JP4523317B2 - Diesel engine exhaust purification system - Google Patents

Diesel engine exhaust purification system Download PDF

Info

Publication number
JP4523317B2
JP4523317B2 JP2004115797A JP2004115797A JP4523317B2 JP 4523317 B2 JP4523317 B2 JP 4523317B2 JP 2004115797 A JP2004115797 A JP 2004115797A JP 2004115797 A JP2004115797 A JP 2004115797A JP 4523317 B2 JP4523317 B2 JP 4523317B2
Authority
JP
Japan
Prior art keywords
trap
air
nox
regeneration
sox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004115797A
Other languages
Japanese (ja)
Other versions
JP2005299477A (en
Inventor
真人 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004115797A priority Critical patent/JP4523317B2/en
Publication of JP2005299477A publication Critical patent/JP2005299477A/en
Application granted granted Critical
Publication of JP4523317B2 publication Critical patent/JP4523317B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、排気中のNOxをトラップするNOxトラップ触媒と、排気中のPMをトラップするPMトラップとを備えたディーゼルエンジンの排気浄化装置に関する。   The present invention relates to an exhaust emission control device for a diesel engine including a NOx trap catalyst that traps NOx in exhaust gas and a PM trap that traps PM in exhaust gas.

ディーゼルエンジンの排気通路には、排気中のNOx(窒素酸化物)を吸着して浄化処理するためのNOxトラップ触媒に加えて、排気中のPM(排気微粒子:Particulate Matter)を吸着して浄化処理するためのPMトラップが設けられる。   In addition to the NOx trap catalyst for adsorbing and purifying NOx (nitrogen oxides) in the exhaust, the exhaust passage of the diesel engine adsorbs and purifies PM (exhaust particulate matter) in the exhaust. A PM trap is provided for this purpose.

NOxトラップ触媒は、そこに流入する排気の空燃比がリーンのときにNOxを吸着して大気への放散を防止し、排気の空燃比がリッチになってO2濃度が低下すると、排気中の還元成分であるHCやCOによりNOxを還元浄化する機能(NOx再生)を有する。 The NOx trap catalyst adsorbs NOx when the air-fuel ratio of the exhaust gas flowing into it is lean and prevents its emission to the atmosphere. When the air-fuel ratio of the exhaust gas becomes rich and the O 2 concentration decreases, the NOx trap catalyst It has a function (NOx regeneration) for reducing and purifying NOx with HC and CO as reducing components.

NOx再生は、ディーゼルエンジンの吸気行程における通常の燃料噴射に加えて、排気行程においても燃料を噴射して排気の空燃比を理論空燃比よりも更にリッチ化し、燃料の未燃成分を排気通路に排出してO2濃度を急激に低下させ、還元成分であるHCやCOを増加させるもので、例えば車両が10km走行する毎に10秒〜15秒間に亘って実行される。 In addition to normal fuel injection in the intake stroke of a diesel engine, NOx regeneration also injects fuel in the exhaust stroke to further enrich the air-fuel ratio of the exhaust gas than the stoichiometric air-fuel ratio, and unburned components of fuel into the exhaust passage It is discharged to rapidly reduce the O 2 concentration and increase the reducing components HC and CO. For example, it is executed for 10 to 15 seconds every time the vehicle travels 10 km.

PMトラップは排気中のPMをトラップして大気への放散を防止するフィルターで構成される。車両の走行距離が増加するに伴ってPMトラップがPMにより目詰まりして圧損が発生するのを防止すべく、トラップされたPMを燃焼させて浄化するPMトラップ再生が行われる。PMトラップ再生は、前記NOx再生と同様に排気行程においても燃料を噴射して排気の温度を上昇させることでPMを燃焼させるもので、例えば車両が300km〜500km走行する毎に10分〜15分間に亘って実行される。   The PM trap is composed of a filter that traps PM in exhaust gas and prevents its emission into the atmosphere. In order to prevent the PM trap from being clogged by PM and causing pressure loss as the travel distance of the vehicle increases, PM trap regeneration that burns and purifies the trapped PM is performed. The PM trap regeneration is similar to the NOx regeneration, in which fuel is injected in the exhaust stroke to raise the temperature of the exhaust to burn PM. For example, every time the vehicle travels from 300 km to 500 km, it takes 10 minutes to 15 minutes. It is executed over the period.

下記特許文献1には、NOx再生とPMトラップ再生とを同時に行うことで、NOx再生およびPMトラップ再生を別個に行う場合に比べて、空燃比をリッチ化するための燃料消費量を節減するものが記載されている。
特開2003−201828号公報
In Patent Document 1 below, NOx regeneration and PM trap regeneration are performed at the same time, so that fuel consumption for enriching the air-fuel ratio is reduced as compared with the case where NOx regeneration and PM trap regeneration are performed separately. Is described.
Japanese Patent Laid-Open No. 2003-201828

しかしながら、上記特許文献1に記載されたものは、NOx再生の実行時間が僅かに10秒〜15秒程度であるため、そのNOx再生の期間を10分〜15分間に亘るPMトラップ再生の期間と重複させても、大きな燃料節減効果を得ることは困難であった。またNOx再生とPMトラップ再生とを同時に行う場合には、PMトラップの入口での排気温度を高くする必要があり、そのために燃料消費量が増加する問題があった。   However, since the execution time of NOx regeneration is only about 10 seconds to 15 seconds in the one described in Patent Document 1, the period of NOx regeneration is a period of PM trap regeneration over 10 minutes to 15 minutes. Even if they were overlapped, it was difficult to obtain a large fuel saving effect. Further, when NOx regeneration and PM trap regeneration are performed at the same time, it is necessary to increase the exhaust temperature at the inlet of the PM trap, which causes a problem of increasing fuel consumption.

本発明は前述の事情に鑑みてなされたもので、ディーゼルエンジンの排気浄化に必要な燃料消費量を効果的に節減することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to effectively reduce fuel consumption necessary for exhaust purification of a diesel engine.

上記目的を達成するために、請求項1に記載された発明によれば、ディーゼルエンジンの排気通路に、排気の空燃比がリーンのときにNOxをトラップし、排気の空燃比がリッチのときにトラップしたNOxを還元浄化するNOxトラップ触媒と、NOxトラップ触媒の下流側に配置されて排気中のPMをトラップするPMトラップと、NOxトラップ触媒のSOx被毒を検出するSOx被毒検出手段と、SOx被毒検出手段の検出結果に基づいてNOxトラップ触媒のSOx被毒を再生すべきか否かを判定するSOx再生判定手段と、PMトラップに堆積したPMの量を検出するPM堆積量検出手段と、PM堆積量検出手段の検出結果に基づいてPMトラップのPM堆積を再生すべきか否かを判定するPM堆積再生判定手段と、NOxトラップ触媒およびPMトラップ間に空気を供給する空気供給手段と、NOxトラップ触媒を昇温する昇温手段と、PMトラップの温度を検出する温度センサとを備える一方、ディーゼルエンジンEの吸気通路には、NOxトラップ触媒に流入する排気の空燃比をリッチ化する空燃比リッチ化手段を備え、SOx再生判定手段がSOx被毒を再生すべきと判断したときに、昇温手段によりNOxトラップ触媒を昇温し、かつ空燃比リッチ化手段によりNOxトラップ触媒に流入する排気の空燃比をリッチ化してSOx被毒を再生すると同時に、空気供給手段によりPMトラップに空気を供給してPM堆積を再生し、のPM堆積の再生中に温度センサの検出した温度が所定の閾値を超えた場合には、PMトラップの過熱による劣化を防止するために、空気供給手段からPMトラップに供給する空気の量を増加させSOx再生判定手段がSOx被毒を再生すべきと判断せず、かつPM堆積再生判定手段がPM堆積を再生すべきと判断したときに、空気供給手段からPMトラップへの空気の供給を停止してPM堆積を再生することを特徴とするディーゼルエンジンの排気浄化装置が提案される。 In order to achieve the above object, according to the first aspect of the present invention, NOx is trapped in the exhaust passage of the diesel engine when the exhaust air-fuel ratio is lean, and when the exhaust air-fuel ratio is rich. A NOx trap catalyst that reduces and purifies trapped NOx, a PM trap that is disposed downstream of the NOx trap catalyst and traps PM in the exhaust, SOx poisoning detection means for detecting SOx poisoning of the NOx trap catalyst, SOx regeneration determination means for determining whether or not the SOx poisoning of the NOx trap catalyst should be regenerated based on the detection result of the SOx poisoning detection means, and a PM accumulation amount detection means for detecting the amount of PM deposited on the PM trap; , PM deposition regeneration determination means for determining whether or not to regenerate PM deposition of the PM trap based on the detection result of the PM deposition amount detection means, and NOx trap The diesel engine E has an air supply means for supplying air between the catalyst and the PM trap, a temperature raising means for raising the temperature of the NOx trap catalyst, and a temperature sensor for detecting the temperature of the PM trap. And an air-fuel ratio enrichment means for enriching the air-fuel ratio of the exhaust gas flowing into the NOx trap catalyst, and when the SOx regeneration determination means determines that the SOx poisoning should be regenerated, the temperature increase means raises the NOx trap catalyst. The air-fuel ratio of the exhaust gas flowing into the NOx trap catalyst is enriched by the air-fuel ratio enriching means to regenerate the SOx poisoning, and at the same time, air is supplied to the PM trap by the air supply means to regenerate the PM deposit, during playback of that accumulated PM, when the temperature detected by the temperature sensor exceeds a predetermined threshold value, and to prevent deterioration due to overheating of the PM trap To increase the amount of air supplied from the air supply means to the PM trap, SOx regeneration determination means does not determines to play SOx poisoning, and the PM accumulated regeneration determination means determines to play the PM deposition Then, an exhaust emission control device for a diesel engine is proposed in which the supply of air from the air supply means to the PM trap is stopped to regenerate the PM deposit .

尚、実施例の燃料噴射弁16は本発明の空燃比リッチ化手段に対応し、実施例のエアポンプ18は本発明の空気供給手段に対応し、実施例の走行距離算出手段20は本発明のPM堆積量検出手段に対応し、実施例のNOx濃度センサ22は本発明のSOx被毒検出手段に対応し、実施例ヒータ24は本発明の昇温手段に対応する。   The fuel injection valve 16 of the embodiment corresponds to the air-fuel ratio enrichment means of the present invention, the air pump 18 of the embodiment corresponds to the air supply means of the present invention, and the travel distance calculation means 20 of the embodiment corresponds to the present invention. The NOx concentration sensor 22 of the embodiment corresponds to the PM accumulation amount detection means, the SOx poisoning detection means of the present invention, and the heater 24 of the embodiment corresponds to the temperature raising means of the present invention.

請求項1の構成によれば、SOx再生判定手段がSOx被毒を再生すべきと判断したときに、昇温手段によりNOxトラップ触媒を昇温し、かつ空燃比リッチ化手段によりNOxトラップ触媒に流入する排気の空燃比をリッチ化してSOx被毒を再生すると同時に、空気供給手段によりPMトラップに空気を供給することで、堆積されたPMを燃焼させてPM堆積を再生するので、SOx被毒の再生に伴ってPMトラップが自動的に昇温することを利用してPM堆積を再生することが可能になり、PM堆積の再生のためにPMトラップを特別に昇温する必要を無くして燃料消費を節減することができる。しかも、のPM堆積の再生中に温度センサの検出したPMトラップの温度が所定の閾値を超えた場合には、PMトラップの過熱による劣化を防止するために、空気供給手段からPMトラップに供給する空気の量を増加させるので、PMトラップに堆積されたPMが燃焼して発生する熱を供給量を増加した空気で冷却し、熱によるPMトラップの損傷を回避することができる。また、SOx被毒の再生を行わずにPM堆積の再生のみを行う場合に、空気供給手段によるPMトラップへの空気の供給を停止してPM堆積を再生するので、通常のPMトラップの単独再生を行うことができる。 According to the configuration of claim 1, when the SOx regeneration determination unit determines that the SOx poisoning should be regenerated, the temperature of the NOx trap catalyst is raised by the temperature raising unit, and the NOx trap catalyst is made by the air-fuel ratio enrichment unit. The air-fuel ratio of the inflowing exhaust gas is enriched to regenerate the SOx poisoning, and at the same time, air is supplied to the PM trap by the air supply means, so that the accumulated PM is burned to regenerate the PM deposit. It is possible to regenerate the PM deposit by utilizing the fact that the temperature of the PM trap automatically rises with the regeneration of the fuel, and there is no need to raise the temperature of the PM trap specially for the regeneration of the PM deposit. Consumption can be saved. Moreover, during playback of the PM deposition of that, when the detected temperature of the PM trapped in the temperature sensor exceeds a predetermined threshold, in order to prevent deterioration due to overheating of the PM trap, from the air supply means to the PM trap Since the amount of air to be supplied is increased, the heat generated by combustion of PM deposited in the PM trap is cooled by the air with the increased supply amount, and damage to the PM trap due to heat can be avoided. In addition , when only PM deposition is regenerated without regeneration of SOx poisoning, air supply means stops supplying air to the PM trap to regenerate PM deposition. It can be performed.

以下、本発明の実施の形態を、添付の図面に示した本発明の実施例に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples of the present invention shown in the accompanying drawings.

図1および図2は本発明の一実施例を示すもので、図1はディーゼルエンジンの排気浄化装置の構成を示す図、図2は作用を説明するフローチャートである。   1 and 2 show an embodiment of the present invention. FIG. 1 is a diagram showing the configuration of an exhaust emission control device for a diesel engine, and FIG. 2 is a flowchart for explaining the operation.

図1に示すように、ディーゼルエンジンEの排気通路11に、排気中のNOxを吸着して浄化処理するためのNOxトラップ触媒12と、排気中のPMを吸着して浄化処理するためのPMトラップ13とが設けられる。またディーゼルエンジンEの吸気通路14にエアクリーナ15、吸気流量制御弁23および燃料噴射弁16が設けられており、エアクリーナ15および吸気流量制御弁23の中間位置と、NOxトラップ触媒12およびPMトラップ13の中間位置とを接続する空気供給通路17に、エアポンプ18およびエアバルブ19が配置される。車両の走行距離を算出する走行距離算出手段20と、PMトラップ13の温度を検出する温度センサ21と、NOxトラップ触媒12の出口のNOx濃度を検出するNOx濃度センサ22とからの信号が入力される電子制御ユニットUはSOx再生判定手段M1およびPM堆積再生判定手段M2を備えており、燃料噴射弁16、エアポンプ18、エアバルブ19、吸気流量制御弁23およびNOxトラップ触媒12に設けたヒータ24の作動を制御する。   As shown in FIG. 1, a NOx trap catalyst 12 for adsorbing and purifying NOx in exhaust gas in an exhaust passage 11 of a diesel engine E, and a PM trap for adsorbing and purifying PM in exhaust gas 13 are provided. An air cleaner 15, an intake flow control valve 23, and a fuel injection valve 16 are provided in the intake passage 14 of the diesel engine E. An air pump 18 and an air valve 19 are disposed in the air supply passage 17 that connects the intermediate position. Signals are input from a travel distance calculation means 20 that calculates the travel distance of the vehicle, a temperature sensor 21 that detects the temperature of the PM trap 13, and a NOx concentration sensor 22 that detects the NOx concentration at the outlet of the NOx trap catalyst 12. The electronic control unit U includes SOx regeneration determination means M1 and PM accumulation regeneration determination means M2, and includes a fuel injection valve 16, an air pump 18, an air valve 19, an intake flow control valve 23, and a heater 24 provided in the NOx trap catalyst 12. Control the operation.

ディーゼルエンジンEの運転により発生した排気中に含まれるNOxは、NOxトラップ触媒12にトラップされて大気への放散を防止される。NOxトラップ触媒12のNOxトラップ量が限界に達する前に、即ち走行距離算出手段20で算出した車両の走行距離が所定距離(実施例では10km)に達する毎に、電子制御ユニットUからの指令で燃料噴射弁16がディーゼルエンジンEの吸気行程に加えて排気行程においても燃料の噴射を実行し、所定時間(実施例では10秒〜15秒)だけ燃料の未燃成分を排気通路11に排出して排気の空燃比をリッチ化する。その結果、排気中のO2濃度が急激に低下して還元成分であるHC濃度やCO濃度が増加し、NOxトラップ触媒12にトラップされたNOxを還元して浄化するNOx再生が行われる。 NOx contained in the exhaust gas generated by the operation of the diesel engine E is trapped by the NOx trap catalyst 12 and is prevented from being released into the atmosphere. Before the NOx trap amount of the NOx trap catalyst 12 reaches the limit, that is, every time the travel distance of the vehicle calculated by the travel distance calculation means 20 reaches a predetermined distance (10 km in the embodiment), a command from the electronic control unit U is given. The fuel injection valve 16 performs fuel injection in the exhaust stroke in addition to the intake stroke of the diesel engine E, and discharges unburned components of the fuel to the exhaust passage 11 for a predetermined time (10 to 15 seconds in the embodiment). To enrich the air-fuel ratio of the exhaust. As a result, the O 2 concentration in the exhaust gas rapidly decreases and the HC concentration and CO concentration as reducing components increase, and NOx regeneration for reducing and purifying NOx trapped in the NOx trap catalyst 12 is performed.

ディーゼルエンジンEの排気中にはNOx以外にSOx(硫黄酸化物)が存在しており、このSOxもNOxトラップ触媒12にトラップされる。NOxトラップ触媒12にトラップされたSOxは安定な硫酸塩を形成するためにNOxよりも浄化され難く、NOxトラップ触媒12に次第に蓄積されてNOxのトラップ量が減少してしまう問題がある。特に、硫黄成分を多く含む軽油を燃料とするディーゼルエンジンEでは、ガソリンエンジンよりも上記SOx被毒が生じ易い。   In addition to NOx, SOx (sulfur oxide) is present in the exhaust of the diesel engine E, and this SOx is also trapped by the NOx trap catalyst 12. Since SOx trapped in the NOx trap catalyst 12 forms a stable sulfate, it is more difficult to purify than NOx, and there is a problem that the amount of NOx trapped is gradually accumulated and reduced in the NOx trap catalyst 12. In particular, in the diesel engine E that uses light oil containing a large amount of sulfur as a fuel, the SOx poisoning is more likely to occur than a gasoline engine.

このため、走行距離算出手段20で算出した車両の走行距離が所定距離(実施例では3000km)に達する毎に、電子制御ユニットUからの指令で前記NOx再生時と同様に排気行程における燃料噴射弁16からの燃料の噴射を所定時間(実施例では20分)に亘って実行し、排気の空燃比をリッチ化してNOxトラップ触媒12にトラップされたSOxを還元して浄化するSOx再生を行う。但し、SOxはNOxに比べて還元され難いため、SOx再生時には電子制御ユニットUからの指令でヒータ24を作動させてNOxトラップ触媒12の温度を高温(例えば650℃)に加熱し、SOxの還元を促進する。因みに、ヒータ24を作動させないNOx再生時におけるNOxトラップ触媒12の温度は、例えば250℃である。   For this reason, every time the travel distance of the vehicle calculated by the travel distance calculation means 20 reaches a predetermined distance (3000 km in the embodiment), a fuel injection valve in the exhaust stroke in the same manner as in the NOx regeneration in response to a command from the electronic control unit U The fuel injection from 16 is performed for a predetermined time (20 minutes in the embodiment), and the SOx regeneration for reducing and purifying the SOx trapped in the NOx trap catalyst 12 by enriching the air-fuel ratio of the exhaust is performed. However, since SOx is less likely to be reduced than NOx, at the time of SOx regeneration, the heater 24 is operated by a command from the electronic control unit U to heat the temperature of the NOx trap catalyst 12 to a high temperature (for example, 650 ° C.) to reduce SOx. Promote. Incidentally, the temperature of the NOx trap catalyst 12 during NOx regeneration without operating the heater 24 is, for example, 250 ° C.

排気中のPMをトラップして大気への放散を防止するフィルターよりなるPMトラップ13が目詰まりすると、排気通路11に圧損が発生してディーゼルエンジンEの出力が低下する問題がある。そこで、PMトラップ13にトラップされたPMを燃焼させて浄化するPMトラップ再生が行われる。PMトラップ再生は、電子制御ユニットUからの指令で吸気流量制御弁23の開度を減少させた状態で、更にヒータ24によって排気の温度を上昇させてPMを燃焼させることで達成される。このPMトラップ再生は車両が300km〜500km走行する毎に行われる。PMトラップ再生時にもSOx再生時にも空燃比のリッチ化が行われ、更にPMトラップ再生の実行時間は10分〜15分であってSOx再生の実行時間である20分と同じオーダーである。   When the PM trap 13 made of a filter that traps PM in the exhaust and prevents its emission to the atmosphere is clogged, there is a problem that pressure loss occurs in the exhaust passage 11 and the output of the diesel engine E decreases. Therefore, PM trap regeneration is performed in which the PM trapped in the PM trap 13 is burned and purified. The PM trap regeneration is achieved by burning the PM by further increasing the temperature of the exhaust gas by the heater 24 in a state where the opening degree of the intake flow control valve 23 is decreased by a command from the electronic control unit U. This PM trap regeneration is performed every time the vehicle travels 300 km to 500 km. The air-fuel ratio is enriched both during PM trap regeneration and during SOx regeneration. Further, the execution time of PM trap regeneration is 10 to 15 minutes, which is the same order as 20 minutes, which is the execution time of SOx regeneration.

そこで本実施例ではSOx再生とPMトラップ再生とを可能な限り同時に実行する。即ち、SOx再生が行われている20分の間に10分〜15分のPMトラップ再生を実行する。これにより、PMトラップ再生を実行する10分〜15分の間に排気の空燃比をリッチ化するための燃料が不要になり、ディーゼルエンジンEの燃料消費量の節減に寄与することができる。   Therefore, in this embodiment, SOx regeneration and PM trap regeneration are executed simultaneously as much as possible. That is, PM trap regeneration is performed for 10 minutes to 15 minutes during 20 minutes during which SOx regeneration is performed. This eliminates the need for fuel for enriching the air-fuel ratio of the exhaust during the period of 10 to 15 minutes when PM trap regeneration is performed, and can contribute to a reduction in fuel consumption of the diesel engine E.

上記特許文献1に記載されたものは、NOx再生とPMトラップ再生とを同時に実行することで排気の空燃比をリッチ化するための燃料を節減しているが、NOx再生の実行時間は僅かに10秒〜15秒であるために燃料の節減効果は小さいものであった。しかしながら本実施例によれば、実行時間が同じオーダーであるSOx再生とPMトラップ再生とを同時に実行して排気の空燃比をリッチ化するための燃料を節減しているので、その燃料の節減効果は従来に比べて大幅に向上する。   The one described in Patent Document 1 saves fuel for enriching the air-fuel ratio of exhaust gas by simultaneously performing NOx regeneration and PM trap regeneration, but the NOx regeneration execution time is slightly reduced. Since it is 10 to 15 seconds, the fuel saving effect is small. However, according to the present embodiment, SOx regeneration and PM trap regeneration, which have the same execution time, are simultaneously performed to reduce the fuel for enriching the air-fuel ratio of the exhaust gas. Is greatly improved compared to the conventional case.

PMトラップ13にトラップされたPMが上述したPMトラップ再生により燃焼すると発熱するため、その発熱量をコントロールしないとPMトラップ13が過熱して劣化する虞があるが、本実施例では、PMトラップ再生の実行中に温度センサ21でPMトラップ13の温度を監視し、その温度が所定の閾値を越えた場合に電子制御ユニットUからの指令でエアバルブ19を更に開いてPMトラップ13への空気の供給量を増加させるので、その空気でPMトラップ13を冷却して過熱による劣化を防止することができる。   Since the PM trapped in the PM trap 13 generates heat when burned by the above-described PM trap regeneration, the PM trap 13 may be overheated and deteriorated unless the amount of generated heat is controlled. In this embodiment, the PM trap regeneration is performed. The temperature of the PM trap 13 is monitored by the temperature sensor 21 during the execution of the operation, and when the temperature exceeds a predetermined threshold, the air valve 19 is further opened by the command from the electronic control unit U to supply the air to the PM trap 13 Since the amount is increased, the PM trap 13 can be cooled with the air to prevent deterioration due to overheating.

このようなPMトラップ13の過熱は、例えばPMトラップ13の温度が高く、かつ排気流量が多い状態から、停車等の排気流量が少ない状態に変化したときに発生し易い。   Such overheating of the PM trap 13 is likely to occur, for example, when the temperature of the PM trap 13 is high and the exhaust flow rate is high, and the exhaust flow rate is low, such as when the vehicle is stopped.

上記作用を図2のフローチャートに基づいて更に説明する。   The above operation will be further described based on the flowchart of FIG.

先ずステップS1でNOx濃度センサ22の出力に基づいて、電子制御ユニットUのSOx再生判定手段M1がNOxトラップ触媒12のSOx被毒の程度を検出する。NOxトラップ触媒12のSOx被毒が進行するとNOxの排出量も増加するため、そのNOxの排出量に基づいてSOx被毒の程度を検出することができる。続くステップS2で走行距離算出手段20の出力に基づいて電子制御ユニットUのPM堆積再生判定手段M2がPMトラップ再生を行う必要があるか否かを判定する。PMトラップ再生は、車両が300km〜500km走行する毎に行われる。   First, in step S1, the SOx regeneration determination means M1 of the electronic control unit U detects the degree of SOx poisoning of the NOx trap catalyst 12 based on the output of the NOx concentration sensor 22. As the SOx poisoning of the NOx trap catalyst 12 progresses, the NOx emission amount also increases. Therefore, the degree of SOx poisoning can be detected based on the NOx emission amount. In subsequent step S2, based on the output of the travel distance calculating means 20, it is determined whether the PM deposition regeneration determining means M2 of the electronic control unit U needs to perform PM trap regeneration. The PM trap regeneration is performed every time the vehicle travels 300 km to 500 km.

次に、ステップS3でNOx濃度センサ22がステップS1において検出したNOxトラップ触媒12のSOx被毒の程度に基づいて、NOxトラップ触媒12のSOx再生が必要であるか否かを判断する。ステップS3でSOx再生が必要であると判定されると、ステップS4でNOxトラップ触媒12およびPMトラップ13の同時再生を実行する。即ち、ヒータ24を作動させてNOxトラップ触媒12の温度を通常時の250℃から650℃まで高めた後に、排気行程において燃料噴射弁16から燃料を噴射してNOxトラップ触媒12にトラップされたSOxを還元して浄化するとともに、エアポンプ18を駆動し、更にエアバルブ19を開弁してPMトラップ13に大量の二次空気を供給することで堆積されたPMを燃焼させて浄化する。このとき、ステップS5でエアバルブ19によりPMトラップ13に供給される二次空気の量を制御し、PMトラップ13の入口の酸素濃度が3%となるように(二次空気の流量が排気の流量の18%となるように)する。   Next, in step S3, it is determined whether or not SOx regeneration of the NOx trap catalyst 12 is necessary based on the degree of SOx poisoning of the NOx trap catalyst 12 detected in step S1. If it is determined in step S3 that SOx regeneration is necessary, simultaneous regeneration of the NOx trap catalyst 12 and PM trap 13 is executed in step S4. That is, after the heater 24 is operated to raise the temperature of the NOx trap catalyst 12 from 250 ° C. in the normal state to 650 ° C., the fuel is injected from the fuel injection valve 16 in the exhaust stroke and trapped in the NOx trap catalyst 12. In addition, the air pump 18 is driven and the air valve 19 is opened to supply a large amount of secondary air to the PM trap 13 to burn and purify the accumulated PM. At this time, the amount of secondary air supplied to the PM trap 13 by the air valve 19 is controlled in step S5 so that the oxygen concentration at the inlet of the PM trap 13 becomes 3% (the flow rate of the secondary air is the flow rate of the exhaust gas). To 18%).

このように、SOx再生に伴ってPMトラップ13の温度が自動的に昇温することを利用してPMトラップ再生を行うので、PMトラップ再生のためにPMトラップ13を特別に昇温する必要を無くして燃料消費量を節減することができる。   As described above, since the PM trap regeneration is performed by utilizing the fact that the temperature of the PM trap 13 is automatically increased with the SOx regeneration, it is necessary to specially increase the temperature of the PM trap 13 for the PM trap regeneration. Without it, fuel consumption can be saved.

一方、前記ステップS3でSOx再生が必要でないと判定され、ステップS6でPMトラップ再生が必要であると判定されると、ステップS7でPMトラップ再生を単独で実行する。この単独で行われるPMトラップ再生は、前述したステップS4におけるPM同時再生と異なり、空気供給手段18からPMトラップ13への空気の供給を停止し、吸気流量制御弁23の開度を絞った状態で、更にヒータ24によってPMを燃焼させることで達成される。このPM単独再生は従来より行われている手法と同じである。 On the other hand, if it is determined in step S3 that SOx regeneration is not necessary, and if it is determined in step S6 that PM trap regeneration is necessary, PM trap regeneration is executed independently in step S7. The PM trap regeneration performed independently is different from the PM simultaneous regeneration in step S4 described above, in which the supply of air from the air supply means 18 to the PM trap 13 is stopped and the opening degree of the intake flow control valve 23 is reduced. This is achieved by further burning PM by the heater 24. This single PM regeneration is the same as the conventional method.

このようにしてSOx再生と同時にPMトラップ再生を行っているとき、ステップS8で温度センサ21により検出したPMトラップ13の温度が所定値(800℃)を超えると、ステップS9でエアバルブ19の開度を増加させてPMトラップ13の温度を低下させる。そしてステップS10でPMトラップ13の温度が所定値(600℃)以下になると、ステップS11で通常再生に復帰する。   When PM trap regeneration is performed simultaneously with SOx regeneration in this way, if the temperature of the PM trap 13 detected by the temperature sensor 21 in step S8 exceeds a predetermined value (800 ° C.), the opening degree of the air valve 19 in step S9. To increase the temperature of the PM trap 13. When the temperature of the PM trap 13 becomes a predetermined value (600 ° C.) or less in step S10, normal regeneration is restored in step S11.

一方、前記ステップS8でPMトラップ13の温度が所定値(800℃)未満であれば、ステップS12でPMトラップ再生を継続し、ステップS13でPMトラップ再生から所定時間(20分)が経過すると、ステップS14でPMトラップ再生を終了し、通常運転に復帰する。   On the other hand, if the temperature of the PM trap 13 is less than a predetermined value (800 ° C.) in step S8, PM trap regeneration is continued in step S12, and when a predetermined time (20 minutes) elapses from PM trap regeneration in step S13, In step S14, PM trap regeneration is terminated, and normal operation is resumed.

以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   Although the embodiments of the present invention have been described above, various design changes can be made without departing from the scope of the present invention.

例えば、実施例ではPMトラップ再生を行う時期を走行距離算出手段20で算出した車両の走行距離に基づいて決定しているが、PMトラップ13の上流と下流との圧力差が閾値を越えたとき、つまりPMトラップ13の目詰まりが進行したときにPMトラップ再生を実行しても良い。またディーゼルエンジンEの回転数や負荷を考慮した積算運転時間に基づいてPMトラップ再生を実行しても良い。   For example, in the embodiment, the timing for performing PM trap regeneration is determined based on the travel distance of the vehicle calculated by the travel distance calculation means 20, but when the pressure difference between the upstream and downstream of the PM trap 13 exceeds a threshold value. That is, the PM trap regeneration may be executed when the clogging of the PM trap 13 proceeds. Further, PM trap regeneration may be executed based on the accumulated operation time in consideration of the rotational speed and load of the diesel engine E.

また実施例では専用のエアポンプ18を用いてPMトラップ13に空気を供給しているが、ターボチャージャを備えたディーゼルエンジンEでは、そのコンプレッサから抽出した空気をPMトラップ13に供給しても良い。   In the embodiment, air is supplied to the PM trap 13 using a dedicated air pump 18. However, in a diesel engine E equipped with a turbocharger, air extracted from the compressor may be supplied to the PM trap 13.

またPMトラップ13の単独再生の他の手段として、PMトラップ13の上流側に酸化触媒を更に設け、排気行程において燃料噴射弁16から噴射した燃料を酸化触媒内において燃焼させることにより、排気の温度を上昇させてPM堆積を再生しても良い。   Further, as another means for regenerating the PM trap 13 alone, an oxidation catalyst is further provided on the upstream side of the PM trap 13, and the fuel injected from the fuel injection valve 16 in the exhaust stroke is combusted in the oxidation catalyst, so that the temperature of the exhaust gas is increased. The PM deposition may be regenerated by raising the value.

ディーゼルエンジンの排気浄化装置の構成を示す図The figure which shows the structure of the exhaust gas purification device of the diesel engine 作用を説明するフローチャートFlow chart explaining operation

11 排気通路
12 NOxトラップ触媒
13 PMトラップ
14 吸気通路
16 燃料噴射弁(空燃比リッチ化手段)
18 エアポンプ(空気供給手段)
20 走行距離算出手段(PM堆積量検出手段)
21 温度センサ
22 NOx濃度センサ(SOx被毒検出手段)
24 ヒータ(昇温手段)
E ディーゼルエンジン
M1 SOx再生判定手段
M2 PM堆積再生判定手段
11 Exhaust passage 12 NOx trap catalyst 13 PM trap 14 Intake passage 16 Fuel injection valve (air-fuel ratio enrichment means)
18 Air pump (air supply means)
20 Travel distance calculation means (PM accumulation amount detection means)
21 Temperature sensor 22 NOx concentration sensor (SOx poisoning detection means)
24 Heater (temperature raising means)
E Diesel engine M1 SOx regeneration determination means M2 PM accumulation regeneration determination means

Claims (1)

ディーゼルエンジン(E)の排気通路(11)に、
排気の空燃比がリーンのときにNOxをトラップし、排気の空燃比がリッチのときにトラップしたNOxを還元浄化するNOxトラップ触媒(12)と、
NOxトラップ触媒(12)の下流側に配置されて排気中のPMをトラップするPMトラップ(13)と、
NOxトラップ触媒(12)のSOx被毒を検出するSOx被毒検出手段(22)と、 SOx被毒検出手段(22)の検出結果に基づいてNOxトラップ触媒(12)のSOx被毒を再生すべきか否かを判定するSOx再生判定手段(M1)と、
PMトラップ(13)に堆積したPMの量を検出するPM堆積量検出手段(20)と、 PM堆積量検出手段(20)の検出結果に基づいてPMトラップ(13)のPM堆積を再生すべきか否かを判定するPM堆積再生判定手段(M2)と、
NOxトラップ触媒(12)およびPMトラップ(13)間に空気を供給する空気供給手段(18)と、
NOxトラップ触媒(12)を昇温する昇温手段(24)と、
PMトラップ(13)の温度を検出する温度センサ(21)とを備える一方、
ディーゼルエンジンEの吸気通路(14)には、NOxトラップ触媒(12)に流入する排気の空燃比をリッチ化する空燃比リッチ化手段(16)を備え、
SOx再生判定手段(M1)がSOx被毒を再生すべきと判断したときに、昇温手段(24)によりNOxトラップ触媒(12)を昇温し、かつ空燃比リッチ化手段(16)によりNOxトラップ触媒(12)に流入する排気の空燃比をリッチ化してSOx被毒を再生すると同時に、空気供給手段(18)によりPMトラップ(13)に空気を供給してPM堆積を再生し、
のPM堆積の再生中に温度センサ(21)の検出した温度が所定の閾値を超えた場合には、PMトラップ(13)の過熱による劣化を防止するために、空気供給手段(18)からPMトラップ(13)に供給する空気の量を増加させ、
SOx再生判定手段(M1)がSOx被毒を再生すべきと判断せず、かつPM堆積再生判定手段(M2)がPM堆積を再生すべきと判断したときに、空気供給手段(18)からPMトラップ(13)への空気の供給を停止してPM堆積を再生することを特徴とするディーゼルエンジンの排気浄化装置。
In the exhaust passage (11) of the diesel engine (E),
A NOx trap catalyst (12) for trapping NOx when the air-fuel ratio of the exhaust gas is lean and reducing and purifying NOx trapped when the air-fuel ratio of the exhaust gas is rich;
A PM trap (13) disposed downstream of the NOx trap catalyst (12) and trapping PM in the exhaust;
SOx poisoning detection means (22) for detecting SOx poisoning of the NOx trap catalyst (12), and SOx poisoning of the NOx trap catalyst (12) should be regenerated based on the detection result of the SOx poisoning detection means (22). SOx regeneration determination means (M1) for determining whether or not
PM deposition amount detection means (20) for detecting the amount of PM deposited on the PM trap (13), and whether PM deposition of the PM trap (13) should be regenerated based on the detection result of the PM deposition amount detection means (20) PM accumulation regeneration determination means (M2) for determining whether or not,
Air supply means (18) for supplying air between the NOx trap catalyst (12) and the PM trap (13);
A temperature raising means (24) for raising the temperature of the NOx trap catalyst (12);
A temperature sensor (21) for detecting the temperature of the PM trap (13),
The intake passage (14) of the diesel engine E includes air-fuel ratio enrichment means (16) that enriches the air-fuel ratio of the exhaust gas flowing into the NOx trap catalyst (12),
When the SOx regeneration determination means (M1) determines that the SOx poisoning should be regenerated, the temperature rise means (24) raises the temperature of the NOx trap catalyst (12) and the air-fuel ratio enrichment means (16) increases the NOx. The air-fuel ratio of the exhaust gas flowing into the trap catalyst (12) is enriched to regenerate the SOx poisoning, and at the same time, air is supplied to the PM trap (13) by the air supply means (18) to regenerate the PM deposit,
During playback of that accumulated PM, when the temperature detected by the temperature sensor (21) exceeds a predetermined threshold, in order to prevent deterioration due to overheating of the PM trap (13), air supply means (18) increase the amount of air supplied to the PM trap (13) from,
When the SOx regeneration determining means (M1) does not determine that the SOx poisoning is to be regenerated and the PM deposition regeneration determining means (M2) determines that the PM deposition is to be regenerated, PM is sent from the air supply means (18). An exhaust emission control device for a diesel engine, characterized in that the supply of air to the trap (13) is stopped to regenerate the PM deposit .
JP2004115797A 2004-04-09 2004-04-09 Diesel engine exhaust purification system Expired - Fee Related JP4523317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004115797A JP4523317B2 (en) 2004-04-09 2004-04-09 Diesel engine exhaust purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004115797A JP4523317B2 (en) 2004-04-09 2004-04-09 Diesel engine exhaust purification system

Publications (2)

Publication Number Publication Date
JP2005299477A JP2005299477A (en) 2005-10-27
JP4523317B2 true JP4523317B2 (en) 2010-08-11

Family

ID=35331338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004115797A Expired - Fee Related JP4523317B2 (en) 2004-04-09 2004-04-09 Diesel engine exhaust purification system

Country Status (1)

Country Link
JP (1) JP4523317B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6252997B1 (en) * 2016-08-12 2017-12-27 マツダ株式会社 Diesel engine control method and control system
JP6774015B2 (en) * 2016-08-24 2020-10-21 三菱自動車工業株式会社 Engine exhaust purification device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06146859A (en) * 1992-11-04 1994-05-27 Toyota Motor Corp Exhaust particulate removing device for diesel engine
JP2001234732A (en) * 2000-02-25 2001-08-31 Mitsubishi Motors Corp Exhaust emission control device
JP2003336520A (en) * 2002-05-20 2003-11-28 Nissan Motor Co Ltd Emission control device of internal combustion engine
JP2004028030A (en) * 2002-06-27 2004-01-29 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2004324454A (en) * 2003-04-22 2004-11-18 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06146859A (en) * 1992-11-04 1994-05-27 Toyota Motor Corp Exhaust particulate removing device for diesel engine
JP2001234732A (en) * 2000-02-25 2001-08-31 Mitsubishi Motors Corp Exhaust emission control device
JP2003336520A (en) * 2002-05-20 2003-11-28 Nissan Motor Co Ltd Emission control device of internal combustion engine
JP2004028030A (en) * 2002-06-27 2004-01-29 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2004324454A (en) * 2003-04-22 2004-11-18 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine

Also Published As

Publication number Publication date
JP2005299477A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP4093301B2 (en) Exhaust gas purification system and control method thereof
EP1905992B1 (en) Method of controlling exhaust gas purification system, and exhaust gas purification system
US20090165444A1 (en) Method of Controlling Exhaust Gas Purification System and Exhaust Gas Purification System
JP5257024B2 (en) Exhaust gas purification device for internal combustion engine
JP2003065116A (en) Exhaust emission control device for internal combustion engine
JP4711006B2 (en) Exhaust purification device
JP2008274835A (en) Deterioration diagnosis device for oxidation catalyst
JP2006233936A (en) Exhaust emission control device for internal combustion engine
KR100683267B1 (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
JP2010144565A (en) Exhaust emission control device for internal combustion engine
JP2005076508A (en) Exhaust gas recirculation device for engine
JP4613787B2 (en) Exhaust gas purification device for internal combustion engine
WO2016132875A1 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP4709733B2 (en) Exhaust gas purification device for internal combustion engine
JP4291650B2 (en) Exhaust purification equipment
JP4735505B2 (en) Surge prevention control device and surge prevention control method for turbocharged engine
JP2007040222A (en) Exhaust emission control device
JP4523317B2 (en) Diesel engine exhaust purification system
JP4357241B2 (en) Exhaust purification equipment
JP4069043B2 (en) Exhaust gas purification device for internal combustion engine
JP5332664B2 (en) Engine exhaust purification system
JP2005307744A (en) Exhaust emission control device
JP6447214B2 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP3899820B2 (en) Exhaust gas purification device for internal combustion engine
JP4000929B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees