JPH038209A - Composition for thick film - Google Patents

Composition for thick film

Info

Publication number
JPH038209A
JPH038209A JP1140474A JP14047489A JPH038209A JP H038209 A JPH038209 A JP H038209A JP 1140474 A JP1140474 A JP 1140474A JP 14047489 A JP14047489 A JP 14047489A JP H038209 A JPH038209 A JP H038209A
Authority
JP
Japan
Prior art keywords
copper powder
average particle
particle size
granular
thick film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1140474A
Other languages
Japanese (ja)
Other versions
JP2754733B2 (en
Inventor
Takashi Arita
有田 孝
Koji Tanabe
田辺 功二
Noboru Nakatani
登 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14047489A priority Critical patent/JP2754733B2/en
Publication of JPH038209A publication Critical patent/JPH038209A/en
Application granted granted Critical
Publication of JP2754733B2 publication Critical patent/JP2754733B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To improve wettability of solder for accomplishing reflow soldering by making up the composition for thick film of granular copper powder whose average particle size and specific surface area are specific, granular copper powder whose average particle size is specific different therefrom, dendritic copper powder whose average particle size and tap density are specific, resin and a solvent. CONSTITUTION:A composition for thick film 4 is constituted of granular copper powder whose average particle size is 4-10mum, whose specific surface area is represented by KX3/(rXd) (K=1.0-1.6, r = average particle size, d = density of copper), granular copper powder whose average particle size is 1-4mum, dendritic copper powder whose average particle size is 5-15mum, whose tap density is 3.0-5.0g/cc, resin and a solvent. Copper powder whose value of K is small is hardly oxidized thereby, so that oxide film can be easily removed by flux at the time of soldering. The wettability of solder of copper powder is, therefore, improved so that it is possible to make reflow soldering.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子機器に用いられる印刷配線板の導体回路
形成に用いる厚膜用組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a thick film composition used for forming conductor circuits on printed wiring boards used in electronic devices.

従来の技術 従来の印刷配線板の製造方法を大別すると、サブトラク
ティブ法とアディティブ法に分類できる。現在の主流の
製造法は、サブトラクティブ法(−船釣にはエツチイン
グ法と呼ばれる)であるが、工程で化学処理を行なうた
め公害対策や安全衛生対策等が必要である。
BACKGROUND OF THE INVENTION Conventional printed wiring board manufacturing methods can be broadly classified into subtractive methods and additive methods. The current mainstream manufacturing method is the subtractive method (also called the etching method for boat fishing), but since chemical treatment is performed during the process, pollution control and safety and health measures are necessary.

一方、アディティブ法は鋼の無電解メツキで配線パター
ンを形成する方法と銀ペースト又は銅ペーストを印刷す
ることにより配線パターンを形成し、はんだ付けの必要
な箇所は、はんだ付は可能な厚膜用組成物を印刷すると
いう完全なドライプロセスで行なう方法も近年提案され
ている。(例えば、特開昭58−10886号公報)こ
のドライプロセスの製造法では湿式1程を必要としない
ため、設備が安価でかつ公害対策や安全衛生対策等も必
要とせず、そのうえ、実装ラインとの4貫ライン化も可
能となり、リードタイムの短縮もできるものである。
On the other hand, in the additive method, wiring patterns are formed by electroless plating of steel and by printing silver paste or copper paste. A completely dry process of printing the composition has also been proposed in recent years. (For example, Japanese Unexamined Patent Publication No. 58-10886) This dry process manufacturing method does not require as much as the wet process, so the equipment is inexpensive and does not require pollution control or safety and health measures. This makes it possible to create a four-piece line, which also shortens lead time.

この完全なドライプロセスに必要なはんだ付は可能な厚
膜用組成物としては、銅粉の形状として樹枝状と粒状の
ものを用いるとしたもの(特開昭63〜81706号公
報)や金属キレート形成剤とはんだ付は促進剤を添加す
るとしたもの(特開昭62−230870号公報)等が
提案されている。なお、第2図は上記製造法による回路
基板上にチップ部品をリフローはんだした場合の説明図
であり、第2図(A)ははんだ付前、第2図(B)はは
んだ釘抜を示している。
Thick film compositions that can be soldered, which is necessary for this completely dry process, include those that use dendritic and granular copper powder shapes (Japanese Patent Application Laid-Open No. 1981-81706) and metal chelate. It has been proposed to add a forming agent and an accelerator for soldering (Japanese Patent Application Laid-Open No. 62-230870). Furthermore, Figure 2 is an explanatory diagram of the case where chip components are reflow soldered onto a circuit board using the above manufacturing method, with Figure 2 (A) showing before soldering and Figure 2 (B) showing solder nail removal. There is.

発明が解決しようとする課題 しかしながら上記の従来の構成では、手はんだやデイツ
プはんだのようにはんだが充分供給される場合ははんだ
付は可能であるが、リフローはんだ付けで、はんだの濡
れ性の良い電極をもつチップ部品をはんだ付けする場合
は、第2図(B)に示すようにはんだがチップ部品の電
極部に集中し厚膜用組成物部には、はんだが付きにくか
ったり、また、はんだの濡れ性が充分ではなく、はんだ
が完全に付かない箇所が発生する可能性があった。
Problems to be Solved by the Invention However, with the above-mentioned conventional configuration, soldering is possible if sufficient solder is supplied, such as with hand soldering or dip soldering, but reflow soldering requires good solder wettability. When soldering chip parts with electrodes, as shown in Figure 2 (B), the solder concentrates on the electrode parts of the chip parts, making it difficult for the solder to adhere to the thick film composition parts, or The wettability of the solder was not sufficient, and there was a possibility that there would be places where the solder did not completely adhere.

本発明は、上記従来の課題を解決するもので、はんだの
濡れ性が良く、高密度実装を行なうにおいて欠かすこと
ができないリフローはんだ付けを可能にすることができ
る厚膜用組成物を提供するものである。
The present invention solves the above-mentioned conventional problems, and provides a thick film composition that has good solder wettability and can enable reflow soldering, which is indispensable for high-density mounting. It is.

課題を解決するための手段 この目的を達成するために本発明の厚膜用組成物は、平
均粒子径が4〜10μmで比表面積が(K=1.0−1
.6.r :平均粒子径、d:鋼の密度) で表わされる粒状銅粉と、平均粒子径1〜4μ銅の粒状
銅粉と、平均粒子径5〜ISμm、タップ密度3.0〜
5.0g/ccの樹枝状銅粉と、樹脂と、溶剤によって
厚膜用組成物を形成したものである。
Means for Solving the Problems To achieve this object, the thick film composition of the present invention has an average particle diameter of 4 to 10 μm and a specific surface area of (K=1.0-1
.. 6. r: average particle size, d: density of steel), granular copper powder with an average particle size of 1 to 4 μm copper, average particle size of 5 to IS μm, and tap density of 3.0 to
A thick film composition was formed using 5.0 g/cc of dendritic copper powder, a resin, and a solvent.

作用 上記のように構成したことにより、焼付時およびはんだ
何時の銅粉の酸化を少な(し、はんだの濡れ性を向上し
、リフローはんだ付けを可能にしたものである。
Function: The structure described above reduces oxidation of copper powder during baking and soldering, improves solder wettability, and enables reflow soldering.

実施例 まず、本発明の実施例の概要について説明する。Example First, an outline of an embodiment of the present invention will be explained.

厚膜用組成物のはんだの濡れ性は、焼付時及びはんだ付
は時に銅粉の表面の酸化の差に起因する。本発明は酸化
しにくい銅粉として比表面積の小さい銅粉について検討
した。なお、最も小さな比表面積を持つ形状は球であり
、その値は(1)式で与えられる。
The solder wettability of thick film compositions is due to the difference in oxidation of the surface of the copper powder during baking and sometimes during soldering. In the present invention, copper powder with a small specific surface area was studied as a copper powder that is difficult to oxidize. Note that the shape with the smallest specific surface area is a sphere, and its value is given by equation (1).

球−個の表面積−4πr2  (m2)球−個の体積−
4πr3  (m3) 従って、比表面積は 4πr2÷(’πr3Xd) rxd (m2/g)      ・・・・・・(1)
式ここで、r;球の半径 d;粒子の密度 通常の銅粉は、完全な球ではなく表面が凸凹しているた
め最終的に比表面積はC)式で表される。
Surface area of spheres - 4πr2 (m2) Volume of spheres -
4πr3 (m3) Therefore, the specific surface area is 4πr2÷('πr3Xd) rxd (m2/g) (1)
Equation Here, r: Radius of sphere d: Density of particles Since ordinary copper powder is not a perfect sphere but has an uneven surface, the final specific surface area is expressed by the formula C).

比表面積=KX−ニー  (m2/g)rXd’ ・・・・・・(2)式 ここで、Kは1.0以上の値をもつ 本実施例2〜4は、K=1.34の粒状銅粉とに−4,
61の粒状銅粉と樹枝状銅粉を混合したものであり、比
較例2はに=1.61の粒状銅粉と樹枝銅粉を混合した
ものである。両者のはんだ付は部の欠点数(はんだ付は
箇所80個中のはんだの濡れ不良のある箇所の数)を比
較すると、明らかにに=1.34の粒状銅粉を混合した
ものの方が不良が少なく、はんだの濡れ性が大幅に向上
したことがわかる。なお、比表面積の測定は窒素吸着法
を用いた。
Specific surface area=KX-knee (m2/g)rXd' (2) where K has a value of 1.0 or more. Granular copper powder Toni-4,
Comparative Example 2 is a mixture of granular copper powder of 1.61 and dendritic copper powder, and comparative example 2 is a mixture of granular copper powder of 1.61 and dendritic copper powder. Comparing the number of defects in the soldering parts (the number of places with poor solder wetting out of 80 soldering parts), it is clear that the one mixed with granular copper powder of = 1.34 is defective. It can be seen that the solder wettability was significantly improved. Note that the specific surface area was measured using a nitrogen adsorption method.

Kの値と銅粉の酸化のしにくさの関係を以下に示す。第
1図にイ平均粒子径5μm、に=1.34と口平均粒子
半5μm、に=2.60の2つの銅粉の熱重量分析(以
下TGと呼ぶ)及び示差熱分析(以下DTAと呼ぶ)の
データを示すが、明らかにKの値が小さいほうが酸化に
よる発熱も少なく、酸化による重量変化も少ないことが
確認された。オージェ電子分光分析では、イは33Aの
表面酸化膜であり、口は500人の表面酸化膜であった
The relationship between the value of K and the resistance to oxidation of copper powder is shown below. Figure 1 shows thermogravimetric analysis (hereinafter referred to as TG) and differential thermal analysis (hereinafter referred to as DTA) of two copper powders with an average particle size of 5 μm and 1.34 and an average particle size of half 5 μm and 2.60. It was confirmed that the smaller the value of K, the less heat generated by oxidation and the less weight change due to oxidation. Auger electron spectroscopy showed that A was a 33A surface oxide film, and the mouth was a 500 surface oxide film.

以上のように、kの値の小さい銅粉は酸化されに<<、
また酸化されても酸化膜が薄く、はんだ付は時のフラッ
クスにより容易に酸化膜が除去され、はんだの濡れ性が
良くなる。また、表層がはんだ付けされる時、厚膜用組
成物の皮膜内部粒子の酸化もゆっくり進むため、第一層
目がはんだに食われても第二層目の粒子が酸化されてお
らず、はんだの濡れ性が良いと考えられる。
As mentioned above, copper powder with a small value of k is not easily oxidized.
Even when oxidized, the oxide film is thin, and during soldering, the oxide film is easily removed by flux, improving solder wettability. In addition, when the surface layer is soldered, the oxidation of the particles inside the film of the thick film composition progresses slowly, so even if the first layer is eaten by the solder, the particles in the second layer are not oxidized. It is thought that the solder wettability is good.

また、粒子径も4〜10μmと大きくすることによりは
んだ食われも少ないと考えられる。
Further, it is thought that by increasing the particle size to 4 to 10 μm, there is less solder erosion.

銅粉の混合については、2つの効果目的をもっている。The mixing of copper powder has two purposes.

第一の混合効果は、低抵抗を出すことであり、そのため
最密充填となるように平均粒子径を5〜15μ銅の樹枝
状銅粉と1〜14銅の粒状銅粉を混合する。その混合比
は、90/10〜10/90が望ましい。樹枝状銅粉の
上限平均粒子径を越えるとスクリーン印刷性が悪くなる
。下限未満になると導電性が悪くなる。粒状銅粉の上限
平均粒子径を越えると樹枝状銅粉との第一の混合効果が
なくなり、下限未満になると耐酸化性が著しく悪くなる
ことが確認された。
The first mixing effect is to produce low resistance, and therefore, dendritic copper powder with an average particle diameter of 5 to 15 μm copper and granular copper powder of 1 to 14 μm copper are mixed to achieve close packing. The mixing ratio is preferably 90/10 to 10/90. If the upper limit average particle diameter of the dendritic copper powder is exceeded, screen printability will deteriorate. If it is less than the lower limit, the conductivity will deteriorate. It was confirmed that when the upper limit average particle diameter of the granular copper powder was exceeded, the first mixing effect with the dendritic copper powder was lost, and when it was less than the lower limit, the oxidation resistance deteriorated significantly.

第二の混合効果は、はんだの濡れ性を良くすることであ
り、そのため平均粒子径4〜10μm。
The second mixing effect is to improve solder wettability, and therefore the average particle size is 4-10 μm.

比表面積が(2)式で表される粒状銅粉を混合する。Granular copper powder having a specific surface area expressed by formula (2) is mixed.

この粒状銅粉の上限平均粒子径を越えると、樹枝状銅粉
との第一の混合効果がなくなり抵抗値が高くなり、下限
未満になると酸化されやすくかつ、銅食われが起こり易
くなり、はんだの濡れ性が悪くなる。この粒状銅粉の混
合比は、全銅粉の10%〜9o%が望ましい。上限値を
越えると、樹枝状銅粉との第一の混合効果がなくなり抵
抗値が高くなる。下限未満になると第二の混合効果がな
くなり、はんだの濡れ性が低下することが確認された。
If the upper limit average particle diameter of the granular copper powder is exceeded, the first mixing effect with the dendritic copper powder will be lost, and the resistance value will increase; if it is less than the lower limit, it will be easy to oxidize and copper corrosion will occur, and the solder wettability deteriorates. The mixing ratio of this granular copper powder is preferably 10% to 90% of the total copper powder. When the upper limit is exceeded, the first mixing effect with the dendritic copper powder disappears and the resistance value increases. It was confirmed that below the lower limit, the second mixing effect disappears and the wettability of the solder decreases.

以下本発明の実施例について説明する。Examples of the present invention will be described below.

下記に本実施例1に使用した材料を示す。The materials used in Example 1 are shown below.

(1)銅粉 1)粒状銅粉■ (日中貴金属工業■TFC−5000)平均粒子径  
 5μm 比表面積    0.18m2/g K=1.34 2)粒状銅粉■ (三井金属鉱業(m S −860603’)平均粒子
径   3μm 比表面積    0.36m2/+;rK= 1.61 タップ密度   4.3g/cc 3)樹枝状銅粉■ (三井金属鉱業■MF−D2) 平均粒子径   7μm タップ密度   4.4g/cc (2)  樹脂 レゾール型フェノ−樹脂 (郡栄化学工業(8)PL−2211)(3)溶剤 ブチルセロソルブ 上記の材料を第1表のように配合した後、ロールミルを
用いて混練した。その時、スクリーン印刷適性を出すた
め若干量の溶剤を添加した。その組成物をステンレス製
200メツシユのスクリーンマスクを用いて2Illl
I口のパターンを、紙フエノール基板(住人ベークライ
ト■製PLC−2120)上ニ印刷した後、160℃、
3C1間窒素雰囲気中で熱風循環乾燥機にて乾燥硬化さ
せた。
(1) Copper powder 1) Granular copper powder■ (Nichinoki Kikinzoku Kogyo ■TFC-5000) Average particle size
5μm Specific surface area 0.18m2/g K=1.34 2) Granular copper powder■ (Mitsui Mining & Smelting Co., Ltd. (mS-860603') Average particle size 3μm Specific surface area 0.36m2/+; rK=1.61 Tap density 4 .3g/cc 3) Dendritic copper powder (Mitsui Kinzoku Kogyo MF-D2) Average particle size 7μm Tap density 4.4g/cc (2) Resin resol type pheno resin (Gunei Chemical Industry (8) PL- 2211) (3) Solvent Butyl Cellosolve The above materials were blended as shown in Table 1 and then kneaded using a roll mill. At that time, a small amount of solvent was added to make it suitable for screen printing. The composition was mixed using a 200-mesh stainless steel screen mask.
After printing the I-port pattern on a paper phenol substrate (PLC-2120 manufactured by Juju Bakelite ■), it was heated at 160°C.
It was dried and cured in a hot air circulating dryer in a nitrogen atmosphere for 3C1.

次にクリームはんだ(日本スベリア■SnSn63RA
3Aを0.3m銅のメタルマスクを用いて印刷し、赤外
線リフロー炉にてはんだ付けを行なった。
Next, cream solder (Nippon Suberia ■SnSn63RA
3A was printed using a 0.3 m copper metal mask, and soldering was performed in an infrared reflow oven.

以下に本実施例2〜4及び比較例1〜3に使用した材料
を示す。
The materials used in Examples 2 to 4 and Comparative Examples 1 to 3 are shown below.

(1)  銅粉 1)銀被覆粒状銅粉■ (山中貴金属工業■TFC−5000)平均粒子径  
 5μm 比表面積    0.18m2/g K=1.34 銀被覆量    2重量% 2)銀被覆粒状銅粉■ (三井金属鉱業■S−860603) 平均粒子径   3μm 比表面積    0.36m2/g K=1.61 タップ密度   4.3g/cc 銀被覆量    2M量% 3)銀被覆樹枝状銅粉■ (三井金属鉱業@MF−D2) 平均粒子径   7μm タップ密度   4.4g/cc 銀被覆量    2重量% 以下樹脂、溶剤及び配合、混練、印刷、乾燥硬化、はん
だ付けは、実施例1に同じ。但し、乾燥硬化は空気中に
て行なった。
(1) Copper powder 1) Silver-coated granular copper powder ■ (Yamanaka Kikinzoku Kogyo ■ TFC-5000) Average particle size
5μm Specific surface area 0.18m2/g K=1.34 Silver coating amount 2% by weight 2) Silver-coated granular copper powder■ (Mitsui Mining & Co., Ltd. S-860603) Average particle size 3μm Specific surface area 0.36m2/g K=1 .61 Tap density 4.3g/cc Silver coating amount 2M amount% 3) Silver-coated dendritic copper powder■ (Mitsui Mining & Coating @MF-D2) Average particle diameter 7μm Tap density 4.4g/cc Silver coating amount 2% by weight The following resin, solvent, blending, kneading, printing, dry curing, and soldering are the same as in Example 1. However, dry curing was performed in air.

本実施例5は、銅粉にニッケル被覆した後銀被覆を施し
た以外は、実施例2〜4及び比較例1〜3に同じである
This Example 5 is the same as Examples 2 to 4 and Comparative Examples 1 to 3 except that the copper powder was coated with nickel and then coated with silver.

本発明および比較例によるはんだ付けの結果を第1表に
示す。
Table 1 shows the results of soldering according to the present invention and comparative examples.

以上のように実施例1〜5と比較例2を比較すると、粒
状銅粉■を添加することによりはんだ付は時の欠点数が
著しく向上したことが明白である。また、比較例1では
粒状銅粉■の添加量が少ないと添加効果が少なく、比較
例3では、粒状銅粉■のみであれば、抵抗値が高(なる
ことが明らかである。
Comparing Examples 1 to 5 and Comparative Example 2 as described above, it is clear that the addition of granular copper powder (3) significantly improved the number of defects during soldering. Furthermore, in Comparative Example 1, it is clear that when the amount of granular copper powder (2) added is small, the effect of addition is small, and in Comparative Example 3, when only granular copper powder (2) is added, the resistance value is high.

なお、粒状銅粉■は平均粒子径4〜10μmでに=1.
0〜1.6粒状銅粉■も平均粒子径1〜4μm、樹枝状
銅粉■も平均粒子径5〜15μm、タップ密度3.0〜
5.0g/ccの間で各種実験を行なったが表1と同様
の結果が得られた。
In addition, the granular copper powder (2) has an average particle diameter of 4 to 10 μm and has an average particle size of 1.
0-1.6 granular copper powder ■ also has an average particle diameter of 1-4 μm, dendritic copper powder ■ also has an average particle diameter of 5-15 μm, and tap density 3.0-
Various experiments were conducted between 5.0 g/cc and results similar to those shown in Table 1 were obtained.

また、実施例5のニッケル被覆に代えてクロム被覆を行
なったものも表1と同様の結果が得られた。
Furthermore, results similar to those shown in Table 1 were also obtained when chromium coating was applied in place of the nickel coating in Example 5.

(以 下 余 白) 発明の効果 以上のように本発明は、上記実施例より明らかなように
、■平均粒子径4〜10μm、比表面積が次式で表わさ
れる粒状銅粉 比表面積−KX77丁 ここでに= 1.0〜1.6 r=平均粒子径 d=鋼の密度 と■平均粒子径1〜4μ銅の粒状銅粉、■平均粒子径5
〜15μm、タップ密度3.0〜5.0g/CCの樹枝
状銅粉とで構成される銅粉を用いることにより、半田の
濡れ性が向上し、リフローによるはんだ付けが可能な厚
膜用組成物を提供し得るものであり産業上極めて有用で
ある。
(The following is a blank space) Effects of the Invention As is clear from the above examples, the present invention has the following advantages: ■ Particulate copper powder specific surface area -K Where = 1.0 to 1.6 r = average particle size d = density of steel ■ granular copper powder with average particle size of 1 to 4 μ copper, ■ average particle size 5
By using copper powder composed of dendritic copper powder of ~15 μm and tap density of 3.0 to 5.0 g/CC, the wettability of solder is improved, and the composition for thick films allows reflow soldering. It is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はDTAおよびTG曲線を示す図である。第2図
は厚膜用組成物上にチップ部属をリフローはんだ付けす
る前とはんだ付は後の状態を示す図である。 1・・・・・・チップ部品、2・・・・・・チップ部品
電極部、3・・・・・・クリームはんだ、4・・・・・
・厚膜用組成物、5・・・・・・基板、6・・・・・・
はんだ。
FIG. 1 is a diagram showing DTA and TG curves. FIG. 2 is a diagram showing the state before and after reflow soldering of chip parts on the thick film composition. 1... Chip component, 2... Chip component electrode section, 3... Cream solder, 4...
・Thick film composition, 5...substrate, 6...
Solder.

Claims (4)

【特許請求の範囲】[Claims] (1) 平均粒子径が4〜10μmで比表面積が K×
3/(r×d) (K=1.0〜1.6,r:平均粒子径,d:銅の密度
) で表わされる粒状銅粉と、平均粒子径1〜4μmの粒状
銅粉と、平均粒子径5〜15μm,タップ密度3.0〜
5.0g/ccの樹枝状銅粉と、樹脂と、溶剤より成る
厚膜用組成物。
(1) Average particle diameter is 4 to 10 μm and specific surface area is K×
3/(r×d) (K = 1.0 to 1.6, r: average particle diameter, d: density of copper) Granular copper powder represented by: and granular copper powder with an average particle diameter of 1 to 4 μm, Average particle diameter 5-15μm, tap density 3.0-
A thick film composition comprising 5.0 g/cc of dendritic copper powder, a resin, and a solvent.
(2) 平均粒子径1〜4μmの粒状銅粉と樹枝状銅粉
の混合重量比が90/10〜10/90であって、平均
粒子径4〜10μmであって比表面積が  K×3/(r×d) (K=1.0〜1.6,r:平均粒子径,d:銅の密度
) である粒状銅粉と(樹枝状銅粉+平均粒径1〜4の粒状
銅粉)の混合重量比が90/10〜10/90であるこ
とを特徴とする請求項1記載の厚膜用組成物。
(2) The mixing weight ratio of granular copper powder with an average particle diameter of 1 to 4 μm and dendritic copper powder is 90/10 to 10/90, the average particle diameter is 4 to 10 μm, and the specific surface area is K×3/ (r×d) (K = 1.0 to 1.6, r: average particle diameter, d: density of copper) and (dendritic copper powder + granular copper powder with average particle diameter of 1 to 4) 2. The composition for thick films according to claim 1, wherein the weight ratio of the components is from 90/10 to 10/90.
(3) 樹枝状銅粉,粒状銅粉の少なくともいずれか一
方が銀で被覆されていることを特徴とする請求項1記載
の厚膜用組成物。
(3) The thick film composition according to claim 1, wherein at least one of the dendritic copper powder and the granular copper powder is coated with silver.
(4) 樹枝状銅粉,粒状銅粉の少なくともいずれか一
方がニッケル又はクロムで被覆されたのち銀で被覆され
たものであることを特徴とする請求項1記載の厚膜用組
成物。
(4) The thick film composition according to claim 1, wherein at least one of the dendritic copper powder and the granular copper powder is coated with nickel or chromium and then coated with silver.
JP14047489A 1989-06-01 1989-06-01 Thick film composition Expired - Lifetime JP2754733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14047489A JP2754733B2 (en) 1989-06-01 1989-06-01 Thick film composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14047489A JP2754733B2 (en) 1989-06-01 1989-06-01 Thick film composition

Publications (2)

Publication Number Publication Date
JPH038209A true JPH038209A (en) 1991-01-16
JP2754733B2 JP2754733B2 (en) 1998-05-20

Family

ID=15269444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14047489A Expired - Lifetime JP2754733B2 (en) 1989-06-01 1989-06-01 Thick film composition

Country Status (1)

Country Link
JP (1) JP2754733B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03176906A (en) * 1989-12-05 1991-07-31 Furukawa Electric Co Ltd:The Copper paste
JPH05151821A (en) * 1991-11-28 1993-06-18 Tokuyama Soda Co Ltd Hardenable conductive composition
JPH10208547A (en) * 1997-01-28 1998-08-07 Sumitomo Bakelite Co Ltd Conductive copper paste composition
JPH113619A (en) * 1997-06-10 1999-01-06 Sumitomo Bakelite Co Ltd Conductive copper paste composition
WO2015194347A1 (en) * 2014-06-16 2015-12-23 三井金属鉱業株式会社 Copper powder, method for producing same and conductive composition comprising same
US11270809B2 (en) 2017-03-16 2022-03-08 Asahi Kasei Kabushiki Kaisha Dispersing element, method for manufacturing structure with conductive pattern using the same, and structure with conductive pattern
US11328835B2 (en) 2017-03-16 2022-05-10 Asahi Kasei Kabushiki Kaisha Dispersing element, method for manufacturing structure with conductive pattern using the same, and structure with conductive pattern

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03176906A (en) * 1989-12-05 1991-07-31 Furukawa Electric Co Ltd:The Copper paste
JPH05151821A (en) * 1991-11-28 1993-06-18 Tokuyama Soda Co Ltd Hardenable conductive composition
JPH10208547A (en) * 1997-01-28 1998-08-07 Sumitomo Bakelite Co Ltd Conductive copper paste composition
JPH113619A (en) * 1997-06-10 1999-01-06 Sumitomo Bakelite Co Ltd Conductive copper paste composition
WO2015194347A1 (en) * 2014-06-16 2015-12-23 三井金属鉱業株式会社 Copper powder, method for producing same and conductive composition comprising same
JP6001796B2 (en) * 2014-06-16 2016-10-05 三井金属鉱業株式会社 Copper powder, method for producing the same, and conductive composition containing the same
KR20170008744A (en) * 2014-06-16 2017-01-24 미쓰이금속광업주식회사 Copper powder, method for producing same and conductive composition comprising same
JPWO2015194347A1 (en) * 2014-06-16 2017-04-20 三井金属鉱業株式会社 Copper powder, method for producing the same, and conductive composition containing the same
US11270809B2 (en) 2017-03-16 2022-03-08 Asahi Kasei Kabushiki Kaisha Dispersing element, method for manufacturing structure with conductive pattern using the same, and structure with conductive pattern
US11328835B2 (en) 2017-03-16 2022-05-10 Asahi Kasei Kabushiki Kaisha Dispersing element, method for manufacturing structure with conductive pattern using the same, and structure with conductive pattern

Also Published As

Publication number Publication date
JP2754733B2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
JP4894266B2 (en) Conductive powder surface treatment method, conductive powder and conductive paste
JP4301763B2 (en) Silver compound paste
US4529835A (en) Ceramic thick film circuit substrate
JPH038209A (en) Composition for thick film
JP3507084B2 (en) Copper conductor composition
JPS6381706A (en) Composition for copper based thick film
JP2008306029A (en) Reflow soldering method for printed circuit board using conductive paint
JPH0377202A (en) Conductive composite
JPS5815576A (en) Air calcinable conductor or resistor ink
JPS61288484A (en) Kneaded conductor for ceramic wiring board
JPS62230869A (en) Electrically conductive coating compound to be soldered
US20110248221A1 (en) Metal fine particle for conductive metal paste, conductive metal paste and metal film
JPH01167385A (en) Electrically conductive coating compound
JPH02263731A (en) Thick film copper paste
JPS6389577A (en) Electrically conductive paint
JPH01196192A (en) Conductor paste
JPH0415270A (en) Electrically conductive paste
JPH01265405A (en) Conductive paste and conductive circuit
JPS59138306A (en) Resistance ink
JPH03152803A (en) Solderable conductive paste
JPS61203503A (en) Ag-pd based conductive paste
JPH02163150A (en) Electrically conductive paste
JP3520457B2 (en) Tin-coated metal sheet and method for producing the same
JPH0358196B2 (en)
JP2000021235A (en) Copper-base conductive paste