JPH04116109A - Production of fine copper powder - Google Patents

Production of fine copper powder

Info

Publication number
JPH04116109A
JPH04116109A JP2236679A JP23667990A JPH04116109A JP H04116109 A JPH04116109 A JP H04116109A JP 2236679 A JP2236679 A JP 2236679A JP 23667990 A JP23667990 A JP 23667990A JP H04116109 A JPH04116109 A JP H04116109A
Authority
JP
Japan
Prior art keywords
copper
powder
hydrazine
added
copper powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2236679A
Other languages
Japanese (ja)
Other versions
JP2638271B2 (en
Inventor
Yoshikazu Nakada
中田 好和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2236679A priority Critical patent/JP2638271B2/en
Publication of JPH04116109A publication Critical patent/JPH04116109A/en
Application granted granted Critical
Publication of JP2638271B2 publication Critical patent/JP2638271B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To easily and efficiently produce spherical fine copper powder of uniform size by reducing copper hydroxide deposited from an aq. soln. of a copper salt into cuprous oxide and further reducing this cuprous oxide into metallic copper. CONSTITUTION:Alkali is added to an aq. soln. of a copper salt such as copper sulfate to form copper hydroxide powder. Reducing sugar such as anhydrous glucose is then added to form cuprous oxide particles. The resulting reactive liq. is heated to about 70 deg.C, a hydrazine type reducing agent such as hydrazine hydrate is added and they are brought into a reaction. Formed fine copper powder is separated by filtration and dried in vacuum. High-grade fine copper powder of uniform size useful as copper powder for copper paste is obtd. from low-cost starting material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、銅微粉末の製造方法に関し、さらに詳しくは
、粒径の揃った球状の銅微粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing fine copper powder, and more particularly to a method for producing fine spherical copper powder with uniform particle size.

(従来の技術) ガラス、セラミックス等の絶縁性基板上にスクリーン印
刷法、直接描画法等で塗布した後、焼成することで導体
厚膜を形成する導体ペーストには金、銀、銀/Pd、ニ
ッケル、銅などの粉末が導電粒子として用いられるが、
近年銅導体ペーストを用いる傾向にあることは周知の通
りである。
(Prior art) Gold, silver, silver/Pd, gold, silver, silver/Pd, etc. are used as conductor pastes, which are coated onto insulating substrates such as glass or ceramics by screen printing or direct writing, and then fired to form a thick conductor film. Powders such as nickel and copper are used as conductive particles, but
It is well known that there is a trend in recent years to use copper conductor paste.

銅ペーストに用いられる銅粉の粒径は0.3〜7.0μ
−であるが、繊密な導体厚nりを得るため、2種〜3種
の粒径の揃った整粒銅粉を組み合わせると効果的である
。さらに、スクリーン印刷性より、球状銅粉が好ましく
、また、球状銅粉は不定形状の銅粉よりも比表面積が小
さいので、ペースト化に必要な液体有機媒体(ビヒクル
)の量を低減できる。すなわち、吸油量が小さいので、
銅粉の濃度の高い銅ペーストが得られるという特徴を有
する。
The particle size of copper powder used in copper paste is 0.3 to 7.0μ
- However, in order to obtain a fine conductor thickness, it is effective to combine two to three types of sized copper powder with uniform particle sizes. Furthermore, spherical copper powder is preferable in terms of screen printability, and since spherical copper powder has a smaller specific surface area than irregularly shaped copper powder, the amount of liquid organic medium (vehicle) required for paste formation can be reduced. In other words, since the oil absorption is small,
It has the characteristic that a copper paste with a high concentration of copper powder can be obtained.

さらに、球状銅粉は、不定形状の銅粉よりも充填性に優
れるので冷害な焼成膜を得やすい。
Furthermore, since spherical copper powder has better filling properties than irregularly shaped copper powder, it is easier to obtain a fired film that is less susceptible to cold damage.

このように、銅ペーストに用いる銅粉としてはLF状の
整粒銅微粉末が要求される。
As described above, LF-shaped sized fine copper powder is required as the copper powder used in the copper paste.

ここに、「整粒」とは、粒径が揃ったとの趣旨である。Here, "sized grains" means that the grain sizes are uniform.

ところで、従来、銅微粉末の製造方法としては機械的粉
砕法、アトマイズ法、気相還元法、ガス中蒸発法、電解
法等が提案されているが、粒径0.3〜7.0μmの銅
微粉末を効率よく生成させる製造方法としてはヒドラジ
ン還元法が挙げられる。
By the way, mechanical pulverization method, atomization method, gas phase reduction method, evaporation method in gas, electrolysis method, etc. have been proposed as methods for producing fine copper powder, but A hydrazine reduction method can be cited as a manufacturing method for efficiently producing fine copper powder.

すなわち、ン容液もしくはスラリー中の1同イオンもし
くは銅粉を強力な還元剤であるヒドラジン類で還元して
金属粉とする方法である。
That is, this is a method in which the same ions or copper powder in a liquid or slurry are reduced with hydrazine, which is a strong reducing agent, to obtain metal powder.

かかるヒドラジン還元法による銅微粉末製造方法にはこ
れまでにも主に次のような提案がなされている。
The following main proposals have been made so far regarding the method for producing fine copper powder using the hydrazine reduction method.

■炭酸銅水溶液にヒドラジンを加えて加熱することによ
り銅粉を得る方法。(特開昭57−155302号)■
水酸化銅スラリーをヒドラジンあるいはヒドラジン化合
物で酸化銅スラリーとした後、更にヒドラジンあるいは
ヒドラジン化合物で還元する方法(特開昭62−994
06号)。
■A method of obtaining copper powder by adding hydrazine to an aqueous copper carbonate solution and heating it. (Unexamined Japanese Patent Publication No. 57-155302) ■
A method in which copper hydroxide slurry is made into copper oxide slurry with hydrazine or a hydrazine compound, and then further reduced with hydrazine or a hydrazine compound (Japanese Patent Application Laid-Open No. 62-994
No. 06).

■硫酸銅水溶液をヒドラジンで還元する際に反応溶液に
各種界面活性剤を添加する方法(特開昭6227508
号、同62−40302号、同62−77407号、同
62−77408号)。
■A method of adding various surfactants to the reaction solution when reducing an aqueous copper sulfate solution with hydrazine (Japanese Patent Application Laid-open No. 6227508
No. 62-40302, No. 62-77407, No. 62-77408).

■硫酸調水i8液をヒドラジンで還元する際に反応溶液
中に保護コロイドを添加する方法(特開昭627740
6号)。
■A method of adding a protective colloid to the reaction solution when reducing sulfuric acid prepared water I8 solution with hydrazine (Japanese Patent Application Laid-Open No. 627740
No. 6).

■硫酸銅水溶液をヒドラジンで還元する際に反応開始剤
を添加する方法(特開昭63−27406号)。
(2) A method of adding a reaction initiator when reducing an aqueous copper sulfate solution with hydrazine (Japanese Patent Application Laid-Open No. 63-27406).

■酸化銅スラリーに保護コロイドを添加する方法(特公
昭61−55562号)。
■A method of adding a protective colloid to copper oxide slurry (Japanese Patent Publication No. 55562/1983).

■酸化銅粉末の表面にシランカップリング剤で被覆した
後にヒドラジン還元する方法(特開平2−34708号
)。
(2) A method in which the surface of copper oxide powder is coated with a silane coupling agent and then reduced with hydrazine (Japanese Unexamined Patent Publication No. 2-34708).

■亜酸化銅に酸で不均化反応を起こさせた後ヒドラジン
還元する方法(特開平2−129309号)。
(2) A method in which cuprous oxide is subjected to a disproportionation reaction with an acid and then reduced with hydrazine (JP-A-2-129309).

(発明が解決しようとする課題) 従来のヒドラジン還元法にあって硫酸銅水溶液からヒド
ラジン還元する際には、2価の銅イオンのすべてが直接
に金属銅に還元するわけでなく、次の反応が混在する。
(Problem to be solved by the invention) When reducing hydrazine from an aqueous copper sulfate solution in the conventional hydrazine reduction method, not all of the divalent copper ions are directly reduced to metallic copper, but the following reaction are mixed.

Cu2°−+Cu(Off)2 、Cu”−+Cu2O
、Cu (OH) z→cuzo、Cu”→Cus C
u(Oft)z−+Cu。
Cu2°−+Cu(Off)2, Cu”−+Cu2O
, Cu (OH) z→cuzo, Cu"→Cus C
u(Oft)z−+Cu.

CuzO−Cu。CuzO-Cu.

このため、硫酸銅水溶液へヒドラジンを添加しただけで
は均一な金属銅への還元反応は起こらず、生成した銅微
粉末は粒度分布が広く、かつ、粒子の形状が不定形にな
る。
For this reason, simply adding hydrazine to an aqueous copper sulfate solution does not cause a uniform reduction reaction to metallic copper, and the resulting fine copper powder has a wide particle size distribution and an amorphous particle shape.

なお、特開昭62−99406号に開示の発明では、ヒ
ドラジンあるいはヒドラジン化合物により、いったん水
酸化銅より酸化銅を形成させているが、このようにして
得られた水酸化銅スラリーにヒドラジンあるいはヒドラ
ジン化合物を添加すると、瞬時に発泡が生じて(ヒドラ
ジンの還元作用により発生した窒素ガス)、凝集した粒
度分布の広い酸化銅となり、最終的に得られる銅微粉末
も同様に凝集し、粒径のバラフキが大きくなる。さらに
、水酸化銅スラリーにヒドラジンを添加するとヒドラジ
ンは容易に酸化銅を金属銅にまで還元してしまうので、
均一な酸化銅を得ることは難しい。
In the invention disclosed in JP-A No. 62-99406, copper oxide is formed from copper hydroxide using hydrazine or a hydrazine compound. When the compound is added, foaming occurs instantaneously (nitrogen gas generated by the reducing action of hydrazine), resulting in agglomerated copper oxide with a wide particle size distribution. The barafuki becomes larger. Furthermore, when hydrazine is added to copper hydroxide slurry, hydrazine easily reduces copper oxide to metallic copper.
It is difficult to obtain uniform copper oxide.

また、酸化銅を出発原料とする場合も上述の理由により
、整粒銅微粉末を得るには、整粒酸化銅粉を入手しなけ
ればならず、任意の粒子径に制御した整粒酸化銅粉を工
業的に入手するのは難しくコスト高になる。
Furthermore, even when copper oxide is used as a starting material, for the reasons mentioned above, in order to obtain sized fine copper oxide powder, sized copper oxide powder must be obtained. It is difficult and expensive to obtain powder industrially.

かくして、本発明の第1の目的は、整粒銅微粉末を容易
かつ効率よく製造する方法を提供することである。
Thus, the first object of the present invention is to provide a method for easily and efficiently manufacturing sized fine copper powder.

本発明の第2の目的は、球状の整粒銅微粉末を容易かつ
効率よく製造する方法を提供することである。
A second object of the present invention is to provide a method for easily and efficiently producing spherical sized copper fine powder.

(課題を解決するための手段) そこで、本発明者は、整粒微粉末を製造するには整粒酸
化銅粉をヒドラジン還元することが有利であることに着
目し、その整粒酸化銅粉の製造方法について種々検討を
重ねたところ、まずアルカリの添加により水酸化銅を生
成させ、−旦これを還元糖によって酸化銅とし、最後に
ヒドラジンを使って還元すると整粒銅微粉末が還元生成
すること、特にヒドラジン添加に先立って反応溶液の加
熱処理を行うことにより球状化が行われ、得られる金属
銅粉も球状花粉となることを知り、本発明を完成した。
(Means for Solving the Problem) Therefore, the present inventor focused on the fact that it is advantageous to reduce sized copper oxide powder with hydrazine in order to produce sized fine powder, and After conducting various studies on the manufacturing method of The present invention was completed based on the knowledge that spheroidization is achieved by heating the reaction solution prior to addition of hydrazine, and that the resulting metallic copper powder also becomes spherical pollen.

本発明は、銅塩水溶液から水酸化銅を析出する段階、そ
して得られた水酸化銅を亜酸化銅にまで還元する段階、
次いでこのようにして得られた亜酸化銅を金属銅にまで
還元する段階を経て行われることを特徴とする銅微粉末
の製造方法である。
The present invention comprises steps of precipitating copper hydroxide from an aqueous copper salt solution, and reducing the obtained copper hydroxide to cuprous oxide.
This is a method for producing fine copper powder, which is characterized in that it is then carried out through the step of reducing the cuprous oxide thus obtained to metallic copper.

本発明は、その好適態様によれば、ヒドラジン系還元剤
を用いて、硫酸銅水溶液を還元して銅微粉末を製造する
方法において、ヒドラジン添加前にアルカリおよび還元
糖を添加することを特徴とする。
According to a preferred embodiment of the present invention, a method for producing fine copper powder by reducing an aqueous copper sulfate solution using a hydrazine-based reducing agent is characterized in that an alkali and reducing sugar are added before adding hydrazine. do.

すなわち、本発明によれば、アルカリの添加により2価
の銅イオンから水酸化銅粉が生成し、続いてぶどう糖添
加により水酸化銅粉を亜酸化銅粉に還元し、その後ヒド
ラジンにより亜酸化銅粉より金属銅の微わ)末に還元す
るのである。
That is, according to the present invention, copper hydroxide powder is generated from divalent copper ions by adding alkali, then the copper hydroxide powder is reduced to cuprous oxide powder by adding glucose, and then cuprous oxide is produced by hydrazine. Rather than powder, it is reduced to a fine powder of metallic copper.

本発明の一実施態様によれば、ヒドラジン系還元剤を用
いて銅塩水7容掖を還元して銅微粉末を製造する方法に
おいて、ヒドラジン系還元剤の添加前に、銅塩水溶液の
pl+を12以上に調整した後、還元糖を添加してから
、ヒドラジン系還元剤を添加してもよい。
According to one embodiment of the present invention, in a method for producing fine copper powder by reducing 7 volumes of copper salt water using a hydrazine-based reducing agent, pl+ of the copper salt aqueous solution is added before adding the hydrazine-based reducing agent. After adjusting to 12 or more, reducing sugar may be added, and then a hydrazine-based reducing agent may be added.

また、本発明の別の態様によれば、前記ヒドラジン系還
元剤の添加前の反応溶液を60゛C以上に調整した後に
該ヒドラジン系還元剤を添加してもよい。
According to another aspect of the present invention, the hydrazine reducing agent may be added after the reaction solution is adjusted to 60°C or higher before the addition of the hydrazine reducing agent.

本発明では出発原料としての銅塩水溶液は好ましくは硫
酸銅水溶液であるが、他の銅塩の水溶液、例えば、炭M
銅、硝酸銅、塩化銅およびシアン化銅の水溶液を用いて
も同様の効果があることは言うまでもない、ただし、硫
酸銅はこれらの銅塩の中で最も工業的に入手しやすくさ
らに作業性、廃液処理等から判断して、最も好ましい銅
塩である。
In the present invention, the copper salt aqueous solution as a starting material is preferably a copper sulfate aqueous solution, but other copper salt aqueous solutions, such as charcoal M
It goes without saying that similar effects can be obtained by using aqueous solutions of copper, copper nitrate, copper chloride, and copper cyanide.However, copper sulfate is the most industrially available of these copper salts, and has a higher workability. Judging from waste liquid treatment etc., it is the most preferred copper salt.

なお、水溶液中のCu”イオンを安定に熔解させるため
に錯化剤の使用は有効である。使用可能な錯化剤として
は、酒石酸ナトリウム(ロツシュル塩)、アルギニンま
たはグリシン等のアミノ酸、アンモニアまたはアンモニ
ア化合物等の公知の錯化剤が使用可能であるが、銅ペー
スト用銅粉に適する粒径をもつ銅微粉末を生成させるに
は口・ンシュル塩が好ましい。
Note that it is effective to use a complexing agent to stably dissolve Cu'' ions in an aqueous solution. Examples of complexing agents that can be used include sodium tartrate (Rotschul's salt), amino acids such as arginine or glycine, ammonia or Although known complexing agents such as ammonia compounds can be used, Kuchi-Nshuru salt is preferred in order to produce fine copper powder with a particle size suitable for copper powder for copper paste.

本発明に使用するpHUi4整剤としてはpl+を12
以上に調整できるアルカリ性pl+調整剤が好ましい、
その例として、水酸化ナトリウム、水酸化カリウムが挙
げられる。
As the pHUi4 regulator used in the present invention, pl+ is 12
Alkaline PL + regulator that can be adjusted to above is preferable.
Examples include sodium hydroxide and potassium hydroxide.

本発明に用いる還元糖は、ぶどう線以外に、通常の単I
!類、多Ii類等の還元糖が使用可能である。
In addition to grapevine, the reducing sugar used in the present invention can be
! Reducing sugars such as Class II, Class II, etc. can be used.

還元剤としての本発明において使用するヒドラジン系還
元剤には、ヒドラジン以外にもヒドラジン化合物も包含
され、それらには抱水ヒドラジン、硫酸ヒドラジン、塩
酸ヒドラジン等が挙げられるが、取扱い上の安全性およ
び洗浄性の点から抱水ヒドラジンが好ましい。
The hydrazine-based reducing agent used in the present invention as a reducing agent includes hydrazine compounds in addition to hydrazine, and these include hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, etc. However, safety in handling and From the viewpoint of detergency, hydrazine hydrate is preferred.

かかる還元剤としては、上述のヒドラジンおよび/また
はヒドラジン化合物以外のものも必要によって配合して
もよく、次亜リン酸アルカリ、水素化ホウ素アルカリお
よびホルマリン等が挙げられるが、いずれもヒドラジン
およびヒドラジン化合物よりも還元力が劣り生産性は低
いため、ヒドラジンおよび/またはヒドラジン化合物と
併せて使用される。
Such reducing agents may include agents other than the above-mentioned hydrazine and/or hydrazine compounds, if necessary, such as alkali hypophosphite, alkali borohydride, formalin, etc. Since it has lower reducing power and lower productivity than hydrazine, it is used in combination with hydrazine and/or hydrazine compounds.

ヒドラジン系還元剤の量は、その水溶性の程度とも関係
するが、基本的には鋼機わ)末の連輪生成量に必要な型
取上が好ましい。
The amount of the hydrazine-based reducing agent is related to its degree of water solubility, but basically it is preferable to make a mold that is necessary for the amount of linked rings produced in the steel mill.

銅粉の粒径制JTjは反応溶液の濃度を制御することに
より行うことができる。一般に、反応mWの濃度が濃く
なる程銅粉の粒径は小さくなる。
The particle size JTj of the copper powder can be controlled by controlling the concentration of the reaction solution. Generally, the higher the concentration of reaction mW, the smaller the particle size of the copper powder.

なお、生成銅微粉末の流動性、分散性、充填性および耐
酸化性を向上させるために、反応液中にゼラチンやアラ
ビアゴム等の保護コロイド、各種界面活性剤、ベンゾト
リアゾール、オレイン酸等の防錆剤を添加してもさしつ
かえない。
In addition, in order to improve the fluidity, dispersibility, filling property, and oxidation resistance of the produced fine copper powder, protective colloids such as gelatin and gum arabic, various surfactants, benzotriazole, oleic acid, etc. are added to the reaction solution. It is okay to add rust inhibitors.

反応液中に生成した銅微粉末の回収はデカンテーション
、自然重力濾過および減圧濾過等で行うことが可能であ
る。
The fine copper powder produced in the reaction solution can be recovered by decantation, natural gravity filtration, vacuum filtration, or the like.

回収された鋼機わ)末の乾燥は自然雰囲気下もしくは真
空雰囲気下で加熱することにより行うことができる。加
熱温度は銅わ)の表面の酸化を妨くために90’C以下
が好ましい。
The recovered steel mill powder can be dried by heating in a natural atmosphere or in a vacuum atmosphere. The heating temperature is preferably 90'C or less in order to prevent oxidation of the surface of the copper alloy.

(作用) 本発明による銅微粉末の生成過程は、2価のCuイオン
−→水酸化銅→亜酸化銅−)銅微粉末であり、各過程が
アルカリ添加、還元糖添加、そしてヒドラジン系還元剤
添加によって経時的に確実に進行する。
(Function) The process of producing fine copper powder according to the present invention is to produce fine copper powder (divalent Cu ions -> copper hydroxide -> cuprous oxide), and each process involves addition of alkali, addition of reducing sugar, and reduction of hydrazine. It progresses reliably over time by adding the agent.

すなわち、従来のヒドラジン還元法のようにCu”イオ
ン、2価の水酸化銅および1価の亜酸化銅等の各状態か
ら金属銅が生成する複雑な反応ではなく、整粒亜酸化銅
の状態から均一に金属鋼機$5)末が生成するので、極
めて粒度の揃った整粒金属微粉末が得られる。また亜酸
化銅の段階で加熱処理することにより十分な球状化が可
能となる。
In other words, unlike the conventional hydrazine reduction method, a complex reaction in which metallic copper is generated from each state of Cu" ions, divalent copper hydroxide, monovalent cuprous oxide, etc. is not performed, but a state of sized cuprous oxide is generated. Metallic steel mill $5) powder is produced uniformly from the powder, so that a finely sized metal powder with extremely uniform particle size can be obtained.Furthermore, sufficient spheroidization is possible by heat treatment at the cuprous oxide stage.

以下に各過程について述べる。Each process will be described below.

まず、例えば硫酸銅水溶液である銅塩水溶液中のCuイ
オンが、ρI+ 31整剤(アルカリ)としての例えば
水酸化ナトリウム水溶液の添加により、Cuイオンはす
べて水酸化銅粉として沈殿する。次に還元糖である無水
ぶどう糖を添加することにより、上述の水酸化銅粉はす
べて亜酸化銅粉にまで還元される。この生成した亜酸化
銅粉は粒度分布が極めて狭い整粒粉末である。なお、無
水ぶどう媚などの還元糖は、金属銅まで還元する力はな
(、生成した粉末は完全に亜酸化銅粉である。云い換え
れば、この還元糖は水酸化銅を亜酸化銅粉とするもので
あれば特定のものに制限されない。ただし、ρ11が凡
そ11以下であると、ぶどうtIMi1元による亜酸化
銅は生成せず水酸化銅のままである。
First, all Cu ions in a copper salt aqueous solution, such as a copper sulfate aqueous solution, are precipitated as copper hydroxide powder by adding, for example, a sodium hydroxide aqueous solution as a ρI+ 31 stabilizer (alkali). Next, by adding anhydrous glucose, which is a reducing sugar, all of the above-mentioned copper hydroxide powder is reduced to cuprous oxide powder. The produced cuprous oxide powder is a sized powder with an extremely narrow particle size distribution. Note that reducing sugars such as anhydrous grapes do not have the power to reduce metallic copper (the powder produced is completely cuprous oxide powder. In other words, this reducing sugar converts copper hydroxide into cuprous oxide powder). However, if ρ11 is about 11 or less, cuprous oxide by the grape tIMi1 element is not generated and copper hydroxide remains.

最後にヒドラジン系還元剤を添加することにより、整粒
亜酸化銅粉のみから均一に金属銅への還°元が起こるの
で、極めて粒度分布がシャープな整粒銅微粉末が生成す
る。
Finally, by adding a hydrazine-based reducing agent, uniform reduction of only the sized cuprous oxide powder to metallic copper occurs, resulting in the production of sized fine copper powder with an extremely sharp particle size distribution.

なお、ヒドラジン系還元剤の添加に先立って、反応液を
60℃以上に保っておくと、球状の整粒銅微粉末が得ら
れる。反応液の温度が50℃以下だと、銅微粉末の生成
速度が遅く、晶癖が生成して粒状になってしまい球状と
はならないおそれがある。
Note that if the reaction solution is kept at 60° C. or higher prior to the addition of the hydrazine-based reducing agent, spherical sized fine copper powder can be obtained. If the temperature of the reaction solution is 50° C. or lower, the production rate of copper fine powder is slow, crystal habit is produced, and the powder becomes granular, which may not be spherical.

次に実施例によって本発明をさらに具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 硫酸銅五水和物40gを320m lの水に溶解し、0
.811gの酒石酸ナト’Jウムニ水和物を添加し、得
られた溶液を60℃に保持した。次いで、この溶液中に
、水酸化ナトリウム160gを11の水に溶解した水酸
化ナトリウム水溶液を100m l添加してpl+を1
2.0に調整した。溶液中には深青色の水酸化銅粉が生
成した。次に無水ぶどうtJ!i14.4gを投入し、
亜酸化銅粒子を生成させた。この亜酸化銅粒子は粒度分
布が4.0μm±0.2μmと極めて狭い立方状粒子で
あった。次いで、反応液を70℃に昇温し抱水ヒドラジ
ン(80%)を35石!添加し、60分間反応させた。
Example 1 40 g of copper sulfate pentahydrate was dissolved in 320 ml of water, and 0
.. 811 g of tartrate dihydrate were added and the resulting solution was kept at 60°C. Next, 100 ml of a sodium hydroxide aqueous solution prepared by dissolving 160 g of sodium hydroxide in 11 water was added to this solution to bring the pl+ to 1.
Adjusted to 2.0. Deep blue copper hydroxide powder was produced in the solution. Next is anhydrous grape tJ! Inject i14.4g,
Cuprous oxide particles were produced. The cuprous oxide particles were cubic particles with an extremely narrow particle size distribution of 4.0 μm±0.2 μm. Next, the reaction solution was heated to 70°C and 35 stones of hydrazine hydrate (80%) were added! and reacted for 60 minutes.

生成した銅微粉末を濾過後、90℃で真空乾燥を行い、
粒径0.5μ閘±0.1μmの球状の整粒銅微粉末を得
た。
After filtering the produced fine copper powder, vacuum drying is performed at 90°C.
A spherical sized copper fine powder with a particle size of 0.5 μm ±0.1 μm was obtained.

実施例2 硫酸銅五水和物40gを320m lの水に溶解し、0
.811gの酒石酸ナトリウム三水和物を添加し、得ら
れた溶液を60℃に保持した。次いで、この溶液中に、
水酸化ナトリウム160gを11の水にン容解した水酸
化ナトリウム水溶液を200m l添加してp++を1
2.6に調整した。溶液中には深青色の水酸化銅わ)が
生成した。次に無水ぶどう糖14.4gを投入して、亜
酸化銅粒子を生成させた。この亜酸化銅粒子は粒度分布
が3.9μm±0.2μmと極めて狭い球状粒子であっ
た。次いで、反応液を70℃に昇温し、抱水ヒドラジン
(80%)を35mff1添加し、60分間反応させた
Example 2 40 g of copper sulfate pentahydrate was dissolved in 320 ml of water, and 0
.. 811 g of sodium tartrate trihydrate was added and the resulting solution was kept at 60°C. Then, in this solution,
Add 200ml of a sodium hydroxide aqueous solution prepared by dissolving 160g of sodium hydroxide in 11 parts of water to reduce p++ to 1.
Adjusted to 2.6. Deep blue copper hydroxide was formed in the solution. Next, 14.4 g of anhydrous glucose was added to generate cuprous oxide particles. The cuprous oxide particles were spherical particles with an extremely narrow particle size distribution of 3.9 μm±0.2 μm. Next, the temperature of the reaction solution was raised to 70° C., 35 mff1 of hydrazine hydrate (80%) was added, and the reaction solution was allowed to react for 60 minutes.

生成した銅微粉末を濾過後、90℃で真空乾燥を行い、
粒径0.7μm±0.1μmの球状の整粒銅微粉末を得
た。
After filtering the produced fine copper powder, vacuum drying is performed at 90°C.
A spherical sized copper fine powder with a particle size of 0.7 μm±0.1 μm was obtained.

実施例3 硫酸銅五水和物40gを320m Qの水に溶解し、0
.811gの酒石酸ナトリウムニ水和物を添加し、得ら
れた溶液を60’Cに保持した。次いで、この溶液中に
、水酸化ナトリウム160gを11の水に溶解した水酸
化ナトリウム水溶液を100m l添加してpoを12
0に調整した。次に無水ぶとうl!14.4gを投入し
て亜酸化銅粒子を生成させた。
Example 3 40 g of copper sulfate pentahydrate was dissolved in 320 mQ of water, and 0
.. 811 g of sodium tartrate dihydrate was added and the resulting solution was maintained at 60'C. Next, 100 ml of a sodium hydroxide aqueous solution prepared by dissolving 160 g of sodium hydroxide in 11 water was added to this solution to make po 12
Adjusted to 0. Next is Anhydrous Buto! 14.4 g was added to generate cuprous oxide particles.

次にこの?8液を50℃にまで冷却した後に抱水ヒドラ
ジン(80%)35mffを添加し、20分間かけて7
0℃に昇温して60分間反応させた。
Next this? After cooling the 8 solution to 50°C, 35 mff of hydrazine hydrate (80%) was added, and the solution was heated for 20 minutes.
The temperature was raised to 0°C and the reaction was carried out for 60 minutes.

生成した銅微粉末を濾過後、・90℃で真空乾燥を行い
、粒径1.2μm±0.271mの球状銅粉を得た。
After filtering the produced fine copper powder, it was vacuum dried at 90° C. to obtain spherical copper powder with a particle size of 1.2 μm±0.271 m.

実施例4 硫酸銅五水和物40gを420m lの水に溶解し、0
.811gの酒石酸ナトリウムニ水和物を添加し、得ら
れた溶液を60℃に保持した。次いで、この溶液中に、
水酸化ナトリウム320gを1βの水に溶解した水酸化
ナトリウム水溶液を50m!添加してpl+を12.0
に調整した。次に無水ぶどう糖14.4gを投入して亜
酸化銅粒子を生成させた。
Example 4 40 g of copper sulfate pentahydrate was dissolved in 420 ml of water, and 0
.. 811 g of sodium tartrate dihydrate was added and the resulting solution was kept at 60°C. Then, in this solution,
50ml of sodium hydroxide aqueous solution made by dissolving 320g of sodium hydroxide in 1β water! Add pl+ to 12.0
Adjusted to. Next, 14.4 g of anhydrous glucose was added to generate cuprous oxide particles.

次にこの溶液を50℃にまで冷却した後に抱水ヒドラジ
ン(80%)35mfを添加し、20分間かけて70℃
に昇温しで60分間反応させた。
Next, after cooling this solution to 50°C, 35 mf of hydrazine hydrate (80%) was added, and the mixture was heated to 70°C for 20 minutes.
The temperature was raised to 1, and the reaction was carried out for 60 minutes.

生成した銅微粉末を濾過後、90℃で真空乾燥を行い、
粒径2.2μm±0.3μmの球状銅粉を得た。
After filtering the produced fine copper powder, vacuum drying is performed at 90°C.
Spherical copper powder with a particle size of 2.2 μm±0.3 μm was obtained.

実施例5 硫酸銅五水和物40gを520m lの水に溶解し、0
.811gの酒石酸すl−I)ウムニ水和物を添加し、
得られた溶液を60℃に保持した。次いで、この/8液
中に、水酸化ナトリウム320gを1rの水に溶解した
水酸化ナトリウム水溶液を70m!添力[]シてpHを
12.0に調整した。次に無水ぶどう糖14.4gを投
入して亜酸化銅粒子を生成させた。
Example 5 40 g of copper sulfate pentahydrate was dissolved in 520 ml of water, and 0
.. Adding 811 g of tartaric acid l-I) umnihydrate;
The resulting solution was kept at 60°C. Next, 70ml of a sodium hydroxide aqueous solution in which 320g of sodium hydroxide was dissolved in 1R of water was added to this /8 liquid. The pH was adjusted to 12.0 by adding []. Next, 14.4 g of anhydrous glucose was added to generate cuprous oxide particles.

次にこの溶液を50℃にまで冷却した後に抱水ヒドラジ
ン(80%)35mj2を添加し、20分間かけて70
゛Cに昇温しで60分間反応させた。
Next, after cooling this solution to 50°C, 35mj2 of hydrazine hydrate (80%) was added, and the solution was heated to 70°C over 20 minutes.
The temperature was raised to °C and the reaction was carried out for 60 minutes.

生成した鋼機l!5)末を濾過後、90℃で真空乾燥を
行い、粒径3.1μm±0.3μmの球状銅↑5〕を得
た。
The generated steel machine! 5) After filtering the powder, vacuum drying was performed at 90°C to obtain spherical copper↑5] with a particle size of 3.1 μm±0.3 μm.

比較例1 硫酸銅五水和物40gを320m I!の水に溶解し、
0.811gの酒石酸す) IJウムニ水和物を添加し
、得られたF1′8Wiを60℃に保持した。この?′
?I液中に、水酸化ナトリウム160gを1fの水に)
8解した水酸化ナトリウム水溶液を70cc添加してp
Hを11.0に調整した。次に無水ぶどう糖14 、4
 gを投入したが亜酸化銅粉は生成しなかった。次にこ
の溶液を70℃にまで昇温し、抱水ヒドラジン(80%
)35mfを添加したところ激しい発泡が生した。その
後60分間反応させた。
Comparative Example 1 40g of copper sulfate pentahydrate was added to 320mI! dissolved in water,
0.811 g of tartaric acid (IJ) was added and the resulting F1'8Wi was maintained at 60°C. this? ′
? (160g of sodium hydroxide in 1f of water in liquid I)
Add 70cc of dissolved sodium hydroxide aqueous solution to p
H was adjusted to 11.0. Next, anhydrous glucose 14,4
g was added, but no cuprous oxide powder was produced. Next, this solution was heated to 70°C and hydrazine hydrate (80%
) When 35 mf was added, intense foaming occurred. Thereafter, it was allowed to react for 60 minutes.

生成した銅微粉末を濾過後、90℃で真空乾燥を行った
ところ、粒径0.05〜0.2μmの銅粉が得られた。
After filtering the produced copper fine powder, vacuum drying was performed at 90°C, and copper powder with a particle size of 0.05 to 0.2 μm was obtained.

比較例2 硫酸銅五水和物40gを320m lの水に溶解し、0
.811gの酒石酸ナトリウムニ水和物を添加し、該溶
液を60℃に保持した。この溶液中に、水酸化ナトリウ
ム160gをIJ2の水に溶解した水酸化ナトリウム水
溶液を100cc添加してpHを12.0に調整した。
Comparative Example 2 40g of copper sulfate pentahydrate was dissolved in 320ml of water,
.. 811 g of sodium tartrate dihydrate was added and the solution was kept at 60°C. To this solution, 100 cc of a sodium hydroxide aqueous solution prepared by dissolving 160 g of sodium hydroxide in IJ2 water was added to adjust the pH to 12.0.

次にこの溶液を25℃に冷却して、抱水ヒドラジン(8
0%)を添加したところ、激しい発泡が起こった。
This solution was then cooled to 25°C and hydrazine hydrate (8
When 0%) was added, intense foaming occurred.

発泡がおさまった後、30分間かけて70℃に昇温し、
60分間反応させた。
After the foaming subsided, the temperature was raised to 70°C over 30 minutes.
The reaction was allowed to proceed for 60 minutes.

生成した銅微粉末を濾過後、90℃で真空乾燥を行った
ところ、粒径0.03〜0.20μmの銅粉を得た。
After filtering the produced fine copper powder, it was vacuum dried at 90°C to obtain copper powder with a particle size of 0.03 to 0.20 μm.

(発明の効果) 本発明によれば、工業的に入手しやすい安価な原料から
高品位の整粒銅微粉末が得られ、銅ペスト用原料銅わ〕
として甚だ有用である。
(Effects of the Invention) According to the present invention, high-grade sized fine copper powder can be obtained from inexpensive raw materials that are easily available industrially, and can be used as raw material copper for copper pesto.
It is extremely useful as such.

Claims (3)

【特許請求の範囲】[Claims] (1)銅塩水溶液から水酸化銅を析出する段階、そして
得られた水酸化銅を亜酸化銅にまで還元する段階、次い
でこのようにして得られた亜酸化銅を金属銅にまで還元
する段階を経て行われることを特徴とする銅微粉末の製
造方法。
(1) A step of precipitating copper hydroxide from an aqueous copper salt solution, a step of reducing the obtained copper hydroxide to cuprous oxide, and then reducing the thus obtained cuprous oxide to metallic copper. A method for producing fine copper powder, characterized in that it is carried out in steps.
(2)ヒドラジン系還元剤を用いて銅塩水溶液を還元し
て銅微粉末を製造する方法において、ヒドラジン系還元
剤の添加前に、銅塩水溶液のpHを12以上に調整した
後、還元糖を添加してから、ヒドラジン系還元剤を添加
することを特徴とする銅微粉末の製造方法。
(2) In the method of producing fine copper powder by reducing a copper salt aqueous solution using a hydrazine-based reducing agent, the pH of the copper salt aqueous solution is adjusted to 12 or higher before adding the hydrazine-based reducing agent, and then the reducing sugar A method for producing fine copper powder, which comprises adding a hydrazine-based reducing agent after the addition of a hydrazine-based reducing agent.
(3)前記ヒドラジン系還元剤の添加前の反応溶液を6
0℃以上に調整した後に該ヒドラジン系還元剤を添加す
ることを特徴とする請求項2記載の銅微粉末の製造方法
(3) The reaction solution before adding the hydrazine reducing agent was
3. The method for producing fine copper powder according to claim 2, wherein the hydrazine-based reducing agent is added after the temperature is adjusted to 0° C. or higher.
JP2236679A 1990-09-06 1990-09-06 Production method of copper fine powder Expired - Lifetime JP2638271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2236679A JP2638271B2 (en) 1990-09-06 1990-09-06 Production method of copper fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2236679A JP2638271B2 (en) 1990-09-06 1990-09-06 Production method of copper fine powder

Publications (2)

Publication Number Publication Date
JPH04116109A true JPH04116109A (en) 1992-04-16
JP2638271B2 JP2638271B2 (en) 1997-08-06

Family

ID=17004176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2236679A Expired - Lifetime JP2638271B2 (en) 1990-09-06 1990-09-06 Production method of copper fine powder

Country Status (1)

Country Link
JP (1) JP2638271B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741347A (en) * 1995-02-24 1998-04-21 Murata Manufacturing Co., Ltd. Method for producing copper powder
US6174344B1 (en) 1997-06-04 2001-01-16 Mitsui Mining And Smelting Co., Ltd. Copper fine powder and method for preparing the same
US6620344B2 (en) 1999-05-28 2003-09-16 Dowa Mining Co., Ltd. Copper particle clusters and powder containing the same suitable as conductive filler of conductive paste
JP2004211108A (en) * 2002-11-12 2004-07-29 Dowa Mining Co Ltd Fine granular copper powder and its producing method
US6875252B2 (en) 1999-12-01 2005-04-05 Dowa Mining Co., Ltd. Copper powder and process for producing copper powder
US6881240B2 (en) 2000-09-18 2005-04-19 Dowa Mining Co., Ltd. Copper powder for electrically conductive paste
WO2006062160A1 (en) * 2004-12-10 2006-06-15 Mitsubishi Materials Corporation Fine metal particle, process for producing the same, composition containing the same, and use thereof
JP2007165326A (en) * 2007-01-09 2007-06-28 Dowa Holdings Co Ltd Copper powder for conductive paste and manufacturing method thereof
JP2007254846A (en) * 2006-03-24 2007-10-04 Mitsui Mining & Smelting Co Ltd Production method for copper powder and copper powder obtained by the production method
JP2008050661A (en) * 2006-08-25 2008-03-06 Shoei Chem Ind Co Method for producing copper powder
JP2008050650A (en) * 2006-08-24 2008-03-06 Shoei Chem Ind Co Method for producing copper powder
JP2008069457A (en) * 2007-10-09 2008-03-27 Mitsui Mining & Smelting Co Ltd Drop-shaped copper powder, method for producing drop-shaped copper powder, and electrically conductive paste
JP2010090443A (en) * 2008-10-08 2010-04-22 Furukawa Electric Co Ltd:The Method for producing fine particle of copper alloy
JP2010534280A (en) * 2007-07-26 2010-11-04 エルジー・ケム・リミテッド Method for producing copper particle composition
JP2013194290A (en) * 2012-03-21 2013-09-30 Dic Corp Method for producing copper nanowire
WO2014080662A1 (en) 2012-11-26 2014-05-30 三井金属鉱業株式会社 Copper powder and method for producing same
JP2014221927A (en) * 2013-05-13 2014-11-27 国立大学法人東北大学 Copper fine particle and method for producing the same
US9211587B2 (en) 2011-09-30 2015-12-15 Dowa Electronics Materials Co., Ltd. Cuprous oxide powder and method for producing same
CN114682258A (en) * 2022-04-08 2022-07-01 陕西师范大学 CuO/Cu2Preparation method and application of O nanometer flower-shaped spherical thermal catalyst
WO2024075521A1 (en) * 2022-10-04 2024-04-11 古河機械金属株式会社 Copper particles, conductive paste, substrate, and production method for copper particles

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019144A1 (en) 2004-08-20 2006-02-23 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
JP2008019461A (en) 2006-07-11 2008-01-31 Fujifilm Corp Method for manufacturing metal nanoparticle, metal nanoparticle, and metal nanoparticle dispersion
CN104625085B (en) * 2015-01-23 2017-01-11 中国矿业大学 Method for simply and stably preparing micro-nano hollow copper
JP7121884B1 (en) 2021-03-29 2022-08-19 三菱マテリアル株式会社 Copper particles and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299406A (en) * 1985-10-28 1987-05-08 Mitsui Mining & Smelting Co Ltd Production of copper powder
JPH01259108A (en) * 1988-04-08 1989-10-16 Fukuda Metal Foil & Powder Co Ltd Manufacture of copper super fine powder
JPH02129309A (en) * 1988-11-07 1990-05-17 Nippon Mining Co Ltd Manufacture of copper fine powder
JPH02294414A (en) * 1989-05-10 1990-12-05 Seidou Kagaku Kogyo Kk Production of fine copper powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299406A (en) * 1985-10-28 1987-05-08 Mitsui Mining & Smelting Co Ltd Production of copper powder
JPH01259108A (en) * 1988-04-08 1989-10-16 Fukuda Metal Foil & Powder Co Ltd Manufacture of copper super fine powder
JPH02129309A (en) * 1988-11-07 1990-05-17 Nippon Mining Co Ltd Manufacture of copper fine powder
JPH02294414A (en) * 1989-05-10 1990-12-05 Seidou Kagaku Kogyo Kk Production of fine copper powder

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741347A (en) * 1995-02-24 1998-04-21 Murata Manufacturing Co., Ltd. Method for producing copper powder
US6174344B1 (en) 1997-06-04 2001-01-16 Mitsui Mining And Smelting Co., Ltd. Copper fine powder and method for preparing the same
US6391087B1 (en) 1997-06-04 2002-05-21 Mitsui Mining And Smelting Co., Ltd. Copper fine powder and method for preparing the same
US6923924B2 (en) 1999-05-28 2005-08-02 Dowa Mining Co., Ltd. Copper particle clusters and powder containing the same suitable as conductive filler of conductive paste
US6620344B2 (en) 1999-05-28 2003-09-16 Dowa Mining Co., Ltd. Copper particle clusters and powder containing the same suitable as conductive filler of conductive paste
US7235119B2 (en) 1999-05-28 2007-06-26 Dowa Mining Co., Ltd. Copper particle clusters and powder containing the same suitable as conductive filler of conductive paste
US6875252B2 (en) 1999-12-01 2005-04-05 Dowa Mining Co., Ltd. Copper powder and process for producing copper powder
US6881240B2 (en) 2000-09-18 2005-04-19 Dowa Mining Co., Ltd. Copper powder for electrically conductive paste
JP2004211108A (en) * 2002-11-12 2004-07-29 Dowa Mining Co Ltd Fine granular copper powder and its producing method
WO2006062160A1 (en) * 2004-12-10 2006-06-15 Mitsubishi Materials Corporation Fine metal particle, process for producing the same, composition containing the same, and use thereof
JP2006169544A (en) * 2004-12-10 2006-06-29 Mitsubishi Materials Corp Metal particulate, method for producing the same, composition containing the same and application thereof
US7846976B2 (en) 2004-12-10 2010-12-07 Mitsubishi Materials Corporation Metallic fine particles, process for producing the same, composition containing the same, and use thereof
KR101346972B1 (en) * 2004-12-10 2014-01-15 다이닛뽄도료가부시키가이샤 Fine metal particle, process for producing the same, composition containing the same, and use thereof
JP4665499B2 (en) * 2004-12-10 2011-04-06 三菱マテリアル株式会社 Metal fine particles, production method thereof, composition containing the same, and use thereof
JP2007254846A (en) * 2006-03-24 2007-10-04 Mitsui Mining & Smelting Co Ltd Production method for copper powder and copper powder obtained by the production method
JP2008050650A (en) * 2006-08-24 2008-03-06 Shoei Chem Ind Co Method for producing copper powder
JP2008050661A (en) * 2006-08-25 2008-03-06 Shoei Chem Ind Co Method for producing copper powder
JP4524477B2 (en) * 2007-01-09 2010-08-18 Dowaエレクトロニクス株式会社 Copper powder for conductive paste
JP2007165326A (en) * 2007-01-09 2007-06-28 Dowa Holdings Co Ltd Copper powder for conductive paste and manufacturing method thereof
JP2010534280A (en) * 2007-07-26 2010-11-04 エルジー・ケム・リミテッド Method for producing copper particle composition
JP2008069457A (en) * 2007-10-09 2008-03-27 Mitsui Mining & Smelting Co Ltd Drop-shaped copper powder, method for producing drop-shaped copper powder, and electrically conductive paste
JP2010090443A (en) * 2008-10-08 2010-04-22 Furukawa Electric Co Ltd:The Method for producing fine particle of copper alloy
US9211587B2 (en) 2011-09-30 2015-12-15 Dowa Electronics Materials Co., Ltd. Cuprous oxide powder and method for producing same
JP2013194290A (en) * 2012-03-21 2013-09-30 Dic Corp Method for producing copper nanowire
WO2014080662A1 (en) 2012-11-26 2014-05-30 三井金属鉱業株式会社 Copper powder and method for producing same
KR20150088994A (en) 2012-11-26 2015-08-04 미쓰이금속광업주식회사 Copper powder and method for producing same
US10518323B2 (en) 2012-11-26 2019-12-31 Mitsui Mining & Smelting Co., Ltd. Copper power and method for producing same
JP2014221927A (en) * 2013-05-13 2014-11-27 国立大学法人東北大学 Copper fine particle and method for producing the same
CN114682258A (en) * 2022-04-08 2022-07-01 陕西师范大学 CuO/Cu2Preparation method and application of O nanometer flower-shaped spherical thermal catalyst
CN114682258B (en) * 2022-04-08 2024-04-09 陕西轩意光电科技有限公司 CuO/Cu 2 Preparation method and application of O nano flower-shaped spherical thermal catalyst
WO2024075521A1 (en) * 2022-10-04 2024-04-11 古河機械金属株式会社 Copper particles, conductive paste, substrate, and production method for copper particles

Also Published As

Publication number Publication date
JP2638271B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
JPH04116109A (en) Production of fine copper powder
EP0363552B1 (en) Process for preparing metal particles
JP4821014B2 (en) Copper powder manufacturing method
JP2004035398A (en) Spheroidizing of silicon metal powder
EP3699144A1 (en) Copper oxychloride particulate matter and preparation method therefor
JPH0372683B2 (en)
JPH0557324B2 (en)
CN114346254B (en) Method for preparing nanometer copper powder in eutectic ionic liquid
JPH04235205A (en) Production of copper powder
JP3820018B2 (en) Method for producing granular silver powder
JP2550586B2 (en) Method for producing fine silver alloy powder
JPH032302A (en) Manufacture of high purity copper fine powder
JPH0657314A (en) Production of fine palladium powder
KR102423669B1 (en) Method for manufacturing copper particles capable of shape control and conductive ink composition comprising copper particles prepared thereby
JPH0249364B2 (en)
JP2002363618A (en) Copper ultrafine grain and production method therefor
JPH04231407A (en) Preparation of metal powder
JPH01290706A (en) Production of fine copper powder
JP3245965B2 (en) Production method of copper powder
JPH02259004A (en) Manufacture of noble metal fine particles
JP2934469B2 (en) Method for producing small soluble palladium lumps
JPS63186805A (en) Production of fine copper particles
JPS63186810A (en) Production of fine copper particles
JPS63186809A (en) Production of fine copper particles
CN115637325A (en) Method for extracting rare earth oxide from rare earth ore

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14