JPH01209A - Method for producing gold particles - Google Patents
Method for producing gold particlesInfo
- Publication number
- JPH01209A JPH01209A JP62-154775A JP15477587A JPH01209A JP H01209 A JPH01209 A JP H01209A JP 15477587 A JP15477587 A JP 15477587A JP H01209 A JPH01209 A JP H01209A
- Authority
- JP
- Japan
- Prior art keywords
- gold particles
- iodide
- particle size
- particles
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002245 particle Substances 0.000 title claims description 31
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 title claims description 21
- 239000010931 gold Substances 0.000 title claims description 20
- 229910052737 gold Inorganic materials 0.000 title claims description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000007864 aqueous solution Substances 0.000 claims description 9
- 239000000243 solution Substances 0.000 claims description 8
- 150000002500 ions Chemical class 0.000 claims description 7
- 239000002280 amphoteric surfactant Substances 0.000 claims description 5
- GCZKMPJFYKFENV-UHFFFAOYSA-K triiodogold Chemical compound I[Au](I)I GCZKMPJFYKFENV-UHFFFAOYSA-K 0.000 claims description 5
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 3
- 229910001854 alkali hydroxide Inorganic materials 0.000 claims description 2
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 13
- 239000002253 acid Substances 0.000 description 9
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical class [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 9
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 5
- 229910001516 alkali metal iodide Inorganic materials 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 235000009518 sodium iodide Nutrition 0.000 description 3
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 2
- -1 iodine ions Chemical class 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- XZXYQEHISUMZAT-UHFFFAOYSA-N 2-[(2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound CC1=CC=C(O)C(CC=2C(=CC=C(C)C=2)O)=C1 XZXYQEHISUMZAT-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- UNMYWSMUMWPJLR-UHFFFAOYSA-L Calcium iodide Chemical compound [Ca+2].[I-].[I-] UNMYWSMUMWPJLR-UHFFFAOYSA-L 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 229940107816 ammonium iodide Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000011575 calcium Chemical class 0.000 description 1
- 229910001640 calcium iodide Inorganic materials 0.000 description 1
- 229940046413 calcium iodide Drugs 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 239000011777 magnesium Chemical class 0.000 description 1
- BLQJIBCZHWBKSL-UHFFFAOYSA-L magnesium iodide Chemical compound [Mg+2].[I-].[I-] BLQJIBCZHWBKSL-UHFFFAOYSA-L 0.000 description 1
- 229910001641 magnesium iodide Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- JLKDVMWYMMLWTI-UHFFFAOYSA-M potassium iodate Chemical compound [K+].[O-]I(=O)=O JLKDVMWYMMLWTI-UHFFFAOYSA-M 0.000 description 1
- 239000001230 potassium iodate Substances 0.000 description 1
- 235000006666 potassium iodate Nutrition 0.000 description 1
- 229940093930 potassium iodate Drugs 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は微細な金微粒子の製造方法に関するものである
。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing fine gold particles.
(従来技術とその問題点)
従来金微粒子の製造方法としては、塩化金酸溶液などに
ヒドラジン等の還元酸剤を用いて還元する方法が用いら
れてきた。(Prior art and its problems) As a conventional method for producing fine gold particles, a method has been used in which a chloroauric acid solution or the like is reduced using a reducing acid such as hydrazine.
ところが、この方法では、還元された粒子同士が引き寄
せ合うために、凝集してしまい粒度分布の幅の広い金微
粒子しか得られないという欠点を有していた。However, this method has the disadvantage that the reduced particles are attracted to each other and aggregate, resulting in only fine gold particles with a wide particle size distribution being obtained.
(発明の目的)
発明者は、ヨウ化金を溶かしたヨウ化カリウム溶液〔(
l)、(2)式〕に、水酸化カリウム溶液を加えると、
金微粒子が得られる事〔(3)式〕に着目したが、こ方
法により得られる粒子は、数μから数十μの粒径のもで
あり、数μ以下の金微粒子を得ることは難しかった。(Object of the invention) The inventor has developed a potassium iodide solution [(
l), (2) formula], when potassium hydroxide solution is added,
We focused on the fact that fine gold particles can be obtained [Equation (3)], but the particles obtained by this method have a particle size of several microns to several tens of microns, and it is difficult to obtain fine gold particles with a size of several microns or less. Ta.
K I + A u I z K A u I
m −−−−−−−−−−(tlKAu 14
−→ K”+ (Au 14)−−−−−−−−−(2
)2 (Au14) −+6KOH−2Au↓+5KI
+KIOz+3HzO+21−−− (31本発明は上
記の欠点を解消せんがためになさ、れたものであり、分
散した、粒度分布の幅の狭い粒径コントロール可能な微
細な金微粒子の製造方法を提供せんとするものである。K I + A u I z K A u I
m ----------(tlKAu 14
−→ K”+ (Au 14)−−−−−−−−(2
)2 (Au14) −+6KOH−2Au↓+5KI
+KIOz+3HzO+21--- (31 The present invention has been made to solve the above-mentioned drawbacks, and provides a method for producing fine gold particles that are dispersed and have a narrow particle size distribution and whose particle size can be controlled. That is.
(問題点を解決するための手段)
微細な金微粒子を得る為に、ヨウ化金酸イオンを含む水
溶液に水酸化アルカリ金属溶液を加え、金を析出させる
方法において、あらかじめ反応溶液中に両性界面活性剤
を添加しておくことを特徴とするものである。(Means for solving the problem) In order to obtain fine gold particles, an amphoteric interface is added to an aqueous solution containing iodoaurate ions to precipitate gold by adding an alkali metal hydroxide solution to an aqueous solution containing iodoaurate ions. It is characterized by the addition of an activator.
この方法により得られる金微粒子は、数ミクロン以下の
粒度分の幅の狭いものである。The fine gold particles obtained by this method have a narrow particle size of several microns or less.
ヨウ化金酸イオンを含む水溶液のpHは13以下が良く
、pH13を超えると(3)式の反応がおこてしまうた
め、目的とする金微粒子が得られなくなる。The pH of the aqueous solution containing iodoauric acid ions is preferably 13 or less; if the pH exceeds 13, the reaction of formula (3) will occur, making it impossible to obtain the desired gold particles.
またこの水溶液のpHは、アルカリを加える都合上8〜
13位が良い。In addition, the pH of this aqueous solution is 8 to 8 to account for the addition of alkali.
13th place is good.
ヨウ化金をヨウ化アルカリ金属塩にとかした場合pHは
、中性から弱酸性(PH3〜8位)を示す、pHを調整
する為には、酸としてはi酸、塩酸、硝酸、ヨウ化水素
酸、リン酸、酢酸等が上げられる。アルカリとしては、
水酸化ナトリウム、水酸化カリウム、アンモニア水等が
あげられる。When gold iodide is dissolved in an alkali metal iodide salt, the pH ranges from neutral to weakly acidic (pH 3 to 8). To adjust the pH, use i acid, hydrochloric acid, nitric acid, iodide acid, etc. Examples include hydrogen acid, phosphoric acid, and acetic acid. As an alkali,
Examples include sodium hydroxide, potassium hydroxide, and aqueous ammonia.
また反応前の極端なp Hの変動をを抑えるためにpH
の緩衝作用を有する塩や、酸、アルカリとの組合わせ例
えば、リン酸水素2ナトリウム−リン酸2水素ナトリウ
ム、炭酸水素ナトリウム−炭酸ナトリウム、炭酸ナトリ
ウム−水酸化ナトリウム、酢酸−酢酸ナトリウム等によ
りpH調整しても良い。In addition, in order to suppress extreme pH fluctuations before the reaction, the pH
Combinations with salts, acids, and alkalis that have the buffering effect of You can adjust it.
ヨウ化金酸イオンを含む水溶液を得るためのヨウ化金塩
としてはヨウ化合カリウム、ヨウ化合ナトリウムの他に
、Mg塩、Ca塩、NH,塩等があげられる。またヨウ
化金をコラ化塩(KI、Na I、MHIなど)にとか
しても良い。Examples of gold iodide salts for obtaining an aqueous solution containing iodoauric acid ions include potassium iodide, sodium iodide, Mg salt, Ca salt, NH salt, and the like. Alternatively, gold iodide may be dissolved in a kolaid salt (KI, NaI, MHI, etc.).
ヨウ化金をヨウ化アルカリ金属塩に溶かしたヨウ化金酸
イオンを含む水溶液でヨウ化アルカリ金属塩濃度は0.
5〜5M、/!位が良い。An aqueous solution containing iodoaurate ions in which gold iodide is dissolved in an alkali metal iodide salt, and the alkali metal iodide concentration is 0.
5~5M,/! Good rank.
高濃度では、ヨウ化アルカリ金属の飽和濃度に近く結晶
が出やすいこと、反応が終わって、ヨウ素イオンが過剰
になり、塩析効果により、金粉の析出に伴い生成するヨ
ウ素酸カリウムが金粉とともに析出してしまうなどがあ
げられる。At high concentrations, crystals tend to form as it approaches the saturation concentration of alkali metal iodide, and after the reaction ends, iodine ions become excessive, and due to the salting-out effect, potassium iodate, which is generated as gold powder is precipitated, precipitates together with the gold powder. Examples include:
反応温度は粒子の粒径を揃える為に、好ましくは20〜
70℃の間で一定に保つほうが良く、温度条件を変える
ことにより粒径のコントロールができる。The reaction temperature is preferably 20~20 to make the particle size uniform.
It is better to keep the temperature constant at 70°C, and the particle size can be controlled by changing the temperature conditions.
水酸化アルカリ濃度は、0.1〜6N位が良い。The alkali hydroxide concentration is preferably about 0.1 to 6N.
0、IN未満では反応に大量の水酸化アルカリ溶液を必
要とし、6Nを超えると、金微粒子が凝集し易くなるか
らである。This is because if it is less than 0.0N, a large amount of alkaline hydroxide solution is required for the reaction, and if it exceeds 6N, the gold fine particles tend to aggregate.
反応の終点のpHは、20℃では12.5以上、80℃
では、12.0以上であれば良いが終点のpHが低いと
歩留りが悪くなるので好ましくはpH13以上である。The pH at the end point of the reaction is 12.5 or higher at 20°C and 80°C.
In this case, it is sufficient if the pH is 12.0 or higher, but if the pH at the end point is low, the yield will be poor, so the pH is preferably 13 or higher.
実施例においてはアルカリ金属としてヨウ化カリウムを
用いたがその他にヨウ化ナトリウム、ヨウ化カルシウム
やヨウ化マグネシウム、ヨウ化アンモニウム等でも良い
。In the examples, potassium iodide was used as the alkali metal, but sodium iodide, calcium iodide, magnesium iodide, ammonium iodide, etc. may also be used.
以上の作用のもとに本発明において反応溶液中には両性
界面活性剤を添加する理由は、水溶液中に析出した金微
粒子が凝集しないで単分散状態を保たせる為と、−旦析
出した金微粒子を核に結晶成長することを防止する為で
ある。Based on the above-mentioned effects, the reason why an amphoteric surfactant is added to the reaction solution in the present invention is to maintain a monodisperse state without agglomerating the gold fine particles precipitated in the aqueous solution, and - This is to prevent crystal growth using fine particles as nuclei.
本発明において反応溶液中に添加する両性界面活性剤と
してはサーフロンS−131、同132、アクリル酸ア
ミン等がある。In the present invention, examples of the amphoteric surfactant added to the reaction solution include Surflon S-131, Surflon S-132, and acrylic acid amine.
(実施例1)
3、ONの水酸化カリウム溶液200−に両性界面活剤
(C+oHgtN(CHs)s”B r )−を(5g
/1)50H1を加えあらかじめ、30℃に加温してお
く。(Example 1) 3. Add (5 g
/1) Add 50H1 and warm to 30°C in advance.
lIlビーカーに11当りヨウ化カリウム1.0Mヨウ
化合金0.1を含みpH11,0に調整したヨウ化金酸
イオンを含む水溶液500−をとり、30℃迄加温して
おき、これに先の水酸化カリウム+界面活性剤溶液中に
添加すると、暗黄色の沈殿物が得られる。In a lIl beaker, take 500ml of an aqueous solution containing 1.0M potassium iodide and 0.1M iodide alloy and iodineauric acid ions adjusted to pH 11.0 in a beaker, warm it to 30°C, and then When added to a potassium hydroxide + surfactant solution, a dark yellow precipitate is obtained.
これをデカンチーシランにて洗浄し、粒度分布測定及び
電子顕微鏡観察を行ったところ、図及び表に示す結果を
得た。This was washed with decanty silane and subjected to particle size distribution measurement and electron microscope observation, and the results shown in the figure and table were obtained.
(実施例2)
実施例1において反応温度を50℃としたものについて
行ったところ、図及び表に示す結果を得た。(Example 2) When the reaction temperature was set to 50° C. in Example 1, the results shown in the figure and table were obtained.
(実施例3)
実施例1において両性界面活性剤の濃度を20g/lと
したものについて行ったところ、図及び表に示す結果を
得た。(Example 3) When the concentration of the amphoteric surfactant was changed to 20 g/l in Example 1, the results shown in the figure and table were obtained.
(比較例)
実施例1において両性界面活性剤を加えない条件で行っ
たところ図及び表に示す結果を得た。(Comparative Example) When Example 1 was carried out without adding an amphoteric surfactant, the results shown in the figure and table were obtained.
(発明の効果)
以上の説明かられかるように本発明による金微粒子の製
造方法は、従来法では得られなかった粒度分布の幅の狭
い、微細な金微粒子を、粒径及び形状をコントロールし
て製造できるので、従来の製造方法に比べ画期的なもの
といえる。(Effects of the Invention) As can be seen from the above explanation, the method for producing fine gold particles according to the present invention can control the particle size and shape of fine gold particles with a narrow particle size distribution that could not be obtained by conventional methods. Since it can be manufactured using multiple steps, it can be said to be revolutionary compared to conventional manufacturing methods.
図は光透過式粒度分布測定装置を用いて各金微粒子の粒
度分布を測定した結果を横軸に粒径、縦軸に累積パーセ
ントを取って示したものである。
出願人 田中貴金属工業株式会社
瞳ずて−ν八二The figure shows the results of measuring the particle size distribution of each fine gold particle using a light transmission type particle size distribution measuring device, with the horizontal axis representing the particle diameter and the vertical axis representing the cumulative percentage. Applicant Tanaka Kikinzoku Kogyo Co., Ltd. Hitozute-ν82
Claims (1)
、ヨウ化金を分解し、金微粒子を製造する方法において
、反応溶液中に両性界面活性剤を添加することにより単
分散した金微粒子を得ることを特徴とする金微粒子の製
造方法。In a method for producing fine gold particles by adding alkali hydroxide to an aqueous solution containing iodoaurate ions to decompose gold iodide, monodisperse fine gold particles are obtained by adding an amphoteric surfactant to the reaction solution. A method for producing fine gold particles, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62-154775A JPH01209A (en) | 1987-06-22 | Method for producing gold particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62-154775A JPH01209A (en) | 1987-06-22 | Method for producing gold particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS64209A JPS64209A (en) | 1989-01-05 |
JPH01209A true JPH01209A (en) | 1989-01-05 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2638271B2 (en) | Production method of copper fine powder | |
JPS63307206A (en) | Production of fine silver particles | |
JP2009203484A (en) | Method for synthesizing wire-shaped metal particle | |
JP2728727B2 (en) | Method for producing fine copper powder | |
JPH0459904A (en) | Manufacture of silver fine powder | |
JPH01209A (en) | Method for producing gold particles | |
JP2008179836A (en) | Method of synthesizing wire-shaped metal particle | |
JPH01211A (en) | Method for producing gold particles | |
JPS63179009A (en) | Production of fine silver particles | |
JPH01208A (en) | Method for producing gold particles | |
JPS63186803A (en) | Production of fine copper particles | |
JP2550586B2 (en) | Method for producing fine silver alloy powder | |
JPH0211709A (en) | Production of silver colloid | |
JPH01210A (en) | Method for producing gold particles | |
JPH01104338A (en) | Manufacture of silver colloid | |
JPH01127609A (en) | Production of fine gold particles | |
JPS63293106A (en) | Production of gold particle | |
JPS63186805A (en) | Production of fine copper particles | |
JPH07107172B2 (en) | Method for producing fine silver particles | |
JPS63179012A (en) | Production of fine silver particles | |
JPS63186810A (en) | Production of fine copper particles | |
JPH07107169B2 (en) | Method for producing fine copper particles | |
JPS63186807A (en) | Production of fine copper particles | |
JPS63186809A (en) | Production of fine copper particles | |
JPH0784606B2 (en) | Method for producing fine palladium particles |