JPH02294414A - Production of fine copper powder - Google Patents

Production of fine copper powder

Info

Publication number
JPH02294414A
JPH02294414A JP11642689A JP11642689A JPH02294414A JP H02294414 A JPH02294414 A JP H02294414A JP 11642689 A JP11642689 A JP 11642689A JP 11642689 A JP11642689 A JP 11642689A JP H02294414 A JPH02294414 A JP H02294414A
Authority
JP
Japan
Prior art keywords
copper
copper powder
cuprous oxide
soln
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11642689A
Other languages
Japanese (ja)
Other versions
JP2728726B2 (en
Inventor
Shinjiro Wakao
若尾 慎二郎
Buichi Hashimoto
橋本 武一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIDOU KAGAKU KOGYO KK
Original Assignee
SEIDOU KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIDOU KAGAKU KOGYO KK filed Critical SEIDOU KAGAKU KOGYO KK
Priority to JP11642689A priority Critical patent/JP2728726B2/en
Publication of JPH02294414A publication Critical patent/JPH02294414A/en
Application granted granted Critical
Publication of JP2728726B2 publication Critical patent/JP2728726B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce high purity fine copper powder by adding an amino acid, etc., to an aq. soln. of a copper salt, adding NaOH, etc., to adjust the pH of the soln., adding glucose to deposit cuprous oxide and reducing the cuprous oxide with hydrazine. CONSTITUTION:At least one kind of compd. selected among amino acids, salts of the acids, ammonia, ammonium salts, org. amines and dimethyloxime is added to an aq. soln. of a water soluble copper salt such as copper sulfate. The soln. is heated to 60 deg.C, NaOH, KOH or other alkali hydroxide is added to adjust the pH of the soln. to 10.6-11.6 and a copper ion reducing agent such as glucose is further added and stirred to deposit cuprous oxide. This cuprous oxide is reduced by adding hydrazine to form high purity fine copper powder and this powder is separated by filtration, washed with water, further washed with ethanol and vacuum-dried. High purity fine copper powder having superior dispersibility is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、微粒子銅粉末の製造方法に関し、更に詳しく
は銅塩を水溶液中で還元して銅粉末を得る方法の改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing fine-particle copper powder, and more particularly to an improvement in a method for obtaining copper powder by reducing a copper salt in an aqueous solution.

[従来の技術] 微粒子銅粉末はこれを有機バインダーや溶媒によりペー
スト化し、厚膜ICの電極や電子部品の電極として用い
られる。電極の細線化や焼付温度を低下させるために微
粒子の銅粉が要望されている。
[Prior Art] Fine-particle copper powder is made into a paste using an organic binder or a solvent and used as electrodes for thick film ICs and electronic components. Fine particle copper powder is required to thin the electrodes and lower the baking temperature.

従来銅粉末の製法としては還元銅と電解銅の2種の方法
がある。前者は銅塩水溶液に中和剤として水酸化ナトリ
ウムを加え、水酸化銅を析出せしめ、更に還元糖である
グルコースなどを加え、亜酸化銅とし、これを更にヒド
ラジンで還元して銅粉末を得る方法であり、後者は銅塩
水溶液を電気分解し、陰極に銅を析出させ、これを粉砕
して銅粉末を得る方法であり、共に銅粉末の製法として
広く採用されている。しかし、これらの銅粉末は電解銅
粉末の場合は5ミクロン以上である。
There are two conventional methods for producing copper powder: reduced copper and electrolytic copper. The former involves adding sodium hydroxide as a neutralizing agent to an aqueous copper salt solution to precipitate copper hydroxide, then adding reducing sugar such as glucose to form cuprous oxide, which is further reduced with hydrazine to obtain copper powder. The latter method involves electrolyzing an aqueous copper salt solution, depositing copper on the cathode, and pulverizing it to obtain copper powder. Both methods are widely adopted as methods for producing copper powder. However, these copper powders are 5 microns or more in the case of electrolytic copper powders.

前者の還元銅粉末を場合、この前段の還元糖による銅塩
の還元に際し、銅イオンを錯体化させるために従来酒石
酸ナトリウムが使用されていたが、酒石酸ナトリウムを
使用すると、得られる銅粉末は凝集し、分散性の悪い、
いわゆる「のび」の悪いものとなり、また粒径も0,7
〜3ミクロンと大きいものである。
In the case of the former reduced copper powder, sodium tartrate was conventionally used to complex the copper ions during the reduction of the copper salt with the reducing sugar in the first step, but when sodium tartrate is used, the resulting copper powder will aggregate. and poor dispersion,
The so-called "spreadability" is poor, and the particle size is also 0.7.
It is large, ~3 microns.

特に厚膜ICの導体として使用される銅ペーストにおい
ては、粒径が微粒子で凝集が少なく、分散性のよい、い
わゆる「のび」のよい銅微粒子が望まれている。
Particularly in copper pastes used as conductors in thick-film ICs, fine copper particles with fine particle size, less agglomeration, and good dispersibility, so-called "spreadability", are desired.

[発明が解決しようとする課題] 本発明は、粒径のより小さい、かつ凝集が少なく、分散
性のよい、いわゆる「のび」のよい銅粉末を製造できる
方法を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention aims to provide a method for producing copper powder that has a smaller particle size, less agglomeration, and good dispersibility, so-called "spreadability".

[課題を解決するための手段] 本発明は、この課題を従来使用されていた酒石酸ナトリ
ウムに代えて、アミノ酸またはその塩、アンモニアまた
はアンモニア塩、有機アミノ類、もしくはジメチルグリ
オキシムを用いることにより解決した。
[Means for Solving the Problem] The present invention solves this problem by using an amino acid or a salt thereof, ammonia or an ammonia salt, organic aminos, or dimethylglyoxime in place of the conventionally used sodium tartrate. did.

すなわち、本発明の方法ではこれらの添加物の少くとも
1種の存在下、銅塩水溶液に水酸化ナトリウム、水酸化
カリウムなどの水酸化アルカリを加え、更に還元糖を加
えて亜酸化銅を水溶液中に析出させ、更にヒドラジンを
加えて、亜酸化銅を還元して、粒径の小さい「のび」の
よい銅微粉末を得る。
That is, in the method of the present invention, an alkali hydroxide such as sodium hydroxide or potassium hydroxide is added to an aqueous copper salt solution in the presence of at least one of these additives, and reducing sugar is further added to form a solution of cuprous oxide in an aqueous solution. Then, hydrazine is added to reduce the cuprous oxide to obtain fine copper powder with small particle size and good spreadability.

還元に供する銅塩としては、水溶性塩であればいずれも
使用でき、硫酸銅、塩化銅、硝酸銅などの銅無機塩、酢
酸銅などの銅有機塩が例示できる。
As the copper salt to be subjected to reduction, any water-soluble salt can be used, and examples include copper inorganic salts such as copper sulfate, copper chloride, and copper nitrate, and copper organic salts such as copper acetate.

銅塩の亜酸化銅への還元にはグルコースなどの還元剤を
用い、さらに亜酸化銅の銅への還元には、抱水ヒドラジ
ン、無水ヒドラジンなどのヒドラジン化合物を用いて行
う。還元剤の使用量は従来の方法と同様である。
A reducing agent such as glucose is used to reduce the copper salt to cuprous oxide, and a hydrazine compound such as hydrazine hydrate or anhydrous hydrazine is used to further reduce the cuprous oxide to copper. The amount of reducing agent used is the same as in the conventional method.

アミノ酸またはその塩は、既知のものの中から適宜選択
することができ、天然アミノ酸または合成アミノ酸のい
ずれでもよい。
The amino acid or its salt can be appropriately selected from known amino acids, and may be either a natural amino acid or a synthetic amino acid.

例えば、グリシン、ヒスチジン、アラニン、パリン、ア
スパラギン、アスパラギン酸、グルタミン酸またはその
ナトリウム塩、アルギン、リジン、グリシルグリシン、
エチレンジアミン四酢酸などが好ましい。
For example, glycine, histidine, alanine, parine, asparagine, aspartic acid, glutamic acid or its sodium salt, algine, lysine, glycylglycine,
Ethylenediaminetetraacetic acid and the like are preferred.

アンモニウムまたはアンモニウム塩としてアンモニウム
水、酢酸アンモニウム、塩化アンモニウムなどが好まし
く、また有機アミン類としてはエタノールアミン、エチ
レンアミンなどが例示できる。
Ammonium or ammonium salts are preferably ammonium water, ammonium acetate, ammonium chloride, etc., and organic amines include ethanolamine, ethyleneamine, etc.

これらの添加物はいずれも従来法の酒石酸上り銅イオン
との錯体安定度定数が大きい。錯体安定化定数が大きい
ほど、微粒子で「のび」のよい銅微粉末が得られ、添加
物のl種または2種以上の混合物を適当に用いることに
より、得られる銅粉末「のび」および拉径を制御するこ
とができる。
All of these additives have a large complex stability constant with the copper ion of tartrate in the conventional method. The larger the complex stabilization constant, the finer the particles and the better the "spreadability" of the fine copper powder. By appropriately using l type or a mixture of two or more types of additives, the "spreadability" and the diameter of the copper powder obtained can be improved. can be controlled.

アミノ酸をはじめとするこれらの添加物は、本発明の方
法では触媒的に反応に関与するので、それほど多量に使
用する必要はない。たとえば、銅塩1モルに対して添加
物o.oos〜0.02モルの量で十分である。水酸化
アルカリによる水酸化銅の析出反応、還元糖による還元
反応は、常温で行うこともできるが、反応を促進する為
に80℃程度以下、好ましくは60〜70℃程度に加熱
するのがよい。反応圧力は常圧でよい。また、この還元
反応は、従来法と同じく水酸化アルカリによるアルカリ
側のpHで行うのが好ましい。また、亜酸化銅が析出し
たのちに該溶液にヒドラジンの化合物を加え、同様の温
度で還元を行うのがよい。
Since these additives including amino acids participate in the reaction catalytically in the method of the present invention, they do not need to be used in large amounts. For example, additive o. Amounts from oos to 0.02 mol are sufficient. The precipitation reaction of copper hydroxide with alkali hydroxide and the reduction reaction with reducing sugar can be carried out at room temperature, but in order to accelerate the reaction, it is better to heat it to about 80°C or less, preferably about 60 to 70°C. . The reaction pressure may be normal pressure. Further, this reduction reaction is preferably carried out at an alkaline pH using an alkali hydroxide, as in the conventional method. Further, it is preferable to add a hydrazine compound to the solution after cuprous oxide has precipitated, and to perform reduction at the same temperature.

水溶液中に生成した銅粉末を濾過回収してもよいが、水
分散液のままペンゾトリアゾールなどにより防錆処理を
行なってもよい。
The copper powder produced in the aqueous solution may be collected by filtration, but the aqueous dispersion may also be subjected to rust prevention treatment using penzotriazole or the like.

本発明の方法では、得られた銅粉末に、たとえアミノ酸
などの添加物が含まれていたとしても、加熱により分解
除去できる。
In the method of the present invention, even if the obtained copper powder contains additives such as amino acids, they can be decomposed and removed by heating.

本発明の方法により製造される銅微粉末の平均粒径、タ
ップ密度および「のび」の特性は表−1の通りであり、
従来法に比べて微粒子で、タップ密度も高く、「のび」
もよい。
The average particle size, tap density and "spread" characteristics of the fine copper powder produced by the method of the present invention are shown in Table 1.
Compared to the conventional method, the particles are finer, the tap density is higher, and it is "spreadable".
Good too.

本発明により製造される銅粉末は銅ペーストに好適な性
質を持っている。
The copper powder produced according to the present invention has properties suitable for copper paste.

平均粒径はBET法(窒素ガス吸着法、島津一マイクロ
メリテックス製2200型)の比表面積より求めた粒径
であり、タップ密度は9〜10gの銅粉末を内径15+
mφのガラスシリンダーに入れ、高さ20cmから50
回タッピングした時の値である。「のび」特性は、試料
0.0 1 5gをワープロ用紙(コクヨ社製)上にと
り、指先でおさえて、ほぼ指巾にひき伸ばした時の長さ
(cm)で示す。
The average particle size is the particle size determined from the specific surface area of the BET method (nitrogen gas adsorption method, Shimadzu Micromeritex Model 2200), and the tap density is 9 to 10 g of copper powder with an inner diameter of 15+.
Place it in a mφ glass cylinder, and use it from a height of 20cm to 50mm.
This is the value when tapped twice. The "spreading" property is expressed as the length (cm) when 0.015 g of a sample is placed on word processing paper (manufactured by KOKUYO), held down with a fingertip, and stretched to approximately the width of a finger.

実施例 水320mlにCuSO− ・5HtO結晶40.0g
(0.16モル)とグリシン、アルギニンなどのアミノ
酸(0。0035モル)のうちの1種類を溶かした水溶
液に、温度60℃で、2規定−NaOH水溶液を加え、
溶液のpHを10.6〜11.6とする。次にこの溶液
にブドウ糖14.4gを加え、撹拌しながら30分間保
持した。次に液温を25℃に冷却したのち抱水ヒドラジ
ン(80%)35+nlを加え、70℃まで約1℃/分
の平均昇温速度で加熱する。70℃で2時間保持したの
ち濾過・水洗・エタノール洗浄を行う。得られた沈澱物
は90℃、3時間真空乾燥を行った。この方法で合成さ
れた銅粉末はいずれも亜酸化銅を含まない純銅である。
Example: 40.0 g of CuSO- 5HtO crystal in 320 ml of water.
(0.16 mol) and one type of amino acid (0.0035 mol) such as glycine or arginine are dissolved in an aqueous solution at a temperature of 60°C, and a 2N-NaOH aqueous solution is added.
The pH of the solution is set to 10.6-11.6. Next, 14.4 g of glucose was added to this solution and held for 30 minutes while stirring. Next, after cooling the liquid temperature to 25°C, 35+nl of hydrazine hydrate (80%) is added and heated to 70°C at an average heating rate of about 1°C/min. After holding at 70°C for 2 hours, filtration, washing with water, and washing with ethanol are performed. The obtained precipitate was vacuum dried at 90°C for 3 hours. All copper powders synthesized by this method are pure copper containing no cuprous oxide.

表−2に添加物の種類、溶液のpH、合成銅粉のタップ
密度、のび特性、BET法による比表面積およびそれか
ら求めた粒径を示した。表−2の最初のものは比較のた
め従来法の酒石酸ソーダを添加した場合の結果である。
Table 2 shows the types of additives, the pH of the solution, the tap density of the synthetic copper powder, the spreading properties, the specific surface area determined by the BET method, and the particle size determined therefrom. The first one in Table 2 shows the results when sodium tartrate was added in the conventional method for comparison.

表−2 酒石酸ソーダ 11.6 グリシン   11.6 ヒスチジン  11.6 L−アルギニン l1.6 L−アルギニン 10.6 グルタミン酸 11.6 1.87     8     1.022.6g  
  33    1.433.44    59   
  1123.56    43    1.872.
94   130     ?.393.32    
37     1.100.70 0.35 0.09 0.60 アンモニア水 11.6  2.10 アンモニア水 IQ.6  2.55
Table-2 Sodium tartrate 11.6 Glycine 11.6 Histidine 11.6 L-Arginine 11.6 L-Arginine 10.6 Glutamic acid 11.6 1.87 8 1.022.6g
33 1.433.44 59
1123.56 43 1.872.
94 130? .. 393.32
37 1.100.70 0.35 0.09 0.60 Ammonia water 11.6 2.10 Ammonia water IQ. 6 2.55

Claims (1)

【特許請求の範囲】[Claims] 1、アミノ酸およびその塩、アンモニアおよびアンモニ
ウム塩、有機アミン類ならびにジメチルグリオキシムか
ら成る群から選択された少くとも1種の化合物の存在下
、銅塩水溶液に水酸化アルカリを加え、還元糖を加えて
亜酸化銅を水溶液中に析出させ、これにヒドラジンを加
えて亜酸化銅を還元して銅粉末を得ることを特徴とする
微粒子銅粉末の製造方法。
1. In the presence of at least one compound selected from the group consisting of amino acids and their salts, ammonia and ammonium salts, organic amines, and dimethylglyoxime, add alkali hydroxide to an aqueous copper salt solution, and add reducing sugar. 1. A method for producing fine-particle copper powder, which comprises precipitating cuprous oxide in an aqueous solution, and adding hydrazine to the precipitate to reduce the cuprous oxide to obtain copper powder.
JP11642689A 1989-05-10 1989-05-10 Method for producing fine copper powder Expired - Lifetime JP2728726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11642689A JP2728726B2 (en) 1989-05-10 1989-05-10 Method for producing fine copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11642689A JP2728726B2 (en) 1989-05-10 1989-05-10 Method for producing fine copper powder

Publications (2)

Publication Number Publication Date
JPH02294414A true JPH02294414A (en) 1990-12-05
JP2728726B2 JP2728726B2 (en) 1998-03-18

Family

ID=14686800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11642689A Expired - Lifetime JP2728726B2 (en) 1989-05-10 1989-05-10 Method for producing fine copper powder

Country Status (1)

Country Link
JP (1) JP2728726B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116109A (en) * 1990-09-06 1992-04-16 Sumitomo Metal Ind Ltd Production of fine copper powder
EP0887132A2 (en) * 1997-06-04 1998-12-30 Mitsui Mining & Smelting Co., Ltd. Copper fine powder and method for preparing the same
JP2001220607A (en) * 1999-12-01 2001-08-14 Dowa Mining Co Ltd Copper powder and method for producing copper powder
KR100405970B1 (en) * 2001-09-18 2003-11-14 한국과학기술연구원 Synthesis of Cu Fine Particles by Glycothermal Process
WO2006062160A1 (en) * 2004-12-10 2006-06-15 Mitsubishi Materials Corporation Fine metal particle, process for producing the same, composition containing the same, and use thereof
CN1299865C (en) * 2005-04-26 2007-02-14 黄德欢 Preparation method of nuclear shell structured nano-gold copper powder
CN1299864C (en) * 2005-04-26 2007-02-14 黄德欢 Preparation method of nano-bronze powder
CN1305772C (en) * 2005-04-26 2007-03-21 黄德欢 Process for preparing nano cuprous oxide powder
JP2007254846A (en) * 2006-03-24 2007-10-04 Mitsui Mining & Smelting Co Ltd Production method for copper powder and copper powder obtained by the production method
JP2008274408A (en) * 2007-03-14 2008-11-13 Phibro-Tech Inc Method of producing fine-particle copper powders
JP2010150619A (en) * 2008-12-26 2010-07-08 Mitsui Mining & Smelting Co Ltd Method for producing copper nanoparticle
CN104227012A (en) * 2013-06-14 2014-12-24 中国振华集团云科电子有限公司 Preparation method for ultra-fine copper powder
JP2016191095A (en) * 2015-03-30 2016-11-10 Dowaエレクトロニクス株式会社 Method for producing copper nanostructure
JP2016204733A (en) * 2015-04-28 2016-12-08 日立化成株式会社 Manufacturing method of copper particle, copper particle, copper paste and semiconductor device
JP2017115199A (en) * 2015-12-24 2017-06-29 三井金属鉱業株式会社 Manufacturing method of copper particles
JP2019002054A (en) * 2017-06-16 2019-01-10 三井金属鉱業株式会社 Copper particle
JP2020176334A (en) * 2020-07-15 2020-10-29 Dowaエレクトロニクス株式会社 Copper powder and conductive paste
JP2021014633A (en) * 2019-07-16 2021-02-12 Jx金属株式会社 Surface-treated copper powder

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116109A (en) * 1990-09-06 1992-04-16 Sumitomo Metal Ind Ltd Production of fine copper powder
EP0887132A2 (en) * 1997-06-04 1998-12-30 Mitsui Mining & Smelting Co., Ltd. Copper fine powder and method for preparing the same
US6174344B1 (en) 1997-06-04 2001-01-16 Mitsui Mining And Smelting Co., Ltd. Copper fine powder and method for preparing the same
EP0887132A3 (en) * 1997-06-04 2001-11-14 Mitsui Mining & Smelting Co., Ltd. Copper fine powder and method for preparing the same
US6391087B1 (en) 1997-06-04 2002-05-21 Mitsui Mining And Smelting Co., Ltd. Copper fine powder and method for preparing the same
JP4701426B2 (en) * 1999-12-01 2011-06-15 Dowaエレクトロニクス株式会社 Copper powder and copper powder manufacturing method
JP2001220607A (en) * 1999-12-01 2001-08-14 Dowa Mining Co Ltd Copper powder and method for producing copper powder
KR100405970B1 (en) * 2001-09-18 2003-11-14 한국과학기술연구원 Synthesis of Cu Fine Particles by Glycothermal Process
KR101346972B1 (en) * 2004-12-10 2014-01-15 다이닛뽄도료가부시키가이샤 Fine metal particle, process for producing the same, composition containing the same, and use thereof
JP2006169544A (en) * 2004-12-10 2006-06-29 Mitsubishi Materials Corp Metal particulate, method for producing the same, composition containing the same and application thereof
WO2006062160A1 (en) * 2004-12-10 2006-06-15 Mitsubishi Materials Corporation Fine metal particle, process for producing the same, composition containing the same, and use thereof
US7846976B2 (en) 2004-12-10 2010-12-07 Mitsubishi Materials Corporation Metallic fine particles, process for producing the same, composition containing the same, and use thereof
JP4665499B2 (en) * 2004-12-10 2011-04-06 三菱マテリアル株式会社 Metal fine particles, production method thereof, composition containing the same, and use thereof
CN1299864C (en) * 2005-04-26 2007-02-14 黄德欢 Preparation method of nano-bronze powder
CN1305772C (en) * 2005-04-26 2007-03-21 黄德欢 Process for preparing nano cuprous oxide powder
CN1299865C (en) * 2005-04-26 2007-02-14 黄德欢 Preparation method of nuclear shell structured nano-gold copper powder
JP2007254846A (en) * 2006-03-24 2007-10-04 Mitsui Mining & Smelting Co Ltd Production method for copper powder and copper powder obtained by the production method
JP2008274408A (en) * 2007-03-14 2008-11-13 Phibro-Tech Inc Method of producing fine-particle copper powders
JP2010150619A (en) * 2008-12-26 2010-07-08 Mitsui Mining & Smelting Co Ltd Method for producing copper nanoparticle
CN104227012A (en) * 2013-06-14 2014-12-24 中国振华集团云科电子有限公司 Preparation method for ultra-fine copper powder
JP2016191095A (en) * 2015-03-30 2016-11-10 Dowaエレクトロニクス株式会社 Method for producing copper nanostructure
JP2016204733A (en) * 2015-04-28 2016-12-08 日立化成株式会社 Manufacturing method of copper particle, copper particle, copper paste and semiconductor device
JP2017115199A (en) * 2015-12-24 2017-06-29 三井金属鉱業株式会社 Manufacturing method of copper particles
JP2019002054A (en) * 2017-06-16 2019-01-10 三井金属鉱業株式会社 Copper particle
JP2021014633A (en) * 2019-07-16 2021-02-12 Jx金属株式会社 Surface-treated copper powder
JP2020176334A (en) * 2020-07-15 2020-10-29 Dowaエレクトロニクス株式会社 Copper powder and conductive paste

Also Published As

Publication number Publication date
JP2728726B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
JPH02294414A (en) Production of fine copper powder
JP2638271B2 (en) Production method of copper fine powder
JP2003503300A (en) Method for producing cobalt hydroxide or cobalt mixed hydroxide of high density and large particle size and product produced by this method
JPH02294415A (en) Production of fine copper powder
JP2900650B2 (en) Method for producing nickel fine powder
JP3921805B2 (en) Method for producing nickel fine powder
JP2020007633A (en) Nickel coupling particle and manufacturing method therefor
JPH0323220A (en) Preparation of white electrically- conductive zinc oxide
JPH09183620A (en) Bismuth oxycarbonate powder and its production
JP7342227B2 (en) Tantalum acid dispersion and tantalate compound
JPH07278619A (en) Production of nickel powder
JP5674083B2 (en) Iron oxyhydroxide sol and method for producing the same
JP4352121B2 (en) Copper powder manufacturing method
JPH03131533A (en) Production of ruthenium nitrate solution
JP3245965B2 (en) Production method of copper powder
JP2004211191A (en) Chemical for producing nickel fine powder
JP6491595B2 (en) Method for producing platinum palladium rhodium alloy powder
JPH03287707A (en) Production of copper powder
JP5416979B2 (en) Copper powder and method for producing the same
JP3577330B2 (en) Method of coating red light-emitting phosphor particles with hematite, red light-emitting phosphor particles obtained by this method, and color picture tube using the particles
JPH04321523A (en) Production of tricobalt tetroxide
JPH0211707A (en) Production of silver fine particle
US20210268583A1 (en) Method of producing spherical silver powder
JP2736693B2 (en) Method for producing jarosite particle powder
JPH07107172B2 (en) Method for producing fine silver particles

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 12