JP2020176334A - Copper powder and conductive paste - Google Patents

Copper powder and conductive paste Download PDF

Info

Publication number
JP2020176334A
JP2020176334A JP2020121330A JP2020121330A JP2020176334A JP 2020176334 A JP2020176334 A JP 2020176334A JP 2020121330 A JP2020121330 A JP 2020121330A JP 2020121330 A JP2020121330 A JP 2020121330A JP 2020176334 A JP2020176334 A JP 2020176334A
Authority
JP
Japan
Prior art keywords
copper
copper powder
tap density
comparative example
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020121330A
Other languages
Japanese (ja)
Other versions
JP7026173B2 (en
Inventor
公一 本村
Koichi Motomura
公一 本村
優樹 金城
Masaki Kaneshiro
優樹 金城
井上 健一
Kenichi Inoue
健一 井上
圭一 遠藤
Keiichi Endo
圭一 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2020121330A priority Critical patent/JP7026173B2/en
Publication of JP2020176334A publication Critical patent/JP2020176334A/en
Application granted granted Critical
Publication of JP7026173B2 publication Critical patent/JP7026173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

To provide a copper powder that has low TAP density and can be used suitably for conductive paste and a method of producing the same.SOLUTION: A copper powder has an average particle size of 0.05-5.0 μm, measured with a laser diffraction scattering type particle-size distribution measuring device, and has a TAP density of 3.0 g/cm3 or less.SELECTED DRAWING: None

Description

本発明は、TAP密度の低い銅粉及び当該銅粉の製造方法、並びに前記銅粉を含む導電性ペーストに関する。 The present invention relates to a copper powder having a low TAP density, a method for producing the copper powder, and a conductive paste containing the copper powder.

電子機器等の技術発展に伴い、それに用いられる電子部品に求められる特性も多種多様かつ高レベルなものとなり、その結果として電子部品の原料となる電子材料についても、様々な特性が高いレベルで求められている。例えば、電極、回路、電磁波シールド等の形成に導電性ペーストが広く使用され、それを構成する導電粉として、銅粉や銀粉などの各種の金属粉が使用されており、これらの特性について技術開発がなされている。 With the technological development of electronic devices, the characteristics required for electronic components used for them have become diverse and high-level, and as a result, various characteristics are also required for electronic materials that are raw materials for electronic components at a high level. Has been done. For example, conductive pastes are widely used to form electrodes, circuits, electromagnetic wave shields, etc., and various metal powders such as copper powder and silver powder are used as the conductive powders that compose them. Has been made.

これらの導電粉についての要求特性はその用途に応じて様々であるが、一般的には電子部品の小型化に伴い、導電粉の微粒子化が求められ、また導電性ペーストの作業性として、適切な粘性や塗布性、それらを与える導電粉の適切な金属組成が求められている。また、導電性ペーストから得られる導電体について一般的には高い導電性が求められ、当然コストは低いことが求められる。 The required characteristics of these conductive powders vary depending on the application, but in general, with the miniaturization of electronic parts, it is required to make the conductive powders finer, and it is suitable as the workability of the conductive paste. There is a demand for high viscosity and coatability, and an appropriate metal composition of the conductive powder that gives them. Further, the conductor obtained from the conductive paste is generally required to have high conductivity, and naturally the cost is required to be low.

例えば特許文献1には、銀被覆銅粉について、樹状突起、棘状、棒状といった形状や、銀被覆の量、BET値が規定されている。さらに特許文献1は、低金属粉含有量であっても十分な導電性を発揮する導電ペーストに用いることができる金属粉を提供することを課題としており、これに連動して、前記銀被覆銅粉のTAP密度は、1〜5g/cmという比較的低い値を含む範囲として規定されている。 For example, Patent Document 1 defines shapes such as dendrites, spines, and rods, the amount of silver coating, and the BET value of silver-coated copper powder. Further, Patent Document 1 has an object of providing a metal powder that can be used for a conductive paste that exhibits sufficient conductivity even with a low metal powder content, and in conjunction with this, the silver-coated copper. The TAP density of the powder is defined as a range including a relatively low value of 1 to 5 g / cm 3 .

一方銅粉については、高導電率等を達成するため、高TAP密度を規定したものが多いが(特許文献2〜4)、特許文献5では、電磁波シールドに使用される銅粉について、タップ密度2.0g/cm以上と規定されている。なお、特許文献5の実施例で用いられた銅粉は、タップ密度が3.4g/cm以上である。 On the other hand, many copper powders specify a high TAP density in order to achieve high conductivity and the like (Patent Documents 2 to 4), but in Patent Document 5, the tap density of the copper powder used for electromagnetic wave shielding is specified. It is specified as 2.0 g / cm 3 or more. The copper powder used in the examples of Patent Document 5 has a tap density of 3.4 g / cm 3 or more.

銅粉の製造方法としては、水酸化銅を含む水溶液を、ヒドラジン等の還元剤で処理して溶液中の銅成分を還元する方法、銅塩や銅酸化物を、還元性ガス雰囲気中で加熱還元する方法、銅の塩化物蒸気を還元性ガスで処理して銅の塩化物を還元する方法等が知られている。 As a method for producing copper powder, an aqueous solution containing copper hydroxide is treated with a reducing agent such as hydrazine to reduce the copper component in the solution, and a copper salt or copper oxide is heated in a reducing gas atmosphere. A method of reducing copper chloride, a method of treating copper chloride vapor with a reducing gas to reduce copper chloride, and the like are known.

これらの銅粉の製造方法のうち、水酸化銅を含む水溶液をヒドラジン等の還元剤で処理する、いわゆるヒドラジン還元法は、水溶液中での反応であり、製造コストが比較的安価であるため生産性に優れる方法である。例えば、特許文献6には、有機酸を含む銅塩水溶液にアンモニア水を添加することで水酸化銅を析出させ、その水酸化銅を亜酸化銅に還元し、さらにこの亜酸化銅を金属銅に還元する、銅粉の製造方法が開示されている。また、特許文献3には、前記のヒドラジン還元法において、水酸化アルカリを使用する銅粉の製造方法が開示されている。 Among these methods for producing copper powder, the so-called hydrazine reduction method, in which an aqueous solution containing copper hydroxide is treated with a reducing agent such as hydrazine, is a reaction in the aqueous solution and is produced because the production cost is relatively low. It is a method with excellent sex. For example, in Patent Document 6, copper hydroxide is precipitated by adding aqueous ammonia to a copper salt aqueous solution containing an organic acid, the copper hydroxide is reduced to copper hydroxide, and the cuprous oxide is converted to metallic copper. A method for producing copper powder is disclosed. Further, Patent Document 3 discloses a method for producing copper powder using alkali hydroxide in the hydrazine reduction method.

なお、特許文献7には、無機コーティング膜で銅粉を被覆してなる被覆銅粉が開示されている。同文献の実施例においてTAP密度その他についての評価がなされているが([0078])、これらの評価は、銅粉をSiOコーティングして得られた被覆銅粉について行われている([0095])。そして比較例では無機コーティングを行わない銅粉が評価されているが、そのTAP密度は3.96g/cmである。 In addition, Patent Document 7 discloses a coated copper powder obtained by coating the copper powder with an inorganic coating film. In the examples of the same document, evaluations of TAP density and the like have been made ([0078]), but these evaluations have been made on coated copper powder obtained by coating copper powder with SiO 2 ([00905]). ]). And in the comparative example, copper powder without inorganic coating is evaluated, and its TAP density is 3.96 g / cm 3 .

特開2015−105406号公報JP 2015-105406 特開2011−94236号公報Japanese Unexamined Patent Publication No. 2011-94236 特開2009−84614号公報JP-A-2009-84614 特開2007−165326号公報JP-A-2007-165326 特開平3−20341号公報Japanese Unexamined Patent Publication No. 3-20341 特願2007−204837号公報Japanese Patent Application No. 2007-204837 特開2009−79269号公報Japanese Unexamined Patent Publication No. 2009-79269

上述の通り、導電粉についての要求特性はその用途(例えば形成する電子部品の種類、その形成方法、導電性ペーストを塗布する基板の材質、導電性ペースト中の他の共存成分)に応じて様々である。例えばTAP密度については、特許文献1のように2g/cm程度でもよい場合もあり、また、それほど高い導電性が求められない用途であれば、コストの観点からTAP密度は低いことが望ましい。ところが、上述の通り従来はTAP密度の高い導電粉、特に銅粉が開発されており、3.0g/cm以下のような低TAP密度の銅粉は開発されていないのが現状である。 As described above, the required characteristics of the conductive powder vary depending on the application (for example, the type of electronic component to be formed, the forming method thereof, the material of the substrate to which the conductive paste is applied, and other coexisting components in the conductive paste). Is. For example, the TAP density may be about 2 g / cm 3 as in Patent Document 1, and it is desirable that the TAP density is low from the viewpoint of cost in applications where such high conductivity is not required. However, as described above, conventionally, conductive powder having a high TAP density, particularly copper powder, has been developed, and the current situation is that a copper powder having a low TAP density such as 3.0 g / cm 3 or less has not been developed.

また、様々な要求特性に対応するため、導電粉の各種特性を自由に設計することが可能であれば、その導電粉は多くの用途に適用でき、有用である。このような特性の設計は、特性の異なる複数種類の導電粉を混合することによって行うことができる。例えばTAP密度については、TAP密度の異なる導電粉を混合する。従来開発されている高TAP密度の導電粉に、低TAP密度の導電粉を混合すれば、より低TAP密度の範囲の導電粉を提供することができ、従来品導電粉の利用可能な用途が拡大することが期待される。 Further, if it is possible to freely design various characteristics of the conductive powder in order to meet various required characteristics, the conductive powder can be applied to many applications and is useful. The design of such characteristics can be performed by mixing a plurality of types of conductive powders having different characteristics. For example, regarding the TAP density, conductive powders having different TAP densities are mixed. By mixing a conductive powder having a low TAP density with a conductive powder having a high TAP density that has been conventionally developed, it is possible to provide a conductive powder in a range of a lower TAP density, and the conventional conductive powder can be used. Expected to expand.

ところで、導電性ペーストにおいては、導電粉に付着した有機物もペースト物性に影響を与えることが知られている。そのため、導電粉にはペースト中のその他の成分への影響が少ないことが求められ、前記の異なる導電粉を混合する場合には、互いに影響を与えにくいことが求められる。前記有機物は導電粉中の炭素量を指標として把握することができるので、低炭素な導電粉が求められるといえる。 By the way, in a conductive paste, it is known that organic substances adhering to the conductive powder also affect the physical properties of the paste. Therefore, the conductive powder is required to have little influence on other components in the paste, and when the different conductive powders are mixed, it is required that they are less likely to affect each other. Since the organic substance can be grasped by using the amount of carbon in the conductive powder as an index, it can be said that a low carbon conductive powder is required.

以上から本発明の課題は、TAP密度の低い、導電性ペーストに好適に利用することのできる銅粉及びその製造方法を提供することである。さらに本発明は、望ましくは低炭素な銅粉及びその製造方法を提供することを課題とする。 From the above, an object of the present invention is to provide a copper powder having a low TAP density and which can be suitably used for a conductive paste and a method for producing the same. Furthermore, it is an object of the present invention to provide a preferably low carbon copper powder and a method for producing the same.

本発明者らは上記課題を解決するために鋭意検討した結果、銅粉の製造方法である還元法において、所定条件を採用することによって、TAP密度が低く、導電性ペーストに好適な銅粉、好ましくはさらに低炭素な銅粉を製造することができることを見出し、本発明を完成するにいたった。 As a result of diligent studies to solve the above problems, the present inventors have made a copper powder suitable for a conductive paste, which has a low TAP density by adopting predetermined conditions in the reduction method, which is a method for producing copper powder. It has been found that a copper powder having a lower carbon content can be preferably produced, and the present invention has been completed.

すなわち本発明は、レーザー回折散乱式粒度分布測定装置により測定した平均粒子径が0.05〜5.0μmであり、TAP密度が3.0g/cm以下である、銅粉である。 That is, the present invention is a copper powder having an average particle size of 0.05 to 5.0 μm and a TAP density of 3.0 g / cm 3 or less as measured by a laser diffraction / scattering type particle size distribution measuring device.

前記銅粉中に含まれるC元素の量は、0.2質量%以下であることが好ましい。前記銅粉のTAP密度は、1.0〜3.0g/cmであることが好ましい。 The amount of element C contained in the copper powder is preferably 0.2% by mass or less. The TAP density of the copper powder is preferably 1.0 to 3.0 g / cm 3 .

本発明の銅粉は、銅(II)塩水溶液へ銅を錯化する有機酸を加えて銅・有機酸混合液を得る混合工程と、前記銅・有機酸混合液を水酸化アルカリ金属塩と混合して水酸化銅スラリーを形成させる水酸化銅スラリー形成工程と、前記水酸化銅スラリーに還元剤を添加して銅スラリーを形成させる銅スラリー形成工程と、前記銅スラリーから銅粉を回収する回収工程とを有し、前記銅(II)塩水溶液における銅(II)塩の濃度が、銅換算で11.5〜14.0質量%である、銅粉の製造方法によって、製造することができる。 The copper powder of the present invention has a mixing step of adding an organic acid that complexes copper to a copper (II) salt aqueous solution to obtain a copper / organic acid mixed solution, and the copper / organic acid mixed solution is used as an alkali metal hydroxide salt. A copper hydroxide slurry forming step of mixing to form a copper hydroxide slurry, a copper slurry forming step of adding a reducing agent to the copper hydroxide slurry to form a copper slurry, and recovering copper powder from the copper slurry. It can be produced by a method for producing copper powder, which has a recovery step and has a concentration of copper (II) salt in the copper (II) salt aqueous solution of 11.5-14.0% by mass in terms of copper. it can.

前記水酸化アルカリ金属塩としては、水酸化ナトリウム及び水酸化カリウムが好ましい。前記銅スラリー形成工程において、前記水酸化銅スラリーに還元剤を添加して50℃以下の温度で所定時間保持することで、前記スラリー中に亜酸化銅を生成させ、次に前記亜酸化銅を含むスラリーに還元剤を添加して50℃以下の温度で所定時間保持し、その後前記スラリーを60〜90℃で所定時間保持することで、前記スラリー中に銅を生成させることが好ましい。 As the alkali metal hydroxide salt, sodium hydroxide and potassium hydroxide are preferable. In the copper slurry forming step, a reducing agent is added to the copper hydroxide slurry and the slurry is held at a temperature of 50 ° C. or lower for a predetermined time to generate cuprous oxide in the slurry, and then the cuprous oxide is formed. It is preferable to add a reducing agent to the slurry to be contained and hold the slurry at a temperature of 50 ° C. or lower for a predetermined time, and then hold the slurry at 60 to 90 ° C. for a predetermined time to form copper in the slurry.

本発明の低TAP密度の銅粉を使用して、各種の用途に好適な導電性ペーストを提供することができる。 The low TAP density copper powder of the present invention can be used to provide conductive pastes suitable for various uses.

本発明によれば、TAP密度が低く、導電性ペーストに好適に利用することができ、好ましくは低炭素な銅粉を提供することができる。また本発明によれば、そのような銅粉の製造方法も提供される。 According to the present invention, a copper powder having a low TAP density, which can be suitably used for a conductive paste, and preferably a low carbon powder can be provided. The present invention also provides a method for producing such copper powder.

以下、本発明について詳細に説明する。
[銅粉]
本発明の銅粉は、レーザー回折散乱式粒度分布測定装置により測定した平均粒子径が0.05〜5.0μmであり、TAP密度が3.0g/cm以下である、おおむね球状の粒子である。
Hereinafter, the present invention will be described in detail.
[Copper powder]
The copper powder of the present invention is a generally spherical particle having an average particle diameter of 0.05 to 5.0 μm and a TAP density of 3.0 g / cm 3 or less as measured by a laser diffraction / scattering type particle size distribution measuring device. is there.

平均粒子径が前記の範囲にあることにより、近年の電子部品の小型化の要求にこたえることができ、さらに、本発明の銅粉を使用した導電性ペーストの粘度の調整がしやすいといった利点がある。 When the average particle size is within the above range, it is possible to meet the recent demand for miniaturization of electronic components, and further, there is an advantage that the viscosity of the conductive paste using the copper powder of the present invention can be easily adjusted. is there.

本発明の銅粉のTAP密度は、3.0g/cm以下と低いため、一定の低TAP密度が求められる用途に好適に利用することができる。また、従来開発されている高TAP密度の導電粉に本発明の銅粉を混合することによって、前記導電粉の優れた特性を維持しつつ、全体としてのTAP密度を下げることができる。すなわち、本発明の銅粉により前記導電粉のTAP密度の設計幅が広まり、当該導電粉の適用用途を拡大することができると期待される。さらに、前記導電粉が高価であれば、本発明の銅粉により導電性ペースト全体のコストを大きく低下し得る可能性がある。 Since the TAP density of the copper powder of the present invention is as low as 3.0 g / cm 3 or less, it can be suitably used for applications requiring a constant low TAP density. Further, by mixing the copper powder of the present invention with the conventionally developed conductive powder having a high TAP density, the TAP density as a whole can be lowered while maintaining the excellent characteristics of the conductive powder. That is, it is expected that the copper powder of the present invention will widen the design range of the TAP density of the conductive powder and expand the application applications of the conductive powder. Further, if the conductive powder is expensive, the copper powder of the present invention may significantly reduce the cost of the entire conductive paste.

なお、本発明においてTAP密度は、特開2007−263860号公報に記載された方法に従って測定する。すなわち、銅粉試料を内径6mmの有底円筒形の容器に充填して銅粉試料層を形成し、この層に上部から0.16N/mの圧力を加えた後、銅粉試料層の高さを測定し、この銅粉試料層の高さの測定値と、充填された銅粉試料の重量とから、銅粉試料の密度を求める。これを本発明における銅粉のTAP密度と定義する。 In the present invention, the TAP density is measured according to the method described in JP-A-2007-263860. That is, a copper powder sample is filled in a bottomed cylindrical container having an inner diameter of 6 mm to form a copper powder sample layer, and a pressure of 0.16 N / m 2 is applied to this layer from above, and then the copper powder sample layer is formed. The height is measured, and the density of the copper powder sample is obtained from the measured value of the height of the copper powder sample layer and the weight of the filled copper powder sample. This is defined as the TAP density of copper powder in the present invention.

上記の導電性ペーストを調製するにあたっては、本発明の銅粉に付着した有機物がペースト中の他の成分に影響すると問題である。本発明の銅粉を他の導電粉に混合し、そのTAP密度を調整するなど、他の導電粉と混合する場合にも問題である。このような問題に対応して、好ましくは、本発明の銅粉中に含まれるC元素の量は0.2質量%以下であり、より好ましくは0.01〜0.1質量%である。C元素量は本発明の銅粉表面に付着した有機物の量の指標となるものである。前記の通り本発明の銅粉のC元素量は少ないので、当該銅粉においては、上記のペースト中の他の成分へ影響するといった問題がほとんど生じない。なお、本明細書において銅粉中のC元素量は、融解−赤外線吸収法により測定する。 In preparing the above conductive paste, there is a problem that the organic substance attached to the copper powder of the present invention affects other components in the paste. There is also a problem when the copper powder of the present invention is mixed with another conductive powder and the TAP density thereof is adjusted. In response to such a problem, the amount of element C contained in the copper powder of the present invention is preferably 0.2% by mass or less, more preferably 0.01 to 0.1% by mass. The amount of element C is an index of the amount of organic matter adhering to the surface of the copper powder of the present invention. As described above, since the amount of C element in the copper powder of the present invention is small, the copper powder has almost no problem of affecting other components in the paste. In this specification, the amount of C element in the copper powder is measured by the melting-infrared absorption method.

本発明の銅粉のBET比表面積は、通常0.1〜5.0m/gであり、ペースト化した際の粘度の観点から好ましくは0.5〜4.0m/gである。 The BET specific surface area of the copper powder of the present invention is usually 0.1 to 5.0 m 2 / g, and is preferably 0.5 to 4.0 m 2 / g from the viewpoint of viscosity when formed into a paste.

本発明の銅粉は、以上説明した特性を有し、特に低TAP密度が求められる用途の導電性ペーストに好適に利用できる。また、従来開発されている高TAP密度の導電粉に混合して全体としてのTAP密度を低下させることで、従来品のTAP密度について自由な設計が可能となり、その適用可能な用途が拡張される。これらの際、本発明の銅粉の、ペースト中の他の成分や高TAP密度の導電粉への影響が問題となるが、本発明の銅粉は好ましくはC元素含有量が低く、有機物がその表面にほとんど付着していないので、前記のような影響を及ぼして導電性ペーストの特性を低下させることがない。 The copper powder of the present invention has the characteristics described above, and can be suitably used as a conductive paste for applications requiring particularly low TAP density. Further, by mixing with the conventionally developed conductive powder having a high TAP density to reduce the TAP density as a whole, it becomes possible to freely design the TAP density of the conventional product, and its applicable applications are expanded. .. In these cases, the influence of the copper powder of the present invention on other components in the paste and the conductive powder having a high TAP density becomes a problem, but the copper powder of the present invention preferably has a low C element content and contains organic substances. Since it hardly adheres to the surface, it does not deteriorate the characteristics of the conductive paste due to the above-mentioned effects.

本発明の導電性ペーストは、本発明の銅粉及びバインダーを含み、必要に応じてその他の添加剤を含む。前記導電性ペーストを各種の印刷方法などによって基板上に塗布し、乾燥・焼結させることによって、所期の導電体膜が形成される。その導電体膜は、ペーストが含む導電粉のTAP密度等の特性に応じて、各種の電子部品に使用可能である。 The conductive paste of the present invention contains the copper powder and binder of the present invention, and optionally contains other additives. The desired conductive film is formed by applying the conductive paste onto a substrate by various printing methods or the like, drying and sintering the substrate. The conductor film can be used for various electronic components depending on the characteristics such as the TAP density of the conductive powder contained in the paste.

[銅粉の製造方法]
続いて、以上説明した本発明の銅粉の製造方法について説明する。本発明の銅粉は、銅(II)塩水溶液へ銅を錯化する有機酸を加えて銅・有機酸混合液を得る混合工程と、前記銅・有機酸混合液へ水酸化アルカリ金属塩を添加して水酸化銅スラリーを形成させる水酸化銅スラリー形成工程と、前記水酸化銅スラリーに還元剤を添加して銅スラリーを形成させる銅スラリー形成工程と、前記銅スラリーから銅粉を回収する回収工程とを実施することにより製造することができ、前記銅(II)塩水溶液における銅(II)塩の濃度は、銅換算で11.5〜14.0質量%である。
[Copper powder manufacturing method]
Subsequently, the method for producing the copper powder of the present invention described above will be described. The copper powder of the present invention has a mixing step of adding an organic acid that complexes copper to a copper (II) salt aqueous solution to obtain a copper / organic acid mixed solution, and an alkali metal hydroxide salt added to the copper / organic acid mixed solution. A copper hydroxide slurry forming step of adding and forming a copper hydroxide slurry, a copper slurry forming step of adding a reducing agent to the copper hydroxide slurry to form a copper slurry, and recovering copper powder from the copper slurry. It can be produced by carrying out a recovery step, and the concentration of the copper (II) salt in the copper (II) salt aqueous solution is 11.5 to 14.0% by mass in terms of copper.

本発明者は上述した課題を解決するために銅粉の製造方法を鋭意検討したところ、還元法における銅(II)塩の水溶液中の銅の濃度と、銅(II)塩の中和に使用する中和剤とを適切に設定・選択することによって、低TAP密度の銅粉が製造できることを見出した。以下、本発明の銅粉の製造方法の各工程について説明する。 The present inventor diligently studied a method for producing copper powder in order to solve the above-mentioned problems, and found that it was used for the concentration of copper in an aqueous solution of copper (II) salt in the reduction method and for neutralizing the copper (II) salt. It has been found that a copper powder having a low TAP density can be produced by appropriately setting and selecting a neutralizing agent. Hereinafter, each step of the method for producing copper powder of the present invention will be described.

<混合工程>
まず、銅(II)塩水溶液へ、銅を錯化する有機酸を加えて、銅・有機酸混合液を得る。前記銅(II)塩に特に制限はなく、従来銅粉の製造に使用されている銅(II)塩、例えば、二価の銅の硝酸塩、硫酸塩、炭酸塩、塩化物などが使用可能である。これらは一種単独で使用しても、二種以上を組み合わせて用いてもよい。前記銅を錯化する塩にも特に制限はなく、例えばクエン酸、酒石酸、リンゴ酸などのヒドロキシカルボン酸を用いる事が出来、これらの中でも低TAP密度の銅粉を得る観点からクエン酸を用いることが好ましい。これらの錯化剤も、一種単独で使用しても、二種以上を組み合わせて用いてもよい。錯化剤は水溶性の固体であるため、純水に溶解して使用する事が出来る。また、錯化剤の添加量は、銅に対するモル比で0.1以上とすることが好ましく、通常0.5以下である。さらに、銅(II)塩水溶液へ前記錯化剤を加えて混合する際には、銅(II)水溶液(及び錯化剤水溶液)の液温を10〜50℃に保持して、錯化剤が完全に溶解できるようにしておくのが好ましい。
<Mixing process>
First, an organic acid that complexes copper is added to a copper (II) salt aqueous solution to obtain a copper / organic acid mixed solution. The copper (II) salt is not particularly limited, and copper (II) salts conventionally used in the production of copper powder, for example, divalent copper nitrates, sulfates, carbonates, chlorides and the like can be used. is there. These may be used alone or in combination of two or more. The salt that complexes copper is not particularly limited, and for example, hydroxycarboxylic acids such as citric acid, tartaric acid, and malic acid can be used. Among these, citric acid is used from the viewpoint of obtaining copper powder having a low TAP density. Is preferable. These complexing agents may be used alone or in combination of two or more. Since the complexing agent is a water-soluble solid, it can be used by dissolving it in pure water. The amount of the complexing agent added is preferably 0.1 or more, and usually 0.5 or less, in terms of the molar ratio to copper. Further, when the complexing agent is added to the copper (II) salt aqueous solution and mixed, the liquid temperature of the copper (II) aqueous solution (and the complexing agent aqueous solution) is maintained at 10 to 50 ° C. It is preferable that the solution is completely dissolved.

特許文献3の実施例では、濃度約100%の硝酸銅(三水和物)220kgとクエン酸17kgとを純水に溶解して480Lの水溶液としている。この水溶液からクエン酸を除いた部分における硝酸銅の濃度は、銅換算では8.3質量%である。一方本発明では、混合工程に用いる銅(II)塩水溶液における銅(II)塩の濃度を、銅換算で11.5〜14.0質量%とする。この範囲外であると、低TAP密度の銅粉を得ることができない。低TAP密度の銅粉を効率よく得る観点からは、前記銅(II)塩の濃度は、銅換算で11.6〜13.5質量%である。 In the example of Patent Document 3, 220 kg of copper nitrate (trihydrate) having a concentration of about 100% and 17 kg of citric acid are dissolved in pure water to prepare a 480 L aqueous solution. The concentration of copper nitrate in the portion obtained by removing citric acid from this aqueous solution is 8.3% by mass in terms of copper. On the other hand, in the present invention, the concentration of the copper (II) salt in the aqueous solution of the copper (II) salt used in the mixing step is set to 11.5-14.0% by mass in terms of copper. If it is out of this range, copper powder having a low TAP density cannot be obtained. From the viewpoint of efficiently obtaining copper powder having a low TAP density, the concentration of the copper (II) salt is 11.6 to 13.5% by mass in terms of copper.

<水酸化銅スラリー形成工程>
混合工程で得られた銅・有機酸混合液を水酸化アルカリ金属塩と混合して、銅(II)塩を中和することで、水酸化銅スラリーを形成させる。中和剤としては従来アンモニアや水酸化アルカリ金属塩が使用されている。例えば特許文献6の実施例では、中和剤としてアンモニアが使用されている。本発明者らは検討の結果、中和剤としてアンモニアではなく水酸化アルカリ金属塩を使用し、かつ、上記の通り混合工程に使用する銅(II)塩水溶液における銅(II)塩の濃度を所定の限定された範囲とすることによって、低TAP密度の銅粉が得られることを見出した。
<Copper hydroxide slurry forming process>
The copper / organic acid mixed solution obtained in the mixing step is mixed with an alkali metal hydroxide salt to neutralize the copper (II) salt, thereby forming a copper hydroxide slurry. Conventionally, ammonia and alkali metal hydroxide salts have been used as neutralizers. For example, in the examples of Patent Document 6, ammonia is used as a neutralizing agent. As a result of examination, the present inventors used an alkali metal hydroxide salt instead of ammonia as a neutralizing agent, and determined the concentration of the copper (II) salt in the copper (II) salt aqueous solution used in the mixing step as described above. It has been found that a copper powder having a low TAP density can be obtained by setting it in a predetermined limited range.

銅粉の製造コストの観点からは、中和剤である水酸化アルカリ金属塩としては水酸化ナトリウム及び水酸化カリウムが好ましく、水酸化ナトリウムが特に好ましい。また、アンモニアは通常アンモニア水として使用されるが、アンモニア水は溶質であるアンモニアガスの揮発性が高い事、ガスが人体に有害であることから、貯蔵タンクの空間部を常に吸引して吸引ガス中のアンモニアガスを除去する設備が必要であるなど、中和反応を実施するタンク以外にも大掛かりな設備が必要となる。本発明によれば、このように工業的量産にあたって貯蔵に大掛かりな設備を必要とするアンモニア水を使用せずに、銅粉を製造することができる。 From the viewpoint of the production cost of copper powder, sodium hydroxide and potassium hydroxide are preferable as the alkali metal hydroxide salt as a neutralizing agent, and sodium hydroxide is particularly preferable. Ammonia is usually used as ammonia water, but since ammonia water is highly volatile and the gas is harmful to the human body, the space of the storage tank is always sucked and sucked gas. Large-scale equipment is required in addition to the tank that carries out the neutralization reaction, such as the equipment that removes the ammonia gas inside. According to the present invention, copper powder can be produced without using ammonia water, which requires a large-scale storage facility for industrial mass production.

また、中和反応の実施に際しては、銅・有機酸混合液に水酸化アルカリ金属塩をそのまま、又は水溶液などとして添加してもよいし(順中和)、水酸化アルカリ金属塩水溶液に銅・有機酸混合液を添加してもよい(逆中和)。このときの液温に特に制限はないが、通常10〜50℃程度の範囲とされる。銅・有機酸混合液と水酸化アルカリ金属塩との混合においては、撹拌をしつつ窒素ガスを吹き込み、水溶液中の酸素濃度を低下させることが好ましい。また、反応容器へのこの窒素ガスの吹き込みは、後述する回収工程の直前まで継続することが好ましい。 Further, when carrying out the neutralization reaction, the alkali metal hydroxide salt may be added as it is to the copper / organic acid mixed solution or as an aqueous solution (forward neutralization), or copper / alkali metal hydroxide aqueous solution may be added with copper. An organic acid mixture may be added (reverse neutralization). The liquid temperature at this time is not particularly limited, but is usually in the range of about 10 to 50 ° C. In the mixing of the copper / organic acid mixed solution and the alkali metal hydroxide salt, it is preferable to blow nitrogen gas while stirring to reduce the oxygen concentration in the aqueous solution. Further, it is preferable that the blowing of the nitrogen gas into the reaction vessel is continued until immediately before the recovery step described later.

<銅スラリー形成工程>
水酸化銅スラリー形成工程で得られた水酸化銅スラリーに還元剤を添加して、金属銅を形成させ、銅スラリーとする。前記還元剤としては、ヒドラジン、水和ヒドラジン、炭酸ヒドラジン、塩酸ヒドラジン等のヒドラジン系化合物などを使用することができる。還元剤の使用量は通常、反応当量の3.0〜8.0eqであり、好ましくは3.0〜5.0eqである。前記反応当量について、2価の銅を1価の銅、あるいは1価の銅を0価の金属銅に還元するのに必要な還元剤量を1当量とする。なお、銅スラリー形成工程は、以下に説明する通り、2段階の工程に分けて実施することが好ましい。
<Copper slurry forming process>
A reducing agent is added to the copper hydroxide slurry obtained in the copper hydroxide slurry forming step to form metallic copper to obtain a copper slurry. As the reducing agent, hydrazine compounds such as hydrazine, hydrated hydrazine, hydrazine carbonate, and hydrazine hydrochloride can be used. The amount of the reducing agent used is usually 3.0 to 8.0 eq, which is the reaction equivalent, preferably 3.0 to 5.0 eq. Regarding the reaction equivalent, the amount of reducing agent required to reduce divalent copper to monovalent copper or monovalent copper to zero-valent metallic copper is defined as 1 equivalent. As described below, the copper slurry forming step is preferably carried out in two steps.

(一次還元工程)
まず、一次還元工程として、水酸化銅スラリーに還元剤を添加する。還元剤の使用量は通常、水酸化銅を亜酸化銅に還元するのに必要な反応当量の0.5〜2.5eqであり、好ましくは0.5〜1.5eqである。還元剤を添加する際の水酸化銅スラリーの温度は通常50℃以下、好ましくは20〜50℃とし、還元剤を添加して反応液を混合した後、前記範囲の温度で60〜180分程度保持して熟成反応を行い、水酸化銅から亜酸化銅を生成させる。なお、熟成反応の際には、反応を進行させるため、前記温度範囲内で、還元剤を添加したときの温度から昇温してもよい。
(Primary reduction process)
First, as a primary reduction step, a reducing agent is added to the copper hydroxide slurry. The amount of the reducing agent used is usually 0.5 to 2.5 eq, preferably 0.5 to 1.5 eq, which is the reaction equivalent required to reduce copper hydroxide to cuprous oxide. The temperature of the copper hydroxide slurry when the reducing agent is added is usually 50 ° C. or lower, preferably 20 to 50 ° C., and after the reducing agent is added and the reaction solution is mixed, the temperature in the above range is about 60 to 180 minutes. It is retained and aged, and cuprous oxide is produced from copper hydroxide. In the aging reaction, in order to allow the reaction to proceed, the temperature may be raised from the temperature at which the reducing agent is added within the above temperature range.

(二次還元工程)
続いて、二次還元工程として、亜酸化銅を生成したスラリーにさらに還元剤を添加する。還元剤の使用量は通常、亜酸化銅(一次還元工程により水酸化銅がすべて亜酸化銅になったと仮定)を銅に還元するのに必要な反応当量の1.0〜4.0eqであり、好ましくは2.0〜3.5eqである。還元剤を添加する際の前記スラリーの温度は通常50℃以下、好ましくは25〜50℃とし、還元剤を添加して反応液を混合した後、前記範囲の温度で10〜180分程度保持して熟成反応を行う。
(Secondary reduction process)
Subsequently, as a secondary reduction step, a reducing agent is further added to the slurry in which cuprous oxide is produced. The amount of the reducing agent used is usually 1.0 to 4.0 eq of the reaction equivalent required to reduce copper hydroxide (assuming that all copper hydroxide has been converted to copper hydroxide by the primary reduction step) to copper. , Preferably 2.0 to 3.5 eq. The temperature of the slurry when the reducing agent is added is usually 50 ° C. or lower, preferably 25 to 50 ° C., and after adding the reducing agent and mixing the reaction solution, the temperature is maintained in the above range for about 10 to 180 minutes. And perform the aging reaction.

この熟成反応により金属銅を生成させるが、金属銅の生成反応を完結させるため、60〜90℃に昇温して40〜360分程度保持することが好ましい。以上の反応により金属銅が生成する。一次還元工程は亜酸化銅を生成させることが目的であるが、当該工程の終了時に未反応の水酸化銅が存在する可能性もあるし、亜酸化銅がさらに還元されて金属銅が存在する可能性もある。いずれにしろ、二次還元工程を完了することで、金属銅が生成する。 Metallic copper is produced by this aging reaction, but in order to complete the metallic copper production reaction, it is preferable to raise the temperature to 60 to 90 ° C. and hold it for about 40 to 360 minutes. Metallic copper is produced by the above reaction. The purpose of the primary reduction step is to produce cuprous oxide, but unreacted copper hydroxide may be present at the end of the step, and cuprous oxide is further reduced to present metallic copper. There is a possibility. In any case, by completing the secondary reduction step, metallic copper is produced.

なお、以上説明した二次還元工程は、さらに二つに分割して実施してもよい。具体的には、一次還元工程を経て得られた、亜酸化銅を生成したスラリーに還元剤を添加して25〜50℃で5〜120分程度保持し、さらに還元剤を添加して25〜90℃で5〜120分程度保持する。還元剤の合計使用量は、二次還元工程を一度の還元剤の添加で実施する場合の使用量と同様である。なお、二度目の還元剤を添加したときの熟成反応温度は、通常一度目の還元剤を添加したときの熟成反応の温度より高い。還元反応を適切に進めるためである。最後に、上記と同様に、金属銅の生成反応を完結させるために60〜90℃に昇温して40〜360分程度保持することが好ましい。 The secondary reduction step described above may be further divided into two. Specifically, a reducing agent is added to the slurry obtained through the primary reduction step to produce cuprous oxide, and the slurry is held at 25 to 50 ° C. for about 5 to 120 minutes, and further the reducing agent is added to 25 to 120. Hold at 90 ° C. for about 5 to 120 minutes. The total amount of the reducing agent used is the same as the amount used when the secondary reduction step is carried out by adding the reducing agent once. The aging reaction temperature when the second reducing agent is added is usually higher than the temperature of the aging reaction when the first reducing agent is added. This is to allow the reduction reaction to proceed appropriately. Finally, similarly to the above, it is preferable to raise the temperature to 60 to 90 ° C. and hold it for about 40 to 360 minutes in order to complete the reaction for producing metallic copper.

<回収工程>
銅スラリー形成工程を経て得られた金属銅を含有するスラリーから、銅粉を回収する。具体的には、例えば前記スラリーを固液分離し、固形分を純水で洗浄し、窒素雰囲気中で乾燥処理をすることで、おおむね球状の銅粉が得られる。なお、回収手段はこの方法に限定されるものではなく、また得られた銅粉について、必要に応じて解砕や粉砕を実施してもよい。
<Recovery process>
Copper powder is recovered from the slurry containing metallic copper obtained through the copper slurry forming step. Specifically, for example, the slurry is solid-liquid separated, the solid content is washed with pure water, and the slurry is dried in a nitrogen atmosphere to obtain a substantially spherical copper powder. The recovery means is not limited to this method, and the obtained copper powder may be crushed or pulverized as necessary.

以下、実施例により本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、以下の実施例及び比較例で得られた銅粉の評価は、以下のようにして行った。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples. The evaluation of the copper powder obtained in the following Examples and Comparative Examples was carried out as follows.

[平均粒子径D50]
レーザー回折散乱式粒度分布装置(SYMPATEC社製のヘロス粒度分布測定装置(HELOS&RODOS))により測定して、累積体積50%粒子径(D50)を求めた。
[Average particle size D50]
The cumulative volume of 50% particle size (D50) was determined by measurement with a laser diffraction / scattering type particle size distribution device (Heros particle size distribution measuring device (HELOS & RODOS) manufactured by SYMPATEC).

[BET比表面積]
BET比表面積測定装置(ユアサイオニクス株式会社製の4ソーブUS)を用いて、BET一点法により求めた。
[BET specific surface area]
It was determined by the BET one-point method using a BET specific surface area measuring device (4 Sorb US manufactured by Your Sionics Co., Ltd.).

[TAP密度測定]
特開2007−263860号公報に記載された方法に従って測定した。すなわち、銅粉試料を内径6mmの有底円筒形の容器に充填して銅粉試料層を形成し、この層に上部から0.16N/mの圧力を加えた後、銅粉試料層の高さを測定し、この銅粉試料層の高さの測定値と、充填された銅粉試料の重量とから、銅粉試料の密度を求めた。これを銅粉のTAP密度と定義した。
[TAP density measurement]
The measurement was performed according to the method described in JP-A-2007-263860. That is, a copper powder sample is filled in a bottomed cylindrical container having an inner diameter of 6 mm to form a copper powder sample layer, and a pressure of 0.16 N / m 2 is applied to this layer from above, and then the copper powder sample layer is formed. The height was measured, and the density of the copper powder sample was determined from the measured value of the height of the copper powder sample layer and the weight of the filled copper powder sample. This was defined as the TAP density of copper powder.

[銅粉中のC元素量]
銅粉中のC元素量は、炭素・硫黄分析装置(堀場製作所製:EMIA−220V)により測定した。
[Amount of C element in copper powder]
The amount of C element in the copper powder was measured by a carbon / sulfur analyzer (manufactured by HORIBA, Ltd .: EMIA-220V).

《実施例1》
[銅(II)塩水溶液の調製]
硝酸銅三水和物濃度50.3質量%の圓商産業株式会社製の硝酸銅(II)水溶液1172.3gと、純水156.9gと、扶桑化学工業株式会社製のクエン酸一水和物92.3gを純水531.2gに溶解させたクエン酸水溶液とを、室温で撹拌混合し、硝酸銅(II)・クエン酸混合液を調製した。また、48.8質量%水酸化ナトリウム水溶液448.3gと純水453.3gとを混合した水酸化ナトリウム希釈水溶液を調製した。
<< Example 1 >>
[Preparation of aqueous copper (II) salt solution]
1172.3 g of copper (II) nitrate aqueous solution manufactured by Ensho Sangyo Co., Ltd., 156.9 g of pure water, and citric acid monohydration manufactured by Fuso Chemical Industry Co., Ltd. with a copper nitrate trihydrate concentration of 50.3% by mass. An aqueous citric acid solution prepared by dissolving 92.3 g of a product in 531.2 g of pure water was stirred and mixed at room temperature to prepare a copper (II) nitrate / citric acid mixed solution. Further, a sodium hydroxide diluted aqueous solution was prepared by mixing 448.3 g of a 48.8 mass% sodium hydroxide aqueous solution and 453.3 g of pure water.

[水酸化銅(II)の生成]
次に、4L反応槽へ上記の硝酸銅(II)・クエン酸混合液を入れ、撹拌を開始した。回転数350rpmで行った。これ以後、後述する固液分離の直前まで、この条件で撹拌操作を継続した。次に、硝酸銅(II)・クエン酸混合液を27℃に保持した。その後、4L反応槽の前記混合液上へ窒素ガスを吹き込み、排気されるガス中の酸素濃度が0体積%となるまで吹き込みを継続し、これ以降、後述する固液分離の直前まで、この窒素ガス吹き込みを継続した。排気されるガス中の酸素濃度が0体積%となった時点で、硝酸銅(II)・クエン酸混合液に上記の水酸化ナトリウム希釈水溶液を添加し、水酸化銅(II)を生成させた。
[Production of copper (II) hydroxide]
Next, the above-mentioned copper (II) nitrate / citric acid mixed solution was put into a 4 L reaction vessel, and stirring was started. The rotation speed was 350 rpm. After that, the stirring operation was continued under these conditions until immediately before the solid-liquid separation described later. Next, the copper (II) nitrate / citric acid mixed solution was maintained at 27 ° C. After that, nitrogen gas is blown onto the mixed solution of the 4L reaction tank, and the blowing is continued until the oxygen concentration in the exhausted gas becomes 0% by volume, and thereafter, this nitrogen is continued until just before the solid-liquid separation described later. Continued gas blowing. When the oxygen concentration in the exhausted gas reached 0% by volume, the above sodium hydroxide diluted aqueous solution was added to the copper (II) nitrate / citric acid mixed solution to generate copper (II) hydroxide. ..

[一次還元工程]
次に、この反応液を35℃に昇温させた後に、エムジーシー大塚ケミカル株式会社製の水和ヒドラジンである80質量%ヒドラジン一水和物26.6gを純水546.3gに溶解させたヒドラジン水溶液を添加した。以後、このヒドラジン水溶液を、「一次還元ヒドラジン水溶液」と呼ぶ。その後、反応液を50℃に昇温させた後に、120分間保持する事により、一次還元を行い、亜酸化銅を生成させた。以後、この保持した温度を「一次還元保持温度」と呼び、保持した時間を「一次還元保持時間」と呼ぶ。
[Primary reduction process]
Next, after raising the temperature of this reaction solution to 35 ° C., 26.6 g of 80 mass% hydrazine monohydrate, which is a hydrated hydrazine manufactured by MGC Otsuka Chemical Co., Ltd., was dissolved in 546.3 g of pure water. An aqueous hydrazine solution was added. Hereinafter, this hydrazine aqueous solution will be referred to as a "primary reduced hydrazine aqueous solution". Then, after raising the temperature of the reaction solution to 50 ° C. and holding it for 120 minutes, primary reduction was carried out to generate cuprous oxide. Hereinafter, the held temperature is referred to as "primary reduction holding temperature", and the holding time is referred to as "primary reduction holding time".

[二次還元工程]
次に、反応液を冷却して50℃とし、エムジーシー大塚ケミカル株式会社製の水和ヒドラジンである80質量%ヒドラジン一水和物114.0gを添加し、10分間保持して二次還元を行った。その後、反応を完結するために反応液を90℃に昇温して180分保持し、金属銅を生成させた。
[Secondary reduction process]
Next, the reaction solution was cooled to 50 ° C., 114.0 g of 80% by mass hydrazine monohydrate, which is a hydrated hydrazine manufactured by MG Otsuka Chemical Co., Ltd., was added and held for 10 minutes for secondary reduction. went. Then, in order to complete the reaction, the reaction solution was heated to 90 ° C. and held for 180 minutes to generate metallic copper.

なお、後述する比較例においては、二次還元工程を二つの工程に分割して行った場合がある。その場合の一度目に還元剤を添加したときの温度を「二次還元前期保持温度」と呼び、この還元剤を「二次還元前期ヒドラジン」と呼び、二次還元前期温度で保持した時間を「二次還元前期保持時間」ぶ。その後の二度目に還元剤を添加したときの温度を「二次還元後期保持温度」と呼び、さらに添加した還元剤を「二次還元後期ヒドラジン」と呼び、二次還元後期温度で保持した時間を「二次還元後期保持時間」と呼ぶ。本実施例1のヒドラジン一水和物については、二次還元前期保持温度、二次還元前期ヒドラジン、二次還元前期保持時間とする。 In the comparative example described later, the secondary reduction step may be divided into two steps. In that case, the temperature when the reducing agent is added for the first time is called the "secondary reduction early stage holding temperature", this reducing agent is called the "secondary reduction early stage hydrazine", and the time held at the secondary reduction early stage temperature is called. "Secondary reduction first half retention time". The temperature at which the reducing agent is added for the second time after that is called the "secondary reduction late holding temperature", and the added reducing agent is called "secondary reduction late hydrazine", and the time held at the secondary reduction late temperature. Is called the "secondary reduction late retention time". For the hydrazine monohydrate of Example 1, the secondary reduction early stage holding temperature, the secondary reduction early stage hydrazine, and the secondary reduction early stage holding time are set.

その後、本実施例1と同様に反応の完結のために所定温度に昇温して保持したが、このときの温度を「最終保持温度」と呼び、最終保持温度で保持した時間を「最終保持時間」と呼ぶ。 After that, the temperature was raised to a predetermined temperature and held for the completion of the reaction as in Example 1, but the temperature at this time was called the "final holding temperature" and the time held at the final holding temperature was "final holding". Call it "time".

[回収工程]
次に、反応液を固液分離し、固形分を純水で水洗し、窒素雰囲気中110℃で9時間乾燥処理をすることで、実施例1に係る球状の銅粉を得た。この、実施例1に係る銅粉について、平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。
[Recovery process]
Next, the reaction solution was solid-liquid separated, the solid content was washed with pure water, and dried in a nitrogen atmosphere at 110 ° C. for 9 hours to obtain a spherical copper powder according to Example 1. With respect to the copper powder according to Example 1, the average particle size D50 was measured, the BET specific surface area was measured, the TAP density was measured, and the amount of C element was measured.

その結果、平均粒子径D50は0.67μmであり、BET比表面積は2.44m/gであり、TAP密度は2.77g/cmであり、銅粉中のC元素量は0.03質量%であった。 As a result, the average particle size D50 is 0.67 μm, the BET specific surface area is 2.44 m 2 / g, the TAP density is 2.77 g / cm 3 , and the amount of C element in the copper powder is 0.03. It was% by mass.

以上説明した実施例1について、硝酸銅(II)水溶液の濃度、その水溶液の使用量、水溶液に添加した純水の量、硝酸銅(II)水溶液中の銅の質量、硝酸銅(II)水溶液中の硝酸銅(II)の銅換算の濃度、クエン酸1水和物の使用量、銅に対するモル比、クエン酸1水和物を溶解させた純水の量;48.8質量%水酸化ナトリウム水溶液の使用量、これに混合した純水の量、中和順、水酸化ナトリウムの硝酸銅(II)に対する当量、回転数;一次還元に使用した還元剤の種類、その量、それを溶解した純水の量、還元剤の水酸化銅に対する当量、二次還元における前期及び後期に使用した還元剤の種類、その量、その亜酸化銅(一次還元により全て亜酸化銅となったと仮定)に対する当量;一次還元剤添加温度、一次還元保持温度、一次還元保持時間、二次還元前期保持温度、二次還元前期保持時間、二次還元後期保持温度、二次還元後期保持時間、最終保持温度、最終保持時間;並びに、銅粉の平均粒子径D50、BET比表面積、TAP密度及びC元素量を、後記表1〜5に示す。以下の実施例2及び3並びに比較例1〜30についても同様である。 Regarding Example 1 described above, the concentration of the copper (II) nitrate aqueous solution, the amount of the aqueous solution used, the amount of pure water added to the aqueous solution, the mass of copper in the copper (II) nitrate aqueous solution, and the copper (II) nitrate aqueous solution. Copper (II) nitrate concentration in copper equivalent, amount of citrate monohydrate used, molar ratio to copper, amount of pure water in which citrate monohydrate is dissolved; 48.8% by mass hydroxide Amount of sodium aqueous solution used, amount of pure water mixed with it, order of neutralization, equivalent of sodium hydroxide to copper (II) nitrate, rotation speed; type of reducing agent used for primary reduction, amount thereof, dissolved Amount of pure water, equivalent of reducing agent to copper hydroxide, type of reducing agent used in the first and second stages of secondary reduction, amount thereof, copper nitrate (assuming that all were converted to copper nitrate by primary reduction) Equivalent to; primary reduction agent addition temperature, primary reduction holding temperature, primary reduction holding time, secondary reduction early holding temperature, secondary reduction early holding time, secondary reduction late holding temperature, secondary reduction late holding time, final holding temperature , Final retention time; and average particle size D50, BET specific surface area, TAP density and C element amount of copper powder are shown in Tables 1 to 5 below. The same applies to Examples 2 and 3 and Comparative Examples 1 to 30 below.

《実施例2》
[銅(II)塩水溶液の調製]
硝酸銅三水和物濃度50.3質量%の圓商産業株式会社製の硝酸銅(II)水溶液1312.9gと、純水16.3gと、扶桑化学工業株式会社製のクエン酸一水和物103.4gを純水520.1gに溶解させたクエン酸水溶液とを撹拌混合し、硝酸銅(II)・クエン酸混合液を調製した。また、48.8質量%水酸化ナトリウム水溶液502.1gと純水399.5gとを混合した水酸化ナトリウム希釈水溶液を調製した。
<< Example 2 >>
[Preparation of aqueous copper (II) salt solution]
1312.9 g of copper (II) nitrate aqueous solution manufactured by Ensho Sangyo Co., Ltd., 16.3 g of pure water, and citric acid monohydration manufactured by Fuso Chemical Industry Co., Ltd. with a copper nitrate trihydrate concentration of 50.3% by mass. A citric acid aqueous solution prepared by dissolving 103.4 g of the product in 520.1 g of pure water was stirred and mixed to prepare a copper (II) nitrate / citric acid mixed solution. Further, a diluted sodium hydroxide aqueous solution was prepared by mixing 502.1 g of a 48.8 mass% sodium hydroxide aqueous solution and 399.5 g of pure water.

[水酸化銅(II)の生成]
次に、実施例1と同様に、4L反応槽へ上記の硝酸銅(II)・クエン酸混合液を入れ、撹拌、反応槽の当該混合液上への窒素ガスの吹き込み、硝酸銅(II)・クエン酸混合液と水酸化ナトリウム希釈水溶液の混合による水酸化銅(II)の生成を行った。
[Production of copper (II) hydroxide]
Next, as in Example 1, the above-mentioned copper (II) nitrate / citric acid mixed solution was put into a 4 L reaction vessel, stirred, and nitrogen gas was blown onto the mixed solution in the reaction vessel, and copper (II) nitrate was blown into the mixed solution. -Copper (II) hydroxide was produced by mixing a citric acid mixed solution and a diluted aqueous solution of sodium hydroxide.

[一次還元工程]
次に、この反応液を35℃に昇温させた後に、エムジーシー大塚ケミカル株式会社製の水和ヒドラジンである80質量%ヒドラジン一水和物29.8gを純水543.1gに溶解させたヒドラジン水溶液を添加した。以降は、実施例1と同様に所定温度での保持を行い、亜酸化銅を生成させた。
[Primary reduction process]
Next, after raising the temperature of this reaction solution to 35 ° C., 29.8 g of 80 mass% hydrazine monohydrate, which is a hydrated hydrazine manufactured by MGC Otsuka Chemical Co., Ltd., was dissolved in 543.1 g of pure water. An aqueous hydrazine solution was added. After that, it was held at a predetermined temperature in the same manner as in Example 1 to generate cuprous oxide.

[二次還元工程]
次に、反応液を冷却して50℃とし、エムジーシー大塚ケミカル株式会社製の水和ヒドラジンである80質量%ヒドラジン一水和物127.7gを添加し、10分間保持して二次還元を行った。その後、反応を完結するために反応液を90℃に昇温して180分保持し、金属銅を生成させた。
[Secondary reduction process]
Next, the reaction solution was cooled to 50 ° C., 127.7 g of 80% by mass hydrazine monohydrate, which is a hydrated hydrazine manufactured by MGC Otsuka Chemical Co., Ltd., was added and held for 10 minutes for secondary reduction. went. Then, in order to complete the reaction, the reaction solution was heated to 90 ° C. and held for 180 minutes to generate metallic copper.

[回収工程]
次に、実施例1と同様に回収工程を実施して、実施例2に係る球状の銅粉を得た。この、実施例2に係る銅粉について、平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。
[Recovery process]
Next, the recovery step was carried out in the same manner as in Example 1 to obtain spherical copper powder according to Example 2. With respect to the copper powder according to Example 2, the average particle size D50 was measured, the BET specific surface area was measured, the TAP density was measured, and the amount of C element was measured.

その結果、平均粒子径D50は0.76μmであり、BET比表面積は2.39m/gであり、TAP密度は2.58g/cmであり、銅粉中のC元素量は0.05質量%であった。 As a result, the average particle size D50 is 0.76 μm, the BET specific surface area is 2.39 m 2 / g, the TAP density is 2.58 g / cm 3 , and the amount of C element in the copper powder is 0.05. It was% by mass.

《実施例3》
[銅(II)塩水溶液の調製]
硝酸銅三水和物濃度50.1質量%の圓商産業株式会社製の硝酸銅(II)水溶液1412.3と、扶桑化学工業株式会社製のクエン酸一水和物110.8gを純水512.7gに溶解させたクエン酸水溶液とを撹拌混合し、硝酸銅(II)・クエン酸混合液を調製した。また、48.8質量%水酸化ナトリウム水溶液538.0gと純水363.6gとを混合した水酸化ナトリウム希釈水溶液を調製した。
<< Example 3 >>
[Preparation of aqueous copper (II) salt solution]
Pure water of copper (II) nitrate aqueous solution 1412.3 manufactured by Ensho Sangyo Co., Ltd. and 110.8 g of citric acid monohydrate manufactured by Fuso Chemical Industry Co., Ltd. with a concentration of copper nitrate trihydrate of 50.1% by mass. A citric acid aqueous solution dissolved in 512.7 g was stirred and mixed to prepare a copper (II) nitrate / citric acid mixed solution. Further, a sodium hydroxide diluted aqueous solution was prepared by mixing 538.0 g of a 48.8 mass% sodium hydroxide aqueous solution and 363.6 g of pure water.

[水酸化銅(II)の生成]
次に、実施例1と同様に、4L反応槽へ上記の硝酸銅(II)・クエン酸混合液を入れ、撹拌、反応槽の当該混合液上への窒素ガスの吹き込み、硝酸銅(II)・クエン酸混合液と水酸化ナトリウム希釈水溶液の混合による水酸化銅(II)の生成を行った。
[Production of copper (II) hydroxide]
Next, as in Example 1, the above-mentioned copper (II) nitrate / citric acid mixed solution was put into a 4 L reaction vessel, stirred, and nitrogen gas was blown onto the mixed solution in the reaction vessel, and copper (II) nitrate was blown into the mixed solution. -Copper (II) hydroxide was produced by mixing a citric acid mixed solution and a diluted aqueous solution of sodium hydroxide.

[一次還元工程]
次に、この反応液を35℃に昇温させた後に、エムジーシー大塚ケミカル株式会社製の水和ヒドラジンである80質量%ヒドラジン一水和物31.9gを純水541.0gに溶解させたヒドラジン水溶液を添加した。以降は、実施例1と同様に所定温度での保持を行い、亜酸化銅を生成させた。
[Primary reduction process]
Next, after raising the temperature of this reaction solution to 35 ° C., 31.9 g of 80 mass% hydrazine monohydrate, which is a hydrated hydrazine manufactured by MGC Otsuka Chemical Co., Ltd., was dissolved in 541.0 g of pure water. An aqueous hydrazine solution was added. After that, it was held at a predetermined temperature in the same manner as in Example 1 to generate cuprous oxide.

[二次還元工程]
次に、反応液を冷却して50℃とし、エムジーシー大塚ケミカル株式会社製の水和ヒドラジンである80質量%ヒドラジン一水和物136.8gを添加し、10分間保持して二次還元を行った。その後、反応を完結するために反応液を90℃に昇温して180分保持し、金属銅を生成させた。
[Secondary reduction process]
Next, the reaction solution was cooled to 50 ° C., 136.8 g of 80% by mass hydrazine monohydrate, which is a hydrated hydrazine manufactured by MG Otsuka Chemical Co., Ltd., was added and held for 10 minutes for secondary reduction. went. Then, in order to complete the reaction, the reaction solution was heated to 90 ° C. and held for 180 minutes to generate metallic copper.

[回収工程]
次に、実施例1と同様に回収工程を実施して、実施例3に係る球状の銅粉を得た。この、実施例3に係る銅粉について、平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。
[Recovery process]
Next, the recovery step was carried out in the same manner as in Example 1 to obtain spherical copper powder according to Example 3. With respect to the copper powder according to Example 3, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured.

その結果、平均粒子径D50は0.75μmであり、BET比表面積は2.39m/gであり、TAP密度は2.69g/cmであり、銅粉中のC元素量は0.03質量%であった。 As a result, the average particle size D50 is 0.75 μm, the BET specific surface area is 2.39 m 2 / g, the TAP density is 2.69 g / cm 3 , and the amount of C element in the copper powder is 0.03. It was% by mass.

《比較例1》
[銅(II)塩水溶液の調製]
硝酸銅三水和物濃度50.1質量%の圓商産業株式会社製の硝酸銅(II)水溶液941.6gと、純水387.6gと、扶桑化学工業株式会社製のクエン酸一水和物73.9gを純水549.6gに溶解させたクエン酸水溶液とを撹拌混合し、硝酸銅(II)・クエン酸混合液を調製した。また、48.8質量%水酸化ナトリウム水溶液358.6gと純水543.0gとを混合した水酸化ナトリウム希釈水溶液を調製した。
<< Comparative Example 1 >>
[Preparation of aqueous copper (II) salt solution]
941.6 g of copper (II) nitrate aqueous solution manufactured by Ensho Sangyo Co., Ltd., 387.6 g of pure water, and citric acid monohydration manufactured by Fuso Chemical Industry Co., Ltd. with a copper nitrate trihydrate concentration of 50.1% by mass. A citric acid aqueous solution prepared by dissolving 73.9 g of the product in 549.6 g of pure water was stirred and mixed to prepare a copper (II) nitrate / citric acid mixed solution. Further, a sodium hydroxide diluted aqueous solution was prepared by mixing 358.6 g of a 48.8 mass% sodium hydroxide aqueous solution and 543.0 g of pure water.

[水酸化銅(II)の生成]
次に、4L反応槽へ上記の水酸化ナトリウム希釈水溶液を入れ、その水溶液の撹拌と反応槽の水溶液上への窒素ガスの吹き込みを、実施例1と同様の条件で行った。回転数350rpmで行った。これ以後、後述する硝酸銅(II)・クエン酸混合液の添加の直前まで、この条件で撹拌操作を継続した。排気されるガスの酸素濃度が0体積%となった時点で、撹拌を停止し、上記の硝酸銅(II)・クエン酸混合液を水酸化ナトリウム希釈水溶液へ添加した後に、撹拌停止前と同条件での撹拌を再開し、これにより、水酸化銅(II)を生成させた。これ以降、後述する固液分離の直前まで、この条件で撹拌操作を継続した。
[Production of copper (II) hydroxide]
Next, the above-mentioned diluted sodium hydroxide aqueous solution was placed in a 4 L reaction vessel, and the aqueous solution was stirred and nitrogen gas was blown onto the aqueous solution in the reaction vessel under the same conditions as in Example 1. The rotation speed was 350 rpm. After that, the stirring operation was continued under these conditions until immediately before the addition of the copper (II) nitrate / citric acid mixed solution described later. When the oxygen concentration of the exhausted gas reaches 0% by volume, the stirring is stopped, the above-mentioned copper (II) nitrate / citric acid mixed solution is added to the sodium hydroxide diluted aqueous solution, and then the same as before the stirring is stopped. Stirring under the conditions was resumed, thereby producing copper (II) hydroxide. After that, the stirring operation was continued under these conditions until immediately before the solid-liquid separation described later.

[一次還元工程]
次に、この反応液を35℃に昇温させた後に、エムジーシー大塚ケミカル株式会社製の水和ヒドラジンである80質量%ヒドラジン一水和物21.3gを純水551.6gに溶解させたヒドラジン水溶液を添加した。その後、反応液を70℃に昇温させた後に、120分間保持する事により、一次還元を行い、亜酸化銅を生成させた。
[Primary reduction process]
Next, after raising the temperature of this reaction solution to 35 ° C., 21.3 g of 80 mass% hydrazine monohydrate, which is a hydrated hydrazine manufactured by MGC Otsuka Chemical Co., Ltd., was dissolved in 551.6 g of pure water. An aqueous hydrazine solution was added. Then, after raising the temperature of the reaction solution to 70 ° C. and holding it for 120 minutes, primary reduction was performed to generate cuprous oxide.

[二次還元工程]
次に、反応液を冷却して50℃とし、エムジーシー大塚ケミカル株式会社製の水和ヒドラジンである80質量%ヒドラジン一水和物40.5gを添加し、60分間保持した。続いて液温を50℃に維持したまま、前記と同様のヒドラジン一水和物50.7gを添加し、60分間保持した。その後、反応を完結するために反応液を90℃に昇温して180分保持し、金属銅を生成させた。
[Secondary reduction process]
Next, the reaction solution was cooled to 50 ° C., 40.5 g of 80% by mass hydrazine monohydrate, which is a hydrated hydrazine manufactured by MGC Otsuka Chemical Co., Ltd., was added and held for 60 minutes. Subsequently, while maintaining the liquid temperature at 50 ° C., 50.7 g of the same hydrazine monohydrate as described above was added and held for 60 minutes. Then, in order to complete the reaction, the reaction solution was heated to 90 ° C. and held for 180 minutes to generate metallic copper.

[回収工程]
次に、実施例1と同様に回収工程を実施して、比較例1に係る球状の銅粉を得た。この、比較例1に係る銅粉について、平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。
[Recovery process]
Next, a recovery step was carried out in the same manner as in Example 1 to obtain a spherical copper powder according to Comparative Example 1. With respect to the copper powder according to Comparative Example 1, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured.

その結果、平均粒子径D50は0.60μmであり、BET比表面積は1.99m/gであり、TAP密度は3.47g/cmであり、銅粉中のC元素量は0.06質量%であった。 As a result, the average particle size D50 is 0.60 μm, the BET specific surface area is 1.99 m 2 / g, the TAP density is 3.47 g / cm 3 , and the amount of C element in the copper powder is 0.06. It was% by mass.

《比較例2》
二次還元後期保持温度を70℃とした以外は比較例1と同様の方法により比較例2に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は0.84μmであり、BET比表面積は1.13m/gであり、TAP密度は3.81g/cmであり、銅粉中のC元素量は0.04質量%であった。
<< Comparative Example 2 >>
Spherical copper powder according to Comparative Example 2 was obtained by the same method as in Comparative Example 1 except that the holding temperature in the late secondary reduction was set to 70 ° C. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 is 0.84 μm, the BET specific surface area is 1.13 m 2 / g, the TAP density is 3.81 g / cm 3 , and the amount of C element in the copper powder is 0.04. It was% by mass.

《比較例3》
二次還元後期保持温度を90℃とした以外は比較例2と同様の方法により比較例3に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は0.61μmであり、BET比表面積は2.38m/gであり、TAP密度は3.43g/cmであり、銅粉中のC元素量は0.07質量%であった。
<< Comparative Example 3 >>
A spherical copper powder according to Comparative Example 3 was obtained by the same method as in Comparative Example 2 except that the holding temperature in the latter stage of the secondary reduction was set to 90 ° C. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 is 0.61 μm, the BET specific surface area is 2.38 m 2 / g, the TAP density is 3.43 g / cm 3 , and the amount of C element in the copper powder is 0.07. It was% by mass.

《比較例4》
濃度50.2質量%の硝酸銅(II)水溶液939.7g使用し、これに389.5gの純水を添加し、48.8質量%水酸化ナトリウム水溶液を358.9g使用し、これに純水542.7gを混合し、二次還元前期においてヒドラジン一水和物を47.4g、二次還元後期においてヒドラジン一水和物を59.2g使用した以外は比較例1と同様の方法により、比較例4に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、及びTAP密度測定を行った。その結果、平均粒子径D50は0.69μmであり、BET比表面積は1.96m/gであり、TAP密度は3.35g/cmであった。
<< Comparative Example 4 >>
939.7 g of a copper (II) nitrate aqueous solution having a concentration of 50.2 mass% was used, 389.5 g of pure water was added thereto, and 358.9 g of a 48.8 mass% sodium hydroxide aqueous solution was used, which was pure. By the same method as in Comparative Example 1, 542.7 g of water was mixed and 47.4 g of hydrazine monohydrate was used in the first stage of secondary reduction and 59.2 g of hydrazine monohydrate was used in the second stage of secondary reduction. A spherical copper powder according to Comparative Example 4 was obtained. The obtained copper powder was measured for an average particle size D50, a BET specific surface area, and a TAP density by the same method as in Example 1. As a result, the average particle size D50 was 0.69 μm, the BET specific surface area was 1.96 m 2 / g, and the TAP density was 3.35 g / cm 3 .

《比較例5》
二次還元前期においてヒドラジン一水和物を33.8g、二次還元後期においてヒドラジン一水和物を42.2g使用した以外は比較例4と同様の方法により、比較例5に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、及びTAP密度測定を行った。その結果、平均粒子径D50は0.68μmであり、BET比表面積は1.77m/gであり、TAP密度は3.71g/cmであった。
<< Comparative Example 5 >>
Spherical copper according to Comparative Example 5 by the same method as in Comparative Example 4 except that 33.8 g of hydrazine monohydrate was used in the first half of the secondary reduction and 42.2 g of hydrazine monohydrate was used in the second half of the secondary reduction. I got the powder. The obtained copper powder was measured for an average particle size D50, a BET specific surface area, and a TAP density by the same method as in Example 1. As a result, the average particle size D50 was 0.68 μm, the BET specific surface area was 1.77 m 2 / g, and the TAP density was 3.71 g / cm 3 .

《比較例6》
一次還元においてヒドラジン一水和物を33.5g使用し、これを純水539.4gに溶解した以外は比較例4と同様の方法により、比較例6に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は0.74μmであり、BET比表面積は1.53m/gであり、TAP密度は3.58g/cmであり、C元素量は0.04質量%であった。
<< Comparative Example 6 >>
In the primary reduction, 33.5 g of hydrazine monohydrate was used, and the spherical copper powder according to Comparative Example 6 was obtained by the same method as in Comparative Example 4 except that it was dissolved in 539.4 g of pure water. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 was 0.74 μm, the BET specific surface area was 1.53 m 2 / g, the TAP density was 3.58 g / cm 3 , and the C element content was 0.04 mass%. It was.

《比較例7》
一次還元においてヒドラジン一水和物を24.4g使用し、これを純水548.5gに溶解した以外は比較例4と同様の方法により、比較例7に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は0.63μmであり、BET比表面積は2.12m/gであり、TAP密度は3.55g/cmであり、C元素量は0.05質量%であった。
<< Comparative Example 7 >>
In the primary reduction, 24.4 g of hydrazine monohydrate was used, and the spherical copper powder according to Comparative Example 7 was obtained by the same method as in Comparative Example 4 except that it was dissolved in 548.5 g of pure water. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 was 0.63 μm, the BET specific surface area was 2.12 m 2 / g, the TAP density was 3.55 g / cm 3 , and the C element content was 0.05 mass%. It was.

《比較例8》
一次還元においてヒドラジン一水和物を18.3g使用し、これを純水554.6gに溶解した以外は比較例4と同様の方法により、比較例8に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は0.83μmであり、BET比表面積は1.35m/gであり、TAP密度は3.81g/cmであり、C元素量は0.03質量%であった。
<< Comparative Example 8 >>
In the primary reduction, 18.3 g of hydrazine monohydrate was used, and the spherical copper powder according to Comparative Example 8 was obtained by the same method as in Comparative Example 4 except that it was dissolved in 554.6 g of pure water. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 was 0.83 μm, the BET specific surface area was 1.35 m 2 / g, the TAP density was 3.81 g / cm 3 , and the C element amount was 0.03 mass%. It was.

《比較例9》
一次還元においてヒドラジン一水和物を27.4g使用し、これを純水545.5gに溶解した以外は比較例4と同様の方法により、比較例9に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、及びTAP密度測定を行った。その結果、平均粒子径D50は0.60μmであり、BET比表面積は2.18m/gであり、TAP密度は3.70g/cmであった。
<< Comparative Example 9 >>
In the primary reduction, 27.4 g of hydrazine monohydrate was used, and the spherical copper powder according to Comparative Example 9 was obtained by the same method as in Comparative Example 4 except that it was dissolved in 545.5 g of pure water. The obtained copper powder was measured for an average particle size D50, a BET specific surface area, and a TAP density by the same method as in Example 1. As a result, the average particle size D50 was 0.60 μm, the BET specific surface area was 2.18 m 2 / g, and the TAP density was 3.70 g / cm 3 .

《比較例10》
水酸化ナトリウム水溶液を383.7g使用し、これと純水517.9gを混合した以外は比較例6と同様の方法により、比較例10に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は0.76μmであり、BET比表面積は1.39m/gであり、TAP密度は3.65g/cmであり、C元素量は0.04質量%であった。
<< Comparative Example 10 >>
A spherical copper powder according to Comparative Example 10 was obtained by the same method as in Comparative Example 6 except that 383.7 g of an aqueous sodium hydroxide solution was used and 517.9 g of pure water was mixed thereto. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 was 0.76 μm, the BET specific surface area was 1.39 m 2 / g, the TAP density was 3.65 g / cm 3 , and the C element content was 0.04 mass%. It was.

《比較例11》
濃度50.3質量%の硝酸銅(II)水溶液937.8g使用し、これに391.4gの純水を添加し、水酸化銅(II)の生成において、硝酸銅(II)・クエン酸混合液に水酸化ナトリウム希釈水溶液を加えた以外は比較例1と同様の方法により、比較例11に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は0.63μmであり、BET比表面積は1.97m/gであり、TAP密度は3.59g/cmであり、C元素量は0.06質量%であった。
<< Comparative Example 11 >>
937.8 g of an aqueous solution of copper (II) nitrate having a concentration of 50.3% by mass was used, and 391.4 g of pure water was added thereto to produce a mixture of copper (II) nitrate and citric acid in the production of copper (II) hydroxide. A spherical copper powder according to Comparative Example 11 was obtained by the same method as in Comparative Example 1 except that a diluted aqueous solution of sodium hydroxide was added to the solution. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 was 0.63 μm, the BET specific surface area was 1.97 m 2 / g, the TAP density was 3.59 g / cm 3 , and the C element content was 0.06 mass%. It was.

《比較例12》
排気されるガスの酸素濃度が0体積%となった時点での撹拌停止を行わずに固液分離の直前まで撹拌を継続し、二次還元を一段階で行い、その際ヒドラジン一水和物91.2gを使用し、二次還元前期保持時間を10分とした以外は比較例11と同様の方法により、比較例12に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は0.61μmであり、BET比表面積は2.00m/gであり、TAP密度は3.73g/cmであり、C元素量は0.06質量%であった。
<< Comparative Example 12 >>
Stirring is continued until just before solid-liquid separation without stopping stirring when the oxygen concentration of the exhausted gas reaches 0% by volume, and secondary reduction is performed in one step, at which time hydrazine monohydrate A spherical copper powder according to Comparative Example 12 was obtained by the same method as in Comparative Example 11 except that 91.2 g was used and the retention time in the first half of the secondary reduction was set to 10 minutes. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 was 0.61 μm, the BET specific surface area was 2.00 m 2 / g, the TAP density was 3.73 g / cm 3 , and the C element amount was 0.06 mass%. It was.

《比較例13》
一次還元ヒドラジンを27.4g使用し、これを純水545.5gに溶解した以外は比較例12と同様の方法により、比較例13に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は0.62μmであり、BET比表面積は2.16m/gであり、TAP密度は3.57g/cmであり、C元素量は0.06質量%であった。
<< Comparative Example 13 >>
Spherical copper powder according to Comparative Example 13 was obtained by the same method as in Comparative Example 12 except that 27.4 g of primary reduced hydrazine was used and this was dissolved in 545.5 g of pure water. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 was 0.62 μm, the BET specific surface area was 2.16 m 2 / g, the TAP density was 3.57 g / cm 3 , and the C element content was 0.06 mass%. It was.

《比較例14》
一次還元ヒドラジンを15.2g使用し、これを純水557.7gに溶解した以外は比較例12と同様の方法により、比較例14に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は0.67μmであり、BET比表面積は2.56m/gであり、TAP密度は3.35g/cmであり、C元素量は0.06質量%であった。
<< Comparative Example 14 >>
Spherical copper powder according to Comparative Example 14 was obtained by the same method as in Comparative Example 12 except that 15.2 g of primary reduced hydrazine was used and this was dissolved in 557.7 g of pure water. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 was 0.67 μm, the BET specific surface area was 2.56 m 2 / g, the TAP density was 3.35 g / cm 3 , and the C element content was 0.06 mass%. It was.

《比較例15》
二次還元ヒドラジンを85.1g使用した以外は比較例13と同様の方法により、比較例15に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は0.61μmであり、BET比表面積は1.98m/gであり、TAP密度は3.83g/cmであり、C元素量は0.06質量%であった。
<< Comparative Example 15 >>
A spherical copper powder according to Comparative Example 15 was obtained by the same method as in Comparative Example 13 except that 85.1 g of secondary reduced hydrazine was used. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle diameter D50 was 0.61 μm, the BET specific surface area was 1.98 m 2 / g, the TAP density was 3.83 g / cm 3 , and the amount of C element was 0.06 mass%. It was.

《比較例16》
二次還元ヒドラジンを97.3g使用した以外は比較例14と同様の方法により、比較例16に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は0.62μmであり、BET比表面積は2.05m/gであり、TAP密度は3.59g/cmであり、C元素量は0.05質量%であった。
<< Comparative Example 16 >>
A spherical copper powder according to Comparative Example 16 was obtained by the same method as in Comparative Example 14 except that 97.3 g of secondary reduced hydrazine was used. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 was 0.62 μm, the BET specific surface area was 2.05 m 2 / g, the TAP density was 3.59 g / cm 3 , and the C element content was 0.05 mass%. It was.

《比較例17》
水酸化ナトリウム水溶液を374.6g使用し、これを純水527.0gと混合した以外は比較例12と同様の方法により、比較例17に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は0.85μmであり、BET比表面積は1.13m/gであり、TAP密度は3.82g/cmであり、C元素量は0.03質量%であった。
<< Comparative Example 17 >>
A spherical copper powder according to Comparative Example 17 was obtained by the same method as in Comparative Example 12 except that 374.6 g of an aqueous sodium hydroxide solution was used and this was mixed with 527.0 g of pure water. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 was 0.85 μm, the BET specific surface area was 1.13 m 2 / g, the TAP density was 3.82 g / cm 3 , and the C element amount was 0.03 mass%. It was.

《比較例18》
クエン酸一水和物を102.6g使用し、これを純水520.9gに溶解し、水酸化ナトリウム水溶液を358.7g使用し、これを純水542.9gと混合した以外は比較例12と同様の方法により、比較例18に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は0.64μmであり、BET比表面積は2.58m/gであり、TAP密度は3.40g/cmであり、C元素量は0.08質量%であった。
<< Comparative Example 18 >>
Comparative Example 12 except that 102.6 g of citric acid monohydrate was used, this was dissolved in 520.9 g of pure water, 358.7 g of an aqueous sodium hydroxide solution was used, and this was mixed with 542.9 g of pure water. A spherical copper powder according to Comparative Example 18 was obtained by the same method as in the above. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 was 0.64 μm, the BET specific surface area was 2.58 m 2 / g, the TAP density was 3.40 g / cm 3 , and the C element content was 0.08 mass%. It was.

《比較例19》
硝酸銅(II)水溶液を844g使用し、これに純水485.2gを添加し、クエン酸一水和物を66.5g使用し、これを純水557gに溶解し、水酸化ナトリウム水溶液を322.8g使用し、これを純水578.8gと混合し、一次還元ヒドラジンを19.2g使用し、これを純水553.7gに溶解し、二次還元ヒドラジンを82.1g使用した以外は比較例12と同様の方法により、比較例19に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は0.65μmであり、BET比表面積は1.75m/gであり、TAP密度は3.52g/cmであり、C元素量は0.06質量%であった。
<< Comparative Example 19 >>
844 g of an aqueous solution of copper (II) nitrate was used, 485.2 g of pure water was added thereto, 66.5 g of citrate monohydrate was used, this was dissolved in 557 g of pure water, and an aqueous solution of sodium hydroxide was 322. Compared except that 0.8 g was used, this was mixed with 578.8 g of pure water, 19.2 g of primary reduced hydrazine was used, this was dissolved in 553.7 g of pure water, and 82.1 g of secondary reduced hydrazine was used. A spherical copper powder according to Comparative Example 19 was obtained by the same method as in Example 12. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 was 0.65 μm, the BET specific surface area was 1.75 m 2 / g, the TAP density was 3.52 g / cm 3 , and the C element content was 0.06 mass%. It was.

《比較例20》
硝酸銅(II)水溶液を1078.5g使用し、これに純水250.7gを添加し、クエン酸一水和物を84.9g使用し、これを純水538.6gに溶解し、水酸化ナトリウム水溶液を412.4g使用し、これを純水489.2gと混合し、一次還元ヒドラジンを24.5g使用し、これを純水548.4gに溶解し、二次還元ヒドラジンを104.9g使用した以外は比較例12と同様の方法により、比較例20に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は0.60μmであり、BET比表面積は2.28m/gであり、TAP密度は3.28g/cmであり、C元素量は0.06質量%であった。
<< Comparative Example 20 >>
1078.5 g of an aqueous solution of copper (II) nitrate was used, 250.7 g of pure water was added thereto, 84.9 g of citrate monohydrate was used, and this was dissolved in 538.6 g of pure water, and hydroxide was added. 412.4 g of aqueous sodium solution was used, this was mixed with 489.2 g of pure water, 24.5 g of primary reduced hydrazine was used, this was dissolved in 548.4 g of pure water, and 104.9 g of secondary reduced hydrazine was used. A spherical copper powder according to Comparative Example 20 was obtained by the same method as in Comparative Example 12 except for the above. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 was 0.60 μm, the BET specific surface area was 2.28 m 2 / g, the TAP density was 3.28 g / cm 3 , and the C element amount was 0.06 mass%. It was.

《比較例21》
硝酸銅(II)水溶液を1125.4g使用し、これに純水203.8gを添加し、クエン酸一水和物を88.6g使用し、これを純水534.9gに溶解し、水酸化ナトリウム水溶液を430.4g使用し、これを純水471.2gと混合し、一次還元ヒドラジンを25.5g使用し、これを純水547.4gに溶解し、二次還元ヒドラジンを109.5g使用した以外は比較例12と同様の方法により、比較例21に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は0.62μmであり、BET比表面積は2.39m/gであり、TAP密度は3.57g/cmであり、C元素量は0.06質量%であった。
<< Comparative Example 21 >>
1125.4 g of an aqueous solution of copper (II) nitrate was used, 203.8 g of pure water was added thereto, 88.6 g of citric acid monohydrate was used, and this was dissolved in 534.9 g of pure water, and hydroxide was added. 430.4 g of aqueous sodium solution was used, this was mixed with 471.2 g of pure water, 25.5 g of primary reduced hydrazine was used, this was dissolved in 547.4 g of pure water, and 109.5 g of secondary reduced hydrazine was used. A spherical copper powder according to Comparative Example 21 was obtained by the same method as in Comparative Example 12 except for the above. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 was 0.62 μm, the BET specific surface area was 2.39 m 2 / g, the TAP density was 3.57 g / cm 3 , and the C element content was 0.06 mass%. It was.

《比較例22》
水酸化ナトリウム水溶液を418.8g使用し、これを純水482.8gと混合した以外は比較例21と同様の方法により、比較例22に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は0.59μmであり、BET比表面積は2.39m/gであり、TAP密度は3.36g/cmであり、C元素量は0.06質量%であった。
<< Comparative Example 22 >>
A spherical copper powder according to Comparative Example 22 was obtained by the same method as in Comparative Example 21 except that 418.8 g of an aqueous sodium hydroxide solution was used and this was mixed with 482.8 g of pure water. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 was 0.59 μm, the BET specific surface area was 2.39 m 2 / g, the TAP density was 3.36 g / cm 3 , and the C element amount was 0.06 mass%. It was.

《比較例23》
濃度50.1質量%の硝酸銅(II)水溶液を1129.9g使用し、これに純水199.3gを添加し、一次還元ヒドラジンを80.3g使用し、これを純水492.6gに溶解し、二次還元ヒドラジンを54.7g使用した以外は比較例21と同様の方法により、比較例23に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は0.64μmであり、BET比表面積は2.01m/gであり、TAP密度は3.34g/cmであり、C元素量は0.04質量%であった。
<< Comparative Example 23 >>
1129.9 g of an aqueous solution of copper (II) nitrate having a concentration of 50.1 mass% was used, 199.3 g of pure water was added thereto, 80.3 g of primary reduced hydrazine was used, and this was dissolved in 492.6 g of pure water. Then, a spherical copper powder according to Comparative Example 23 was obtained by the same method as in Comparative Example 21 except that 54.7 g of the secondary reduced hydrazine was used. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 was 0.64 μm, the BET specific surface area was 2.01 m 2 / g, the TAP density was 3.34 g / cm 3 , and the C element content was 0.04 mass%. It was.

《比較例24》
一次還元ヒドラジンを25.5g使用し、これを純水547.4gに溶解し、一次還元保持温度を40℃とし、二次還元ヒドラジンを109.5g使用した以外は比較例23と同様の方法により、比較例24に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は0.63μmであり、BET比表面積は2.28m/gであり、TAP密度は3.41g/cmであり、C元素量は0.05質量%であった。
<< Comparative Example 24 >>
25.5 g of primary reduced hydrazine was used, this was dissolved in 547.4 g of pure water, the primary reduction holding temperature was set to 40 ° C., and 109.5 g of secondary reduced hydrazine was used by the same method as in Comparative Example 23. , A spherical copper powder according to Comparative Example 24 was obtained. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 was 0.63 μm, the BET specific surface area was 2.28 m 2 / g, the TAP density was 3.41 g / cm 3 , and the C element content was 0.05 mass%. It was.

《比較例25》
濃度50.3質量%の硝酸銅(II)水溶液を1125.4g使用し、これと純水203.8gと、クエン酸一水和物123.1gを純水500.4gに溶解した溶液とを混合し、一次還元保持温度を50℃とした以外は比較例24と同様の方法により、比較例25に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は0.60μmであり、BET比表面積は2.74m/gであり、TAP密度は3.80g/cmであり、C元素量は0.09質量%であった。
<< Comparative Example 25 >>
1125.4 g of an aqueous solution of copper (II) nitrate having a concentration of 50.3 mass% was used, and 203.8 g of pure water and 123.1 g of citric acid monohydrate were dissolved in 500.4 g of pure water. The mixture was mixed to obtain a spherical copper powder according to Comparative Example 25 by the same method as in Comparative Example 24 except that the primary reduction holding temperature was set to 50 ° C. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 was 0.60 μm, the BET specific surface area was 2.74 m 2 / g, the TAP density was 3.80 g / cm 3 , and the C element amount was 0.09 mass%. It was.

《比較例26》
濃度50.1質量%の硝酸銅(II)水溶液を1129.9g使用し、これに純水を199.3g添加し、一次還元保持時間を60分とした以外は比較例25と同様の方法により、比較例26に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は0.58μmであり、BET比表面積は1.96m/gであり、TAP密度は3.41g/cmであり、C元素量は0.10質量%であった。
<< Comparative Example 26 >>
Using 1129.9 g of a copper (II) nitrate aqueous solution having a concentration of 50.1% by mass, 199.3 g of pure water was added thereto, and the primary reduction holding time was set to 60 minutes by the same method as in Comparative Example 25. , A spherical copper powder according to Comparative Example 26 was obtained. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 was 0.58 μm, the BET specific surface area was 1.96 m 2 / g, the TAP density was 3.41 g / cm 3 , and the C element amount was 0.10 mass%. It was.

《比較例27》
水酸化銅(II)の生成の際の撹拌の回転数を250rpmとし、一次還元保持時間を120分とした以外は比較例26と同様の方法により、比較例27に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は0.64μmであり、BET比表面積は2.12m/gであり、TAP密度は3.30g/cmであり、C元素量は0.05質量%であった。
<< Comparative Example 27 >>
A spherical copper powder according to Comparative Example 27 was obtained by the same method as in Comparative Example 26 except that the rotation speed of stirring during the formation of copper (II) hydroxide was 250 rpm and the primary reduction holding time was 120 minutes. It was. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 was 0.64 μm, the BET specific surface area was 2.12 m 2 / g, the TAP density was 3.30 g / cm 3 , and the C element content was 0.05 mass%. It was.

《比較例28》
水酸化銅(II)の生成の際の撹拌の回転数を450rpmとし、一次還元保持時間を120分とした以外は比較例26と同様の方法により、比較例28に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は0.63μmであり、BET比表面積は2.36m/gであり、TAP密度は3.36g/cmであり、C元素量は0.05質量%であった。
<< Comparative Example 28 >>
A spherical copper powder according to Comparative Example 28 was obtained by the same method as in Comparative Example 26 except that the rotation speed of stirring during the formation of copper (II) hydroxide was 450 rpm and the primary reduction holding time was 120 minutes. It was. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 was 0.63 μm, the BET specific surface area was 2.36 m 2 / g, the TAP density was 3.36 g / cm 3 , and the C element amount was 0.05 mass%. It was.

《比較例29》
排気されるガスの酸素濃度が0体積%となった時点での撹拌停止を行わずに固液分離の直前まで撹拌を継続し、二次還元前期保持温度を90℃とし、二次還元後期温度を90℃とした以外は比較例2と同様の方法により、比較例29に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は1.26μmであり、BET比表面積は0.79m/gであり、TAP密度は4.03g/cmであり、C元素量は0.03質量%であった。
<< Comparative Example 29 >>
Stirring is continued until just before the solid-liquid separation without stopping the stirring when the oxygen concentration of the exhausted gas reaches 0% by volume, and the holding temperature in the first half of the secondary reduction is set to 90 ° C. The spherical copper powder according to Comparative Example 29 was obtained by the same method as in Comparative Example 2 except that the temperature was 90 ° C. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 was 1.26 μm, the BET specific surface area was 0.79 m 2 / g, the TAP density was 4.03 g / cm 3 , and the C element content was 0.03 mass%. It was.

《比較例30》
二次還元前期保持温度を90℃とした以外は比較例23と同様の方法により、比較例30に係る球状の銅粉を得た。得られた銅粉に対して、実施例1と同様の方法により平均粒子径D50の測定、BET比表面積測定、TAP密度測定、及びC元素量の測定を行った。その結果、平均粒子径D50は1.52μmであり、BET比表面積は0.69m/gであり、TAP密度は4.24g/cmであり、C元素量は0.02質量%であった。
<< Comparative Example 30 >>
The spherical copper powder according to Comparative Example 30 was obtained by the same method as in Comparative Example 23 except that the holding temperature in the first half of the secondary reduction was set to 90 ° C. With respect to the obtained copper powder, the average particle size D50, the BET specific surface area, the TAP density, and the amount of C element were measured by the same method as in Example 1. As a result, the average particle size D50 was 1.52 μm, the BET specific surface area was 0.69 m 2 / g, the TAP density was 4.24 g / cm 3 , and the C element content was 0.02 mass%. It was.

以上の結果を下記表1〜5にまとめる。
The above results are summarized in Tables 1 to 5 below.

Claims (4)

レーザー回折散乱式粒度分布測定装置により測定した平均粒子径が0.67〜5.0μmであり、TAP密度が2.77g/cm以下である、おおむね球状の銅粉。 A generally spherical copper powder having an average particle size of 0.67 to 5.0 μm and a TAP density of 2.77 g / cm 3 or less as measured by a laser diffraction / scattering type particle size distribution measuring device. 前記銅粉中に含まれるC元素の量が0.2質量%以下である、請求項1に記載の銅粉。 The copper powder according to claim 1, wherein the amount of element C contained in the copper powder is 0.2% by mass or less. TAP密度が1.0〜2.77g/cmである、請求項1又は2に記載の銅粉。 The copper powder according to claim 1 or 2, wherein the TAP density is 1.0 to 2.77 g / cm 3 . 請求項1〜3のいずれかに記載の銅粉を含む導電性ペースト。

A conductive paste containing the copper powder according to any one of claims 1 to 3.

JP2020121330A 2020-07-15 2020-07-15 Copper powder and conductive paste Active JP7026173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020121330A JP7026173B2 (en) 2020-07-15 2020-07-15 Copper powder and conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020121330A JP7026173B2 (en) 2020-07-15 2020-07-15 Copper powder and conductive paste

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015235297A Division JP6811012B2 (en) 2015-12-02 2015-12-02 How to make copper powder

Publications (2)

Publication Number Publication Date
JP2020176334A true JP2020176334A (en) 2020-10-29
JP7026173B2 JP7026173B2 (en) 2022-02-25

Family

ID=72916299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020121330A Active JP7026173B2 (en) 2020-07-15 2020-07-15 Copper powder and conductive paste

Country Status (1)

Country Link
JP (1) JP7026173B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116303A (en) * 1982-12-22 1984-07-05 Shoei Kagaku Kogyo Kk Manufacture of fine copper powder
JPH02294414A (en) * 1989-05-10 1990-12-05 Seidou Kagaku Kogyo Kk Production of fine copper powder
JP2005298903A (en) * 2004-04-12 2005-10-27 Dowa Mining Co Ltd Method for manufacturing copper powder, copper powder and conductive paste
CN102601380A (en) * 2011-12-21 2012-07-25 中国科学院过程工程研究所 Cubic copper powder and method for preparing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116303A (en) * 1982-12-22 1984-07-05 Shoei Kagaku Kogyo Kk Manufacture of fine copper powder
JPH02294414A (en) * 1989-05-10 1990-12-05 Seidou Kagaku Kogyo Kk Production of fine copper powder
JP2005298903A (en) * 2004-04-12 2005-10-27 Dowa Mining Co Ltd Method for manufacturing copper powder, copper powder and conductive paste
CN102601380A (en) * 2011-12-21 2012-07-25 中国科学院过程工程研究所 Cubic copper powder and method for preparing same

Also Published As

Publication number Publication date
JP7026173B2 (en) 2022-02-25

Similar Documents

Publication Publication Date Title
JP4428085B2 (en) Method for producing copper fine particles
EP2946856B1 (en) Silver fine particle dispersion liquid
WO2014104032A1 (en) Method for producing copper powder, copper powder, and copper paste
JP2007512212A (en) Nano-sized silver oxide powder
JP6956459B2 (en) Silver-coated metal powder and its manufacturing method
JP5306966B2 (en) Method for producing copper fine particle dispersed aqueous solution and method for storing copper fine particle dispersed aqueous solution
JP6811012B2 (en) How to make copper powder
JP6186197B2 (en) Silver-coated copper alloy powder and method for producing the same
JP7344550B2 (en) Method for producing iron-nickel nanowires
JP5522885B2 (en) Nickel powder, method for producing the same, and conductive paste
JP2007126744A (en) Fine nickel powder and process for producing the same
JP2014029013A (en) Composite nickel particles
KR20150028970A (en) Silver powder
TW201704369A (en) Fine silver particle dispersing solution
JP4666663B2 (en) Silver compound-coated copper powder, method for producing the silver compound-coated copper powder, storage method for the silver compound-coated copper powder, and conductive paste using the silver compound-coated copper powder
JP4843783B2 (en) Copper powder for conductive paste, method for producing the same, and conductive paste
JP7026173B2 (en) Copper powder and conductive paste
JP4244883B2 (en) Method for producing nickel powder
JP6258616B2 (en) Silver-coated copper alloy powder and method for producing the same
JP6762718B2 (en) Surface-treated copper powder and its manufacturing method
JP5993763B2 (en) Composite nickel particles
KR100709822B1 (en) Method for Surface treatment of Ni particle with Acid solution
JP6541764B2 (en) Silver-coated copper powder and conductive paste, and method for producing them
WO2017179524A1 (en) Silver-coated copper powder and method for producing same
JP7406047B2 (en) Method for producing nickel powder and nickel particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220214

R150 Certificate of patent or registration of utility model

Ref document number: 7026173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150