JP5047864B2 - Conductive paste and cured film containing fine silver particles - Google Patents

Conductive paste and cured film containing fine silver particles Download PDF

Info

Publication number
JP5047864B2
JP5047864B2 JP2008098413A JP2008098413A JP5047864B2 JP 5047864 B2 JP5047864 B2 JP 5047864B2 JP 2008098413 A JP2008098413 A JP 2008098413A JP 2008098413 A JP2008098413 A JP 2008098413A JP 5047864 B2 JP5047864 B2 JP 5047864B2
Authority
JP
Japan
Prior art keywords
conductive paste
silver particles
particles
fine silver
thermosetting conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008098413A
Other languages
Japanese (ja)
Other versions
JP2009252507A (en
Inventor
興祐 伊波
俊彦 上山
穣 久枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2008098413A priority Critical patent/JP5047864B2/en
Publication of JP2009252507A publication Critical patent/JP2009252507A/en
Application granted granted Critical
Publication of JP5047864B2 publication Critical patent/JP5047864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、ナノオーダーの微小銀粒子を併用する熱硬化型導電性ペースト及びそれを用いた硬化膜に関するものである。   The present invention relates to a thermosetting conductive paste using nano-order fine silver particles in combination and a cured film using the same.

従来から金属及び樹脂を含有する導電性ペーストが、電子機器用途に広く用いられている。特に多種ある金属の中でも、加熱時の酸化に起因した抵抗増加が起こりにくい銀が広く用いられており、また、このような導電性ペーストとしては、熱硬化性樹脂と、その硬化剤と、銀粉末及び溶剤とを含むものが広く用いられている。この熱硬化性樹脂を含む導電性ペーストは、熱硬化型導電性ペーストともいい、基板に塗布した後、一般的に150℃から200℃の温度で数十秒から数時間加熱することによって樹脂を硬化させ、銀粒子同士の接触部分を通じて電気を導通させるものである。   Conventionally, conductive pastes containing metals and resins have been widely used for electronic devices. In particular, among various metals, silver, which hardly causes an increase in resistance due to oxidation during heating, is widely used, and as such a conductive paste, a thermosetting resin, its curing agent, silver Those containing powder and solvent are widely used. This conductive paste containing a thermosetting resin is also called a thermosetting conductive paste, and is generally applied to a substrate and then heated at a temperature of 150 ° C. to 200 ° C. for several tens of seconds to several hours. It is hardened and electricity is conducted through the contact portion between the silver particles.

また、このような導電性ペーストをスクリーン印刷やインクジェット印刷などの種々の方式により印刷した導電体パターンでは、一般的にその電気抵抗値が低いことが求められている。そのため、このような熱硬化型導電性ペーストに含まれる銀粉末には、熱硬化後に粒子同士の接触部分が多い事が必要とされ、その点を考慮した鱗片状の銀粉末が多く用いられている。また、求められる印刷制御性や導体パターンの電気抵抗値によっては、粒子形状が球状や凝集状の粉末単体、もしくは球状、凝集状、鱗片状の銀粉末を様々なパターンで組み合わせたものも用いられている。   In addition, a conductor pattern obtained by printing such a conductive paste by various methods such as screen printing and ink jet printing is generally required to have a low electric resistance value. Therefore, the silver powder contained in such a thermosetting conductive paste is required to have a large number of contact portions between the particles after thermosetting, and scaly silver powder taking into account this point is often used. Yes. Depending on the required printing controllability and the electrical resistance value of the conductor pattern, it is also possible to use a single powder with a spherical or agglomerated particle shape, or a combination of spherical, agglomerated or scaly silver powder in various patterns. ing.

しかし、前記のように、150℃から200℃の温度で加熱される熱硬化型導電性ペーストでは、粒子間の接触部分を通じ導通することから、導通が不十分な場所があり、一般的に400℃から600℃で加熱することにより導通される焼成型導電性ペーストと比較すると、その電気抵抗値は劣るものとされている。さらには、ペーストとして低温で焼結できるとともに低抵抗を示すような素材を提供できれば、熱にも弱いような基板であっても選択の候補にあげることができるようになるので好ましいとされている。   However, as described above, the thermosetting conductive paste heated at a temperature of 150 ° C. to 200 ° C. conducts through the contact portion between the particles, so there are places where the conduction is insufficient, and generally 400 The electrical resistance value is considered to be inferior when compared with a baked conductive paste that is conducted by heating at from 600C to 600C. Furthermore, if it is possible to provide a material that can be sintered as a paste at a low temperature and exhibits low resistance, even a substrate that is vulnerable to heat can be listed as a candidate for selection. .

このような要求を満たすために、ナノオーダーの微小な金属粒子を混合することが検討されてきた。こうした微小な金属粒子を併用すれば、熱硬化型導電性ペーストの硬化温度である150℃から200℃程度の温度であっても、ナノオーダーの微小金属粒子が焼結するため、導電性ペースト中の粒子間接点が増加することによって、電気抵抗値を減少できる可能性があると考えられたからである。   In order to satisfy such requirements, it has been studied to mix fine metal particles of nano order. When these fine metal particles are used in combination, nano-order fine metal particles sinter even at a temperature of about 150 ° C. to 200 ° C., which is the curing temperature of the thermosetting conductive paste. This is because it is considered that there is a possibility that the electrical resistance value can be decreased by increasing the particle indirect point.

このような観点からナノオーダーの微小金属粒子作製方法や、それらナノオーダーの金属粒子を従来の熱硬化型導電性ペーストに混合することも種々検討されてきており、すでにいくつかの報告がなされている。   From this point of view, various studies have been made on methods for producing nano-order fine metal particles and mixing these nano-order metal particles with conventional thermosetting conductive pastes, and several reports have already been made. Yes.

まず、ナノオーダーの金属粒子を作製する方法としては、主として気相法と液相法が知られている。例えば、特許文献1では、真空中で気相法により、銀の超微粒子を作製し、有機溶媒と混合することで、該超微粒子の表面が該有機溶媒で覆われて個々に独立して分散した銀超微粒子独立分散液が得られることが開示されている。   First, as a method for producing nano-order metal particles, a gas phase method and a liquid phase method are mainly known. For example, in Patent Document 1, silver ultrafine particles are prepared by a vapor phase method in a vacuum and mixed with an organic solvent, whereby the surfaces of the ultrafine particles are covered with the organic solvent and dispersed individually. It is disclosed that an independent dispersion of ultrafine silver particles can be obtained.

特許文献2では液相法によって得られる超微粒子が開示されている。この技術では、水相中の金属イオンを還元生成した金属微粒子が、水相からより安定な有機溶媒相に相間移動することを利用する。つまり、予め有機溶媒中に、保護コロイドを少量存在させておくことにより、水相から有機溶媒層へ相間移動し金属微粒子を安定なコロイド粒子とすることで、有機溶媒相中で金属粒子を高濃度で得られると開示されている。   Patent Document 2 discloses ultrafine particles obtained by a liquid phase method. This technique utilizes the fact that metal fine particles produced by reducing metal ions in the aqueous phase move from the aqueous phase to the more stable organic solvent phase. In other words, the presence of a small amount of protective colloid in an organic solvent in advance causes interphase transfer from the aqueous phase to the organic solvent layer, and the metal fine particles become stable colloid particles, thereby increasing the metal particles in the organic solvent phase. It is disclosed that it is obtained in concentration.

特許文献3も液相中での作製法を開示するものである。ここでは、溶媒中で銀の塩を還元することにより銀ナノ粒子を製造するに際して、通常用いられる硝酸銀ではなく、銀の塩として不溶性の塩であるハロゲン化銀(特に塩化銀又は臭化銀)を用い、溶媒に溶解し銀に配位性を有する化合物から成る保護剤の存在下で還元を行う方法が開示されている。この方法では、保護剤によって被覆・保護され溶媒中に分散された銀ナノ粒子の単分散液が得られるとされ、溶媒としては極性溶媒を用い、保護剤としては、チオコリンブロミドのようなチオールが好ましいと開示されている。   Patent Document 3 also discloses a production method in a liquid phase. Here, when producing silver nanoparticles by reducing a silver salt in a solvent, silver halide that is insoluble as a silver salt (especially silver chloride or silver bromide) is used instead of the commonly used silver nitrate. Is used, and the reduction is carried out in the presence of a protective agent composed of a compound dissolved in a solvent and having a coordination property to silver. In this method, a monodispersed solution of silver nanoparticles coated and protected with a protective agent and dispersed in a solvent is obtained. A polar solvent is used as the solvent, and a thiol such as thiocholine bromide is used as the protective agent. Is preferred.

特許文献4も液相法を用いて、極性溶媒中に単分散したナノオーダーの銀微粒子を得る方法を開示している。ここでは、銀の微粒子を得るための出発材料は硝酸銀を用い、保護剤はヘプタン酸を用いることが開示されている。   Patent Document 4 also discloses a method for obtaining nano-order silver fine particles monodispersed in a polar solvent by using a liquid phase method. Here, it is disclosed that silver nitrate is used as a starting material for obtaining silver fine particles, and heptanoic acid is used as a protective agent.

また、特許文献5には、ナノオーダーの微小金属粒子を従来の熱硬化型導電性ペーストに混合した例が開示されている。より詳しくは、分子量が1500から30000である分散剤で被覆した粒子径が20nm以下の球状微小銀粉を、鱗片状銀粉と混合することで、印刷特性が良好であり、しかも熱硬化後の膜の導電率が改善するという熱硬化型導電性ペーストが開示されている。
特開2001−35255号公報 特開平11−319538号公報 特開2003−253311号公報 US2007/0144305 A1 特許3858902号
Patent Document 5 discloses an example in which nano-sized fine metal particles are mixed with a conventional thermosetting conductive paste. More specifically, a spherical fine silver powder having a particle diameter of 20 nm or less coated with a dispersant having a molecular weight of 1500 to 30000 is mixed with scaly silver powder, whereby the printing characteristics are good and the film after thermosetting A thermosetting conductive paste that improves conductivity is disclosed.
JP 2001-35255 A JP 11-319538 A JP 2003253331 A US2007 / 0144305 A1 Japanese Patent No. 3858902

ナノオーダーの微小金属粒子の製造方法としては、特許文献1から4で挙げたように種種あるが、産業上の量産性の観点では液相法で行うのが好適である。また液相中での合成の中でも、とりわけ水を初めとした極性溶媒中で合成できる、さらには得られた粒子が極性溶媒に容易に分散が可能であることが好ましい。特許文献3あるいは4に開示されている技術によれば、このような金属粒子を得ることはできるが、製造の条件などで得られる微小粒子の粒度が異なるといった不安定な部分も多い。   There are various methods for producing nano-order fine metal particles as described in Patent Documents 1 to 4, but it is preferable to carry out the liquid phase method from the viewpoint of industrial mass productivity. Further, among the synthesis in the liquid phase, it is preferable that the synthesis can be performed in a polar solvent such as water, and the obtained particles can be easily dispersed in the polar solvent. According to the technique disclosed in Patent Document 3 or 4, such metal particles can be obtained, but there are many unstable portions in which the particle size of the microparticles obtained varies depending on the manufacturing conditions.

また、特許文献5においては、鱗片状銀粒子の熱硬化型導電性ペーストに粒子径が20nm以下の球状微小銀粒子を混合することで、導電率を改善することに成功している。しかし、球状微小銀粒子が分子量の比較的大きい高分子化合物によって被覆されていることから、球状微小銀粒子/鱗片状銀粒子の比率が高くなっていくのに伴って、被覆している高分子による導電性の阻害が引き起こされるおそれがあるとともに、一般的には高分子化合物は、加熱により除去されにくい難点があり、被覆する有機物はできるだけ単純名構造でかつ鎖の短いものであることが好ましい。   Moreover, in patent document 5, it has succeeded in improving electrical conductivity by mixing the spherical minute silver particle whose particle diameter is 20 nm or less with the thermosetting electroconductive paste of scaly silver particle. However, since the spherical fine silver particles are coated with a polymer compound having a relatively large molecular weight, as the ratio of the spherical fine silver particles / scale-like silver particles increases, the coated polymer In general, high molecular weight compounds have a drawback that they are difficult to remove by heating, and it is preferable that the organic substance to be coated has a simple name structure and a short chain as much as possible. .

現在熱硬化型導電性ペーストの主金属材として、鱗片状の銀粒子が広く用いられている。しかし、更なる導体パターンのファインピッチ化が求められた際、鱗片状銀粒子を用いた導電性ペーストでは、印刷時に導体パターンのファインライン描画が困難となることが考えられる。そのため、比較的印刷制御性の良好な粒状銀粒子や凝集状銀粒子においても、印刷した際の電気抵抗値を低くすることが求められていた。   At present, scaly silver particles are widely used as the main metal material of the thermosetting conductive paste. However, when further finer pitch of the conductor pattern is required, it is considered that fine line drawing of the conductor pattern becomes difficult at the time of printing with the conductive paste using the scaly silver particles. For this reason, it has been required to reduce the electrical resistance value when printing is performed also on granular silver particles and aggregated silver particles having relatively good printing controllability.

本発明の目的は、従来の熱硬化型導電性ペーストにナノオーダーの微小銀粒子を混合した際、主金属材となる銀粒子形状に関わらず、硬化膜の電気抵抗値を改善させ得る熱硬化型導電性ペーストを提供することにある。   The object of the present invention is to enable thermosetting that can improve the electric resistance value of a cured film regardless of the shape of silver particles as a main metal material when nano-order fine silver particles are mixed with a conventional thermosetting conductive paste. It is to provide a mold conductive paste.

なお、本明細書において、微小銀粒子とはナノオーダーの銀粒子のことを指し、銀粒子とはサブミクロンオーダー以上の粒子径で、且つ鱗片状、凝集状及び球状のいずれかの形状を有する銀粒子をいう。   In the present specification, the fine silver particles refer to nano-order silver particles, and the silver particles have a particle size of sub-micron order or larger and have any one of scale-like, aggregated and spherical shapes. Refers to silver particles.

本発明者らは、かかる目的を達成するため鋭意研究を重ねた結果、所定のマイクロオーダーの銀粒子と、所定のナノオーダーの微小銀粒子と、熱硬化型樹脂とを含めることにより、上記目的が達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve such an object, the present inventors have included the above object by including predetermined micro-order silver particles, predetermined nano-order fine silver particles, and a thermosetting resin. Has been found to be achieved, and the present invention has been completed.

即ち、本発明の熱硬化型導電性ペーストは、粒子径が0.1μm以上50μm未満の範囲にある銀粒子と、粒子径が1nm以上100nm未満の範囲にあり、炭素数6以下の直鎖脂肪酸で被覆されている微小銀粒子と、熱硬化型樹脂とを含むことを特徴とする。 In other words, thermosetting conductive paste of the present invention, silver particles having a particle size in the range of less than 50μm more than 0.1 [mu] m, Ri range near less than 100nm particle size 1nm or more, more than 6 straight chain carbon wherein the fine silver particles that have been coated with a fatty acid, to include a thermosetting resin.

本発明によれば、所定のマイクロオーダーの銀粒子と、所定のナノオーダーの微小銀粒子と、熱硬化型樹脂とを含めることにより、形成した硬化膜の電気抵抗値を改善させ得る。   According to the present invention, the electrical resistance value of the formed cured film can be improved by including predetermined micro-order silver particles, predetermined nano-order fine silver particles, and a thermosetting resin.

以下、本発明の熱硬化型導電性ペーストについて詳細に説明する。なお、本特許請求の範囲及び本明細書において、「%」は特記しない限り質量百分率を示すものとする。   Hereinafter, the thermosetting conductive paste of the present invention will be described in detail. In the claims and in the present specification, “%” indicates mass percentage unless otherwise specified.

上述の如く、本発明の熱硬化型導電性ペーストは、粒子径が0.1μm以上50μm未満の範囲にある銀粒子と、粒子径が1nm以上100nm未満の範囲にある微小銀粒子と、熱硬化型樹脂とを含んでなる。
このような微小銀粒子を含む導電性ペーストとすることで、任意の形状を有する銀粒子との間に銀のネットワークが容易に構築され、導電性が改善される。
As described above, the thermosetting conductive paste of the present invention includes a silver particle having a particle diameter in the range of 0.1 μm or more and less than 50 μm, a fine silver particle having a particle diameter in the range of 1 nm or more and less than 100 nm, and thermosetting. Mold resin.
By using such a conductive paste containing fine silver particles, a silver network is easily constructed between silver particles having an arbitrary shape, and the conductivity is improved.

上記微小銀粒子の粒子径が100nmを超えると、熱硬化時に微小銀粒子が焼結しにくくなるために硬化膜の電気抵抗値が下がらない。また、微小銀粒子の粒子径が5nmを下回ると微小銀粒子同士の凝集を防止できず、結果的に硬化膜の電気抵抗値が下がらない。そこで、本発明に利用する微小銀粒子の粒子径は、好ましくは5nm以上50nm未満であり、より好ましくは10nm以上30nm未満である。   When the particle diameter of the fine silver particles exceeds 100 nm, the fine silver particles are difficult to sinter at the time of thermosetting, so the electric resistance value of the cured film does not decrease. Moreover, when the particle diameter of the fine silver particles is less than 5 nm, aggregation of the fine silver particles cannot be prevented, and as a result, the electric resistance value of the cured film does not decrease. Therefore, the particle diameter of the fine silver particles used in the present invention is preferably 5 nm or more and less than 50 nm, and more preferably 10 nm or more and less than 30 nm.

また、上記微小銀粒子は、炭素数6以下の直鎖脂肪酸で被覆されていることが好ましい。かかる低分子の直鎖脂肪酸により、熱硬化型導電性ペーストに混合したときの分散性の確保と、熱硬化により膜を形成したときの導電性の確保とを同時に達成することができる。ここで、炭素数6以下の直鎖脂肪酸は、保護剤として機能する。この保護剤は、微小銀粒子の表面に付着し、粒子同士の結合を阻害することで、安定した微小銀粒子を得る効果がある。また、塗布膜の硬化温度及び導電性の観点から、比較的短い直鎖の脂肪酸が好適となる。   The fine silver particles are preferably coated with a straight chain fatty acid having 6 or less carbon atoms. With such a low molecular weight linear fatty acid, it is possible to simultaneously achieve dispersibility when mixed with a thermosetting conductive paste and ensure conductivity when a film is formed by thermosetting. Here, the linear fatty acid having 6 or less carbon atoms functions as a protective agent. This protective agent is effective in obtaining stable fine silver particles by adhering to the surface of fine silver particles and inhibiting the bonding between the particles. Also, relatively short straight chain fatty acids are preferred from the viewpoint of the curing temperature and conductivity of the coating film.

なお、直鎖脂肪酸は、炭素数6以下である限り制限はないが、好ましくは3以上であり、さらに好ましくは6であるのがよい。代表的にはヘキサン酸を用いることができる。炭素数が7以上である場合、反応が不安定となり、熱硬化型導電性ペーストに混合すると本発明の効果を得られないことがある。   The straight-chain fatty acid is not limited as long as it has 6 or less carbon atoms, but is preferably 3 or more, and more preferably 6. Typically, hexanoic acid can be used. When the number of carbon atoms is 7 or more, the reaction becomes unstable, and if mixed with a thermosetting conductive paste, the effects of the present invention may not be obtained.

本発明において、熱硬化型導電性ペースト中に含有される総金属質量(鱗片状、凝集状、及び球状からなる群より選ばれる1種以上の形状からなる銀粒子と微小銀粒子の合計質量)は、熱硬化型導電性ペーストの質量に対して、80〜95%含有させることができる。また、本発明における微小銀粒子の混合割合としては、総金属質量に対して0.001〜99%含むことができるが、好ましくは1〜50%であり、より好ましくは5〜30%である。総金属質量に対して微小銀粒子の混合割合が0.001%未満である場合、微小銀粒子量の焼結によって十分な銀のネットワークを形成するには量が少なすぎるため、本発明の効果を得られないことがある。   In the present invention, the total metal mass contained in the thermosetting conductive paste (total mass of silver particles and fine silver particles having one or more shapes selected from the group consisting of scales, aggregates, and spheres) Can be contained in an amount of 80 to 95% with respect to the mass of the thermosetting conductive paste. In addition, the mixing ratio of the fine silver particles in the present invention may be 0.001 to 99% with respect to the total metal mass, but is preferably 1 to 50%, more preferably 5 to 30%. . When the mixing ratio of the fine silver particles is less than 0.001% with respect to the total metal mass, the amount of the fine silver particles is too small to form a sufficient silver network by sintering. May not be obtained.

このような構成により、従来の熱硬化型導電性ペーストと比較して硬化膜の抵抗率が低く、また微小銀粒子の熱硬化型導電性ペースト中の総金属質量に占める割合が高くなっても、硬化膜の電気抵抗値が増加しないという特徴が得られる。   With such a configuration, the resistivity of the cured film is low as compared with the conventional thermosetting conductive paste, and even if the proportion of the fine silver particles in the total metal mass in the thermosetting conductive paste is high, The characteristic that the electric resistance value of the cured film does not increase is obtained.

なお、熱硬化型導電性ペーストは、硬化剤や粘度調整用のフィラー、溶剤を含んでも良い。また、銀以外の導電性物質が含まれていても良く、例えば金、銅、亜鉛、アルミニウム、導電性樹脂等を含んでいても良い。この意味で本発明でいう総金属質量は、銀粒子と微小銀粒子の合計質量だけでなく、全導電性材料の総質量と言っても良い。   The thermosetting conductive paste may contain a curing agent, a viscosity adjusting filler, and a solvent. Moreover, electroconductive substances other than silver may be contained, for example, gold, copper, zinc, aluminum, a conductive resin, etc. may be contained. In this sense, the total metal mass referred to in the present invention may be called not only the total mass of silver particles and fine silver particles but also the total mass of all conductive materials.

また、上記銀粒子とは、鱗片状、凝集状、又は球状の形状の銀粒子単体からなる、もしくはそれらの形状からなる粒子が任意の割合で混合されたものであり、前記任意の割合に特に制限はない。   Further, the silver particles are composed of single particles of scale-like, agglomerated, or spherical shapes, or particles formed of those shapes are mixed at an arbitrary ratio, and the above-mentioned arbitrary ratio is particularly There is no limit.

ここで、鱗片状の銀粒子とはアスペクト比が5以上の銀粒子をいう。また凝集状とはより小さな銀粒子が固まって1つの塊になって存在する状態をいう。また、球状とは長径/短径の比率が2以下の粒子をいう。いずれも電子顕微鏡での観察で平均的な値を読み取り判断すれば足りる。   Here, the scale-like silver particles refer to silver particles having an aspect ratio of 5 or more. Aggregation means a state in which smaller silver particles are solidified into one lump. The spherical shape means particles having a major axis / minor axis ratio of 2 or less. In any case, it is sufficient to read and judge an average value by observation with an electron microscope.

上記微小銀粒子は、代表的には、原料液及び還元液を調整する調液工程、温度を上昇させる昇温工程、原料液を還元液に添加し反応を進行させる反応工程、液中の金属粒子(特に銀粒子)を成長させる熟成工程、濾過・水洗・分散を繰り返し余分な有機物質を除去する洗浄工程、及び乾燥により液中の水分を除去する乾燥工程を行うことにより製造できる。   The fine silver particles typically include a liquid preparation step for adjusting a raw material solution and a reducing solution, a temperature raising step for raising the temperature, a reaction step for adding the raw material solution to the reducing solution to advance the reaction, and a metal in the solution. It can be produced by carrying out an aging step for growing particles (particularly silver particles), a washing step for removing excess organic substances by repeated filtration, washing with water and dispersion, and a drying step for removing water in the liquid by drying.

本発明では、還元液の調液工程、銀反応工程、洗浄工程を以下のように行うことが良い。還元液調液工程で用いる還元液には、水とアンモニア水と直鎖脂肪酸(特に挙げればヘキサン酸)とヒドラジン水和水溶液とを含める。銀反応工程では、この還元液に硝酸銀水溶液を前記還元液に添加して反応させる。洗浄工程では、反応工程で得られた生成物を水で洗浄する。   In the present invention, it is preferable to perform the reducing liquid preparation step, the silver reaction step, and the washing step as follows. The reducing liquid used in the reducing liquid preparation step includes water, aqueous ammonia, linear fatty acid (in particular, hexanoic acid), and a hydrazine hydrated aqueous solution. In the silver reaction step, an aqueous silver nitrate solution is added to the reducing solution and reacted with the reducing solution. In the washing step, the product obtained in the reaction step is washed with water.

より具体的に説明すると、還元液の調液工程では、アンモニア水を用いる。アンモニア水は、水中に酸を溶解させるための安定化剤として作用させるためである。   More specifically, ammonia water is used in the reducing liquid preparation step. This is because ammonia water acts as a stabilizer for dissolving acid in water.

銀反応工程では、反応槽中を40℃から80℃の範囲に昇温して反応させるのがよい。このとき、反応槽に添加する硝酸銀水溶液は、反応槽と同じ温度にしておくとより好ましい。なお、反応槽中が40℃未満であれば、金属の過飽和度が上昇し、核発生が促進されるため、微粒が多くなりやすい。80℃超では、核発生は抑制されるが、粒子成長、粒子凝集が促進されやすい。   In the silver reaction step, the temperature in the reaction vessel is preferably raised from 40 ° C. to 80 ° C. for reaction. At this time, the aqueous silver nitrate solution added to the reaction vessel is more preferably kept at the same temperature as the reaction vessel. If the temperature in the reaction vessel is lower than 40 ° C., the degree of supersaturation of the metal increases and nucleation is promoted, so that the number of fine particles tends to increase. Above 80 ° C., nucleation is suppressed, but particle growth and particle aggregation tend to be promoted.

また、銀反応工程では、溶液内の均一反応を実現する観点から、添加すべき硝酸銀水溶液を一挙に添加することが好ましい。一挙に添加しないと溶液内が不均一系になり、核発生と粒子凝集が同時並行的に起こるようになり、結果的に粒度分布の大きな、不均一な銀粒子が得られることがある。したがって、ここでいう「一挙に添加する」とは、還元剤や保護剤の濃度若しくはpH、温度といった反応要因が、硝酸銀水溶液の添加時期によって実質的に変化しない態様であれば、特に限定されるものではない。   In the silver reaction step, it is preferable to add the aqueous silver nitrate solution to be added all at once from the viewpoint of realizing a uniform reaction in the solution. If not added all at once, the inside of the solution becomes a heterogeneous system, and nucleation and particle aggregation occur simultaneously. As a result, nonuniform silver particles having a large particle size distribution may be obtained. Therefore, “added all at once” is particularly limited as long as the reaction factor such as the concentration or pH of the reducing agent or the protective agent does not substantially change depending on the addition timing of the aqueous silver nitrate solution. It is not a thing.

ここで、前記ヒドラジン水和物は、還元剤として金属を還元可能なものであればよい。ヒドラジン水和物以外の還元剤、具体的には、ヒドラジン、水素化ホウ素アルカリ塩(NaBH4など)、リチウムアルミニウムハイドライド(LiAlH4)、アスコルビン酸、第一級アミン、第二級アミン、第三級アミンなどを併用することもできる。   Here, the said hydrazine hydrate should just be a thing which can reduce | restore a metal as a reducing agent. Reducing agent other than hydrazine hydrate, specifically hydrazine, alkali borohydride (NaBH4, etc.), lithium aluminum hydride (LiAlH4), ascorbic acid, primary amine, secondary amine, tertiary amine Etc. can also be used together.

このような工程により得られる本発明の微小銀粒子を、熱硬化型導電性ペーストに混合することで、硬化膜の電気抵抗値が低くなる効果をもたらす。また、この効果は微小銀粒子の熱硬化型導電性ペースト中の総金属質量に占める割合が高くなったとしても変ることがない。   By mixing the fine silver particles of the present invention obtained by such a process with a thermosetting conductive paste, an effect of lowering the electric resistance value of the cured film is brought about. This effect does not change even if the proportion of the fine silver particles in the total metal mass in the thermosetting conductive paste increases.

以上説明した上記微小銀粒子の製造方法では、反応槽として、攪拌の均一性が得られる形状及び構造のものを使用するのがよい。これは、微小銀粒子は還元反応によって得られるが、得ようとしている粒子のサイズが非常に小さいため、局所的な濃度やpHの分布が粒度分布に大きく影響することに由来する。   In the method for producing fine silver particles described above, it is preferable to use a reaction vessel having a shape and a structure capable of obtaining uniform stirring. This is because fine silver particles are obtained by a reduction reaction, but the size of the particles to be obtained is very small, and therefore the local concentration and pH distribution greatly affect the particle size distribution.

次に、本発明の熱硬化型導電性ペーストは、例えば、上述の微小銀粒子製造方法で作製した微小銀粒子を、従来の熱硬化型導電性ペーストに混合することによって得られる。
なお、ここで言う「従来の熱硬化型導電性ペースト」とは、鱗片状、凝集状、及び球状からなる群より選ばれる1種以上の形状からなる銀粒子、溶剤、熱硬化型樹脂、及びその硬化剤からなる熱硬化型導電性ペーストのことをいう。
Next, the thermosetting conductive paste of the present invention is obtained, for example, by mixing the fine silver particles produced by the above-described fine silver particle production method with a conventional thermosetting conductive paste.
The “conventional thermosetting conductive paste” as used herein refers to silver particles, a solvent, a thermosetting resin, and one or more shapes selected from the group consisting of scales, aggregates, and spheres, and It refers to a thermosetting conductive paste made of the curing agent.

前記の微小銀粒子の混合において、混合方法に制限は特になく、微小銀粒子と銀粒子を乾燥粉末状態で混合することや、微小銀粒子と銀粒子を適当な溶媒中で混合することも考えられるが、微小銀粒子と銀粒子をより均一に混合させることを考えると、適当な溶媒中で微小銀粒子と銀粒子を混合することがより好ましい。   In the mixing of the fine silver particles, there is no particular limitation on the mixing method, and it is possible to mix the fine silver particles and the silver particles in a dry powder state, or to mix the fine silver particles and the silver particles in an appropriate solvent. However, considering that the fine silver particles and the silver particles are more uniformly mixed, it is more preferable to mix the fine silver particles and the silver particles in an appropriate solvent.

熱硬化型導電性ペーストの作製方法としては、鱗片状、凝集状、及び球状からなる群より選ばれる1種以上の形状からなる銀粒子、及び微小銀粒子とからなる金属成分、溶剤、熱硬化型樹脂、及びその硬化剤を混合し、攪拌脱泡機、回転ミルや3本ロール等で混練することにより得られる。   As a method for producing the thermosetting conductive paste, a metal component composed of one or more shapes selected from the group consisting of scales, aggregates, and spheres, and fine silver particles, a solvent, and thermosetting It is obtained by mixing a mold resin and its curing agent and kneading with a stirring defoaming machine, a rotary mill, a three roll or the like.

ここで、前記熱硬化型樹脂としては、エポキシ樹脂が挙げられる。使用できるエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、脂環式エポキシ樹脂、アミン型エポキシ樹脂、ダイマー酸をグリシジルエステル化したエポキシ樹脂などがある。   Here, examples of the thermosetting resin include epoxy resins. Examples of the epoxy resin that can be used include a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, an alicyclic epoxy resin, an amine type epoxy resin, and an epoxy resin obtained by glycidyl esterification of dimer acid.

また、前記硬化剤としては、ジシアンジアミド、カルボン酸ヒドラジド等のアミン系硬化剤、3−(3,4−ジクロロフェニル)−1、1−ジメチル尿素等の尿素系硬化剤、無水フタル酸、無水メチルナジック酸、無水ピロメリット酸、無水ヘキサヒドロフタール酸
等の酸無水物系硬化剤、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン酸等の芳香族アミン系(アミンアダクト)硬化剤等が挙げられ、前記のエポキシ樹脂と合わせた含有量としては熱硬化型導電性ペーストの質量に対して、5〜20%含むことができる。
Examples of the curing agent include amine curing agents such as dicyandiamide and carboxylic acid hydrazide, urea curing agents such as 3- (3,4-dichlorophenyl) -1,1-dimethylurea, phthalic anhydride, and methyl nadic anhydride. Examples of the epoxy resin include acid anhydride-based curing agents such as acid, pyromellitic anhydride and hexahydrophthalic anhydride, and aromatic amine-based (amine adduct) curing agents such as diaminodiphenylmethane and diaminodiphenylsulfonic acid. The content combined with 5 to 20% of the mass of the thermosetting conductive paste.

なお、前記溶剤とは本発明の熱硬化型導電性ペーストの粘度調整のために適宜添加可能なものであって、例えば、イソプロピルアルコール、テルピネオール、2−オクタノール、ブチルカルビトールアセテート等を使用することができる。   In addition, the said solvent can be suitably added for the viscosity adjustment of the thermosetting conductive paste of this invention, for example, use isopropyl alcohol, terpineol, 2-octanol, butyl carbitol acetate, etc. Can do.

以上説明した本発明の熱硬化型導電性ペーストは、ガラス基板などに塗布して硬化膜を形成できるが、この硬化膜の導電性も従来品に比べて良好となる。   The thermosetting conductive paste of the present invention described above can be applied to a glass substrate or the like to form a cured film, but the conductivity of the cured film is also better than that of conventional products.

以下実施例について詳細に説明する。なお、本実施例では導電材料として銀粒子と微小銀粒子を用いるので、総金属質量は銀粒子と微小銀粒子の合計質量である。
(実施例1)
(1)粒子の作製
反応槽には24L反応槽を使用した。攪拌の均一性を担保するため、壁面内側には等間隔に邪魔板を配置した。また攪拌のために、タービン羽根を2枚備えた攪拌棒を反応槽の中心に設置した。反応槽には温度をモニターするための温度計を設置した。また溶液に下部より窒素を供給できるようにノズルを配設した。
Examples will be described in detail below. In this embodiment, since silver particles and fine silver particles are used as the conductive material, the total metal mass is the total mass of the silver particles and the fine silver particles.
Example 1
(1) Production of particles A 24 L reactor was used as a reactor. In order to ensure the uniformity of stirring, baffle plates were arranged at equal intervals inside the wall surface. For stirring, a stirring rod provided with two turbine blades was installed at the center of the reaction vessel. The reaction vessel was equipped with a thermometer for monitoring the temperature. A nozzle was provided so that nitrogen could be supplied to the solution from below.

まず、反応槽に水16851gを入れ、残存酸素を除くため反応槽下部から窒素を5000mL/分の流量で600秒間流した。その後、反応槽上部から5000mL/分の流量で供給し、反応槽中を窒素雰囲気とした。   First, 16851 g of water was put in the reaction tank, and nitrogen was flowed from the lower part of the reaction tank at a flow rate of 5000 mL / min for 600 seconds in order to remove residual oxygen. Then, it supplied with the flow volume of 5000 mL / min from the reaction tank upper part, and made the inside of a reaction tank nitrogen atmosphere.

攪拌棒の回転速度が338rpmになるように調整した。そして反応槽内の溶液温度が60℃になるように温度調整を行なった。   The rotating speed of the stirring bar was adjusted to 338 rpm. And temperature adjustment was performed so that the solution temperature in a reaction tank might be 60 degreeC.

アンモニア水(アンモニアとして30%含有する)33.9gを反応槽に投入した後、液を均一にするために1分間攪拌した。   Aqueous ammonia (containing 30% as ammonia) (33.9 g) was added to the reaction vessel, and then stirred for 1 minute to make the solution uniform.

次に保護剤としてヘキサン酸(和光純薬工業株式会社製特級試薬)218.3g(銀に対して1.98当量にあたる)を添加し、保護剤を溶解するため4分間攪拌した。その後、還元剤として50%のヒドラジン水和物(大塚化学株式会社製)水溶液を114.5g添加し、これを還元液とした。   Next, 218.3 g (corresponding to 1.98 equivalents of silver) of hexanoic acid (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was added as a protective agent, and the mixture was stirred for 4 minutes to dissolve the protective agent. Thereafter, 114.5 g of a 50% hydrazine hydrate (Otsuka Chemical Co., Ltd.) aqueous solution was added as a reducing agent, and this was used as a reducing solution.

別の容器に硝酸銀結晶(和光純薬工業株式会社製特級試薬)162gを水438gに溶解した硝酸銀水溶液を用意し、これを原料液とした。なお、硝酸銀水溶液は反応槽内の溶液と同じ60℃に温度調整を行なった。   A silver nitrate aqueous solution in which 162 g of silver nitrate crystals (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 438 g of water was prepared in another container, and this was used as a raw material liquid. The temperature of the aqueous silver nitrate solution was adjusted to 60 ° C., the same as the solution in the reaction vessel.

その後、原料液を還元液に一挙添加により加え、還元反応を行った。攪拌は連続して行い、その状態のまま10分間熟成させた。その後、攪拌を止め、洗浄工程、乾燥工程を経て、微小銀粒子塊を得た。洗浄工程の終了段階で得られた粒子を透過型電子顕微鏡(TEM)により観察したところ、平均粒子径14nmで比較的粒径の整った金属ナノ粒子が得られ、100nm以上の粒子は存在しなかった。また、BET法による比表面積を測定したところ、19.7m/gであり、TAP密度は2.07g/cmであった。 Thereafter, the raw material solution was added to the reducing solution at once and a reduction reaction was performed. Stirring was performed continuously and aged for 10 minutes in that state. Then, stirring was stopped and a fine silver particle lump was obtained through a washing process and a drying process. When the particles obtained at the end of the cleaning process were observed with a transmission electron microscope (TEM), metal nanoparticles having an average particle size of 14 nm and a relatively uniform particle size were obtained, and no particles of 100 nm or more were present. It was. Moreover, when the specific surface area by BET method was measured, it was 19.7 m < 2 > / g and TAP density was 2.07 g / cm < 3 >.

(2)熱硬化型導電性ペーストの作製
実施例1で合成した微小銀粒子を4.5%(総金属質量に対して5%)、平均粒子径が0.70μmであり粒度分布の最小粒子径が0.1μm以上である凝集状銀粒子を微小銀粒子との合計量で熱硬化型導電性ペーストに対して90%となる量、ダイマー酸をグルシジルエステル化したエポキシ樹脂(YD−171 東都化成製)とその硬化剤としてアミンアダクト硬化剤(PN−23 味の素製)をエポキシ樹脂と硬化剤の合計量で10%、及び粘度調整用のブチルカルビトールアセテートを攪拌脱泡機及び3本ロールを用いて混練した。
(2) Preparation of thermosetting conductive paste 4.5% of the fine silver particles synthesized in Example 1 (5% with respect to the total metal mass), the average particle size is 0.70 μm, and the smallest particle of particle size distribution An epoxy resin (YD-171) in which the aggregated silver particles having a diameter of 0.1 μm or more are 90% of the total amount of the fine silver particles with respect to the thermosetting conductive paste, and dimer acid is glycidyl esterified. Toto Kasei Co., Ltd.) and amine adduct curing agent (PN-23 Ajinomoto) as the curing agent, 10% in total amount of epoxy resin and curing agent, and butyl carbitol acetate for viscosity adjustment and 3 defoamers Kneading was performed using a roll.

(3)熱硬化型導電性ペーストの粘度測定
上記で作製した熱硬化型導電性ペーストの粘度(mPa・sec)をレオストレスRS600(HAAKE社)を用いて測定した。ローターの回転数は1rpmと10rpmの2条件で測定し、1rpm時の粘度でペースト粘度を評価し、1rpmと10rpmでの測定値の比(無単位)でチキソトロピック性を評価した。
(3) Viscosity measurement of thermosetting conductive paste Viscosity (mPa · sec) of the thermosetting conductive paste prepared above was measured using Rheo Stress RS600 (HAAKE). The rotational speed of the rotor was measured under two conditions of 1 rpm and 10 rpm, the paste viscosity was evaluated by the viscosity at 1 rpm, and the thixotropic property was evaluated by the ratio (no unit) of the measured values at 1 rpm and 10 rpm.

(4)熱硬化型導電性ペーストの塗布
上記で作製した熱硬化型導電性ペーストを、スライドガラス上にアプリケーターを用いて塗布した。
(4) Application of thermosetting conductive paste The thermosetting conductive paste prepared above was applied onto a slide glass using an applicator.

(5)塗膜の熱硬化
上記で塗布した塗布膜を、200℃に温度を調節したホットプレート上で30分間加熱することで、硬化膜を作製した。
(5) Thermal curing of coating film The coating film applied above was heated on a hot plate whose temperature was adjusted to 200 ° C. for 30 minutes to prepare a cured film.

(6)硬化膜の膜厚及び体積抵抗率測定
上記で作製した硬化膜の体積抵抗率(Ωcm)をロレスタ(登録商標)により測定した。
(6) Measurement of film thickness and volume resistivity of cured film The volume resistivity (Ωcm) of the cured film prepared above was measured by Loresta (registered trademark).

(比較例1)
本比較例では、実施例1において保護剤として使用したヘキサン酸を、分子量8000−10000のPVA(ポリビニルアルコール)に変更した以外は実施例1と同様にして、微小銀粒子を合成した。この微小粒子を用いて実施例1と同様の方法によって熱硬化型導電性ペーストを作製し、粘度測定、熱硬化型導電性ペーストの塗布、塗膜の熱硬化及び硬化膜の膜厚及び体積抵抗率測定を行った。
(Comparative Example 1)
In this comparative example, fine silver particles were synthesized in the same manner as in Example 1 except that the hexanoic acid used as the protective agent in Example 1 was changed to PVA (polyvinyl alcohol) having a molecular weight of 8000 to 10,000. Using these fine particles, a thermosetting conductive paste was prepared in the same manner as in Example 1, and viscosity measurement, application of the thermosetting conductive paste, thermosetting of the coating film, film thickness and volume resistance of the cured film were performed. Rate measurements were taken.

(実施例2及び3)
実施例1の微小銀粒子量を、9、18%(総金属質量に対して10、20%)とした以外は実施例1と同様の操作を行った。即ち、実施例2及び3は本発明の熱硬化型導電性ペーストであって微小銀粒子量が実施例1より多い実施例である。
(Examples 2 and 3)
The same operation as in Example 1 was carried out except that the amount of fine silver particles in Example 1 was 9 and 18% (10 and 20% with respect to the total metal mass). That is, Examples 2 and 3 are examples of the thermosetting conductive paste of the present invention, and the amount of fine silver particles is larger than that of Example 1.

(比較例2)
実施例2と3の微小銀粒子に変えて、比較例1で作製したPVA被覆微小銀粒子にした以外は実施例2及び3と同様の操作を行った。即ち、比較例2は分子量の大きな保護剤が被覆された微小銀粒子量が比較例1より多い比較例である。
(Comparative Example 2)
The same operation as in Examples 2 and 3 was performed except that the PVA-coated fine silver particles prepared in Comparative Example 1 were used instead of the fine silver particles in Examples 2 and 3. That is, Comparative Example 2 is a comparative example in which the amount of fine silver particles coated with a protective agent having a large molecular weight is larger than that of Comparative Example 1.

(比較例3)
微小銀粒子を混合しないこと以外は、実施例1と同様の操作を行った。即ち、比較例3は微小銀粒子が含まれていない従来の熱硬化型導電性ペーストである。
(Comparative Example 3)
The same operation as in Example 1 was performed except that the fine silver particles were not mixed. That is, Comparative Example 3 is a conventional thermosetting conductive paste that does not contain fine silver particles.

各例で得られた熱硬化型導電性ペーストそれぞれの組成と硬化膜の体積抵抗率の値を表1に示す。

Figure 0005047864

Table 1 shows the composition of each thermosetting conductive paste obtained in each example and the value of volume resistivity of the cured film.
Figure 0005047864

図1は実施例及び比較例の総金属質量に対する微小銀粒子混合量と硬化膜の体積抵抗率の関係を示したものである。縦軸は体積抵抗率(Ωcm)で、横軸は総金属質量に対する微小銀粒子混合量(%)である。また、図中黒四角は実施例で、白三角が比較例1と2、黒丸が比較例3である。   FIG. 1 shows the relationship between the amount of fine silver particles mixed and the volume resistivity of a cured film with respect to the total metal mass of Examples and Comparative Examples. The vertical axis represents volume resistivity (Ωcm), and the horizontal axis represents the amount of fine silver particles mixed (%) with respect to the total metal mass. In the figure, black squares are examples, white triangles are Comparative Examples 1 and 2, and black circles are Comparative Example 3.

白三角の比較例を参照して、微小銀粒子混合量が10%(比較例1)から20%(比較例2)に増加すると体積抵抗率は約10倍に増加した。比較例3は微小銀粒子が含まれていないペーストによる硬化膜であるが、比較例2は比較例3の体積抵抗率より高かった。   With reference to the white triangle comparative example, the volume resistivity increased about 10 times when the amount of fine silver particles mixed increased from 10% (Comparative Example 1) to 20% (Comparative Example 2). Comparative Example 3 was a cured film made of a paste containing no fine silver particles, but Comparative Example 2 was higher than the volume resistivity of Comparative Example 3.

一方、本発明の実施例1〜3は微小銀粒子混合量が増えても低い抵抗値を維持していた。即ち、実施例においては微小粒子混合量を増加させた場合にも、硬化膜の体積抵抗率がほとんど変らないことが分かる。   On the other hand, Examples 1-3 of the present invention maintained a low resistance value even when the amount of fine silver particles mixed was increased. That is, in the examples, it can be seen that the volume resistivity of the cured film hardly changes even when the amount of fine particles mixed is increased.

逆に比較例1,2においては、微小銀粒子混合量を増加させた場合に硬化膜の体積抵抗率が増加した。これは、微小銀粒子の混合量を増加させた場合に、被覆分子量が多いと粒子間に被覆分子が介在するために導電性を阻害してしまうためと考えられる。   On the contrary, in Comparative Examples 1 and 2, the volume resistivity of the cured film increased when the amount of fine silver particles mixed was increased. This is presumably because, when the amount of fine silver particles mixed is increased, if the coating molecular weight is large, the coating molecules intervene between the particles, thereby inhibiting the conductivity.

図2は、総金属質量に対する微小銀粒子混合量とペーストの粘度の関係を示したものである。縦軸は25℃でローターの回転数が1rpmの時の粘度で、横軸は総金属質量に対する微小銀粒子混合量(%)である。実施例及び比較例が黒四角、白三角と黒丸で表されるのは図1の場合と同様である。   FIG. 2 shows the relationship between the amount of fine silver particles mixed with the total metal mass and the viscosity of the paste. The vertical axis is the viscosity at 25 ° C. and the rotational speed of the rotor is 1 rpm, and the horizontal axis is the amount of fine silver particles mixed (%) with respect to the total metal mass. The examples and comparative examples are represented by black squares, white triangles and black circles as in the case of FIG.

実施例、比較例とも微小銀粒子混合量が増えるに従って粘度は増加する傾向にあったが、実施例の方がより微小銀粒子混合量に対する粘度の依存性が大きく認められる。   In both the examples and comparative examples, the viscosity tended to increase as the amount of fine silver particles mixed increased. However, in the examples, the dependence of the viscosity on the amount of fine silver particles mixed is larger.

図3は、総金属質量に対する微小銀粒子混合量とペーストのチキソトロピック性の関係を示したものである。縦軸は25℃でローターの回転数が1rpmの時の粘度と10rpmの時の粘度の比で、横軸は総金属質量に対する微小銀粒子混合量(%)である。実施例及び比較例が黒四角、白三角と黒丸で表されるのは図1の場合と同様である。   FIG. 3 shows the relationship between the amount of fine silver particles mixed with the total metal mass and the thixotropic property of the paste. The vertical axis is the ratio of the viscosity at 25 ° C. when the rotational speed of the rotor is 1 rpm and the viscosity at 10 rpm, and the horizontal axis is the amount of fine silver particles mixed (%) with respect to the total metal mass. The examples and comparative examples are represented by black squares, white triangles and black circles as in the case of FIG.

この場合も図2の粘度の場合同様、実施例、比較例とも微小銀粒子混合量が増えるに従ってチキソトロピック性は増加する傾向にあり、実施例の方がより微小銀粒子混合量に対するチキソトロピック性の依存性は大きかった。   Also in this case, as in the case of the viscosity in FIG. 2, the thixotropic property tends to increase as the mixing amount of the fine silver particles increases in both the example and the comparative example, and the thixotropic property with respect to the mixing amount of the fine silver particles in the example. The dependence of was great.

以上の現象から本発明の熱硬化型導電性ペーストは、分子量の小さな分散剤で被覆されているため、互いに相互作用を及ぼし易く、塗料の状態では増粘し易いものと考えられる。一方、金属粒子間の相互作用が容易に及ぼされるため、微小銀粒子の混合量が増えても体積抵抗率が増加しないと考えられる。   From the above phenomenon, the thermosetting conductive paste of the present invention is covered with a dispersing agent having a small molecular weight, so that it is likely to interact with each other, and is likely to thicken in the paint state. On the other hand, since the interaction between the metal particles is easily exerted, it is considered that the volume resistivity does not increase even if the mixing amount of the fine silver particles is increased.

本発明は、熱硬化型導電性ペーストに利用できるだけなく、熱焼成型導電性ペーストに対しても好適に利用することができる。
The present invention can be used not only for thermosetting conductive pastes but also for heat-fired conductive pastes.

本発明の実施例及び比較例の微小粒子混合量と体積抵抗率の関係を示す図である。It is a figure which shows the relationship between the fine particle mixing amount and volume resistivity of the Example and comparative example of this invention. 本発明の実施例及び比較例の微小粒子混合量と熱硬化型導電性ペーストの25℃、1rpm時の粘度の関係を示す図である。It is a figure which shows the relationship of the viscosity at 25 degreeC and 1 rpm of the thermosetting conductive paste of the fine particle mixing amount of the Example and comparative example of this invention. 本発明の実施例及び比較例の微小粒子混合量と熱硬化型導電性ペーストの25℃時のチキソトロピック性(1rpm時の粘度/10rpm時の粘度)の関係を示す図である。It is a figure which shows the relationship of the thixotropic property (viscosity in 1 rpm / viscosity in 10 rpm) at the time of 25 degreeC of the fine particle mixing amount of the Example and comparative example of this invention at 25 degreeC.

Claims (7)

粒子径が0.1μm以上50μm未満の範囲にある銀粒子と、
粒子径が1nm以上100nm未満の範囲にあり、炭素数6以下の直鎖脂肪酸で被覆されている微小銀粒子と、
熱硬化型樹脂とを含む熱硬化型導電性ペースト。
Silver particles having a particle diameter in the range of 0.1 μm or more and less than 50 μm;
Ri near range particle size of less than 100nm or 1 nm, and fine silver particles that have been coated with more than 6 straight chain fatty acid carbons,
A thermosetting conductive paste containing a thermosetting resin.
前記直鎖脂肪酸はヘキサン酸である請求項に記載された熱硬化型導電性ペースト。 The thermosetting conductive paste according to claim 1 , wherein the linear fatty acid is hexanoic acid. 前記微小銀粒子の総金属質量に対する割合が0.001〜50%である請求項1〜のいずれかの請求項に記載された熱硬化型導電性ペースト。 The ratio with respect to the total metal mass of the said fine silver particle is 0.001 to 50%, The thermosetting conductive paste described in any one of Claims 1-2 . 前記銀粒子は鱗片状、凝集状、又は球状から選ばれる少なくとも1種の形状である請求項1〜のいずれかの請求項に記載された熱硬化型導電性ペースト。 The thermosetting conductive paste according to any one of claims 1 to 3 , wherein the silver particles have at least one shape selected from a scaly shape, an agglomerated shape, and a spherical shape. さらに硬化剤を含む請求項1〜のいずれかの請求項に記載された熱硬化型導電性ペースト。 The thermosetting conductive paste according to any one of claims 1 to 4 , further comprising a curing agent. 前記微小銀粒子が、
水とアンモニア水とヘキサン酸とヒドラジン水和水溶液とを含む還元液を調整する工程と、
硝酸銀水溶液を前記還元液に添加し反応させる工程と、
前記反応工程の生成物を水で洗浄する工程によって製造された微小銀粒子である請求項1〜のいずれかの請求項に記載された熱硬化型導電性ペースト。
The fine silver particles are
A step of preparing a reducing solution containing water, aqueous ammonia, hexanoic acid and a hydrazine hydrated aqueous solution;
Adding and reacting an aqueous silver nitrate solution to the reducing solution;
The thermosetting conductive paste according to any one of claims 1 to 5 , which is a fine silver particle produced by a step of washing a product of the reaction step with water.
請求項1〜のいずれかの請求項に記載された熱硬化型導電性ペーストを用いた硬化膜。 A cured film using the thermosetting conductive paste according to any one of claims 1 to 6 .
JP2008098413A 2008-04-04 2008-04-04 Conductive paste and cured film containing fine silver particles Active JP5047864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008098413A JP5047864B2 (en) 2008-04-04 2008-04-04 Conductive paste and cured film containing fine silver particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008098413A JP5047864B2 (en) 2008-04-04 2008-04-04 Conductive paste and cured film containing fine silver particles

Publications (2)

Publication Number Publication Date
JP2009252507A JP2009252507A (en) 2009-10-29
JP5047864B2 true JP5047864B2 (en) 2012-10-10

Family

ID=41313030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008098413A Active JP5047864B2 (en) 2008-04-04 2008-04-04 Conductive paste and cured film containing fine silver particles

Country Status (1)

Country Link
JP (1) JP5047864B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105008069A (en) * 2012-11-29 2015-10-28 住友金属矿山株式会社 Silver powder and silver paste

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101681046B1 (en) 2009-11-26 2016-11-30 주식회사 동진쎄미켐 Conductive ink composition which does not form a particle and preparation thereof
JP6018733B2 (en) * 2010-04-14 2016-11-02 Dowaエレクトロニクス株式会社 Thermosetting conductive paste and method for producing the same
US20130000964A1 (en) * 2010-04-22 2013-01-03 Hiroshi Kobayashi Anisotropic conductive material and connection structure
JP4870223B1 (en) * 2010-09-02 2012-02-08 ニホンハンダ株式会社 Pasty silver particle composition, method for producing metal member assembly, and metal member assembly
KR101327921B1 (en) * 2011-01-07 2013-11-13 주식회사 두산 Conductive paste and method for manufacturing the same
KR20130031414A (en) * 2011-09-21 2013-03-29 삼성전기주식회사 Conductive paste composition for low temperature firing
CN102407342B (en) * 2011-10-31 2013-06-05 山东大学 Preparation method of nano silver powder with accurately controllable particle size
EP2784784A4 (en) * 2011-11-21 2015-07-15 Hanwha Chemical Corp Paste composition for front surface electrode of solar cell and solar cell using same
JP5124691B1 (en) * 2012-03-21 2013-01-23 有限会社 ナプラ Conductive fine powder, conductive paste and electronic parts
JP6313084B2 (en) * 2014-03-26 2018-04-18 国立大学法人山梨大学 Conductive paste
JP6428339B2 (en) * 2015-02-13 2018-11-28 三菱マテリアル株式会社 Silver powder and paste-like composition and method for producing silver powder
KR101775864B1 (en) * 2015-02-27 2017-09-06 다츠다 덴센 가부시키가이샤 Conductive paste and multilayer substrate using same
JP6531547B2 (en) * 2015-07-31 2019-06-19 三菱マテリアル株式会社 Bonding material and method of manufacturing joined body
CN106960693A (en) * 2016-01-09 2017-07-18 湖南利德电子浆料股份有限公司 A kind of touch-screen electrocondution slurry
JP7278909B2 (en) * 2019-09-03 2023-05-22 東洋アルミニウム株式会社 Metal powder for additive manufacturing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3858902B2 (en) * 2004-03-03 2006-12-20 住友電気工業株式会社 Conductive silver paste and method for producing the same
JP4363340B2 (en) * 2004-03-12 2009-11-11 住友電気工業株式会社 Conductive silver paste and electromagnetic wave shielding member using the same
JP4852272B2 (en) * 2005-07-25 2012-01-11 ナミックス株式会社 Metal paste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105008069A (en) * 2012-11-29 2015-10-28 住友金属矿山株式会社 Silver powder and silver paste
CN105008069B (en) * 2012-11-29 2017-03-08 住友金属矿山株式会社 Silver powder and silver paste agent

Also Published As

Publication number Publication date
JP2009252507A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP5047864B2 (en) Conductive paste and cured film containing fine silver particles
US8486310B2 (en) Composition containing fine silver particles, production method thereof, method for producing fine silver particles, and paste having fine silver particles
JP3858902B2 (en) Conductive silver paste and method for producing the same
US11767443B2 (en) Copper particle mixture and method for manufacturing same, copper particle mixture dispersion, ink containing copper particle mixture, method for storing copper particle mixture, and method for sintering copper particle mixture
JP5227828B2 (en) Method for producing oxidation-resistant copper fine particles and joining method using the same
Pajor-Świerzy et al. Air stable copper-silver core-shell submicron particles: Synthesis and conductive ink formulation
JP2012162767A (en) Coated metal microparticle and manufacturing method thereof
JP6211245B2 (en) Conductive material and method for producing the same
WO2007040195A1 (en) Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder
JP7480947B2 (en) Method for producing silver nanoparticles having a wide particle size distribution and silver nanoparticles
JP7150273B2 (en) Copper oxide particle composition, conductive paste and conductive ink
JP4879762B2 (en) Silver powder manufacturing method and silver powder
JP2005281781A (en) Method for producing copper nanoparticle
Logutenko et al. A novel method to prepare copper microspheres via chemical reduction route
Yonezawa et al. Particle size tuning in scalable synthesis of anti-oxidized copper fine particles by polypeptide molecular weights
JP4493942B2 (en) Cuprous oxide colloidal dispersion
JP2009197324A (en) Dispersion solution of metal nanoparticle, and method for production thereof
JP2013185251A (en) Silver powder
JP6407640B2 (en) Chain metal particles and method for producing the same
WO2017179524A1 (en) Silver-coated copper powder and method for producing same
JP5945608B2 (en) Gold nanoparticle dispersion for forming conductive film, method for producing the same, and conductive coating composition containing the dispersion
JP7283703B2 (en) Method for producing silver nanoparticles with wide particle size distribution and silver nanoparticles
WO2023210662A1 (en) Spherical silver powder, production method for spherical silver powder, spherical silver powder production device, and electrically conductive paste
JP2023164097A (en) Spherical silver powder, method for producing spherical silver powder, apparatus for producing spherical silver powder, and conductive paste
KR20150080378A (en) A preparing method of an ink with an excellent dispersion stability and an ink prepared thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5047864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250