JPH11273454A - Manufacture of flake-form copper alloy powder for electroconductive paste - Google Patents

Manufacture of flake-form copper alloy powder for electroconductive paste

Info

Publication number
JPH11273454A
JPH11273454A JP10071539A JP7153998A JPH11273454A JP H11273454 A JPH11273454 A JP H11273454A JP 10071539 A JP10071539 A JP 10071539A JP 7153998 A JP7153998 A JP 7153998A JP H11273454 A JPH11273454 A JP H11273454A
Authority
JP
Japan
Prior art keywords
copper alloy
alloy powder
weight
powder
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10071539A
Other languages
Japanese (ja)
Other versions
JP4074369B2 (en
Inventor
Osamu Kajita
治 梶田
Motonori Nishida
元紀 西田
Koji Nochida
浩嗣 後田
Masayoshi Yoshitake
正義 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP07153998A priority Critical patent/JP4074369B2/en
Publication of JPH11273454A publication Critical patent/JPH11273454A/en
Application granted granted Critical
Publication of JP4074369B2 publication Critical patent/JP4074369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a new flake-form copper alloy powder for use in preparing an electroconductive paste. SOLUTION: Aliphatic acid in an amount 0.05-2 wt.% is added to a copper alloy powder containing 3-75 wt.% silver, and the obtained substance is processed into flakes mechanically and subjected to a reduction treatment in the reductive atmosphere at a temp. between 150 and 500 deg.C so that a powder having particle sizes under 100 μm and a BET specific surface area of 2000 cm<2> /g or more is prepared. The produced copper alloy powder exerts a performance identical to silver powder despite the flake from, different from conventional granular powder, and it is possible to manufacture particles even having fine sizes industrially at a low cost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、導電ペースト用片
状銅合金粉の製造方法に関するものである。
The present invention relates to a method for producing flaky copper alloy powder for conductive paste.

【0002】[0002]

【従来の技術】一般にポリマー型導電ペーストと言え
ば、導電性金属粉である銅粉あるいは銀粉を合成樹脂バ
インダーに分散させたタイプが主流である。これら導電
ペーストはプリント基板のスルーホールや導電回路、電
極の接着剤、電磁波シールド用等に多量に使用されてい
る。
2. Description of the Related Art In general, a polymer type conductive paste is mainly of a type in which copper powder or silver powder, which is conductive metal powder, is dispersed in a synthetic resin binder. These conductive pastes are used in large quantities for through holes in printed circuit boards, conductive circuits, adhesives for electrodes, electromagnetic wave shielding, and the like.

【0003】しかし、銅粉を分散したものは安価である
が銀のような優れた導電性を得ることが難しく、また酸
化により導電性が低下し易い。これらの問題を解決する
ために「導電性銅ペースト」(特許公報第265406
7号)が提案されているが、銅粉を還元しながらペース
ト化するもので還元性樹脂を使用する必要が有る等多く
の制約があり、あらゆる用途に対応出来ないものであ
る。銀粉を使用したものは優れた導電性が得られるもの
の、高価格でありマイグレーションの問題が発生し易い
ことから銅粉に銀メッキした銅粉「銀めっき銅粉」(特
開平9−282935号公報)、銀メッキ銅粉を分散し
たペースト「導電性接着剤」(特開平7−138549
号公報)等が提案されているが、銀メッキ銅粉はメッキ
液の廃液処理、粒子径の細かい比表面積の大きな粉末へ
のメッキ処理は難しい等の問題を有している。銅合金粉
の粒子表面への銀濃度を高くした銅銀合金粉を使用した
ペースト「はんだ付け可能な銅系導電性ペースト」(特
公平7−109724号公報)が提案されているが、不
活性ガスアトマイズ法で製造した金属粉を使用している
ためやはり高価であり、粒子径の小さい粉末では表面近
傍と内部の銀濃度に差がなくなる傾向がある。最近では
電子機器の小型化傾向により、吹き付け塗装あるいはロ
ールコータ法、スクリーン印刷法による電磁波シールド
用では、より塗装し易く、かつ薄い塗膜が要求されてき
ている。スクリーン印刷方法による導電回路やジャンパ
ー線では、より細線パターンに対応出来る導電ペースト
が要求されてきている。ディスペンサーによる導電接着
剤用も部品の小型化により接着面積が微細化し、より細
かい粒子を分散したペーストが必要になってきている。
[0003] However, a dispersion of copper powder is inexpensive, but it is difficult to obtain excellent conductivity such as silver, and the conductivity is easily reduced by oxidation. To solve these problems, “conductive copper paste” (Patent Publication No. 265406)
No. 7) has been proposed, but it is one that forms a paste while reducing copper powder, and has many restrictions such as the need to use a reducing resin, and cannot be used in all applications. Although silver powder is used, excellent conductivity can be obtained, but copper powder "silver-plated copper powder" obtained by plating silver on copper powder is expensive (Patent Document 9) ), A paste in which silver-plated copper powder is dispersed, “conductive adhesive” (JP-A-7-138549)
However, silver-plated copper powder has a problem that it is difficult to treat a waste solution of a plating solution and to apply a plating process to powder having a small particle diameter and a large specific surface area. A paste using a copper-silver alloy powder having a high silver concentration on the particle surface of the copper alloy powder, “Solderable copper-based conductive paste” (Japanese Patent Publication No. 7-109724) has been proposed, but is inactive. Since the metal powder produced by the gas atomization method is used, the powder is still expensive, and the powder having a small particle diameter tends to have no difference between the silver concentration in the vicinity of the surface and the silver concentration in the inside. In recent years, due to the trend of miniaturization of electronic devices, there has been a demand for a thinner coating film which can be easily painted in the case of electromagnetic wave shielding by spray coating, roll coating, or screen printing. In a conductive circuit or a jumper wire by a screen printing method, a conductive paste that can correspond to a finer line pattern has been required. For conductive adhesives using a dispenser, the bonding area has been reduced due to the miniaturization of parts, and a paste in which finer particles are dispersed has become necessary.

【0004】[0004]

【発明が解決しようとする課題】従来まで導電ペースト
用に使用されてきた金属粉は、銀粉が主である。それ
は、優れた導電性が容易に得られるとともに信頼性にお
いて安定した性能が得られるためである。しかし銀粉は
高価であるとともに、回路の線間が狭くなればなるほど
マイグレーションの問題が発生し易く、新しい導電性金
属粉が待たれていた。銅粉に銀をメッキしたものや、表
面の銀濃度を高くしたものなどが新規な導電性金属粉と
して提案されてきたが、いずれも製造法上粒子径の小さ
いものが出来ず、最近の電子機器の小型化に対応できな
いものであった。すなわち、銀粉は粒子径を細かくして
も、機械的に片状加工しても酸化の問題がそれほどない
ため導電ペースト用として多くの用途に問題なく使用さ
れている。
The metal powder which has hitherto been used for the conductive paste is mainly silver powder. This is because excellent conductivity is easily obtained and stable performance in reliability is obtained. However, silver powder is expensive and migration problems are more likely to occur as the lines between circuits become narrower, and new conductive metal powders have been awaited. Copper powder plated with silver and silver with a high silver concentration on the surface have been proposed as new conductive metal powders. It could not cope with downsizing of equipment. In other words, silver powder has no problem of oxidation even if it has a fine particle diameter or is mechanically flaked, so that it is used without problems in many applications as a conductive paste.

【0005】しかし、銀メッキ銅粉は、メッキする粒子
径を細かくする事が出来ず、さらに形状が片状であると
比表面積が大きくなるため均一にメッキする事が出来な
い。したがって、銀メッキは荒い粒子のみ行われてい
る。形状を片状にすれば、薄膜化、細線化などペースト
に要求される性能をかなりの部分で満足させることが解
っている。しかし、これまで銀の効果を十分に生かした
片状銅合金粉はまだ実用化されていない。そこで、本発
明者等はポリマー型導電ペースト用として使用できる片
状銅合金粉の製造方法について研究を重ねた結果、特定
の銅銀合金粉に脂肪酸を加え機械的に片状加工し、しか
る後に還元性雰囲気中で還元処理すれば、最近のペース
ト要求性能に対応出来る導電ペースト用片状銅合金粉が
出来ることを見いだした。
However, silver-plated copper powder cannot be reduced in particle size to be plated, and if the shape is flaky, the specific surface area becomes large, so that uniform plating cannot be performed. Therefore, silver plating is performed only for coarse particles. It has been found that if the shape is flaked, the performance required for the paste, such as thinning and thinning, can be satisfied to a large extent. However, flaky copper alloy powders that fully utilize the effect of silver have not yet been put to practical use. Therefore, the present inventors have repeated research on a method of producing a flaky copper alloy powder that can be used for a polymer type conductive paste, and as a result, a fatty acid is added to a specific copper-silver alloy powder and mechanically flake-processed. It has been found that a flake copper alloy powder for a conductive paste can be produced by performing a reduction treatment in a reducing atmosphere, which can respond to recent paste performance requirements.

【0006】[0006]

【課題を解決するための手段】本発明に関する導電ペー
スト用片状銅合金粉の製造方法とは、銀を3から75重
量%含有した銅合金粉に対して、0.05から2重量%
の脂肪酸を加えて機械的に片状加工し、しかる後に還元
性雰囲気中で、150℃から500℃の温度で還元処理
し、粒子径が100μm以下で,BET法比表面積値が
2000cm2/g以上の粉末を得ることを特徴とする
ものである。
The method for producing a flaky copper alloy powder for a conductive paste according to the present invention is as follows: 0.05 to 2% by weight of copper alloy powder containing 3 to 75% by weight of silver.
And then mechanically flaked, and then reduced in a reducing atmosphere at a temperature of 150 ° C. to 500 ° C. to a particle diameter of 100 μm or less and a BET specific surface area of 2000 cm 2 / g. It is characterized by obtaining the above powder.

【0007】[0007]

【発明の実施の形態】本発明の構成を詳しく説明すれば
次の通りである。本発明の出発原料である銅合金粉は、
銀を3から75重量%含有する必要がある。特性を損な
わなければアルミニウム、亜鉛、錫、鉛などの第三金属
成分を添加しても良いが、銀の含有量はこの範囲が必要
である。3重量%より少ないと銀粉に近い導電性やペー
ストとしての信頼性が得られない。75重量%よりも多
いと銀粉と価格的に差がなくなり、またマイグレーショ
ンも少なくならない。工業的に好ましい銀含有量は5か
ら70重量%である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The construction of the present invention will be described in detail as follows. Copper alloy powder as a starting material of the present invention,
It must contain from 3 to 75% by weight of silver. If the characteristics are not impaired, a third metal component such as aluminum, zinc, tin, or lead may be added, but the silver content must be within this range. If the amount is less than 3% by weight, the conductivity close to silver powder and the reliability as a paste cannot be obtained. If the content is more than 75% by weight, there is no difference in price from silver powder, and migration does not decrease. An industrially preferred silver content is from 5 to 70% by weight.

【0008】銅合金粉の製造方法はアトマイズ法を用い
れば容易に製造できる。合金箔や切削粉も出発原料にす
ることが出来るが、工業的にアトマイズ法が良い。アト
マイズ法には不活性ガスアトマイズ法、空気アトマイズ
法、水アトマイズ法、オイルアトマイズ法等があるが、
本発明の場合高価なガスを使用する不活性ガスアトマイ
ズ法でなくてよく、水や、空気を使用したアトマイズ法
で良い。機械的に片状加工するときに加える脂肪酸の量
は、銅合金粉に対して0.05重量%から2重量%必要
である。0.05重量%より少ないと片状加工中に凝集
するとともに、還元処理中に強く凝集し再分散出来ず導
電ペースト用片状銅合金粉とならない。2重量%より多
く加えると片状化が難しく、還元処理時間が長くかかり
良くない。脂肪酸量を粉砕加工中に多くすることが出来
ない場合は、片状加工した後にミキサーなどの混合機で
脂肪酸と片状銅合金粉を混合すれば良い。工業的に好ま
しい量は0.1から1重量%である。脂肪酸を加え機械
的に片状加工する方法は、ボールミル、振動ミル、アジ
テータミル、デイスクミル、などの粉砕機で粉砕しなが
ら片状加工すれば良い。粉砕機の種類や粉砕時間を調整
する事により、目的とする粒子径、BET法比表面積値
の片状銅合金粉を得ることが出来る。脂肪酸はラウリン
酸、パルミチン酸、ステアリン酸、オレイン酸など高級
脂肪酸が良い。低級脂肪酸は還元処理中に悪臭が出るた
め好ましくない。還元性雰囲気は、水素、一酸化炭素、
天然ガス、アンモニア分解ガスなど還元性気体を流す方
法が良い。
The copper alloy powder can be easily produced by using an atomizing method. Although alloy foil and cutting powder can be used as starting materials, the atomizing method is industrially preferable. The atomizing method includes an inert gas atomizing method, an air atomizing method, a water atomizing method, an oil atomizing method, and the like.
In the case of the present invention, an inert gas atomization method using an expensive gas may be used, and an atomization method using water or air may be used. The amount of the fatty acid to be added when mechanically flake processing is required to be 0.05% by weight to 2% by weight based on the copper alloy powder. If the content is less than 0.05% by weight, the particles coagulate during the flake processing, and strongly coagulate during the reduction treatment, cannot be redispersed, and do not become flake copper alloy powder for conductive paste. If it is added in an amount of more than 2% by weight, flake formation is difficult, and the reduction treatment time is long, which is not good. When the fatty acid amount cannot be increased during the pulverization, the fatty acid and the flaky copper alloy powder may be mixed by a mixer such as a mixer after the flake processing. An industrially preferred amount is from 0.1 to 1% by weight. As a method of mechanically flake processing by adding a fatty acid, flake processing may be performed while grinding with a crusher such as a ball mill, a vibration mill, an agitator mill, and a disk mill. By adjusting the type of the pulverizer and the pulverization time, a flaky copper alloy powder having a target particle diameter and a BET specific surface area can be obtained. Fatty acids are preferably higher fatty acids such as lauric acid, palmitic acid, stearic acid, and oleic acid. Lower fatty acids are not preferred because they give off odor during the reduction treatment. The reducing atmosphere is hydrogen, carbon monoxide,
A method of flowing a reducing gas such as natural gas or ammonia decomposition gas is preferable.

【0009】還元処理する温度は150℃から500℃
が良い。150℃より低い温度であると非常に長時間か
かるとともに、優れた導電性を有する片状銅合金粉が得
られない。500℃より高い温度であると還元処理中に
片状銅合金粉が脂肪酸で被覆していても凝集するため塗
装性、スクリーン印刷性や導電性も悪くなり、導電ペー
スト用片状銅合金粉として使用できないものとなる。工
業的には200℃から450℃が好ましい。還元処理し
た片状銅合金粉は粗大粉や凝集粉を多く含んでいる場合
があるので、100μmで篩い分けする必要がある。1
00μmよりも荒い粉が有るとペーストとして使用した
場合、スクリーンの目詰まりを生じる。BET法比表面
積値は粉砕加工時間等を調整して2000cm2/g以
上にする必要がある。2000cm2/gよりも小さい
値だと性能的に粒状のアトマイズ粉と同レベルで、片状
粉にした効果が少なく、最近の加工技術に対応出来るペ
ースト用粉末とならない。最近のスクリーン印刷法での
ペースト要求性能に対応できる好ましい値は、粒子径が
45μm以下であって、BET法比表面積値は3000
cm2/g以上である。
The temperature for the reduction treatment is from 150 ° C. to 500 ° C.
Is good. When the temperature is lower than 150 ° C., it takes a very long time, and a flaky copper alloy powder having excellent conductivity cannot be obtained. If the temperature is higher than 500 ° C., even if the flaky copper alloy powder is coated with a fatty acid during the reduction treatment, the paintability, screen printability and conductivity will be deteriorated because the flake copper alloy powder will be agglomerated. It cannot be used. Industrially, the temperature is preferably from 200 ° C to 450 ° C. Since the flaky copper alloy powder subjected to the reduction treatment may contain a large amount of coarse powder or agglomerated powder, it needs to be sieved at 100 μm. 1
When the powder having a coarseness of more than 00 μm is used as a paste, the screen is clogged. The BET specific surface area value needs to be 2000 cm 2 / g or more by adjusting the pulverization processing time and the like. If the value is less than 2000 cm 2 / g, the performance is at the same level as the granular atomized powder, the effect of forming the flake powder is small, and the powder for paste that can cope with recent processing techniques is not obtained. A preferable value that can meet the paste performance required by the recent screen printing method is that the particle diameter is 45 μm or less and the BET specific surface area value is 3000.
cm 2 / g or more.

【0010】[0010]

【実施例】以下、実施例により本発明を具体的に説明す
るが、これにより本発明の範囲及び使用範囲が限定され
るものではない。 (実施例1)銅97重量%、銀3重量%になるように調
整した金属を坩堝で溶解し、空気アトマイズ法で本発明
の出発原料の銅合金粉を作成した。このようにして作成
した銅合金粉1000gに対して、5gのステアリン酸
を加え、振動ミルで2時間粉砕し片状加工した。しかる
後に水素雰囲気の還元炉で300℃20分間還元処理し
た。このようにして得た片状粉末を150メッシュの篩
を用いて100μm以下の粒子径にし、BET法比表面
積値3000cm2/gの導電ペースト用片状銅合金粉
を製造した。このようにして製造した本発明の導電ペー
スト用片状銅合金粉の性能を確認するために銅合金粉7
5重量部、アクリル樹脂25重量部になるように混合
し、トルオールで希釈して導電ペーストを作成した。作
成したペーストをABS樹脂板にロールコータ法で印刷
し膜厚25μmの塗膜を作成し、比抵抗値を測定した。
その結果3.0×10ー4Ω・cmの良好な導電性を示し
た。
EXAMPLES The present invention will be described below in detail with reference to examples, but the scope and use of the present invention are not limited thereby. (Example 1) A metal adjusted to be 97% by weight of copper and 3% by weight of silver was melted in a crucible, and a copper alloy powder as a starting material of the present invention was prepared by an air atomizing method. 5 g of stearic acid was added to 1000 g of the copper alloy powder thus prepared, and the mixture was pulverized by a vibration mill for 2 hours and processed into flakes. Thereafter, a reduction treatment was performed at 300 ° C. for 20 minutes in a reducing furnace in a hydrogen atmosphere. The flake powder thus obtained was sized to 100 μm or less using a 150-mesh sieve to produce a flake copper alloy powder for conductive paste having a BET specific surface area of 3000 cm 2 / g. In order to confirm the performance of the flaky copper alloy powder for conductive paste of the present invention thus produced, the copper alloy powder 7 was used.
5 parts by weight and 25 parts by weight of an acrylic resin were mixed and diluted with toluene to prepare a conductive paste. The prepared paste was printed on an ABS resin plate by a roll coater method to form a coating film having a thickness of 25 μm, and the specific resistance value was measured.
As a result, good conductivity of 3.0 × 10 −4 Ω · cm was exhibited.

【0011】(実施例2)銅95重量%、銀5重量%に
なるように調整した金属を坩堝で溶解し、空気アトマイ
ズ法で本発明の出発原料の銅合金粉を作成した。このよ
うにして作成した銅合金粉1000gに対して、5gの
ステアリン酸を加え、振動ミルで2時間粉砕し片状加工
した。しかる後に水素雰囲気の還元炉で300℃20分
間還元処理した。このようにして得た片状粉末を150
メッシュの篩を用いて100μm以下の粒子径にし、B
ET法比表面積値3050cm2/gの導電ペースト用
片状銅合金粉を製造した。このようにして製造した本発
明の導電ペースト用片状銅合金粉の性能を確認するため
に銅合金粉75重量部、アクリル樹脂25重量部になる
ように混合し、トルオールで希釈して導電ペーストを作
成した。作成したペーストをABS樹脂板にロールコー
タ法で印刷し膜厚25μmの塗膜を作成し、比抵抗値を
測定した。その結果2.5×10ー4Ω・cmの良好な導電
性を示した。
Example 2 A metal adjusted to 95% by weight of copper and 5% by weight of silver was melted in a crucible, and a copper alloy powder as a starting material of the present invention was prepared by an air atomizing method. 5 g of stearic acid was added to 1000 g of the copper alloy powder thus prepared, and the mixture was pulverized by a vibration mill for 2 hours and processed into flakes. Thereafter, a reduction treatment was performed at 300 ° C. for 20 minutes in a reducing furnace in a hydrogen atmosphere. The flaky powder obtained in this way is
Using a mesh sieve, reduce the particle size to 100 μm or less.
A flaky copper alloy powder for conductive paste having an ET method specific surface area value of 3050 cm 2 / g was produced. In order to confirm the performance of the flaky copper alloy powder for conductive paste of the present invention thus manufactured, the conductive paste was mixed by mixing 75 parts by weight of copper alloy powder and 25 parts by weight of acrylic resin and diluted with toluene. It was created. The prepared paste was printed on an ABS resin plate by a roll coater method to form a coating film having a thickness of 25 μm, and the specific resistance value was measured. As a result, good conductivity of 2.5 × 10 −4 Ω · cm was exhibited.

【0012】(実施例3)銅90重量%、銀10重量%
になるように調整した金属を坩堝で溶解し、空気アトマ
イズ法で本発明の出発原料の銅合金粉を作成した。この
ようにして作成した銅合金粉1000gに対して、5g
のステアリン酸を加え、振動ミルで2時間粉砕し片状加
工した。しかる後に水素雰囲気の還元炉で300℃20
分間還元処理した。このようにして得た片状粉末を15
0メッシュの篩を用いて100μm以下の粒子径にし、
BET法比表面積値3050cm2/gの導電ペースト
用片状銅合金粉を製造した。このようにして製造した本
発明の導電ペースト用片状銅合金粉の性能を確認するた
めに銅合金粉75重量部、アクリル樹脂25重量部にな
るように混合し、トルオールで希釈して導電ペーストを
作成した。作成したペーストをABS樹脂板にロールコ
ータ法で印刷し膜厚25μmの塗膜を作成し、比抵抗値
を測定した。その結果2.0×10ー4Ω・cmの良好な導
電性を示した。
Example 3 90% by weight of copper and 10% by weight of silver
Was melted in a crucible to prepare a copper alloy powder as a starting material of the present invention by an air atomizing method. 5 g for 1000 g of the copper alloy powder thus prepared
Of stearic acid was added, and the mixture was pulverized with a vibration mill for 2 hours and processed into flakes. Then, in a reducing furnace in a hydrogen atmosphere at 300 ° C. 20
Reduction treatment was performed for minutes. The flaky powder obtained in this way is 15
Using a 0 mesh sieve to a particle size of 100 μm or less,
A flake copper alloy powder for a conductive paste having a BET specific surface area of 3050 cm 2 / g was produced. In order to confirm the performance of the flaky copper alloy powder for conductive paste of the present invention thus manufactured, the conductive paste was mixed by mixing 75 parts by weight of copper alloy powder and 25 parts by weight of acrylic resin and diluted with toluene. It was created. The prepared paste was printed on an ABS resin plate by a roll coater method to form a coating film having a thickness of 25 μm, and the specific resistance value was measured. As a result, good conductivity of 2.0 × 10 −4 Ω · cm was exhibited.

【0013】(実施例4)銅80重量%、銀20重量%
になるように調整した金属を坩堝で溶解し、空気アトマ
イズ法で本発明の出発原料の銅合金粉を作成した。この
ようにして作成した銅合金粉1000gに対して、5g
のステアリン酸を加え、振動ミルで2時間粉砕し片状加
工した。しかる後に水素雰囲気の還元炉で300℃20
分間還元処理した。このようにして得た片状粉末を15
0メッシュの篩を用いて100μm以下の粒子径にし、
BET法比表面積値3200cm2/gの導電ペースト
用片状銅合金粉を製造した。このようにして製造した本
発明の導電ペースト用片状銅合金粉の性能を確認するた
めに銅合金粉75重量部、アクリル樹脂25重量部にな
るように混合し、トルオールで希釈して導電ペーストを
作成した。作成したペーストをABS樹脂板にロールコ
ータ法で印刷し膜厚25μmの塗膜を作成し、比抵抗値
を測定した。その結果2.0×10ー4Ω・cmの良好な導
電性を示した。
(Example 4) 80% by weight of copper and 20% by weight of silver
Was melted in a crucible to prepare a copper alloy powder as a starting material of the present invention by an air atomizing method. 5 g for 1000 g of the copper alloy powder thus prepared
Of stearic acid was added, and the mixture was pulverized with a vibration mill for 2 hours and processed into flakes. Then, in a reducing furnace in a hydrogen atmosphere at 300 ° C. 20
Reduction treatment was performed for minutes. The flaky powder obtained in this way is 15
Using a 0 mesh sieve to a particle size of 100 μm or less,
A flaky copper alloy powder for a conductive paste having a BET specific surface area of 3,200 cm 2 / g was produced. In order to confirm the performance of the flaky copper alloy powder for conductive paste of the present invention thus manufactured, the conductive paste was mixed by mixing 75 parts by weight of copper alloy powder and 25 parts by weight of acrylic resin and diluted with toluene. It was created. The prepared paste was printed on an ABS resin plate by a roll coater method to form a coating film having a thickness of 25 μm, and the specific resistance value was measured. As a result, good conductivity of 2.0 × 10 −4 Ω · cm was exhibited.

【0014】(実施例5)銅50重量%、銀50重量%
になるように調整した金属を坩堝で溶解し、空気アトマ
イズ法で本発明の出発原料の銅合金粉を作成した。この
ようにして作成した銅合金粉1000gに対して、5g
のステアリン酸を加え、振動ミルで2時間粉砕し片状加
工した。しかる後に水素雰囲気の還元炉で300℃20
分間還元処理した。このようにして得た片状粉末を15
0メッシュの篩を用いて100μm以下の粒子径にし、
BET法比表面積値3500cm2/gの導電ペースト
用片状銅合金粉を製造した。このようにして製造した本
発明の導電ペースト用片状銅合金粉の性能を確認するた
めに銅合金粉75重量部、アクリル樹脂25重量部にな
るように混合し、トルオールで希釈して導電ペーストを
作成した。作成したペーストをABS樹脂板にロールコ
ータ法で印刷し膜厚25μmの塗膜を作成し、比抵抗値
を測定した。その結果1.8×10ー4Ω・cmの良好な導
電性を示した。
(Example 5) 50% by weight of copper and 50% by weight of silver
Was melted in a crucible to prepare a copper alloy powder as a starting material of the present invention by an air atomizing method. 5 g for 1000 g of the copper alloy powder thus prepared
Of stearic acid was added, and the mixture was pulverized with a vibration mill for 2 hours and processed into flakes. Then, in a reducing furnace in a hydrogen atmosphere at 300 ° C. 20
Reduction treatment was performed for minutes. The flaky powder obtained in this way is 15
Using a 0 mesh sieve to a particle size of 100 μm or less,
A flake copper alloy powder for a conductive paste having a BET specific surface area of 3500 cm 2 / g was produced. In order to confirm the performance of the flaky copper alloy powder for conductive paste of the present invention thus manufactured, the conductive paste was mixed by mixing 75 parts by weight of copper alloy powder and 25 parts by weight of acrylic resin and diluted with toluene. It was created. The prepared paste was printed on an ABS resin plate by a roll coater method to form a coating film having a thickness of 25 μm, and the specific resistance value was measured. As a result, good conductivity of 1.8 × 10 −4 Ω · cm was exhibited.

【0015】(実施例6)銅30重量%、銀70重量%
になるように調整した金属を坩堝で溶解し、空気アトマ
イズ法で本発明の出発原料の銅合金粉を作成した。この
ようにして作成した銅合金粉1000gに対して、5g
のステアリン酸を加え、振動ミルで2時間粉砕し片状加
工した。しかる後に水素雰囲気の還元炉で300℃20
分間還元処理した。このようにして得た片状粉末を15
0メッシュの篩を用いて100μm以下の粒子径にし、
BET法比表面積値4000cm2/gの導電ペースト
用片状銅合金粉を製造した。このようにして製造した本
発明の導電ペースト用片状銅合金粉の性能を確認するた
めに銅合金粉75重量部、アクリル樹脂25重量部にな
るように混合し、トルオールで希釈して導電ペーストを
作成した。作成したペーストをABS樹脂板にロールコ
ータ法で印刷し膜厚25μmの塗膜を作成し、比抵抗値
を測定した。その結果1.5×10ー4Ω・cmの良好な導
電性を示した。
Example 6 30% by weight of copper, 70% by weight of silver
Was melted in a crucible to prepare a copper alloy powder as a starting material of the present invention by an air atomizing method. 5 g for 1000 g of the copper alloy powder thus prepared
Of stearic acid was added, and the mixture was pulverized with a vibration mill for 2 hours and processed into flakes. Then, in a reducing furnace in a hydrogen atmosphere at 300 ° C. 20
Reduction treatment was performed for minutes. The flaky powder obtained in this way is 15
Using a 0 mesh sieve to a particle size of 100 μm or less,
A flake copper alloy powder for a conductive paste having a BET specific surface area value of 4000 cm 2 / g was produced. In order to confirm the performance of the flaky copper alloy powder for conductive paste of the present invention thus manufactured, the conductive paste was mixed by mixing 75 parts by weight of copper alloy powder and 25 parts by weight of acrylic resin and diluted with toluene. It was created. The prepared paste was printed on an ABS resin plate by a roll coater method to form a coating film having a thickness of 25 μm, and the specific resistance value was measured. As a result, good conductivity of 1.5 × 10 −4 Ω · cm was exhibited.

【0016】(実施例7)銅25重量%、銀75重量%
になるように調整した金属を坩堝で溶解し、空気アトマ
イズ法で本発明の出発原料の銅合金粉を作成した。この
ようにして作成した銅合金粉1000gに対して、5g
のステアリン酸を加え、振動ミルで2時間粉砕し片状加
工した。しかる後に水素雰囲気の還元炉で300℃20
分間還元処理した。このようにして得た片状粉末を15
0メッシュの篩を用いて100μm以下の粒子径にし、
BET法比表面積値4100cm2/gの導電ペースト
用片状銅合金粉を製造した。このようにして製造した本
発明の導電ペースト用片状銅合金粉の性能を確認するた
めに銅合金粉75重量部、アクリル樹脂25重量部にな
るように混合し、トルオールで希釈して導電ペーストを
作成した。作成したペーストをABS樹脂板にロールコ
ータ法で印刷し膜厚25μmの塗膜を作成し、比抵抗値
を測定した。その結果1.5×10ー4Ω・cmの良好な導
電性を示した。
(Example 7) Copper 25% by weight, silver 75% by weight
Was melted in a crucible to prepare a copper alloy powder as a starting material of the present invention by an air atomizing method. 5 g for 1000 g of the copper alloy powder thus prepared
Of stearic acid was added, and the mixture was pulverized with a vibration mill for 2 hours and processed into flakes. Then, in a reducing furnace in a hydrogen atmosphere at 300 ° C. 20
Reduction treatment was performed for minutes. The flaky powder obtained in this way is 15
Using a 0 mesh sieve to a particle size of 100 μm or less,
A flaky copper alloy powder for a conductive paste having a BET specific surface area of 4,100 cm 2 / g was produced. In order to confirm the performance of the flaky copper alloy powder for conductive paste of the present invention thus manufactured, the conductive paste was mixed by mixing 75 parts by weight of copper alloy powder and 25 parts by weight of acrylic resin and diluted with toluene. It was created. The prepared paste was printed on an ABS resin plate by a roll coater method to form a coating film having a thickness of 25 μm, and the specific resistance value was measured. As a result, good conductivity of 1.5 × 10 −4 Ω · cm was exhibited.

【0017】(実施例8)銅90重量%、銀10重量%
になるように調整した金属を坩堝で溶解し、空気アトマ
イズ法で本発明の出発原料の銅合金粉を作成した。この
ようにして作成した銅合金粉1000gに対して、20
gのステアリン酸を加え、ボールミルで8時間粉砕し片
状加工した。しかる後に水素雰囲気の還元炉で500℃
10分間還元処理した。このようにして得た片状粉末を
150メッシュの篩を用いて100μm以下の粒子径に
し、BET法比表面積値5000cm2/gの導電ペー
スト用片状銅合金粉を製造した。このようにして製造し
た本発明の導電ペースト用片状銅合金粉の性能を確認す
るために銅合金粉75重量部、アクリル樹脂25重量部
になるように混合し、トルオールで希釈して導電ペース
トを作成した。作成したペーストをABS樹脂板にロー
ルコータ法で印刷し膜厚25μmの塗膜を作成し、比抵
抗値を測定した。その結果2.0×10ー4Ω・cmの良好
な導電性を示した。
Example 8 90% by weight of copper, 10% by weight of silver
Was melted in a crucible to prepare a copper alloy powder as a starting material of the present invention by an air atomizing method. For 1000 g of the copper alloy powder thus produced, 20 g
g of stearic acid was added, and the mixture was pulverized with a ball mill for 8 hours and processed into flakes. Then, in a hydrogen atmosphere reducing furnace at 500 ° C
Reduction treatment was performed for 10 minutes. The flaky powder thus obtained was sized using a 150-mesh sieve to a particle size of 100 μm or less to produce a flaky copper alloy powder for a conductive paste having a BET specific surface area of 5000 cm 2 / g. In order to confirm the performance of the flaky copper alloy powder for conductive paste of the present invention thus manufactured, the conductive paste was mixed by mixing 75 parts by weight of copper alloy powder and 25 parts by weight of acrylic resin and diluted with toluene. It was created. The prepared paste was printed on an ABS resin plate by a roll coater method to form a coating film having a thickness of 25 μm, and the specific resistance value was measured. As a result, good conductivity of 2.0 × 10 −4 Ω · cm was exhibited.

【0018】(実施例9)銅50重量%、銀50重量%
になるように調整した金属を坩堝で溶解し、空気アトマ
イズ法で本発明の出発原料の銅合金粉を作成した。この
ようにして作成した銅合金粉1000gに対して、20
gのステアリン酸を加え、ボールミルで8時間粉砕し片
状加工した。しかる後に水素雰囲気の還元炉で500℃
10分間還元処理した。このようにして得た片状粉末を
150メッシュの篩を用いて100μm以下の粒子径に
し、BET法比表面積値6000cm2/gの導電ペー
スト用片状銅合金粉を製造した。このようにして製造し
た本発明の導電ペースト用片状銅合金粉の性能を確認す
るために銅合金粉75重量部、アクリル樹脂25重量部
になるように混合し、トルオールで希釈して導電ペース
トを作成した。作成したペーストをABS樹脂板にロー
ルコータ法で印刷し膜厚25μmの塗膜を作成し、比抵
抗値を測定した。その結果1.6×10ー4Ω・cmの良好
な導電性を示した。
Example 9 50% by weight of copper and 50% by weight of silver
Was melted in a crucible to prepare a copper alloy powder as a starting material of the present invention by an air atomizing method. For 1000 g of the copper alloy powder thus produced, 20 g
g of stearic acid was added, and the mixture was pulverized with a ball mill for 8 hours and processed into flakes. Then, in a hydrogen atmosphere reducing furnace at 500 ° C
Reduction treatment was performed for 10 minutes. The flaky powder thus obtained was sieved to a particle size of 100 μm or less using a 150-mesh sieve to produce a flaky copper alloy powder for a conductive paste having a BET specific surface area of 6000 cm 2 / g. In order to confirm the performance of the flaky copper alloy powder for conductive paste of the present invention thus manufactured, the conductive paste was mixed by mixing 75 parts by weight of copper alloy powder and 25 parts by weight of acrylic resin and diluted with toluene. It was created. The prepared paste was printed on an ABS resin plate by a roll coater method to form a coating film having a thickness of 25 μm, and the specific resistance value was measured. As a result, good conductivity of 1.6 × 10 −4 Ω · cm was exhibited.

【0019】(実施例10)銅90重量%、銀10重量
%になるように調整した金属を坩堝で溶解し、空気アト
マイズ法で本発明の出発原料の銅合金粉を作成した。こ
のようにして作成した銅合金粉1000gに対して、
0.5gのステアリン酸を加え、ボールミルで1時間粉
砕し片状加工した。しかる後に水素雰囲気の還元炉で1
50℃60分間還元処理した。このようにして得た片状
粉末を150メッシュの篩いを用いて100μm以下の
粒子径にし、BET法比表面積値2000cm2/gの
導電ペースト用片状銅合金粉を製造した。このようにし
て製造した本発明の導電ペースト用片状銅合金粉の性能
を確認するために銅合金粉75重量部、アクリル樹脂2
5重量部になるように混合し、トルオールで希釈して導
電ペーストを作成した。作成したペーストをABS樹脂
板にロールコータ法で印刷し膜厚25μmの塗膜を作成
し、比抵抗値を測定した。その結果4.0×10ー4Ω・c
mの良好な導電性を示した。
Example 10 A metal adjusted to 90% by weight of copper and 10% by weight of silver was melted in a crucible, and a copper alloy powder as a starting material of the present invention was prepared by an air atomizing method. For 1000 g of the copper alloy powder thus prepared,
0.5 g of stearic acid was added, and the mixture was pulverized for 1 hour with a ball mill and processed into flakes. Then, in a reducing furnace in a hydrogen atmosphere,
Reduction treatment was performed at 50 ° C. for 60 minutes. The flaky powder thus obtained was sieved to a particle size of 100 μm or less using a 150-mesh sieve to produce a flaky copper alloy powder for a conductive paste having a BET specific surface area of 2000 cm 2 / g. In order to confirm the performance of the flaky copper alloy powder for a conductive paste of the present invention thus manufactured, 75 parts by weight of copper alloy powder, acrylic resin 2
It mixed so that it might become 5 weight part, and diluted with toluene, and produced the conductive paste. The prepared paste was printed on an ABS resin plate by a roll coater method to form a coating film having a thickness of 25 μm, and the specific resistance value was measured. As a result, 4.0 × 10-4 Ω · c
m showed good conductivity.

【0020】(実施例11)銅50重量%、銀50重量
%になるように調整した金属を坩堝で溶解し、空気アト
マイズ法で本発明の出発原料の銅合金粉を作成した。こ
のようにして作成した銅合金粉1000gに対して、
0.5gのステアリン酸を加え、ボールミルで1時間粉
砕し片状加工した。しかる後に水素雰囲気の還元炉で1
50℃60分間還元処理した。このようにして得た片状
粉末を150メッシュの篩を用いて100μm以下の粒
子径にし、BET法比表面積値2500cm2/gの導
電ペースト用片状銅合金粉を製造した。このようにして
製造した本発明の導電ペースト用片状銅合金粉の性能を
確認するために銅合金粉75重量部、アクリル樹脂25
重量部になるように混合し、トルオールで希釈して導電
ペーストを作成した。作成したペーストをABS樹脂板
にロールコータ法で印刷し膜厚25μmの塗膜を作成
し、比抵抗値を測定した。その結果3.0×10ー4Ω・c
mの良好な導電性を示した。
(Example 11) A metal adjusted to 50% by weight of copper and 50% by weight of silver was melted in a crucible, and a copper alloy powder as a starting material of the present invention was prepared by an air atomizing method. For 1000 g of the copper alloy powder thus prepared,
0.5 g of stearic acid was added, and the mixture was pulverized for 1 hour with a ball mill and processed into flakes. Then, in a reducing furnace in a hydrogen atmosphere,
Reduction treatment was performed at 50 ° C. for 60 minutes. The flaky powder thus obtained was sized to a particle size of 100 μm or less using a 150-mesh sieve to produce a flaky copper alloy powder for a conductive paste having a BET specific surface area of 2500 cm 2 / g. In order to confirm the performance of the flaky copper alloy powder for conductive paste of the present invention thus produced, 75 parts by weight of copper alloy powder and 25 parts of acrylic resin were used.
It mixed so that it might become a weight part, and diluted with toluene, and produced the conductive paste. The prepared paste was printed on an ABS resin plate by a roll coater method to form a coating film having a thickness of 25 μm, and the specific resistance value was measured. As a result, 3.0 × 10-4 Ω · c
m showed good conductivity.

【0021】(実施例12)銅90重量%、銀10重量
%になるように調整した金属を坩堝で溶解し、空気アト
マイズ法で本発明の出発原料の銅合金粉を作成した。こ
のようにして作成した銅合金粉1000gに対して、5
gのラウリン酸を加え、振動ミルで4時間粉砕し片状加
工した。しかる後にアンモニア分解ガス雰囲気の還元炉
で200℃80分間還元処理した。このようにして得た
片状粉末を325メッシュの篩を用いて45μm以下の
粒子径にし、BET法比表面積値7000cm2/gの導
電ペースト用片状銅合金粉を製造した。このようにして
製造した本発明の導電ペースト用片状銅合金粉の性能を
確認するために銅合金粉75重量部、エポキシ樹脂10
重量部、エチルカルビトール15重量部及び硬化剤、反
応促進剤を適量添加し銅ペーストを作成した。作成した
ペーストを200メッシュのスクリーンを使用してスク
リーン印刷方法で塗膜を作成し、比抵抗値を測定した。
その結果0.9×10ー4Ω・cmの良好な導電性を示し
た。
Example 12 A metal adjusted to 90% by weight of copper and 10% by weight of silver was melted in a crucible, and a copper alloy powder as a starting material of the present invention was prepared by an air atomizing method. For 1000 g of the copper alloy powder thus prepared, 5 g
g of lauric acid was added, and the mixture was pulverized with a vibration mill for 4 hours and flake-shaped. Thereafter, reduction treatment was performed at 200 ° C. for 80 minutes in a reducing furnace in an ammonia decomposition gas atmosphere. The flaky powder thus obtained was sized using a 325 mesh sieve to a particle size of 45 μm or less to produce a flaky copper alloy powder for a conductive paste having a BET specific surface area of 7000 cm 2 / g. In order to confirm the performance of the flaky copper alloy powder for a conductive paste of the present invention thus manufactured, 75 parts by weight of the copper alloy powder, epoxy resin 10
Parts by weight, 15 parts by weight of ethyl carbitol, a curing agent and a reaction accelerator were added in appropriate amounts to prepare a copper paste. Using the prepared paste, a coating film was formed by a screen printing method using a 200-mesh screen, and the specific resistance value was measured.
As a result, good conductivity of 0.9 × 10 −4 Ω · cm was exhibited.

【0022】(実施例13)銅90重量%、銀10重量
%になるように調整した金属を坩堝で溶解し、空気アト
マイズ法で本発明の出発原料の銅合金粉を作成した。こ
のようにして作成した銅合金粉1000gに対して、5
gのパルミチン酸を加え、振動ミルで4時間粉砕し片状
加工した。しかる後にアンモニア分解ガス雰囲気の還元
炉で200℃80分間還元処理した。このようにして得
た片状粉末を325メッシュの篩を用いて45μm以下
の粒子径にし、BET法比表面積値6800cm2/g
の導電ペースト用片状銅合金粉を製造した。このように
して製造した本発明の導電ペースト用片状銅合金粉の性
能を確認するために銅合金粉75重量部、エポキシ樹脂
10重量部、エチルカルビトール15重量部及び硬化
剤、反応促進剤を適量添加し銅ペーストを作成した。作
成したペーストを200メッシュのスクリーンを使用し
てスクリーン印刷方法で塗膜を作成し、比抵抗値を測定
した。その結果0.9×10ー4Ω・cmの良好な導電性を
示した。
Example 13 A metal adjusted to 90% by weight of copper and 10% by weight of silver was melted in a crucible, and a copper alloy powder as a starting material of the present invention was prepared by an air atomizing method. For 1000 g of the copper alloy powder thus prepared, 5 g
g of palmitic acid was added, and the mixture was pulverized with a vibrating mill for 4 hours and processed into flakes. Thereafter, reduction treatment was performed at 200 ° C. for 80 minutes in a reducing furnace in an ammonia decomposition gas atmosphere. The flaky powder thus obtained was reduced to a particle diameter of 45 μm or less using a 325 mesh sieve, and the BET specific surface area value was 6800 cm 2 / g.
Flake copper alloy powder for conductive paste was manufactured. In order to confirm the performance of the flaky copper alloy powder for a conductive paste of the present invention thus produced, 75 parts by weight of copper alloy powder, 10 parts by weight of epoxy resin, 15 parts by weight of ethyl carbitol, a curing agent, and a reaction accelerator Was added in an appropriate amount to prepare a copper paste. Using the prepared paste, a coating film was formed by a screen printing method using a 200-mesh screen, and the specific resistance value was measured. As a result, good conductivity of 0.9 × 10 −4 Ω · cm was exhibited.

【0023】(実施例14)銅90重量%、銀10重量
%になるように調整した金属を坩堝で溶解し、空気アト
マイズ法で本発明の出発原料の銅合金粉を作成した。こ
のようにして作成した銅合金粉1000gに対して、5
gのステアリン酸を加え、振動ミルで4時間粉砕し片状
加工した。しかる後にアンモニア分解ガス雰囲気の還元
炉で200℃80分間還元処理した。このようにして得
た片状粉末を325メッシュの篩を用いて45μm以下
の粒子径にし、BET法比表面積値7200cm2/g
の導電ペースト用片状銅合金粉を製造した。このように
して製造した本発明の導電ペースト用片状銅合金粉の性
能を確認するために銅合金粉75重量部、エポキシ樹脂
10重量部、エチルカルビトール15重量部及び硬化
剤、反応促進剤を適量添加し銅ペーストを作成した。作
成したペーストを200メッシュのスクリーンを使用し
てスクリーン印刷方法で塗膜を作成し、比抵抗値を測定
した。その結果0.9×10ー4Ω・cmの良好な導電性を
示した。
Example 14 A metal adjusted to 90% by weight of copper and 10% by weight of silver was melted in a crucible, and a copper alloy powder as a starting material of the present invention was prepared by an air atomizing method. For 1000 g of the copper alloy powder thus prepared, 5 g
g of stearic acid was added, and the mixture was pulverized with a vibration mill for 4 hours and processed into flakes. Thereafter, reduction treatment was performed at 200 ° C. for 80 minutes in a reducing furnace in an ammonia decomposition gas atmosphere. The flaky powder thus obtained was sized using a 325 mesh sieve to a particle size of 45 μm or less, and the BET specific surface area value was 7200 cm 2 / g.
Flake copper alloy powder for conductive paste was manufactured. In order to confirm the performance of the flaky copper alloy powder for a conductive paste of the present invention thus produced, 75 parts by weight of copper alloy powder, 10 parts by weight of epoxy resin, 15 parts by weight of ethyl carbitol, a curing agent, and a reaction accelerator Was added in an appropriate amount to prepare a copper paste. Using the prepared paste, a coating film was formed by a screen printing method using a 200-mesh screen, and the specific resistance value was measured. As a result, good conductivity of 0.9 × 10 −4 Ω · cm was exhibited.

【0024】(実施例15)銅90重量%、銀10重量
%になるように調整した金属を坩堝で溶解し、空気アト
マイズ法で本発明の出発原料の銅合金粉を作成した。こ
のようにして作成した銅合金粉1000gに対して、5
gのオレイン酸を加え、振動ミルで4時間粉砕し片状加
工した。しかる後にアンモニア分解ガス雰囲気の還元炉
で200℃80分間還元処理した。このようにして得た
片状粉末を325メッシュの篩を用いて45μm以下の
粒子径にし、BET法比表面積値7400cm2/gの導
電ペースト用片状銅合金粉を製造した。このようにして
製造した本発明の導電ペースト用片状銅合金粉の性能を
確認するために銅合金粉75重量部、エポキシ樹脂10
重量部、エチルカルビトール15重量部及び硬化剤、反
応促進剤を適量添加し銅ペーストを作成した。作成した
ペーストを200メッシュのスクリーンを使用してスク
リーン印刷方法で塗膜を作成し、比抵抗値を測定した。
その結果0.9×10ー4Ω・cmの良好な導電性を示し
た。
Example 15 A metal adjusted to 90% by weight of copper and 10% by weight of silver was melted in a crucible, and a copper alloy powder as a starting material of the present invention was prepared by an air atomizing method. For 1000 g of the copper alloy powder thus prepared, 5 g
g of oleic acid was added, and the mixture was pulverized with a vibration mill for 4 hours and processed into flakes. Thereafter, reduction treatment was performed at 200 ° C. for 80 minutes in a reducing furnace in an ammonia decomposition gas atmosphere. The flaky powder thus obtained was sized using a 325 mesh sieve to a particle size of 45 μm or less to produce a flaky copper alloy powder for a conductive paste having a BET specific surface area of 7400 cm 2 / g. In order to confirm the performance of the flaky copper alloy powder for a conductive paste of the present invention thus manufactured, 75 parts by weight of the copper alloy powder, epoxy resin 10
Parts by weight, 15 parts by weight of ethyl carbitol, a curing agent and a reaction accelerator were added in appropriate amounts to prepare a copper paste. Using the prepared paste, a coating film was formed by a screen printing method using a 200-mesh screen, and the specific resistance value was measured.
As a result, good conductivity of 0.9 × 10 −4 Ω · cm was exhibited.

【0025】(実施例16)銅80重量%、銀20重量
%になるように調整した金属を坩堝で溶解し、水アトマ
イズ法で本発明の出発原料の銅合金粉を作成した。この
ようにして作成した銅合金粉1000gに対して、5g
のラウリン酸を加え、振動ミルで4時間粉砕し片状加工
した。しかる後にアンモニア分解ガス雰囲気の還元炉で
200℃80分間還元処理した。このようにして得た片
状粉末を325メッシュの篩を用いて45μm以下の粒
子径にし、BET法比表面積値7500cm2/gの導
電ペースト用片状銅合金粉を製造した。このようにして
製造した本発明の導電ペースト用片状銅合金粉の性能を
確認するために銅合金粉75重量部、エポキシ樹脂10
重量部、エチルカルビトール15重量部及び硬化剤、反
応促進剤を適量添加し銅ペーストを作成した。作成した
ペーストを200メッシュのスクリーンを使用してスク
リーン印刷方法で塗膜を作成し、比抵抗値を測定した。
その結果0.9×10ー4Ω・cmの良好な導電性を示し
た。
(Example 16) A metal adjusted to 80% by weight of copper and 20% by weight of silver was melted in a crucible, and a copper alloy powder as a starting material of the present invention was prepared by a water atomizing method. 5 g for 1000 g of the copper alloy powder thus prepared
Of lauric acid was added, and the mixture was pulverized with a vibration mill for 4 hours to form flakes. Thereafter, reduction treatment was performed at 200 ° C. for 80 minutes in a reducing furnace in an ammonia decomposition gas atmosphere. The flaky powder thus obtained was sized using a 325 mesh sieve to a particle size of 45 μm or less to produce a flaky copper alloy powder for a conductive paste having a BET specific surface area of 7,500 cm 2 / g. In order to confirm the performance of the flaky copper alloy powder for a conductive paste of the present invention thus manufactured, 75 parts by weight of the copper alloy powder, epoxy resin 10
Parts by weight, 15 parts by weight of ethyl carbitol, a curing agent and a reaction accelerator were added in appropriate amounts to prepare a copper paste. Using the prepared paste, a coating film was formed by a screen printing method using a 200-mesh screen, and the specific resistance value was measured.
As a result, good conductivity of 0.9 × 10 −4 Ω · cm was exhibited.

【0026】(実施例17)銅80重量%、銀20重量
%になるように調整した金属を坩堝で溶解し、水アトマ
イズ法で本発明の出発原料の銅合金粉を作成した。この
ようにして作成した銅合金粉1000gに対して、5g
のパルミチン酸を加え、振動ミルで4時間粉砕し片状加
工した。しかる後にアンモニア分解ガス雰囲気の還元炉
で200℃80分間還元処理した。このようにして得た
片状粉末を325メッシュの篩を用いて45μm以下の
粒子径にし、BET法比表面積値7400cm2/gの
導電ペースト用片状銅合金粉を製造した。このようにし
て製造した本発明の導電ペースト用片状銅合金粉の性能
を確認するために銅合金粉75重量部、エポキシ樹脂1
0重量部、エチルカルビトール15重量部及び硬化剤、
反応促進剤を適量添加し銅ペーストを作成した。作成し
たペーストを200メッシュのスクリーンを使用してス
クリーン印刷方法で塗膜を作成し、比抵抗値を測定し
た。その結果0.9×10ー4Ω・cmの良好な導電性を示
した。
Example 17 A metal adjusted to be 80% by weight of copper and 20% by weight of silver was melted in a crucible, and a copper alloy powder as a starting material of the present invention was prepared by a water atomizing method. 5 g for 1000 g of the copper alloy powder thus prepared
Of palmitic acid was added, and the mixture was pulverized with a vibration mill for 4 hours and processed into flakes. Thereafter, reduction treatment was performed at 200 ° C. for 80 minutes in a reducing furnace in an ammonia decomposition gas atmosphere. The flaky powder thus obtained was sized using a 325 mesh sieve to a particle diameter of 45 μm or less to produce a flaky copper alloy powder for conductive paste having a BET specific surface area of 7,400 cm 2 / g. In order to confirm the performance of the flaky copper alloy powder for a conductive paste of the present invention thus manufactured, 75 parts by weight of copper alloy powder, epoxy resin 1
0 parts by weight, 15 parts by weight of ethyl carbitol and a curing agent,
An appropriate amount of a reaction accelerator was added to prepare a copper paste. Using the prepared paste, a coating film was formed by a screen printing method using a 200-mesh screen, and the specific resistance value was measured. As a result, good conductivity of 0.9 × 10 −4 Ω · cm was exhibited.

【0027】(実施例18)銅80重量%、銀20重量
%になるように調整した金属を坩堝で溶解し、水アトマ
イズ法で本発明の出発原料の銅合金粉を作成した。この
ようにして作成した銅合金粉1000gに対して、5g
のステアリン酸を加え、振動ミルで4時間粉砕し片状加
工した。しかる後にアンモニア分解ガス雰囲気の還元炉
で200℃80分間還元処理した。このようにして得た
片状粉末を325メッシュの篩を用いて45μm以下の
粒子径にし、BET法比表面積値7600cm2/gの
導電ペースト用片状銅合金粉を製造した。このようにし
て製造した本発明の導電ペースト用片状銅合金粉の性能
を確認するために銅合金粉75重量部、エポキシ樹脂1
0重量部、エチルカルビトール15重量部及び硬化剤、
反応促進剤を適量添加し銅ペーストを作成した。作成し
たペーストを200メッシュのスクリーンを使用してス
クリーン印刷方法で塗膜を作成し、比抵抗値を測定し
た。その結果0.8×10ー4Ω・cmの良好な導電性を示
した。
Example 18 A metal adjusted to 80% by weight of copper and 20% by weight of silver was melted in a crucible, and a copper alloy powder as a starting material of the present invention was prepared by a water atomizing method. 5 g for 1000 g of the copper alloy powder thus prepared
Of stearic acid was added, and the mixture was pulverized with a vibration mill for 4 hours and processed into flakes. Thereafter, reduction treatment was performed at 200 ° C. for 80 minutes in a reducing furnace in an ammonia decomposition gas atmosphere. The flaky powder thus obtained was sized using a 325 mesh sieve to a particle size of 45 μm or less to produce a flaky copper alloy powder for conductive paste having a BET specific surface area of 7,600 cm 2 / g. In order to confirm the performance of the flaky copper alloy powder for a conductive paste of the present invention thus manufactured, 75 parts by weight of copper alloy powder, epoxy resin 1
0 parts by weight, 15 parts by weight of ethyl carbitol and a curing agent,
An appropriate amount of a reaction accelerator was added to prepare a copper paste. Using the prepared paste, a coating film was formed by a screen printing method using a 200-mesh screen, and the specific resistance value was measured. As a result, good conductivity of 0.8 × 10 −4 Ω · cm was exhibited.

【0028】(実施例19)銅80重量%、銀20重量
%になるように調整した金属を坩堝で溶解し、水アトマ
イズ法で本発明の出発原料の銅合金粉を作成した。この
ようにして作成した銅合金粉1000gに対して、5g
のオレイン酸を加え、振動ミルで4時間粉砕し片状加工
した。しかる後にアンモニア分解ガス雰囲気の還元炉で
200℃80分間還元処理した。このようにして得た片
状粉末を325メッシュの篩を用いて45μm以下の粒
子径にし、BET法比表面積値7900cm2/gの導電
ペースト用片状銅合金粉を製造した。このようにして製
造した本発明の導電ペースト用片状銅合金粉の性能を確
認するために銅合金粉75重量部、エポキシ樹脂10重
量部、エチルカルビトール15重量部及び硬化剤、反応
促進剤を適量添加し銅ペーストを作成した。作成したペ
ーストを200メッシュのスクリーンを使用してスクリ
ーン印刷方法で塗膜を作成し、比抵抗値を測定した。そ
の結果0.9×10ー4Ω・cmの良好な導電性を示した。
Example 19 A metal adjusted to 80% by weight of copper and 20% by weight of silver was melted in a crucible, and a copper alloy powder as a starting material of the present invention was prepared by a water atomizing method. 5 g for 1000 g of the copper alloy powder thus prepared
Oleic acid was added, and the mixture was pulverized with a vibration mill for 4 hours to form a flake. Thereafter, reduction treatment was performed at 200 ° C. for 80 minutes in a reducing furnace in an ammonia decomposition gas atmosphere. The flake powder thus obtained was sized using a 325 mesh sieve to a particle diameter of 45 μm or less to produce flake copper alloy powder for conductive paste having a BET specific surface area of 7,900 cm 2 / g. In order to confirm the performance of the flaky copper alloy powder for a conductive paste of the present invention thus produced, 75 parts by weight of copper alloy powder, 10 parts by weight of epoxy resin, 15 parts by weight of ethyl carbitol, a curing agent, and a reaction accelerator Was added in an appropriate amount to prepare a copper paste. Using the prepared paste, a coating film was formed by a screen printing method using a 200-mesh screen, and the specific resistance value was measured. As a result, good conductivity of 0.9 × 10 −4 Ω · cm was exhibited.

【0029】(実施例20)銅50重量%、銀50重量
%になるように調整した金属を坩堝で溶解し、空気アト
マイズ法で本発明の出発原料の銅合金粉を作成した。こ
のようにして作成した銅合金粉1000gに対して、2
0gのステアリン酸を加え、アジテータミルで2時間粉
砕し片状加工した。しかる後に水素雰囲気の還元炉で4
50℃30分間還元処理した。このようにして得た片状
粉末を風力分級機を用いて75μm以下の粒子径にし、
BET法比表面積値5500cm2/gの導電ペースト用
片状銅合金粉を製造した。このようにして製造した本発
明の導電ペースト用片状銅合金粉の性能を確認するため
に銅合金粉75重量部、アクリル樹脂25重量部になる
ように混合し、トルオールで希釈して導電ペーストを作
成した。作成したペーストをABS樹脂板にロールコー
タ法で印刷し膜厚25μmの塗膜を作成し、比抵抗値を
測定した。その結果2.0×10ー4Ω・cmの良好な導電
性を示した。
Example 20 A metal adjusted to 50% by weight of copper and 50% by weight of silver was melted in a crucible, and a copper alloy powder as a starting material of the present invention was prepared by an air atomizing method. For 1000 g of the copper alloy powder thus produced, 2 g
0 g of stearic acid was added, and the mixture was pulverized with an agitator mill for 2 hours and processed into flakes. Then use a reducing furnace with hydrogen atmosphere
Reduction treatment was performed at 50 ° C. for 30 minutes. The flaky powder obtained in this manner was made to have a particle size of 75 μm or less using an air classifier,
A flake copper alloy powder for conductive paste having a BET specific surface area of 5,500 cm 2 / g was produced. In order to confirm the performance of the flaky copper alloy powder for conductive paste of the present invention thus manufactured, the conductive paste was mixed by mixing 75 parts by weight of copper alloy powder and 25 parts by weight of acrylic resin and diluted with toluene. It was created. The prepared paste was printed on an ABS resin plate by a roll coater method to form a coating film having a thickness of 25 μm, and the specific resistance value was measured. As a result, good conductivity of 2.0 × 10 −4 Ω · cm was exhibited.

【0030】(実施例21)銅50重量%、銀50重量
%になるように調整した金属を坩堝で溶解し、空気アト
マイズ法で本発明の出発原料の銅合金粉を作成した。こ
のようにして作成した銅合金粉1000gに対して、5
gのステアリン酸を加え、アジテータミルで1.5時間
粉砕し片状加工した。片状加工した粉末1000gに1
5gのステアリンをさらに加えミキサーで5分間撹拌混
合した。しかる後に水素雰囲気の還元炉で450℃30
分間還元処理した。このようにして得た片状粉末を風力
分級機を用いて75μm以下の粒子径にし、BET法比
表面積値6500cm2/gの導電ペースト用片状銅合
金粉を製造した。このようにして製造した本発明の導電
ペースト用片状銅合金粉の性能を確認するために銅合金
粉75重量部、アクリル樹脂25重量部になるように混
合し、トルオールで希釈して導電ペーストを作成した。
作成したペーストをABS樹脂板にロールコータ法で印
刷し膜厚25μmの塗膜を作成し、比抵抗値を測定し
た。その結果2.0×10ー4Ω・cmの良好な導電性を示
した。
(Example 21) A metal adjusted to 50% by weight of copper and 50% by weight of silver was melted in a crucible, and a copper alloy powder as a starting material of the present invention was prepared by an air atomizing method. For 1000 g of the copper alloy powder thus prepared, 5 g
g of stearic acid was added, and the mixture was pulverized with an agitator mill for 1.5 hours and processed into flakes. 1 in 1000 g of flaked powder
5 g of stearin was further added and mixed by stirring with a mixer for 5 minutes. Then, at 450 ° C 30 in a reducing furnace in a hydrogen atmosphere.
Reduction treatment was performed for minutes. The flaky powder thus obtained was made to have a particle size of 75 μm or less by using an air classifier to produce a flaky copper alloy powder for a conductive paste having a BET specific surface area of 6,500 cm 2 / g. In order to confirm the performance of the flaky copper alloy powder for conductive paste of the present invention thus manufactured, the conductive paste was mixed by mixing 75 parts by weight of copper alloy powder and 25 parts by weight of acrylic resin and diluted with toluene. It was created.
The prepared paste was printed on an ABS resin plate by a roll coater method to form a coating film having a thickness of 25 μm, and the specific resistance value was measured. As a result, good conductivity of 2.0 × 10 −4 Ω · cm was exhibited.

【0031】[0031]

【発明の効果】本発明の方法によって得られる導電ペー
スト用片状銅合金粉は、従来の粒状粉と異なり片状であ
りながら銀粉と同じような性能が得られ、かつ細かい粒
子径まで工業的に、安価に製造することが出来るように
なった。具体的な効果として、吹き付け塗装あるいはロ
ールコータ法、スクリーン印刷法による電磁波シールド
用では、片状粉であるため沈降速度が遅く、表面積が大
きいため非常に塗装し易く、しかも塗膜表面が平滑で、
かつ塗膜厚も薄くできるようになった。スクリーン印刷
方法による導電回路やジャンパー線では、粒子径が小さ
く表面積が大きい事は、ペーストの単位体積あたりの銅
粉個数が増えるため、樹脂の中に銅粉が均一に分散し易
くなり、導電性の安定した塗膜形成が可能となった。こ
のようにスクリーン印刷性の向上、塗膜表面の平滑性、
細線が必要なファインパターン用に使用できるばかり
か、ディスペンサー用にも対応できるものとなった。も
ちろん銅合金粉であるため銀粉と比較するとマイグレー
ションも少ない。このような導電ペースト用片状銅合金
粉が提供出来るようになることで、安価な導電ペースト
の使用範囲が広がり、本発明の産業上への利用性は非常
に大きいといえる。
The flake copper alloy powder for a conductive paste obtained by the method of the present invention has the same performance as silver powder while having a flake shape unlike conventional granular powder, and is industrially applicable to a fine particle diameter. In addition, it has become possible to manufacture at low cost. As a specific effect, in the case of electromagnetic wave shielding by spray coating or roll coater method, screen printing method, sedimentation speed is slow because it is flake powder, it is very easy to paint because it has a large surface area, and the coating film surface is smooth. ,
In addition, the thickness of the coating film can be reduced. In a conductive circuit or jumper wire by screen printing, a small particle size and a large surface area means that the number of copper powders per unit volume of the paste increases, so that the copper powders can be easily dispersed uniformly in the resin, and the conductive properties can be improved. , And a stable coating film was formed. As described above, the screen printability is improved, the smoothness of the coating film surface is improved,
Not only can it be used for fine patterns that require fine lines, but it can also be used for dispensers. Of course, since it is a copper alloy powder, migration is less than silver powder. By providing such a flaky copper alloy powder for conductive paste, the range of use of inexpensive conductive paste is expanded, and it can be said that the industrial applicability of the present invention is extremely large.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H05K 1/09 H05K 1/09 A ──────────────────────────────────────────────────続 き Continued on front page (51) Int.Cl. 6 Identification code FI H05K 1/09 H05K 1/09 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 銅合金粉に対して、0.05から2重量
%の脂肪酸を加えて機械的に片状加工し、しかる後に還
元性雰囲気中で、150℃から500℃の温度で還元処
理することを特徴とする導電ペースト用片状銅合金粉の
製造方法。
1. A copper flake is mechanically flaked by adding 0.05 to 2% by weight of a fatty acid to a copper alloy powder, and then subjected to a reduction treatment at a temperature of 150 to 500 ° C. in a reducing atmosphere. A method for producing a flaky copper alloy powder for a conductive paste, comprising the steps of:
【請求項2】 請求項1記載の銅合金粉が、銀を3から
75重量%含有することを特徴とする導電ペースト用片
状銅合金粉の製造方法。
2. A method for producing a flaky copper alloy powder for a conductive paste, wherein the copper alloy powder according to claim 1 contains 3 to 75% by weight of silver.
【請求項3】 請求項1記載の導電ペースト用銅合金粉
の粒子径が100μm以下で,BET法比表面積値が2
000cm2/g以上であることを特徴とする導電ペー
スト用片状銅合金粉の製造方法。
3. The copper alloy powder for a conductive paste according to claim 1, which has a particle size of 100 μm or less and a specific surface area of 2% by the BET method.
A method for producing a flaky copper alloy powder for a conductive paste, which is not less than 000 cm 2 / g.
JP07153998A 1998-03-20 1998-03-20 Method for producing flake copper alloy powder for conductive paste Expired - Fee Related JP4074369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07153998A JP4074369B2 (en) 1998-03-20 1998-03-20 Method for producing flake copper alloy powder for conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07153998A JP4074369B2 (en) 1998-03-20 1998-03-20 Method for producing flake copper alloy powder for conductive paste

Publications (2)

Publication Number Publication Date
JPH11273454A true JPH11273454A (en) 1999-10-08
JP4074369B2 JP4074369B2 (en) 2008-04-09

Family

ID=13463659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07153998A Expired - Fee Related JP4074369B2 (en) 1998-03-20 1998-03-20 Method for producing flake copper alloy powder for conductive paste

Country Status (1)

Country Link
JP (1) JP4074369B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010018781A1 (en) * 2008-08-11 2010-02-18 地方独立行政法人大阪市立工業研究所 Composite nanoparticle and process for producing same
JP2017172043A (en) * 2016-03-16 2017-09-28 Dowaエレクトロニクス株式会社 Ag-Cu ALLOY POWDER AND MANUFACTURING METHOD THEREFOR
JP2019515136A (en) * 2016-05-13 2019-06-06 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー Method of producing granular ruthenium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010018781A1 (en) * 2008-08-11 2010-02-18 地方独立行政法人大阪市立工業研究所 Composite nanoparticle and process for producing same
CN102119064A (en) * 2008-08-11 2011-07-06 地方独立行政法人大阪市立工业研究所 Composite nanoparticle and process for producing same
TWI461470B (en) * 2008-08-11 2014-11-21 Osaka Municipal Tech Res Inst Composite nanoparticles and method for the production thereof
US8999206B2 (en) 2008-08-11 2015-04-07 Osaka Municipal Technical Research Institute Composite nanoparticles and manufacturing method thereof
JP5707133B2 (en) * 2008-08-11 2015-04-22 地方独立行政法人 大阪市立工業研究所 Method for producing composite nanoparticles
JP2017172043A (en) * 2016-03-16 2017-09-28 Dowaエレクトロニクス株式会社 Ag-Cu ALLOY POWDER AND MANUFACTURING METHOD THEREFOR
JP2019515136A (en) * 2016-05-13 2019-06-06 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー Method of producing granular ruthenium
US10913120B2 (en) 2016-05-13 2021-02-09 Heraeus Deutschland GmbH & Co. KG Process for production of particulate ruthenium

Also Published As

Publication number Publication date
JP4074369B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
JP4954885B2 (en) Conductive powder and method for producing the same, conductive powder paste, and method for producing conductive powder paste
KR100480863B1 (en) Copper fine powder and method for preparing the same
JP5080731B2 (en) Fine silver particle-attached silver-copper composite powder and method for producing the fine silver particle-attached silver-copper composite powder
JP4660701B2 (en) Silver-coated copper powder, method for producing the same, and conductive paste
JP5181434B2 (en) Fine copper powder and method for producing the same
JP5074837B2 (en) Method for producing flat silver powder, flat silver powder, and conductive paste
US20020050186A1 (en) Fine copper powder and process for producing the same
WO2006118182A1 (en) Tin powder, process for producing tin powder, and tin powder-containing elctrically conductive paste
JP2008223058A (en) Mixed conductive powder and its manufacturing method, and conductive paste and its manufacturing method
JPH11264001A (en) Flake copper powder and its production
JP4074369B2 (en) Method for producing flake copper alloy powder for conductive paste
JP2002245849A (en) Conductive filter for conductive paste and manufacturing method of the same
JPH11310806A (en) Production of copper-silver composite powder for electrically conductive paste
JP4136106B2 (en) Flat micro copper powder and method for producing the same
JP2002015622A (en) Copper powder for electro-conductive paste and its manufacturing method
JP4163278B2 (en) Method for producing flake copper powder for conductive paint
JP4230017B2 (en) Method for producing fine copper powder
JP2020196928A (en) Silver-coated alloy powder, alloy powder, metal-powder producing method, silver-coated metal powder producing method, conductive paste, and conductive-paste producing method
JP2009084634A (en) Metal-coated nickel powder, and method for producing the same
JPH02182809A (en) Production of fine granular copper powder
JP2000328232A (en) Electrically conductive powder, its production and coating material using it
JPH09282935A (en) Silver-plated copper powder
JP3396640B2 (en) Copper fine powder for solventless thermosetting conductive paste for via holes and solventless thermosetting conductive paste for via holes
JPH10188670A (en) Flat conductive metal powder, its manufacture, and conductive paste with flat conductive metal powder
JP2000021235A (en) Copper-base conductive paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees