mixing the copper powder of the present invention with a binder resin, the resistance of the conductor formed from the conductive composition depends greatly on the content of the copper powder in the conductive composition. The resistance value can be kept low. That is, as a result of the study by the present inventors, it has been found that the conductivity of the conductor is less dependent on the content ratio of the copper powder. The reason for this is not because the copper powder of the present invention comprising copper particles having a substantially rod-like shape has anisotropy in the shape of the copper particles and can achieve low resistance even under a low load. The present inventor has guessed. In contrast, the copper powder composed of copper particles having a spherical shape ensures sufficient contact between the particles unless the copper powder is highly blended due to the isotropic particle shape. And the resistance of the conductor cannot be reduced. Specifically, in the copper powder of the present invention, when the specific resistance of the formed and a copper powder 100 parts by mass 10 parts by mass of the binder resin conductive film was R 10, the value of R 10 is 1 × 10 It is preferably −4 Ωcm or less, more preferably 8 × 10 −4 Ωcm or less, and even more preferably 5 × 10 −5 Ωcm or less. When the specific resistance of the conductive film formed from 100 parts by mass and 15 parts by mass of the binder resin is R 15 , the value of R 15 / R 10 is preferably 10 or less, and 7 or less. Is more preferable and 5 or less is still more preferable.

本発明の銅粉においては、これを構成する粒子として銅粒子そのものを用いることができるほか、銅芯材の表面に銅以外の金属が被覆されてなる粒子(以下、この粒子のことを「金属被覆銅粒子」とも言う。)を用いることもできる。金属被覆銅粒子に用いられる被覆金属としては、例えば銀、金、白金、スズ、ニッケルなどが挙げられる。これらの被覆金属うち、銅への被膜形成性と導電性が高く、かつ比較的コストが安価な貴金属である銀を用いることが特に好ましい。被覆金属は、銅の芯材の表面全域を隙間なく連続して被覆していてもよく、あるいは銅の芯材の表面が一部露出するように部分的に被覆していてもよい。金属被覆銅粒子に占める被覆金属の割合は、該被覆金属が例えば銀である場合、金属被覆銅粒子の質量に対して1質量%以上30質量%以下とすることが好ましい。   In the copper powder of the present invention, the copper particles themselves can be used as the particles constituting the particles, and the particles obtained by coating the surface of the copper core material with a metal other than copper (hereinafter referred to as “metal”). Also referred to as “coated copper particles”. Examples of the coating metal used for the metal-coated copper particles include silver, gold, platinum, tin, and nickel. Of these coated metals, it is particularly preferable to use silver, which is a noble metal that has high film-forming properties on copper and high conductivity and is relatively inexpensive. The coating metal may continuously cover the entire surface of the copper core without gaps, or may be partially coated so that the surface of the copper core is partially exposed. When the coated metal is, for example, silver, the ratio of the coated metal to the metal-coated copper particles is preferably 1% by mass or more and 30% by mass or less with respect to the mass of the metal-coated copper particles.

以上のとおり、本発明の銅粉を原料として形成された導体の導電性は、銅粉の含有割合に依存しにくいものである。このことは、本発明の銅粉を含む導電性組成物を塗布することによって導体を製造するときに、塗布むら等が生じた場合であっても導体の抵抗にばらつきが生じにくいという点で有利である。また、プリント配線基板に形成されたビアに導電性組成物を充填する場合、一般にビア中には銅粉よりもバインダ樹脂の方が優先的に充填されやすく、そのことに起因してビア中に充填された導電性組成物の組成が変化しやすいが、本発明の銅粉を用いることで、そのように組成が変化した場合であっても、導電性組成物の抵抗の変化が小さく抑えられる。   As described above, the conductivity of a conductor formed using the copper powder of the present invention as a raw material is less dependent on the content ratio of the copper powder. This is advantageous in that when the conductor is produced by applying the conductive composition containing the copper powder of the present invention, the resistance of the conductor is less likely to vary even when uneven coating occurs. It is. In addition, when a conductive composition is filled in a via formed in a printed wiring board, generally, the binder resin is more preferentially filled in the via than the copper powder, and accordingly, the via is contained in the via. Although the composition of the filled conductive composition is likely to change, the use of the copper powder of the present invention can suppress the change in resistance of the conductive composition to a small level even when the composition is changed. .

上述の比抵抗R10及びR15の測定対象となる導電膜は、次の手順で調製される。バインダ樹脂としては、液状フェノール系熱硬化性樹脂(群栄化学工業製 PL−2243)を用いる。このバインダ樹脂と本発明の銅粉とを、上述の割合で混合し、溶剤としてNMPを5質量部、レベリング剤(信越シリコーン社製KF−352A)を0.1質量部追加する。これらの混合物を、攪拌脱泡機(シンキー社製ARE−500等)を用い、回転数1,000rpmに設定して1分仮混合した後、三本ロールミル(EXAKT社製 M−80E)で投入ロールの回転数を100rpm、ロール間ギャップを10μmの条件下で更に5回混練して導電性組成物を得る。この導電性組成物を、ガラスエポキシ樹脂板アプリケータを用いてガラス板の上に塗工して、30μmの厚みとなるように塗布体をまず形成する。このようにして得られた塗布体を焼成して導電膜を得る。焼成条件は、窒素雰囲気下で、160℃で1時間とする。The conductive film to be measured for the specific resistances R 10 and R 15 described above is prepared by the following procedure. As the binder resin, a liquid phenol thermosetting resin (PL-2243 manufactured by Gunei Chemical Industry Co., Ltd.) is used. This binder resin and the copper powder of the present invention are mixed at the above-mentioned ratio, and 5 parts by mass of NMP and 0.1 part by mass of a leveling agent (KF-352A manufactured by Shin-Etsu Silicone Co., Ltd.) are added as a solvent. Using a stirring deaerator (ARE-500, manufactured by Shinky Corporation), the mixture was temporarily mixed for 1 minute at a rotation speed of 1,000 rpm, and then charged in a three-roll mill (EXAKT M-80E). The conductive composition is obtained by further kneading five times under the conditions of a roll speed of 100 rpm and a gap between rolls of 10 μm. This conductive composition is coated on a glass plate using a glass epoxy resin plate applicator, and an applied body is first formed so as to have a thickness of 30 μm. The coated body thus obtained is fired to obtain a conductive film. The firing conditions are 1 hour at 160 ° C. in a nitrogen atmosphere.

導電膜の比抵抗R10及びR15の測定方法は次のとおりである。25℃、湿度60%RHに24時間放置した導電膜の膜厚と、導電膜を四端子法で測定した抵抗値から比抵抗を算出する。抵抗測定装置としては例えば三菱化学アナリテック製ロレスタGP等が挙げられる。A method for measuring the specific resistances R 10 and R 15 of the conductive film is as follows. The specific resistance is calculated from the film thickness of the conductive film left for 24 hours at 25 ° C. and 60% RH and the resistance value of the conductive film measured by the four probe method. Examples of the resistance measuring device include Loresta GP manufactured by Mitsubishi Chemical Analytech.

次に、本発明の銅粉の好適な製造方法について説明する。本発明の銅粉は、粒子形状として機械的に破砕されやすい「角部」や「くびれ部」等の破砕起点をもった異形状であるものを原料とすることが好ましく、中でも、ある範囲の長さで一方向に長く延びる粒子を、破砕によって生じ得る部位を有する銅粉、例えば樹枝状の銅粒子からなる銅粉を原料とする点に特徴の一つを有する。更に、樹枝状の銅粒子を特定の条件下に解砕して、目的とする銅粉を得る点についても特徴の一つを有する。   Next, the suitable manufacturing method of the copper powder of this invention is demonstrated. The copper powder of the present invention is preferably made of a raw material having an irregular shape having a crushing starting point such as a “corner portion” or a “constriction portion” that is easily mechanically crushed as a particle shape. One feature is that the copper particles having a portion that can be generated by crushing, for example, copper powder composed of dendritic copper particles, are used as the raw material for the particles that are long in one direction. Furthermore, it has one of the features that the dendritic copper particles are crushed under specific conditions to obtain the target copper powder.

原料である樹枝状の銅粒子は、例えば電解法によって好適に製造することができる。樹枝状の銅粒子は、レーザー回折散乱式粒度分布測定装置によって測定される体積累積粒径D50が、0.5μm以上7.0μm以下であることが好ましく、1.0μm以上6.0μm以下であることが更に好ましく、1.2μm以上5.0μm以下であることが一層好ましい。特に、走査型電子顕微鏡(以下「SEM」とも言う。)を用いて銅粒子を観察したとき、一本の主軸部を備えており、該主軸から複数の分枝部が斜めに分岐して、二次元又は三次元的に成長したデンドライト状を呈し、かつ、図1に示す主軸部の長径Lに対する分枝部の本数(分枝部本数/主軸部長径L)が0.5本/μm以上30.0本/μm以下、特に1.0本/μm以上25.0本/μm以下、とりわけ3.0本/μm以上20.0本/μm以下であるものを用いることが好ましい。また、主軸部の長径Lが0.5μm以上7.0μm以下、特に1.0μm以上6.0μm以下、とりわけ1.2μm以上5.0μm以下であるものを用いることも好ましい。The dendritic copper particles as a raw material can be suitably produced by, for example, an electrolytic method. The dendritic copper particles preferably have a volume cumulative particle size D 50 measured by a laser diffraction / scattering particle size distribution analyzer of 0.5 μm or more and 7.0 μm or less, and 1.0 μm or more and 6.0 μm or less. More preferably, it is 1.2 μm or more and 5.0 μm or less. In particular, when the copper particles are observed using a scanning electron microscope (hereinafter also referred to as “SEM”), it has one main shaft portion, and a plurality of branch portions branch obliquely from the main shaft, It has a dendritic shape that grows two-dimensionally or three-dimensionally, and the number of branch portions (number of branch portions / main shaft portion major axis L) with respect to the major axis L shown in FIG. 1 is 0.5 / μm or more. It is preferable to use those of 30.0 / μm or less, particularly 1.0 / μm or more and 25.0 / μm or less, particularly 3.0 / μm or more and 20.0 / μm or less. It is also preferable to use a material having a major axis L of 0.5 μm or more and 7.0 μm or less, particularly 1.0 μm or more and 6.0 μm or less, particularly 1.2 μm or more and 5.0 μm or less.

原料として用いる樹枝状の銅粒子を含む銅粉は、これを500倍以上20,000倍以下の倍率で顕微鏡観察したとき、上述の形状を有する樹枝状の銅粒子が全銅粒子のうちの35個数%以上、特に60個数%以上を占めていることが好ましい。   When the copper powder containing dendritic copper particles used as a raw material is observed with a microscope at a magnification of 500 times or more and 20,000 times or less, the dendritic copper particles having the above-mentioned shape are 35% of the total copper particles. It is preferable to occupy at least several percent, particularly 60 percent or more.

原料として用いる樹枝状の銅粒子を含む銅粉は、例えば電解法によって好適に製造することができる。電解法としては、例えば、銅イオンを含む硫酸酸性の電解液に陽極と陰極を浸漬し、これに直流電流を流して電気分解を行い、陰極表面に粉末状に銅を析出させ、機械的又は電気的方法により掻き落として回収し、水で洗浄し、乾燥し、必要に応じて篩別工程などを経て電解銅粉を製造する方法を例示できる。電気分解においては、電解液に少量の塩素を添加し、所定の表面粗度を備えた電極を用いて、析出後短時間のうちに掻き落とすことが有利である。電解液の塩素濃度は3mg/L以上300mg/L以下、特に5mg/L以上200mg/L以下に調整することが好ましい。電極、特に陰極の表面粗度は、JIS B 0601−2013に規定されるRzが0.001μm以上2.0μm以下、特に0.1μm以上1.0μm以下であることが好ましい。   The copper powder containing dendritic copper particles used as a raw material can be suitably produced by, for example, an electrolytic method. As an electrolysis method, for example, an anode and a cathode are immersed in a sulfuric acid electrolytic solution containing copper ions, and a direct current is passed through the electrolyte to conduct electrolysis. A method of scraping and collecting by an electric method, washing with water, drying, and producing electrolytic copper powder through a sieving step and the like as necessary can be exemplified. In electrolysis, it is advantageous to add a small amount of chlorine to the electrolytic solution and scrape it off within a short time after deposition using an electrode having a predetermined surface roughness. The chlorine concentration of the electrolytic solution is preferably adjusted to 3 mg / L or more and 300 mg / L or less, particularly 5 mg / L or more and 200 mg / L or less. As for the surface roughness of the electrode, particularly the cathode, Rz specified in JIS B 0601-2013 is preferably 0.001 μm or more and 2.0 μm or less, particularly preferably 0.1 μm or more and 1.0 μm or less.

以上の樹枝状の銅粒子を含む銅粉を解砕して、目的とする略棒状の銅粒子を含む銅粉を製造する。解砕には、原料の銅粉に過度の熱が加わらない方法を採用することが好ましい。また塑性変形の防止の点から、ビーズやボールなどのメディアを用いないメディアレスの解砕方法を採用することも好ましい。特に好ましい方法は、原料の銅粉を含むスラリーを加圧下に狭流路内を強制通過させ、通過時に生じる乱流によって発生する高せん断力によって、図1に示すとおり、樹枝状の銅粒子における分枝部をその基部において主軸部から折曲・分離することで解砕する方法である。狭流路の直径は概ね100μm以上300μm以下であることが好ましい。スラリーの加圧力は10MPa以上100MPa以下であることが好ましい。このような強制通過は、1回又は複数回行うことができる。複数回の強制通過を行うことで、目的とする形状や粒子径の銅粒子を含む銅粉を得ることができる。また、前記一定の装置条件とした上で、解砕条件として、スラリーが通過する狭流路の容量、スラリー加圧力とスラリーバッチのパス回数の乗算から算出されるスラリーの単位体積あたりの仕事量を200J以上30,000J以下とすることが好ましい。特に低圧力でも低抵抗が発現する微粒の銅粒子形状を保ちつつ、微粒化が過度に進むことによる抵抗上昇を防ぐ観点から、前記の仕事量を400J以上25,000J以下とすることがとりわけ好ましい。このような操作を行うことができる装置としては、例えば吉田機械興業のNanoVater、常光のナノジェットパル等が挙げられる。   The copper powder containing the above dendritic copper particles is crushed to produce the desired copper powder containing substantially rod-like copper particles. For crushing, it is preferable to employ a method in which excessive heat is not applied to the raw copper powder. From the viewpoint of preventing plastic deformation, it is also preferable to employ a medialess crushing method that does not use media such as beads and balls. A particularly preferred method is to force the slurry containing the raw material copper powder to pass through the narrow flow path under pressure, and in the dendritic copper particles as shown in FIG. In this method, the branch portion is crushed by bending and separating from the main shaft portion at the base portion. The diameter of the narrow channel is preferably about 100 μm to 300 μm. The applied pressure of the slurry is preferably 10 MPa or more and 100 MPa or less. Such forced passage can be performed once or multiple times. By performing the forced passage a plurality of times, it is possible to obtain a copper powder containing copper particles having a target shape and particle size. In addition, with the above constant apparatus conditions, as the crushing conditions, the work volume per unit volume of the slurry calculated from the capacity of the narrow flow path through which the slurry passes, the slurry pressure and the number of passes of the slurry batch are multiplied. Is preferably 200 J or more and 30,000 J or less. In particular, from the viewpoint of preventing an increase in resistance due to excessive atomization while maintaining a fine copper particle shape that exhibits low resistance even at low pressure, the work amount is particularly preferably 400 J or more and 25,000 J or less. . Examples of the apparatus capable of performing such operations include NanoVater from Yoshida Kikai Kogyo and NanoJet Pal from ordinary light.

以上は、銅粒子が銅そのものからなる場合の製造方法であったところ、銅粒子が金属被覆銅粒子からなる場合には、次の製造方法を採用することができる。すなわち、まず、上述の方法を採用して銅からなる芯材粒子を製造する。次に、得られた芯材粒子の表面に被覆金属を配置する。被覆金属の配置方法としては、被覆金属の種類に応じて適切な方法が採用される。例えば被覆金属が銀のように銅よりも貴な金属である場合には、湿式における置換めっき法を採用することができる。あるいは、湿式における還元めっき法を用いることもできる。   The above is a manufacturing method in the case where the copper particles are made of copper itself. However, when the copper particles are made of metal-coated copper particles, the following manufacturing method can be adopted. That is, first, core material particles made of copper are manufactured using the above-described method. Next, a coating metal is arranged on the surface of the obtained core material particles. As a method for arranging the coating metal, an appropriate method is adopted depending on the type of the coating metal. For example, when the coating metal is a metal nobler than copper, such as silver, a wet displacement plating method can be employed. Alternatively, a wet reduction plating method can be used.

このようにして得られた本発明の銅粉は、好適にはバインダ樹脂や有機溶媒と混合されて調製された導電性組成物の形態で用いられる。導電性組成物としては、例えば導電性ペースト、導電性インク、導電性接着剤、EMIシールドが具体例として挙げられる。これらの導電性組成物は、樹脂の硬化によって銅粒子が圧着されて導通が確保される樹脂硬化型のものであってもよく、あるいは焼成によって有機成分が揮発して銅粒子が焼結して導通が確保される焼成型であってもよい。いずれの型の導電性組成物であっても、該導電性組成物に占める銅粉の割合は、30質量%以上98質量%以下であることが好ましく、35質量%以上95質量%以下であることが更に好ましく、40質量%以上90質量%以下であることが一層好ましい。導電性組成物に含まれるほかの成分としては、エポキシ樹脂、フェノール樹脂を始めとする各種熱硬化性樹脂等のバインダ樹脂、硬化剤、硬化触媒、有機溶媒、ガラスフリット等が挙げられる。これらの成分は、導電性組成物の具体的な用途に応じて適切な割合で配合される。   The copper powder of the present invention thus obtained is preferably used in the form of a conductive composition prepared by mixing with a binder resin or an organic solvent. Specific examples of the conductive composition include a conductive paste, a conductive ink, a conductive adhesive, and an EMI shield. These conductive compositions may be of a resin-curing type in which copper particles are pressure-bonded by curing of the resin to ensure conduction, or the organic components are volatilized by firing and the copper particles are sintered. It may be a fired mold that ensures conduction. In any type of conductive composition, the proportion of copper powder in the conductive composition is preferably 30% by mass to 98% by mass, and more preferably 35% by mass to 95% by mass. More preferably, it is 40 mass% or more and 90 mass% or less. Examples of other components contained in the conductive composition include binder resins such as various thermosetting resins such as epoxy resins and phenol resins, curing agents, curing catalysts, organic solvents, and glass frits. These components are blended at an appropriate ratio depending on the specific use of the conductive composition.

本発明の銅粉は、これを構成する銅粒子が略棒状であることから、粒子どうしの接触点が多く、球状粒子と比較した場合、導電性組成物中での含有割合が低くても、導体の抵抗を低くすることができる。また、略棒状の粒子は、これを含む導電性組成物の塗布時に塗りむらが生じても、銅粉とバインダ樹脂との比率が変化しづらく、導体の抵抗にむらが生じにくい。銅粉とバインダ樹脂との比率が変化しづらいことは、樹枝状の銅粒子についても言ることであるが、樹枝状の銅粒子はその粒径を小さくすることが容易でないので、樹枝状の銅粒子を含む導電性組成物を小径のビア内に充填することは困難である。これに対して略棒状でかつ微粒である銅粒子からなる本発明の銅粉を含む導電性組成物を用いれば、これを小径のビア内に首尾よく充填することができる。これらの有利な点を活かし、本発明の銅粉を含む導電性組成物は、例えば電子デバイスの外部電極とプリント配線基板のプリント配線との間の電気的導通を図るために好適に用いられる。また、またプリント配線基板のプリント配線を、印刷法によって形成するために好適に用いられる。   Since the copper particles of the present invention are substantially rod-shaped, the number of contact points between the particles, when compared to spherical particles, even if the content ratio in the conductive composition is low, The resistance of the conductor can be lowered. Moreover, even if the non-uniform particle | grains generate | occur | produce at the time of application | coating of the electrically conductive composition containing this, the ratio of a copper powder and binder resin does not change easily, and the non-uniform | heterogenous resistance of a conductor hardly arises. It is difficult to change the ratio of the copper powder to the binder resin, which is also true for dendritic copper particles. However, dendritic copper particles are not easily reduced in particle size, It is difficult to fill a conductive composition containing copper particles into a small-diameter via. On the other hand, if the electroconductive composition containing the copper powder of the present invention consisting of substantially rod-like and fine copper particles is used, it can be successfully filled into a small-diameter via. Taking advantage of these advantages, the conductive composition containing the copper powder of the present invention is suitably used for, for example, electrical conduction between an external electrode of an electronic device and a printed wiring of a printed wiring board. Moreover, it is used suitably in order to form the printed wiring of a printed wiring board by a printing method.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples.

〔実施例1〕
(1)樹枝状の銅粒子の製造
2.5m×1.1m×1.5mの大きさ(約4m3)の電解槽内に、それぞれ大きさ(1.0m×1.0m)9枚のTi製陰極板(表面粗度Rz=1.0μm)と不溶性陽極板とを電極間距離5cmとなるように吊設した。電解槽内に、電解液としての硫酸銅溶液を300L/分で循環させて、この電解液に陽極と陰極を浸漬し、これに直流電流を流して電気分解を行い、陰極表面に粉末状の銅を析出させた。循環させる電解液の液温は40℃とし、Cu濃度は15g/Lとし、硫酸(H2SO4)濃度は200g/Lとし、塩素濃度は200mg/Lとした。電流密度を100A/mに調整して30分間電解を実施した。
陰極表面に析出した銅を、スクレーパを用いて30秒に1回の頻度で掻き落として回収し、その後、洗浄し、銅粉1kg相当の含水銅粉ケーキを得た。このケーキを水3Lに分散させてスラリーとし、その後、純水で洗浄して不純物を取り除き、電解銅粉を得た。この電解銅粉を「原料銅粉A」と言う。原料銅粉AをSEM観察したところ、主軸の長径Lが0.5〜7.0μmであり、枝本数/主軸長径Lが0.5〜30.0本/μmであるデンドライト状を呈する銅粒子が、全銅粒子のうちの80個数%以上を占めていることが確認された。得られた樹枝状の銅粒子のSEM像を図2に示す。
[Example 1]
(1) Manufacture of dendritic copper particles In an electrolytic cell of 2.5 m × 1.1 m × 1.5 m (about 4 m 3 ), each of 9 pieces (1.0 m × 1.0 m) in size A Ti cathode plate (surface roughness Rz = 1.0 μm) and an insoluble anode plate were suspended so that the distance between the electrodes was 5 cm. A copper sulfate solution as an electrolytic solution is circulated at 300 L / min in the electrolytic bath, and an anode and a cathode are immersed in the electrolytic solution. Copper was deposited. The circulating electrolyte temperature was 40 ° C., the Cu concentration was 15 g / L, the sulfuric acid (H 2 SO 4 ) concentration was 200 g / L, and the chlorine concentration was 200 mg / L. The current density was adjusted to 100 A / m 2 and electrolysis was performed for 30 minutes.
Copper deposited on the cathode surface was recovered by scraping with a scraper at a frequency of once every 30 seconds, and then washed to obtain a hydrous copper powder cake equivalent to 1 kg of copper powder. This cake was dispersed in 3 L of water to form a slurry, and then washed with pure water to remove impurities to obtain electrolytic copper powder. This electrolytic copper powder is referred to as “raw material copper powder A”. When the raw material copper powder A was observed by SEM, the major axis L of the major axis was 0.5 to 7.0 μm, and the number of branches / major axis major axis L was 0.5 to 30.0 / μm in the form of dendritic copper particles However, it was confirmed that it occupied 80% by number or more of all the copper particles. An SEM image of the obtained dendritic copper particles is shown in FIG.

(2)棒状の銅粒子の製造
前記(1)で得られた樹枝状の銅粒子を解砕することで、目的とする棒状の銅粒子を製造した。解砕には吉田機械興業の高速せん断粉砕機であるNanomizer NM2−2000ARを用いた。まず樹枝状の銅粒子の固形分が30質量%となるように、これを変性アルコールと混合してスラリーとなし、このスラリーを前記の粉砕機に投入し、解砕を行った。粉砕機の運転条件は、スラリー温度20℃以下、加圧力20MPa、パス回数100とした(スラリー単位体積あたり仕事量10,000J相当)。このようにして、目的とする棒状の銅粒子を含む銅粉を得た。この銅粉をSEM観察したところ、一次粒子を画像解析した投影面積円相当径が0.1μm以上4.0μm以下であり、投影面積円相当径/周長円相当径の値が0.40以上0.65以下である銅粒子が、全銅粒子のうちの35個数%以上を占めていることが確認された。
(2) Manufacture of rod-shaped copper particle The target rod-shaped copper particle was manufactured by crushing the dendritic copper particle obtained by said (1). For the crushing, a Nanomizer NM2-2000AR, which is a high-speed shearing pulverizer from Yoshida Kikai Kogyo, was used. First, this was mixed with denatured alcohol to form a slurry so that the solid content of the dendritic copper particles was 30% by mass, and this slurry was put into the pulverizer and crushed. The operating conditions of the pulverizer were a slurry temperature of 20 ° C. or lower, a pressing force of 20 MPa, and a pass count of 100 (equivalent to a work amount of 10,000 J per unit slurry volume). Thus, the copper powder containing the target rod-shaped copper particle was obtained. When this copper powder was observed with an SEM, the projected area equivalent circle diameter obtained by image analysis of the primary particles was 0.1 μm to 4.0 μm, and the projected area equivalent circle diameter / circumferential ellipse equivalent diameter value was 0.40 or more. It was confirmed that the copper particles of 0.65 or less accounted for 35% by number or more of the total copper particles.

〔実施例2〕
実施例1において、原料の銅粉の銅粉を製造する条件として、Cu濃度を20g/L、電流密度を200A/mにした。これら以外は、原料銅粉Aと同様として、樹枝状の銅粒子の銅粉を得た。この銅粉を「原料銅粉B」と言う。これ以外は実施例1と同様にして、目的とする棒状の銅粒子を含む銅粉を得た。
[Example 2]
In Example 1, the Cu concentration was 20 g / L and the current density was 200 A / m 2 as the conditions for producing the copper powder of the raw material copper powder. Except for these, as in the case of the raw material copper powder A, a copper powder of dendritic copper particles was obtained. This copper powder is referred to as “raw material copper powder B”. Except this, it carried out similarly to Example 1, and obtained the copper powder containing the rod-shaped copper particle made into the objective.

〔実施例3〕
実施例1において、原料の銅粉の銅粉を製造する条件として、不溶性陽極板(DSE(ペルメレック電極社製))を用い、Cu濃度を1g/L、硫酸(H2SO4)濃度を100g/L、電流密度を100A/m、循環液量を5L/分に調整して20分間電解を実施する条件を採用した。これら以外は、原料銅粉Aと同様として、樹枝状の銅粒子の銅粉を得た。この銅粉を「原料銅粉C」と言う。この原料銅粉Cの解砕条件は、加圧力50MPa、パス回数5とした(スラリー単位体積あたり仕事量1500J相当)。これら以外は実施例1と同様にした。このようにして、目的とする棒状の銅粒子を含む銅粉を得た。
Example 3
In Example 1, as a condition for producing copper powder of the raw material copper powder, an insoluble anode plate (DSE (manufactured by Permerek Electrode)) was used, the Cu concentration was 1 g / L, and the sulfuric acid (H 2 SO 4 ) concentration was 100 g. / L, the current density was 100 A / m 2 , the amount of circulating fluid was adjusted to 5 L / min, and conditions for electrolysis for 20 minutes were adopted. Except for these, as in the case of the raw material copper powder A, a copper powder of dendritic copper particles was obtained. This copper powder is referred to as “raw material copper powder C”. The raw copper powder C was crushed under a pressure of 50 MPa and a pass count of 5 (equivalent to a work load of 1500 J per unit slurry volume). The rest was the same as in Example 1. Thus, the copper powder containing the target rod-shaped copper particle was obtained.

〔実施例4〕
原料の銅粉として、原料銅粉Cを用いた。解砕条件は加圧力20MPa、パス回数100とした(スラリー単位体積あたり仕事量10000J相当)。これら以外は実施例1と同様にして、目的とする棒状の銅粒子を含む銅粉を得た。得られた銅粉のSEM像を図3に示す。
Example 4
Raw material copper powder C was used as the raw material copper powder. The crushing conditions were a pressure of 20 MPa and a pass count of 100 (equivalent to a work amount of 10,000 J per unit slurry volume). Except these, it carried out similarly to Example 1, and obtained the copper powder containing the rod-shaped copper particle made into the objective. The SEM image of the obtained copper powder is shown in FIG.

〔実施例5〕
原料の銅粉として、原料銅粉Aを用いた。解砕条件は、加圧力20MPaでまず100パス処理した後、加圧力50MPaで50パス処理(スラリー単位体積あたり仕事量23000J相当)する条件を採用した。これら以外は実施例1と同様にして、目的とする棒状の銅粒子を含む銅粉を得た。
Example 5
Raw material copper powder A was used as the raw material copper powder. As the crushing conditions, first, a 100-pass treatment was performed at a pressure of 20 MPa, and then a 50-pass treatment (corresponding to a work volume of 23,000 J per unit slurry volume) was adopted at a pressure of 50 MPa. Except these, it carried out similarly to Example 1, and obtained the copper powder containing the rod-shaped copper particle made into the objective.

〔実施例6〕
原料の銅粉として、原料銅粉Cを用いた。解砕条件は、加圧力20MPa、パス回数25とした(スラリー単位体積あたり仕事量2500J相当)。これら以外は実施例1と同様にして、目的とする棒状の銅粒子を含む銅粉を得た。
Example 6
Raw material copper powder C was used as the raw material copper powder. The crushing conditions were a pressure of 20 MPa and a pass count of 25 (equivalent to a work load of 2500 J per slurry unit volume). Except these, it carried out similarly to Example 1, and obtained the copper powder containing the rod-shaped copper particle made into the objective.

〔実施例7〕
実施例6で得られた銅粉に銀の置換めっきを行い、棒状の銅粒子の表面を銀で被覆してなる銅粉を得た。
Example 7
The copper powder obtained in Example 6 was subjected to silver displacement plating to obtain a copper powder obtained by coating the surface of rod-shaped copper particles with silver.

〔比較例1〕
湿式球状銅粒子(三井金属鉱業株式会社製D50 値1.0μm)を比較例1として用いた。
[Comparative Example 1]
Wet spherical copper particles (Mitsui Mining & Smelting Co., Ltd. D 50 value 1.0 .mu.m) was used as Comparative Example 1.

〔比較例2〕
湿式プレート状銅粒子(三井金属鉱業株式会社製D50値5.2μm)を比較例2として用いた。
[Comparative Example 2]
Wet plate-like copper particles (Mitsui Mining & Smelting Co., Ltd. D 50 value 5.2 .mu.m) was used as a comparative example 2.

〔比較例3〕
実施例3で用いた原料銅粉Cをそのまま比較例3として用いた。
[Comparative Example 3]
The raw material copper powder C used in Example 3 was used as Comparative Example 3 as it was.

〔比較例4〕
本出願人の先の出願に係る特許文献1(特開平6−158103号公報)の実施例1を追試し、得られた銅粉を比較例4として用いた。
[Comparative Example 4]
Example 1 of Patent Document 1 (Japanese Patent Laid-Open No. Hei 6-158103) related to the earlier application of the present applicant was re-examined, and the obtained copper powder was used as Comparative Example 4.

〔評価1〕
実施例及び比較例で得られた銅粉について、投影面積円相当径を画像解析によって測定した。測定装置として画像解析式粒度分布ソフトウェアMac−VIEWを用いた。測定は20個以上の粒子を対象とし、個々の粒子について投影面積円相当径を測定し、その相加平均値を算出した。
また、実施例及び比較例で得られた銅粉について、投影面積円相当径/周長円相当径の値を、上述の装置を用いた画像解析によって測定した。測定は20個以上の粒子を対象とし、個々の粒子について投影面積円相当径及び周長円相当径を測定し、それらの値から個々の粒子について投影面積円相当径/周長円相当径の値を算出し、更に当該値の相加平均値を算出した。
更に、実施例及び比較例で得られた銅粉について、形状係数を、上述の装置を用いた画像解析によって測定した。測定は20個以上の個の粒子を対象とし、個々の粒子について投影最大径及び投影面積を測定し、それらの値から個々の粒子について形状係数を算出し、その相加平均値を算出した。
以上の結果を以下の表1に示す。以上の各測定に際しては銅粉のSEM像に基づき、目視で粒子を塗りつぶし、塗りつぶした画像を対象として画像解析を行った。一例として、図3に対応する塗りつぶし画像を図4に示す。図3と図4との対比から明らかなとおり、図3において粒子が2個以上重なって観察される場合には、図4においてはそれらの粒子を分離して塗りつぶしている。
[Evaluation 1]
About the copper powder obtained by the Example and the comparative example, the projected area equivalent circle diameter was measured by image analysis. Image analysis type particle size distribution software Mac-VIEW was used as a measuring device. The measurement was performed on 20 or more particles, the projected area equivalent circle diameter was measured for each particle, and the arithmetic average value was calculated.
Moreover, about the copper powder obtained by the Example and the comparative example, the value of projected area circle equivalent diameter / circumference ellipse equivalent diameter was measured by the image analysis using the above-mentioned apparatus. The measurement is performed on 20 or more particles, and the projected area circle equivalent diameter and circumference equivalent circle diameter are measured for each particle, and the projected area equivalent circle diameter / circumferential circle equivalent diameter for each particle is determined from these values. A value was calculated, and an arithmetic average value of the value was further calculated.
Furthermore, about the copper powder obtained by the Example and the comparative example, the shape factor was measured by the image analysis using the above-mentioned apparatus. The measurement was conducted on 20 or more particles, the maximum projected diameter and the projected area were measured for each particle, the shape factor was calculated for each particle from these values, and the arithmetic mean value was calculated.
The above results are shown in Table 1 below. In each of the above measurements, based on the SEM image of the copper powder, the particles were visually filled, and image analysis was performed on the filled image. As an example, FIG. 4 shows a filled image corresponding to FIG. As is clear from the comparison between FIG. 3 and FIG. 4, when two or more particles are observed in FIG. 3, the particles are separated and painted in FIG. 4.

〔評価2〕
実施例及び比較例で得られた銅粉について、上述の方法で圧粉密度ρ0.63、圧粉比抵抗R0.63、並びに導電膜の比抵抗R10及びR15を測定した。これらの結果を以下の表1に示す。
[Evaluation 2]
For copper powder obtained in Examples and Comparative Examples, the green density [rho 0.63 in the manner described above, was measured powder resistivity R 0.63 and resistivity R 10 and R 15 of the conductive film. These results are shown in Table 1 below.

〔評価3〕
実施例及び比較例で得られた銅粉について、上述の比抵抗R10の測定に用いられた導体膜の表面性状を評価した。また、上述の比抵抗の測定に用いられた導電性組成物のビア(直径50μm)への充填性を評価した。これらの結果を以下の表1に示す。
〔導電膜の表面性状〕
東京精密社製表面粗さ形状測定器サーフコム480Bを用いて、導体膜の算術平均粗さ(Ra)を測定した。その値が1μm以下のものを表面性状良好とし(A)とし、1μm以上のものを不良(B)とした。
〔導電性組成物のビアへの充填性〕
ガラスクロス絶縁層の両面に銅箔が張り合わされた積層板上に絶縁層(厚さ50μm)/極薄銅箔層(厚さ2μm)/キャリア銅箔層(厚さ18μm)を積層して基板を得た。この基板における表面銅箔に向けてCOレーザーを照射し、キャリア銅箔層から絶縁層にかけて有底ビアを形成した。有底ビアの開口部最大直径は60μであった。このようにして、有底ビア付プリント配線板を得た。スクリーン印刷機を用いて、比抵抗R10の測定に用いられた導電性組成物を、この有底ビアに充填した。次いで、キャリア付銅箔を剥がし、窒素雰囲気下に160℃で1時間にわたり硬化させることで有底ビア内部に導電体が充填されたプリント配線板を得た。このプリント配線板の有底ビア部の断面を研磨し、得られた断面を走査型電子顕微鏡(倍率1,000倍)で観察した。10個の有底ビアを観察し、有底ビア内部に発生した5μm以上のボイド発生率(空隙率)が10%以下の場合を良好とし(A)とし、10%未満の場合を不良(B)とした。
[Evaluation 3]
For copper powder obtained in Examples and Comparative Examples were evaluated surface condition of the conductive film used for the measurement of the specific resistance R 10 described above. Moreover, the filling property to the via | veer (diameter 50 micrometers) of the electrically conductive composition used for the measurement of the above-mentioned specific resistance was evaluated. These results are shown in Table 1 below.
[Surface properties of the conductive film]
The arithmetic average roughness (Ra) of the conductor film was measured using a surface roughness profile measuring device Surfcom 480B manufactured by Tokyo Seimitsu Co., Ltd. When the value was 1 μm or less, the surface property was judged as good (A), and when the value was 1 μm or more, it was judged as bad (B).
[Fillability of conductive composition into vias]
An insulating layer (thickness 50 μm) / ultra-thin copper foil layer (thickness 2 μm) / carrier copper foil layer (thickness 18 μm) is laminated on a laminated plate in which copper foils are laminated on both sides of a glass cloth insulating layer. Got. A CO 2 laser was irradiated toward the surface copper foil on the substrate, and a bottomed via was formed from the carrier copper foil layer to the insulating layer. The maximum diameter of the opening of the bottomed via was 60 μm. In this way, a printed wiring board with a bottomed via was obtained. The bottomed via was filled with the conductive composition used for the measurement of the specific resistance R 10 using a screen printer. Subsequently, the copper foil with a carrier was peeled off and cured at 160 ° C. for 1 hour in a nitrogen atmosphere to obtain a printed wiring board filled with a conductor inside the bottomed via. The cross section of the bottomed via portion of this printed wiring board was polished, and the obtained cross section was observed with a scanning electron microscope (magnification 1,000 times). Observe 10 bottomed vias, and if the void generation rate (void ratio) of 5 μm or more generated inside the bottomed via is 10% or less, it is judged as good (A), and the case where it is less than 10% is bad (B ).

表1に示す結果から明らかなとおり、各実施例で得られた銅粉を含む導電性組成物から形成された導体膜は抵抗が低く、しかも抵抗が銅粉の配合量に影響を受けにくく、更に表面が平滑であることが判る。また、該導電性組成物は小径のビアへの充填性が良好であることが判る。
これに対して、比較例1の球状銅粒子からなる銅粉を用いると、導体膜の抵抗が実施例よりも高くなってしまい、また抵抗が銅粉の配合量に影響を受けやすいことが判る。比較例2のフレーク状銅粒子からなる銅粉についても比較例1と同様の傾向が観察される。樹枝状銅粉を解砕せずにそのまま用いた比較例3の銅粉を用いたのでは、分散性が極めて低いことに起因して、導電性組成物を調製できなかった。比較例4の銅粉は粒径が大きいことに起因して小径のビアへの充填性に欠けるものであった。
As is clear from the results shown in Table 1, the conductor film formed from the conductive composition containing the copper powder obtained in each example has a low resistance, and the resistance is hardly affected by the amount of the copper powder, Furthermore, it turns out that the surface is smooth. Moreover, it turns out that this electroconductive composition has the favorable filling property to a small diameter via | veer.
On the other hand, when the copper powder consisting of the spherical copper particles of Comparative Example 1 is used, the resistance of the conductor film becomes higher than that of the example, and the resistance is easily affected by the amount of copper powder. . The same tendency as in Comparative Example 1 is observed for the copper powder composed of the flaky copper particles of Comparative Example 2. Using the copper powder of Comparative Example 3 that was used as it was without crushing the dendritic copper powder, the conductive composition could not be prepared due to the extremely low dispersibility. The copper powder of Comparative Example 4 lacked the ability to fill a small diameter via due to the large particle size.

本発明によれば、導体の導電性が銅粉の含有割合に依存しにくい銅粉が提供される。また本発明によれば、導体膜の薄膜化が容易であり、小径のビア内の充填性が良好な銅粉が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the copper powder with which the electroconductivity of a conductor does not depend easily on the content rate of a copper powder is provided. In addition, according to the present invention, it is possible to provide a copper powder that is easy to reduce the thickness of the conductor film and has good filling properties in a small-diameter via.

Claims (8)

銅粒子、又は銅芯材の表面に銅以外の金属が被覆されてなる粒子からなり、一次粒子の投影像に外接される最小長方形における長辺の長さ/短辺の長さの値が3以上20以下である棒状の形状を有する粒子を個数基準で35%以上含む銅粉であって、
一次粒子を画像解析した投影面積円相当径が0.1μm以上4.0μm以下であり、
〔最大径×最大径×π÷(4×投影面積)〕で定義される一次粒子の画像解析による形状係数の値が1.8以上3.5以下である銅粉。
Copper particles, or copper other than copper metal on the surface of the core material is Ri Do of particles formed by coating, the length of the value of the length / short side of the long side at the minimum rectangle circumscribed to the projected image of the primary particles A copper powder containing 35% or more of particles having a rod-like shape that is 3 or more and 20 or less, based on the number of particles ,
The projected area equivalent circle diameter obtained by image analysis of the primary particles is 0.1 μm or more and 4.0 μm or less,
A copper powder having a shape factor value of 1.8 to 3.5 by image analysis of primary particles defined by [maximum diameter × maximum diameter × π ÷ (4 × projected area)].
一次粒子を画像解析した投影面積円相当径/周長円相当径の値が0.40以上0.65以下である請求項1に記載の銅粉。   2. The copper powder according to claim 1, wherein a value of projected area equivalent circle diameter / circumferential ellipse equivalent diameter obtained by image analysis of primary particles is 0.40 or more and 0.65 or less. 20mmΦの面積に0.63kNの実荷重を加えたときの圧粉密度をρ0.63とし、そのときの圧粉比抵抗をR0.63としたとき、ρ0.63の値が3.0g/cm以上5.0g/cm以下であり、R0.63の値が9.0×10−1Ωcm以下である請求項1又は2に記載の銅粉。 When the powder density when an actual load of 0.63 kN is applied to an area of 20 mmΦ is ρ 0.63 and the powder specific resistance at that time is R 0.63 , the value of ρ 0.63 is 3. The copper powder according to claim 1, wherein the copper powder is 0 g / cm 3 or more and 5.0 g / cm 3 or less, and the value of R 0.63 is 9.0 × 10 −1 Ωcm or less. 100質量部の前記銅粉と10質量部の樹脂とから形成された導電膜の比抵抗をR10とし、100質量部の前記銅粉と15質量部の樹脂とから形成された導電膜の比抵抗をR15としたとき、R10の値が1×10−4Ωcm以下であり、R15/R10の値が10以下である請求項1ないし3のいずれか一項に記載の銅粉。 The specific resistance of the conductive film formed from 100 parts by mass of the copper powder and 10 parts by mass of resin is defined as R 10, and the ratio of the conductive film formed from 100 parts by mass of the copper powder and 15 parts by mass of resin. 4. The copper powder according to claim 1, wherein when the resistance is R 15 , the value of R 10 is 1 × 10 −4 Ωcm or less, and the value of R 15 / R 10 is 10 or less. . 銅を芯材とする前記粒子が、銅粒子の表面に銀が被覆されてなる粒子である請求項1ないしのいずれか一項に記載の銅粉。 The copper powder according to any one of claims 1 to 4 , wherein the particles having copper as a core material are particles in which silver is coated on a surface of a copper particle. 前記一次粒子の投影像に外接される最小長方形における長辺の長さ/短辺の長さの値が3以上20以下である棒状の形状を有する粒子が、個数基準で60%以上含まれる、請求項1ないし5のいずれか一項に記載の銅粉。60% or more of particles having a rod-like shape having a long side length / short side length value of 3 or more and 20 or less in a minimum rectangle circumscribed by the projected image of the primary particles is included on a number basis. The copper powder according to any one of claims 1 to 5. 銅粒子、又は銅芯材の表面に銅以外の金属が被覆されてなる粒子からなり、
一次粒子を画像解析した投影面積円相当径が0.1μm以上4.0μm以下であり、
〔最大径×最大径×π÷(4×投影面積)〕で定義される一次粒子の画像解析による形状係数の値が1.8以上3.5以下である銅粉の製造方法であって、
樹枝状の銅粒子を含む銅粉のスラリーを、加圧下に狭流路内を強制通過させ、通過時に生じる乱流によって発生するせん断力によって、樹枝状の銅粒子における分枝部を折曲・分離する工程を有する銅粉の製造方法。
Consists of copper particles, or particles in which the surface of the copper core is coated with a metal other than copper,
The projected area equivalent circle diameter obtained by image analysis of the primary particles is 0.1 μm or more and 4.0 μm or less,
A method for producing a copper powder having a shape factor value of 1.8 or more and 3.5 or less by image analysis of primary particles defined by [maximum diameter × maximum diameter × π ÷ (4 × projected area)] ,
A slurry of copper powder containing dendritic copper particles is forced to pass through a narrow channel under pressure, and the branching part of the dendritic copper particles is bent by the shearing force generated by the turbulent flow that occurs during passage. The manufacturing method of the copper powder which has the process to isolate | separate.
請求項1ないしのいずれか一項に記載の銅粉を含む導電性組成物。
The electroconductive composition containing the copper powder as described in any one of Claims 1 thru | or 6 .
JP2015547184A 2014-06-16 2015-05-29 Copper powder, method for producing the same, and conductive composition containing the same Active JP6001796B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014123119 2014-06-16
JP2014123119 2014-06-16
PCT/JP2015/065574 WO2015194347A1 (en) 2014-06-16 2015-05-29 Copper powder, method for producing same and conductive composition comprising same

Publications (2)

Publication Number Publication Date
JP6001796B2 true JP6001796B2 (en) 2016-10-05
JPWO2015194347A1 JPWO2015194347A1 (en) 2017-04-20

Family

ID=54935338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015547184A Active JP6001796B2 (en) 2014-06-16 2015-05-29 Copper powder, method for producing the same, and conductive composition containing the same

Country Status (5)

Country Link
JP (1) JP6001796B2 (en)
KR (1) KR101874500B1 (en)
CN (1) CN106457382B (en)
TW (1) TWI652358B (en)
WO (1) WO2015194347A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167702A (en) * 1984-09-07 1986-04-07 Mitsui Mining & Smelting Co Ltd Electrically conductive powder and electrically conductive composition using said powder
JPS62199705A (en) * 1986-02-25 1987-09-03 Fukuda Kinzoku Hakufun Kogyo Kk Production of fine-grained copper powder
JPH0246641B2 (en) * 1987-11-02 1990-10-16 Mitsui Mining & Smelting Co
JPH038209A (en) * 1989-06-01 1991-01-16 Matsushita Electric Ind Co Ltd Composition for thick film
JPH06158103A (en) * 1992-11-25 1994-06-07 Mitsui Mining & Smelting Co Ltd Solderable conductive coating copper powder and it production
JP2008122030A (en) * 2006-11-15 2008-05-29 Mitsui Mining & Smelting Co Ltd Raw material for constituting heat pipe
JP2008130301A (en) * 2006-11-20 2008-06-05 Sumitomo Bakelite Co Ltd Conductive copper paste
JP2013053347A (en) * 2011-09-05 2013-03-21 Mitsui Mining & Smelting Co Ltd Dendritic copper powder
JP2013100592A (en) * 2011-10-21 2013-05-23 Mitsui Mining & Smelting Co Ltd Silvered copper powder

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2809646B2 (en) * 1988-08-09 1998-10-15 株式会社東芝 X-ray image tube
US6036839A (en) * 1998-02-04 2000-03-14 Electrocopper Products Limited Low density high surface area copper powder and electrodeposition process for making same
JP4230017B2 (en) * 1998-08-31 2009-02-25 三井金属鉱業株式会社 Method for producing fine copper powder
JP5181434B2 (en) * 2006-07-10 2013-04-10 住友金属鉱山株式会社 Fine copper powder and method for producing the same
JP2010215796A (en) * 2009-03-17 2010-09-30 Hitachi Cable Ltd Foaming resin composition, method for producing the same and foam-insulated wire using the same
JP5320442B2 (en) * 2011-07-13 2013-10-23 三井金属鉱業株式会社 Dendritic copper powder

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167702A (en) * 1984-09-07 1986-04-07 Mitsui Mining & Smelting Co Ltd Electrically conductive powder and electrically conductive composition using said powder
JPS62199705A (en) * 1986-02-25 1987-09-03 Fukuda Kinzoku Hakufun Kogyo Kk Production of fine-grained copper powder
JPH0246641B2 (en) * 1987-11-02 1990-10-16 Mitsui Mining & Smelting Co
JPH038209A (en) * 1989-06-01 1991-01-16 Matsushita Electric Ind Co Ltd Composition for thick film
JPH06158103A (en) * 1992-11-25 1994-06-07 Mitsui Mining & Smelting Co Ltd Solderable conductive coating copper powder and it production
JP2008122030A (en) * 2006-11-15 2008-05-29 Mitsui Mining & Smelting Co Ltd Raw material for constituting heat pipe
JP2008130301A (en) * 2006-11-20 2008-06-05 Sumitomo Bakelite Co Ltd Conductive copper paste
JP2013053347A (en) * 2011-09-05 2013-03-21 Mitsui Mining & Smelting Co Ltd Dendritic copper powder
JP2013100592A (en) * 2011-10-21 2013-05-23 Mitsui Mining & Smelting Co Ltd Silvered copper powder

Also Published As

Publication number Publication date
CN106457382A (en) 2017-02-22
KR20170008744A (en) 2017-01-24
KR101874500B1 (en) 2018-07-04
TW201606101A (en) 2016-02-16
CN106457382B (en) 2019-06-25
TWI652358B (en) 2019-03-01
WO2015194347A1 (en) 2015-12-23
JPWO2015194347A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP5320442B2 (en) Dendritic copper powder
JP5631910B2 (en) Silver coated copper powder
JP5876971B2 (en) Copper powder
KR101492784B1 (en) Conductive filler of flake form, conductive paste composition, conductive product and production method of conductive filler of flake form
US20170152386A1 (en) Copper powder, and copper paste, electrically conductive coating material and electrically conductive sheet each produced using said copper powder
JP5631841B2 (en) Silver coated copper powder
JP2013053347A (en) Dendritic copper powder
US20170274453A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet each of which uses same
EP3275570A1 (en) Copper powder and copper paste, conductive coating material, and conductive sheet using same
JP2013136818A (en) Copper powder
JPWO2017038465A1 (en) Silver coated copper powder
JP2013168375A (en) Dendrite-like copper powder
JP3687745B2 (en) Highly dispersible metal powder, method for producing the same, and conductive paste containing the metal powder
JP2014159646A (en) Silver-coated copper powder
JP6001796B2 (en) Copper powder, method for producing the same, and conductive composition containing the same
JP2007188845A (en) Conductive powder, conductive paste and electrical circuit
JP6938986B2 (en) Particle shape evaluation method
JP5711435B2 (en) Copper powder
JP6778389B1 (en) Conductive paste, laminate, and method of joining a Cu substrate or Cu electrode to a conductor
JP6332124B2 (en) Copper powder and conductive paste, conductive paint, conductive sheet using the same
JPH0687362B2 (en) Resin-curable conductive paste and method for manufacturing conductive circuit board
JP2016176133A (en) Copper powder and conductive paste using the copper powder

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160901

R150 Certificate of patent or registration of utility model

Ref document number: 6001796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250