JP2004324454A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2004324454A
JP2004324454A JP2003117029A JP2003117029A JP2004324454A JP 2004324454 A JP2004324454 A JP 2004324454A JP 2003117029 A JP2003117029 A JP 2003117029A JP 2003117029 A JP2003117029 A JP 2003117029A JP 2004324454 A JP2004324454 A JP 2004324454A
Authority
JP
Japan
Prior art keywords
exhaust gas
air
exhaust
passage
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003117029A
Other languages
Japanese (ja)
Inventor
Megumi Shigahara
恵 信ヶ原
Michihiro Hatake
道博 畠
Kazuo Kurata
和郎 倉田
Yuji Yanagawa
祐治 柳川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2003117029A priority Critical patent/JP2004324454A/en
Publication of JP2004324454A publication Critical patent/JP2004324454A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine, in which forced regeneration of DPF and S purging of an NOx occluded catalyst can be performed at the same time. <P>SOLUTION: The device is provided with a suction passage 8 and an exhaust passage communicating with a cylinder of the internal combustion engine, a supercharger 14 and a suction throttle means 10, the NOx occluded catalyst 22 prepared at the exhaust passage, occluding NOx in the exhaust emission at the time of lean operation, and discharging and reducing the occluded NOx by rich operation, a filter 23 for collecting particulate matter in the exhaust emission, a secondary air supply passage 30 for introducing air for regeneration of the filter from the suction upstream side of the suction throttle means into the exhaust upstream side of the filter, and an exhaust emission control means 46 for controlling the air quantity of the second air supply passage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気浄化装置に係り、詳しくは、NOx吸蔵触媒とディーゼル・パティキュレート・フィルタ(DPF)との同時再生に適用される内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
一般に、NOx吸蔵触媒は、リーン空燃比のときに排気中のNOxを吸蔵し、リッチ空燃比のときに吸蔵したNOxを放出還元する排ガス後処理装置である。
具体的には、酸素過剰状態(酸化雰囲気)において排気中のNOxを硝酸塩として吸蔵し、この吸蔵したNOxを一酸化炭素過剰状態(還元雰囲気)で窒素に還元させる特性を有している。そして、内燃機関は、NOx吸蔵量が飽和する前に排気空燃比を理論空燃比又はその近傍値に制御する如くの空気過剰率が低い(低λ)状態のリッチ運転へ定期的に切り換えるリッチスパイクを行い、NOx吸蔵触媒の再生を図る。
【0003】
また、NOx吸蔵触媒には、燃料中のS成分の酸化によるSOxも硫酸塩として堆積されるため、当該堆積したS成分の放出(Sパージ)を行うべく、上記と同様にリッチスパイク運転を定期的に実施してNOx吸蔵触媒の再生を図る。
ここで、このSパージには、約650℃程度の高温であってリッチ乃至ストイキオの排ガスが必要になることから、NOx吸蔵触媒では、このSパージ条件を実現すべく、燃費低減のための吸気絞りと排気循環(EGR)カット及びポスト噴射とを組み合わせる手法が知られているが、吸気絞りによって生ずるポンピングロスは、却って燃費の悪化を招くとの問題がある。
【0004】
そして、この状況を打開する内燃機関の排気浄化装置の技術が提案されている(例えば、特許文献1参照)。
当該装置では、吸蔵したNOxの放出還元に際し、ポンピングロスでのトルク低下に対して燃料噴射量を増加させるとともに、EGRによるガスを導入させ、燃費の悪化を防止している。
【0005】
一方、DPFは、排気中のパティキュレート・マター(PM)を捕集して処理する排ガス後処理装置である。具体的には、ディーゼルエンジン等の排気中には、HC、CO、NOx等の他に、PMが多く含まれていることから、このPMをフィルタに捕集した後に約600℃程度の高温の排ガスを利用し、焼却除去させてDPFの再生を図る。
【0006】
ここで、DPFでは、運転条件によってはその自己再生が実現できるものの、あらゆる運転条件を想定した場合には、DPFの温度を強制的に昇温させる強制再生システムが不可欠である。しかし、この強制再生においては、例えば、DPFの温度が低すぎると再生速度が遅く、高すぎると急激な再生によってDPFの破損を招く等、その温度制御が困難である。そこで、DPFでは、内燃機関の空燃比制御により、DPFでの再生速度を制御する内燃機関の排気浄化装置の技術が提案されている(例えば、特許文献2参照)。
【0007】
当該装置では、排気系にNOx吸蔵触媒とDPFとを備えており、DPFの強制再生時には、DPFが所定温度に達するまではリッチ空燃比にしてPMの燃焼を抑え、Sパージ時には、さらにSOxの脱離温度から所定時間に達するまでリッチ空燃比にしてS被毒を解除している。これにより、ドライバビリティや排ガス上の要求とDPF再生のための空気過剰率との両立を図っている。
【0008】
【特許文献1】
特開平10−184418号公報(段落番号0016〜0023等)
【特許文献2】
特開2002−213229号公報(段落番号0015〜0020、図1等)
【0009】
【発明が解決しようとする課題】
ところで、DPFの強制再生とNOx吸蔵触媒のSパージとは、上述の如く、ともに約650℃程度に達した高温の排ガスを用いれば可能である点で共通するものである。
よって、DPFの強制再生とNOx吸蔵触媒のSパージとを同時に実施させることが考えられるが、前者はsoot酸化のためにリーン雰囲気の排気が要求されるの対し、後者はストイキオ乃至リッチ雰囲気の排気が要求されることから、基本的にはこれらを同時に実施させることは一般には困難かとも考えられる。
【0010】
また、DPFの再生速度を制御するためには、排気の空気過剰率を自由に制御したい一方で、内燃機関による排気の空気過剰率についてはその自由度が小さいものである。したがって、この点を鑑みても、DPFの強制再生とNOx吸蔵触媒のSパージとを同時に実施させることは一般に困難であると考えられる。
しかし、DPFの強制再生とNOx吸蔵触媒のSパージとを同時に実施させることが可能であれば、その再生に要する総再生時間が短縮化され、燃費の悪化をより一層の防止を図ることが可能になる。
【0011】
ここで、前記従来の技術、特に前記特許文献2に記載の内燃機関の排気浄化装置では、Sパージを行う場合には、DPFが所定温度を超えてから、さらに所定時間が経過するまではリッチ空燃比を維持し、その後リーン空燃比に切り換えている。つまり、まずDPFの強制再生を行わずにSパージを実施し、次にSパージを行わずにDPFの強制再生を実施していることから、DPFの強制再生とNOx吸蔵触媒のSパージとを同時に実施することができない。
【0012】
換言すれば、この場合の総再生時間は、DPFが所定温度を超えた時点から始まり、Sパージの許可によってS被毒が解除され、その後、リーン雰囲気の排気に切り換えられてDPFの強制再生が実施されて終了するまでに要する時間となり、長期化してしまうという問題がある。すなわち、前記従来の技術では、燃費の悪化の防止を図る点については依然として課題が残されている。
【0013】
また、前記特許文献2に記載の内燃機関の排気浄化装置において、DPF再生のために高温かつリーン雰囲気の排気を、EGRカットとポスト噴射とで実現させると、内燃機関からの排気の空気過剰率を制御していないので、内燃機関からのNOx排出量が多くなり、排ガス性能に悪影響を及ぼすとの問題もある。
本発明は、このような課題に鑑みてなされたもので、DPFの強制再生とNOx吸蔵触媒のSパージとを同時に実施することができる内燃機関の排気浄化装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記の目的を達成するべく、請求項1記載の内燃機関の排気浄化装置は、内燃機関の気筒に連通する吸気通路及び排気通路と、吸気通路に設けられた過給機及び吸気絞り手段と、排気通路に設けられ、リーン運転時に排気中のNOxを吸蔵するとともにリッチ運転を行うことで吸蔵したNOxを放出還元するNOx吸蔵触媒と、NOx吸蔵触媒の排気下流側に設けられ、排気中のパティキュレート・マターを捕集するフィルタと、吸気絞り手段の吸気上流側からフィルタの排気上流側にフィルタの再生用空気を導入させる二次空気供給通路と、二次空気供給通路の空気量を制御する排気浄化制御手段とを備えたことを特徴としている。
【0015】
したがって、請求項1記載の内燃機関の排気浄化装置によれば、NOx吸蔵触媒を排気上流側に、DPFをその下流側に設置するとともに、吸気絞り手段の上流から二次空気を取り出し、NOx吸蔵触媒とDPFとの間に導入させているので、内燃機関からの高温かつストイキオ乃至リッチ雰囲気の排気をNOx吸蔵触媒に導入してSパージを行うことができると同時に、NOx吸蔵触媒を通過したストイキオ乃至リッチ雰囲気の排気に二次空気を合流させてリーン雰囲気の排気を生成させ、このリーン雰囲気の排気をDPFに導入して強制再生を行うことが可能になる。すなわち、DPFの強制再生とNOx吸蔵触媒のSパージとを同時に実施することができる。これにより、総再生時間の短縮化が図られて燃費の悪化がより一層防止される。
【0016】
また、請求項2記載の発明では、フィルタの排気下流側には、空気量を制御するための温度センサ又は空燃比センサが設けられていることを特徴としている。このように、排気浄化制御手段が、吸気絞り手段の上流側に存在する余剰空気をDPFの再生用空気として用いるとともに、DPFの排気下流側の状況に応じてこの空気量を制御するので、DPF再生速度を適切に制御することが可能になる。
【0017】
さらに、請求項3記載の発明では、排気浄化制御手段は、さらに気筒内の空燃比を制御し、NOx吸蔵触媒の排気上流側には、温度センサ又は空燃比センサが設けられていることを特徴としている。
このように、排気浄化制御手段が、NOx吸蔵触媒の排気上流側の状況に応じて内燃機関からの排気空燃比をも制御することから、NOx吸蔵触媒が有する三元機能を利用することが可能になり、NOxを確実に浄化し、排ガス性能が良好になる。
【0018】
また、請求項4記載の発明では、内燃機関は、吸気通路と排気通路とを連通するEGR通路を備え、排気浄化制御手段は、NOx吸蔵触媒に吸蔵したNOx及びNOx吸蔵触媒に付着したS成分を放出させるとき、並びに、フィルタに捕集したパティキュレートを焼却除去させるとき、EGR通路による排気還流を抑えることを特徴としている。
【0019】
これにより、排気浄化制御手段による二次空気の空気量制御と内燃機関からの排気空燃比の制御が、EGRガスの影響を受けないことから、排ガス性能を犠牲にすることなく、NOx吸蔵触媒のSパージとDPFの強制再生とを同時かつ適切に行える。
【0020】
【発明の実施の形態】
以下、図面により本発明の実施形態について説明する。
図1は、本発明の一実施形態に係る内燃機関の排気浄化装置が適用される多気筒のディーゼル機関(以下、単にエンジンという)1を備えたエンジンシステム構成図を示しており、以下図1に基づき本発明に係る内燃機関の排気浄化装置の構成を説明する。
【0021】
エンジン1の各気筒2には、コモンレール型等の燃料噴射装置を有した燃料供給系と、吸気弁6の開弁により燃焼室4に吸入空気を導入させる吸気通路8と、排気弁18の開弁により燃焼室4からの排気を導出させる排気通路20とが接続されている。
この吸気通路8の最上流部にはエアクリーナ16が接続され、その下流側には過給機14が介装されている。また、過給機14の下流側には、スロットル弁(吸気絞り手段)10及びサージタンク12の順に配設されている。なお、このスロットル弁10は、いわゆるドライブバイワイヤ式のスロットル弁(ETV)であり、エンジン運転状態に応じてその開度が変更される。
【0022】
一方、排気通路20の下流側にはNOx吸蔵触媒22が接続されている。NOx吸蔵触媒22は、排気空燃比がリーンのときに排気中のNOxを吸蔵し、排気空燃比がリッチ等で排気中に還元剤(HCやCO)が存在するときに、吸蔵したNOxの放出還元を行うものであり、このNOx吸蔵触媒は公知の構成ものである。なお、本実施形態では、ポスト噴射にてNOxの放出還元を行う。
【0023】
また、NOx吸蔵触媒22の下流側にはDPF(フィルタ)23が接続されている。DPF23は、排気中のPMを捕集するとともに、高温の排気でPMを焼却除去し、その再生を行うものであり、このDPFも公知の構成ものである。
排気通路20からは排気循環通路(EGR通路)24が分岐して延びており、排気の一部(EGRガス)を吸気通路8内に再循環させてNOxの排出を抑制させる。このEGR通路24の先端は、吸気通路8のETV10の配設位置よりも下流側のサージタンク12にて吸気通路8に接続されている。このEGR通路24には、EGRガスの冷却を図るEGRクーラ26と、電子コントロールユニット(ECU)44に電気的に接続されたEGRバルブ28とが設けられ、EGRバルブ28の開閉によってEGR通路24の流路面積が調節される。
【0024】
ここで、吸気通路8からは二次空気供給通路30が分岐して延びており、吸入空気の一部をDPF23に導入させてDPF23の再生に利用させる。この二次空気供給通路30の先端部32は、NOx吸蔵触媒22とDPF23との間に開口されており、二次空気供給通路30の後端部31は、ETV10の配設位置よりも上流側に開口されている。この二次空気供給通路30には、ECU44に電気的に接続された二次エアバルブ33が設けられ、二次エアバルブ33の開閉によって二次空気供給通路30の流路面積が調節される。
【0025】
ETV10もまたECU44に電気的に接続されており、吸気通路8の流路面積が調節されることにより、通常の制御時にはEGRガス量を調整する。そして、エアクリーナ16からの新気は、過給機14を介して吸気通路8に入ってETV10で調整された後、EGRガスと合流して各気筒2の燃焼室4内に導かれる。そして、燃料の燃焼が終了すると、排ガスは排気通路20に排出され、NOx吸蔵触媒22及びDPF23に送られる。
【0026】
一方、ETV10では、同時再生制御時には、エアクリーナ16からの新気は、過給機14を介して吸気通路8に入ってETV10で調整された後、二次空気供給通路30を介してDPF23に送られる。このように、ETV10の上流側に存在する空気は、余剰空気としてDPF23の再生用空気に用いられている。これは、ETV10がPM発生を抑制する程度に絞られている場合には、ETV10の上流側には高圧の空気が存在し、この一部は余剰の空気と考えられるからである。なお、この場合には、相対的に排圧(タービン上流圧)を低減させることができ、この点も燃費の改善につながることになる。
【0027】
ここで、吸気通路8において、エアクリーナ16の下流側の適宜位置には、エアフローセンサ34が配設される。また、排気通路20において、NOx吸蔵触媒22の上流側の適宜位置には、温度センサ36とA/Fセンサ(空燃比センサ)38とが配設され、エンジン1からの排気の温度T1とその排気空燃比λ1とをそれぞれ検出している。また、排気通路20において、DPF23の下流側の適宜位置には、温度センサ40とA/Fセンサ(空燃比センサ)42とが配設され、DPF23を通過した排気の温度T2とその排気空燃比λ2とをそれぞれ検出している。
【0028】
ECU44の入力側には、上述の温度センサ36、A/Fセンサ38、温度センサ40及びA/Fセンサ42の他、エアフローセンサ34等のエンジン1の運転状態を検出する各種センサが電気的に接続されている。これに対してECU44の出力側には、上述のETV10、EGRバルブ28及び二次エアバルブ33の各種アクチュエータが電気的に接続されている。
【0029】
ここで、特にECU44は、排気浄化制御部46(排気浄化制御手段)を備えている。そして、当該排気浄化制御部46は、二次空気供給通路30からDPF23に導入される空気量を制御する機能と、エンジン1の排気空燃比を制御する機能と、NOx吸蔵触媒22のSパージとDPF23の強制再生との同時再生制御時にはEGRガスの量を制御する機能とを有している。
【0030】
すなわち、排気浄化制御部46は、エンジン1の通常制御時には、酸化雰囲気にて排ガス中のNOxをNOx吸蔵触媒22に吸蔵する一方、NOx吸蔵触媒22のSパージとDPF23の強制再生との同時再生制御時には、圧縮上死点後等に追加燃料を噴射し、エンジン1からの高温かつストイキオ乃至リッチ雰囲気の排気をNOx吸蔵触媒22に導入させるリッチスパイクを行い、吸蔵したNOxを還元雰囲気で放出還元させ、及び付着したS成分を還元雰囲気で放出させてNOx吸蔵触媒22の再生を図るとともに、NOx吸蔵触媒22を通過したストイキオ乃至リッチ雰囲気の排気と二次空気供給通路30からの二次空気とを合流させてリーン雰囲気の排気を生成させ、このリーン雰囲気の排気をDPF23に導入して強制再生を図っている。
【0031】
より具体的には、排気浄化制御部46では、温度センサ36によるNOx吸蔵触媒22の排気上流側の排気温度T1を読み込んで現在のNOx吸蔵触媒22の温度を認知し、また、A/Fセンサ38によるNOx吸蔵触媒22の排気上流側の排気空燃比λ1を読み込んで現在のエンジン1の排気空燃比を認知している。
これにより、エンジン1の排気空燃比をストイキオ乃至リッチ雰囲気に設定することができ、NOx吸蔵触媒22が備える三元機能を利用してNOxを確実に浄化している。
【0032】
また、排気浄化制御部46では、温度センサ40によるDPF23の排気下流側の排気温度T2を読み込んで現在のDPF23の温度を認知し、また、A/Fセンサ42によるDPF23の排気下流側の排気空燃比λ2を読み込んで現在のDPF23の直前の排気空燃比を認知している。これにより、DPF23の再生速度を適切に制御し、PMの燃焼による発熱量が急激に大きくなってDPF23が破損等することを防止している。
【0033】
次に、上記排気浄化装置の作用について説明する。
図2は排気浄化制御部46における同時再生制御等のフローチャートである。同図のステップS201では、車両の走行距離等を読み込み、ステップS202では、NOx吸蔵触媒22の排気上流側の排気温度T1及びDPF23の排気下流側の排気温度T2を読み込み、ステップS203に進む。
【0034】
ステップS203では、NOx吸蔵触媒22のSパージ或いはDPF23の強制再生のうちいずれかの再生が必要であるか否かを判別し、例えば、前記車両の走行距離が200〜300kmであって、排気温度T1及び排気温度T2がともに約650℃程度の高温になっている場合等の如く、再生が必要であると判定された場合、すなわちYESのときには、ステップS204に進み、EGRバルブ28を閉弁してステップS205に進む。二次空気の空気量制御とエンジン1からの排気空燃比の制御に対してEGRガスの影響を及ぼさないようにするためである。
【0035】
そして、ステップS205では、まずSパージを実施すべく、NOx吸蔵触媒22の上流側の排気空燃比λ1をストイキオ乃至リッチに設定し、エンジン1に対して高温かつ当該雰囲気の排気の生成を命令し、ステップS206に進む。
ステップS206では、Sパージの実施と並行して、DPF23の再生を実施すべく、二次エアバルブ33を開弁し、ステップS207では、DPF23の下流側の排気空燃比λ2をリーンに設定してステップS208に進む。
【0036】
ステップS208では、排気温度T1及び排気温度T2や排気空燃比λ1及び排気空燃比λ1の検出値を適宜フィードバックさせ、NOx吸蔵触媒22のSパージ及びDPF23の強制再生との同時再生制御を行い、S被毒が解除され、PMが除去されるまで、例えば所定の時間が経過するまでこの制御を行い、このルーチンを抜ける。
【0037】
一方、ステップS203で上記再生が必要ではないと判定された場合には、ステップS209に進み、二次エアバルブ33を閉弁し、ステップS210にて排気空燃比λ1をリーンに設定し、ステップS211にてEGRバルブ28を開弁し、ステップS212では、ディーゼルエンジンに対する通常の制御を行い、このルーチンを抜ける。
【0038】
以上のように、本発明では、NOx吸蔵触媒22のSパージを実施できると同時に、DPF23の強制再生を実施することができるので、DPF23が所定温度を超えた時点から強制再生が終了するまでに要する時間、つまり、総再生時間が短縮化され、例えばポスト噴射を行った場合に比して燃費の悪化を格段に防止することができる。
【0039】
また、DPF23の強制再生中であっても、NOx吸蔵触媒22ではNOxの浄化が行われていることから、再生実施中の排ガス性能の悪化も防止することができる。
さらに、DPF23の再生速度は、二次エアバルブ33の開閉度合のみで自由に制御することでき、つまり、エンジン1に対する排気空燃比の制御とは別個独立して行うことができるので、DPF23の再生時の破損等の危険性を低減させることができる。
【0040】
以上で本発明の一実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
例えば、上記実施形態では、二次エアの空気量をフィードバック制御すべく、DPF23の下流側にA/Fセンサ42を設置しているが、これに代えてエアフローセンサ34と燃料供給系により制御される燃料噴射量とから演算した空燃比を用いても良く、この場合にも上記と同様の効果を奏することができる。
【0041】
また、上記実施形態では、エンジン1からの排気空燃比を制御すべく、A/Fセンサ38を設けているが、これに代えてOセンサを設けても良く、さらに、NOx吸蔵触媒22の上流(過給機14の上流や下流)の温度センサを、NOx吸蔵触媒22のSパージ制御に用いても良い。
さらに、吸気通路8にインタクーラを装着させる場合には、二次空気供給通路30の後端部31は当該インタクーラの上流側に配置させて二次エアの温度が下がり過ぎないようにすると良い。
【0042】
また、エンジンとしてはディーゼル機関が好ましいが、これに限定されるものではなく、本発明の内燃機関の排気浄化装置は、排気通路にNOx吸蔵触媒を備え、リッチ運転可能な全てのエンジンシステムに適用させることができる。
【0043】
【発明の効果】
以上の説明から理解できるように、請求項1記載の本発明の内燃機関の排気浄化装置によれば、NOx吸蔵触媒を排気上流側に、DPFをその下流側に設置するとともに、吸気絞り手段の上流から二次空気を取り出し、NOx吸蔵触媒とDPFとの間に導入させているので、内燃機関からの高温かつストイキオ乃至リッチ雰囲気の排気をNOx吸蔵触媒に導入してSパージを行うことができると同時に、NOx吸蔵触媒を通過したストイキオ乃至リッチ雰囲気の排気に二次空気を合流させてリーン雰囲気の排気を生成させ、このリーン雰囲気の排気をDPFに導入して強制再生を行うことができる。すなわち、DPFの強制再生とNOx吸蔵触媒のSパージとを同時に実施することができる。これにより、総再生時間の短縮化が図られて燃費の悪化をより一層防止することができる。
【0044】
また、請求項2記載の発明によれば、排気浄化制御手段が、吸気絞り手段の上流側に存在する余剰空気をDPFの再生用空気として用いるとともに、DPFの排気下流側の状況に応じてこの空気量を制御するので、DPF再生速度を適切に制御することができる。
さらに、請求項3記載の発明によれば、排気浄化制御手段が、NOx吸蔵触媒の排気上流側の状況に応じて内燃機関からの排気空燃比をも制御することから、NOx吸蔵触媒が有する三元機能を利用することができ、NOxを確実に浄化し、排ガス性能を良好にすることができる。
【0045】
また、請求項4記載の発明によれば、排気浄化制御手段による二次空気の空気量制御と内燃機関からの排気空燃比の制御が、EGRガスの影響を受けないことから、排ガス性能を犠牲にすることなく、NOx吸蔵触媒のSパージとDPFの強制再生とを同時かつ適切に行うことができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る内燃機関の排気浄化装置が適用されるエンジンの構成図である。
【図2】図1の排気浄化装置における同時再生制御のフローチャートである。
【符号の説明】
1 内燃機関
2 気筒
8 吸気通路
10 ETV(吸気絞り手段)
14 過給機
20 排気通路
22 NOx吸蔵触媒
23 DPF(フィルタ)
24 EGR通路
30 二次空気供給通路
36 温度センサ
38 空燃比センサ
40 温度センサ
42 空燃比センサ
44 ECU(電子コントロールユニット)
46 排気浄化制御部(排気浄化制御手段)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas purification device for an internal combustion engine, and more particularly, to an exhaust gas purification device for an internal combustion engine applied to simultaneous regeneration of a NOx storage catalyst and a diesel particulate filter (DPF).
[0002]
[Prior art]
Generally, a NOx storage catalyst is an exhaust gas aftertreatment device that stores NOx in exhaust gas at a lean air-fuel ratio and releases and reduces the stored NOx at a rich air-fuel ratio.
Specifically, it has a characteristic of storing NOx in exhaust gas as a nitrate in an excess oxygen state (oxidizing atmosphere) and reducing the stored NOx to nitrogen in a excess carbon monoxide state (reducing atmosphere). The internal combustion engine periodically switches to a rich operation in which the excess air ratio is low (low λ) such that the exhaust air-fuel ratio is controlled to a stoichiometric air-fuel ratio or a value close to the stoichiometric air-fuel ratio before the NOx storage amount is saturated. To regenerate the NOx storage catalyst.
[0003]
Further, since SOx resulting from oxidation of the S component in the fuel is also deposited as sulfate on the NOx storage catalyst, the rich spike operation is periodically performed as described above in order to release the deposited S component (S purge). To regenerate the NOx storage catalyst.
Here, since the S purge requires a high temperature of about 650 ° C. and a rich or stoichiometric exhaust gas, the NOx storage catalyst uses an intake air for reducing fuel consumption in order to realize the S purge condition. Although a method of combining the throttle with the exhaust gas recirculation (EGR) cut and the post injection is known, there is a problem that the pumping loss caused by the intake throttle causes fuel consumption to deteriorate.
[0004]
Then, a technique of an exhaust gas purification device for an internal combustion engine that overcomes this situation has been proposed (for example, see Patent Document 1).
In this device, when releasing and reducing the stored NOx, the fuel injection amount is increased with respect to the torque decrease due to the pumping loss, and the gas is introduced by the EGR to prevent deterioration of fuel efficiency.
[0005]
On the other hand, the DPF is an exhaust gas post-treatment device that collects and processes particulate matter (PM) in exhaust gas. Specifically, since exhaust gas from a diesel engine or the like contains a large amount of PM in addition to HC, CO, NOx, etc., after collecting the PM in a filter, the exhaust gas of about 600 ° C. Recycle DPF by incineration and removal using exhaust gas.
[0006]
Here, in the DPF, the self-regeneration can be realized depending on the operating conditions, but a forced regeneration system for forcibly increasing the temperature of the DPF is indispensable when all the operating conditions are assumed. However, in this forced regeneration, for example, if the temperature of the DPF is too low, the regeneration speed is slow, and if it is too high, the DPF is damaged due to rapid regeneration, which makes it difficult to control the temperature. Therefore, in the DPF, a technique of an exhaust gas purification device for an internal combustion engine that controls the regeneration speed of the DPF by controlling the air-fuel ratio of the internal combustion engine has been proposed (for example, see Patent Document 2).
[0007]
In this device, the exhaust system is provided with a NOx storage catalyst and a DPF, and during forced regeneration of the DPF, the combustion of PM is suppressed by setting a rich air-fuel ratio until the DPF reaches a predetermined temperature. Until a predetermined time from the desorption temperature is reached, the rich air-fuel ratio is set and the S poisoning is released. As a result, compatibility between requirements for drivability and exhaust gas and excess air ratio for DPF regeneration is achieved.
[0008]
[Patent Document 1]
JP-A-10-184418 (paragraph numbers 0016 to 0023, etc.)
[Patent Document 2]
JP-A-2002-213229 (paragraph numbers 0015 to 0020, FIG. 1 and the like)
[0009]
[Problems to be solved by the invention]
By the way, the forced regeneration of the DPF and the S-purge of the NOx storage catalyst are common in that, as described above, both can be performed using high-temperature exhaust gas that has reached about 650 ° C.
Therefore, it is conceivable that the forced regeneration of the DPF and the S-purge of the NOx storage catalyst are simultaneously performed. The former requires exhaustion in a lean atmosphere for soot oxidation, whereas the latter requires exhaustion in a stoichiometric or rich atmosphere. Therefore, it is generally considered that it is generally difficult to carry out these steps simultaneously.
[0010]
Further, in order to control the regeneration speed of the DPF, it is desired to freely control the excess air ratio of the exhaust gas, but the degree of freedom is small regarding the excess air ratio of the exhaust gas from the internal combustion engine. Therefore, in view of this point, it is generally considered difficult to simultaneously perform the forced regeneration of the DPF and the S purge of the NOx storage catalyst.
However, if it is possible to simultaneously perform the forced regeneration of the DPF and the S purge of the NOx storage catalyst, the total regeneration time required for the regeneration can be shortened, and the deterioration of fuel efficiency can be further prevented. become.
[0011]
Here, in the conventional technology, in particular, in the exhaust gas purifying apparatus for an internal combustion engine described in Patent Document 2, when performing the S purge, after the DPF exceeds a predetermined temperature, the rich state is maintained until a predetermined time elapses. The air-fuel ratio is maintained and then switched to a lean air-fuel ratio. That is, first, the S purge is performed without performing the forced regeneration of the DPF, and then the forced regeneration of the DPF is performed without performing the S purge. Therefore, the forced regeneration of the DPF and the S purge of the NOx storage catalyst are performed. Cannot be implemented at the same time.
[0012]
In other words, the total regeneration time in this case starts from the point in time when the DPF exceeds a predetermined temperature, the S poisoning is released by permitting the S purge, and then the exhaust gas is switched to a lean atmosphere to perform the forced regeneration of the DPF. There is a problem that the time is required to be completed after the operation is performed, which is prolonged. That is, in the above-described conventional technology, there is still a problem in preventing deterioration of fuel efficiency.
[0013]
Further, in the exhaust gas purifying apparatus for an internal combustion engine described in Patent Document 2, when exhaust gas with a high temperature and a lean atmosphere is realized by EGR cut and post injection for DPF regeneration, an excess air ratio of exhaust gas from the internal combustion engine is obtained. Is not controlled, the NOx emission from the internal combustion engine increases, and there is a problem that the exhaust gas performance is adversely affected.
The present invention has been made in view of such a problem, and an object of the present invention is to provide an exhaust gas purification device for an internal combustion engine that can simultaneously perform forced regeneration of a DPF and S purge of a NOx storage catalyst.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, an exhaust gas purifying apparatus for an internal combustion engine according to claim 1 includes an intake passage and an exhaust passage communicating with a cylinder of the internal combustion engine, a supercharger and intake throttle means provided in the intake passage, A NOx storage catalyst that is provided in the exhaust passage and stores NOx in the exhaust during the lean operation and releases and reduces the stored NOx by performing the rich operation. A filter for collecting the curated matter, a secondary air supply passage for introducing air for regeneration of the filter from an intake upstream side of the intake throttle means to an exhaust upstream side of the filter, and an air amount of the secondary air supply passage. Exhaust purification control means.
[0015]
Therefore, according to the exhaust gas purifying apparatus for an internal combustion engine, the NOx storage catalyst is installed on the exhaust gas upstream side and the DPF is installed on the downstream side thereof, and the secondary air is taken out from the upstream of the intake throttle means. Since it is introduced between the catalyst and the DPF, high-temperature and stoichiometric or rich atmosphere exhaust gas from the internal combustion engine can be introduced into the NOx storage catalyst to perform S purge, and at the same time, the stoichiometry that has passed through the NOx storage catalyst Alternatively, secondary air is merged with the exhaust gas in the rich atmosphere to generate exhaust gas in the lean atmosphere, and the exhaust gas in the lean atmosphere can be introduced into the DPF to perform forced regeneration. That is, the forced regeneration of the DPF and the S purge of the NOx storage catalyst can be performed simultaneously. As a result, the total regeneration time is shortened, and deterioration of fuel efficiency is further prevented.
[0016]
Further, the invention according to claim 2 is characterized in that a temperature sensor or an air-fuel ratio sensor for controlling the amount of air is provided downstream of the exhaust gas of the filter. As described above, the exhaust gas purification control means uses the excess air existing on the upstream side of the intake throttle means as the air for regeneration of the DPF, and controls the amount of air according to the state of the exhaust gas downstream of the DPF. The playback speed can be appropriately controlled.
[0017]
Further, in the invention according to claim 3, the exhaust gas purification control means further controls the air-fuel ratio in the cylinder, and a temperature sensor or an air-fuel ratio sensor is provided on the exhaust gas upstream side of the NOx storage catalyst. And
As described above, since the exhaust gas purification control unit also controls the exhaust air-fuel ratio from the internal combustion engine in accordance with the state of the exhaust gas upstream of the NOx storage catalyst, the three-way function of the NOx storage catalyst can be used. , NOx is reliably purified, and the exhaust gas performance is improved.
[0018]
In the invention described in claim 4, the internal combustion engine includes an EGR passage communicating the intake passage and the exhaust passage, and the exhaust gas purification control means includes NOx stored in the NOx storage catalyst and S component adhering to the NOx storage catalyst. It is characterized in that the exhaust gas recirculation through the EGR passage is suppressed when the exhaust gas is discharged and when the particulate matter collected in the filter is incinerated and removed.
[0019]
Thereby, since the control of the amount of secondary air and the control of the exhaust air-fuel ratio from the internal combustion engine by the exhaust gas purification control means are not affected by the EGR gas, the performance of the NOx storage catalyst can be reduced without sacrificing the exhaust gas performance. The S purge and the forced regeneration of the DPF can be performed simultaneously and appropriately.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an engine system configuration diagram including a multi-cylinder diesel engine (hereinafter, simply referred to as an engine) 1 to which an exhaust gas purification apparatus for an internal combustion engine according to an embodiment of the present invention is applied. The configuration of the exhaust gas purifying apparatus for an internal combustion engine according to the present invention will be described based on FIG.
[0021]
Each cylinder 2 of the engine 1 has a fuel supply system having a common rail type fuel injection device, an intake passage 8 through which intake air is introduced into the combustion chamber 4 by opening an intake valve 6, and an opening of an exhaust valve 18. The valve is connected to an exhaust passage 20 through which exhaust gas from the combustion chamber 4 is led out.
An air cleaner 16 is connected to the most upstream portion of the intake passage 8, and a supercharger 14 is interposed downstream thereof. A throttle valve (intake throttle means) 10 and a surge tank 12 are arranged downstream of the supercharger 14 in this order. The throttle valve 10 is a so-called drive-by-wire type throttle valve (ETV), and its opening is changed according to the engine operating state.
[0022]
On the other hand, a NOx storage catalyst 22 is connected downstream of the exhaust passage 20. The NOx storage catalyst 22 stores NOx in exhaust when the exhaust air-fuel ratio is lean, and releases the stored NOx when the exhaust air-fuel ratio is rich and a reducing agent (HC or CO) exists in the exhaust. This NOx storage catalyst has a known structure. In this embodiment, NOx is released and reduced by post injection.
[0023]
A DPF (filter) 23 is connected downstream of the NOx storage catalyst 22. The DPF 23 captures PM in the exhaust gas, incinerates and removes the PM with high-temperature exhaust gas, and regenerates the PM. This DPF also has a known configuration.
An exhaust circulation passage (EGR passage) 24 branches and extends from the exhaust passage 20, and a part of the exhaust gas (EGR gas) is recirculated into the intake passage 8 to suppress the emission of NOx. The distal end of the EGR passage 24 is connected to the intake passage 8 at the surge tank 12 on the downstream side of the position of the ETV 10 in the intake passage 8. An EGR cooler 26 for cooling EGR gas and an EGR valve 28 electrically connected to an electronic control unit (ECU) 44 are provided in the EGR passage 24. The channel area is adjusted.
[0024]
Here, a secondary air supply passage 30 branches off and extends from the intake passage 8, and a part of the intake air is introduced into the DPF 23 to be used for regeneration of the DPF 23. The front end 32 of the secondary air supply passage 30 is opened between the NOx storage catalyst 22 and the DPF 23, and the rear end 31 of the secondary air supply passage 30 is located upstream of the position where the ETV 10 is provided. It is open to. The secondary air supply passage 30 is provided with a secondary air valve 33 electrically connected to the ECU 44, and the flow area of the secondary air supply passage 30 is adjusted by opening and closing the secondary air valve 33.
[0025]
The ETV 10 is also electrically connected to the ECU 44, and adjusts the EGR gas amount during normal control by adjusting the flow passage area of the intake passage 8. Then, fresh air from the air cleaner 16 enters the intake passage 8 via the supercharger 14, is adjusted by the ETV 10, merges with the EGR gas, and is guided into the combustion chamber 4 of each cylinder 2. When the combustion of the fuel is completed, the exhaust gas is discharged to the exhaust passage 20 and sent to the NOx storage catalyst 22 and the DPF 23.
[0026]
On the other hand, in the ETV 10, during the simultaneous regeneration control, fresh air from the air cleaner 16 enters the intake passage 8 via the supercharger 14, is adjusted by the ETV 10, and is sent to the DPF 23 via the secondary air supply passage 30. Can be As described above, the air existing upstream of the ETV 10 is used as surplus air for the regeneration air of the DPF 23. This is because when the ETV 10 is narrowed to a degree that suppresses PM generation, high-pressure air exists upstream of the ETV 10, and a part of this air is considered to be excess air. In this case, the exhaust pressure (turbine upstream pressure) can be relatively reduced, which also leads to an improvement in fuel efficiency.
[0027]
Here, an airflow sensor 34 is provided at an appropriate position downstream of the air cleaner 16 in the intake passage 8. In the exhaust passage 20, a temperature sensor 36 and an A / F sensor (air-fuel ratio sensor) 38 are disposed at appropriate positions on the upstream side of the NOx storage catalyst 22, and the temperature T1 of the exhaust gas from the engine 1 and the temperature T1. The exhaust air-fuel ratio λ1 is detected. In the exhaust passage 20, a temperature sensor 40 and an A / F sensor (air-fuel ratio sensor) 42 are disposed at appropriate positions on the downstream side of the DPF 23, and the temperature T2 of exhaust gas passing through the DPF 23 and the exhaust air-fuel ratio λ2 are detected.
[0028]
On the input side of the ECU 44, in addition to the temperature sensor 36, the A / F sensor 38, the temperature sensor 40 and the A / F sensor 42, various sensors for detecting the operating state of the engine 1, such as the air flow sensor 34, are electrically connected. It is connected. On the other hand, on the output side of the ECU 44, various actuators of the ETV 10, the EGR valve 28, and the secondary air valve 33 described above are electrically connected.
[0029]
Here, in particular, the ECU 44 includes an exhaust gas purification control unit 46 (exhaust gas purification control means). The exhaust purification control unit 46 controls the amount of air introduced from the secondary air supply passage 30 to the DPF 23, the function of controlling the exhaust air-fuel ratio of the engine 1, the S-purging of the NOx storage catalyst 22, It has a function of controlling the amount of EGR gas during simultaneous regeneration control with forced regeneration of the DPF 23.
[0030]
That is, during normal control of the engine 1, the exhaust gas purification control unit 46 stores NOx in exhaust gas in the oxidizing atmosphere in the NOx storage catalyst 22 while simultaneously performing S purge of the NOx storage catalyst 22 and forced regeneration of the DPF 23. During control, additional fuel is injected after the compression top dead center, etc., and a rich spike is performed to introduce high-temperature and stoichiometric or rich atmosphere exhaust gas from the engine 1 to the NOx storage catalyst 22, and the stored NOx is released and reduced in a reducing atmosphere. The NOx storage catalyst 22 is regenerated by releasing the attached S component in a reducing atmosphere, and the exhaust gas of the stoichiometric or rich atmosphere passing through the NOx storage catalyst 22 and the secondary air from the secondary air supply passage 30 are discharged. To generate exhaust in a lean atmosphere, and the exhaust in the lean atmosphere is introduced into the DPF 23 for forced regeneration. There.
[0031]
More specifically, the exhaust gas purification control unit 46 reads the exhaust gas temperature T1 on the exhaust gas upstream side of the NOx storage catalyst 22 by the temperature sensor 36, recognizes the current temperature of the NOx storage catalyst 22, and sets the A / F sensor The current exhaust air-fuel ratio of the engine 1 is recognized by reading the exhaust air-fuel ratio λ1 of the NOx storage catalyst 22 on the exhaust upstream side of the NOx storage catalyst 38.
As a result, the exhaust air-fuel ratio of the engine 1 can be set to a stoichiometric or rich atmosphere, and NOx is reliably purified using the three-way function of the NOx storage catalyst 22.
[0032]
Further, the exhaust gas purification control unit 46 reads the exhaust gas temperature T2 on the exhaust gas downstream side of the DPF 23 by the temperature sensor 40 to recognize the current temperature of the DPF 23, and also detects the exhaust air on the exhaust gas downstream side of the DPF 23 by the A / F sensor 42. By reading the fuel ratio λ2, the current exhaust air-fuel ratio immediately before the DPF 23 is recognized. As a result, the regeneration speed of the DPF 23 is appropriately controlled, thereby preventing the amount of heat generated by the combustion of PM from suddenly increasing and causing damage to the DPF 23.
[0033]
Next, the operation of the exhaust gas purification device will be described.
FIG. 2 is a flowchart of the simultaneous regeneration control and the like in the exhaust gas purification control unit 46. In step S201 of the figure, the travel distance of the vehicle is read, and in step S202, the exhaust gas temperature T1 on the exhaust gas upstream side of the NOx storage catalyst 22 and the exhaust gas temperature T2 on the exhaust gas downstream side of the DPF 23 are read, and the process proceeds to step S203.
[0034]
In step S203, it is determined whether any of S purge of the NOx storage catalyst 22 and forced regeneration of the DPF 23 is required. For example, if the travel distance of the vehicle is 200 to 300 km and the exhaust temperature is When it is determined that regeneration is necessary, such as when both T1 and the exhaust gas temperature T2 are as high as about 650 ° C., that is, when the determination is YES, the process proceeds to step S204, and the EGR valve 28 is closed. To step S205. This is to prevent the EGR gas from affecting the air amount control of the secondary air and the control of the exhaust air-fuel ratio from the engine 1.
[0035]
In step S205, first, in order to perform the S purge, the exhaust air-fuel ratio λ1 on the upstream side of the NOx storage catalyst 22 is set to stoichiometric or rich, and the engine 1 is instructed to generate exhaust gas having a high temperature and the same atmosphere. Then, the process proceeds to step S206.
In step S206, in parallel with the execution of the S purge, the secondary air valve 33 is opened to execute the regeneration of the DPF 23. In step S207, the exhaust air-fuel ratio λ2 on the downstream side of the DPF 23 is set to lean. Proceed to S208.
[0036]
In step S208, the exhaust gas temperature T1, the exhaust gas temperature T2, and the detected values of the exhaust air-fuel ratio λ1 and the exhaust air-fuel ratio λ1 are fed back as appropriate to perform simultaneous regeneration control with S purge of the NOx storage catalyst 22 and forced regeneration of the DPF 23. This control is performed until the poisoning is released and the PM is removed, for example, until a predetermined time has elapsed, and the routine exits.
[0037]
On the other hand, if it is determined in step S203 that the regeneration is not necessary, the process proceeds to step S209, the secondary air valve 33 is closed, the exhaust air-fuel ratio λ1 is set to lean in step S210, and the process proceeds to step S211. Then, the EGR valve 28 is opened, and in step S212, normal control for the diesel engine is performed, and the routine exits.
[0038]
As described above, in the present invention, the S purge of the NOx storage catalyst 22 can be performed, and at the same time, the forced regeneration of the DPF 23 can be performed. The required time, that is, the total regeneration time is shortened, and the fuel consumption can be significantly prevented from deteriorating as compared with, for example, the case where post-injection is performed.
[0039]
Further, even during the forced regeneration of the DPF 23, since the NOx storage catalyst 22 purifies NOx, it is possible to prevent the exhaust gas performance from deteriorating during the regeneration.
Further, the regeneration speed of the DPF 23 can be freely controlled only by the degree of opening and closing of the secondary air valve 33, that is, it can be performed independently of the control of the exhaust air-fuel ratio for the engine 1. Danger such as breakage can be reduced.
[0040]
The description of one embodiment of the present invention is finished above, but the present invention is not limited to the above embodiment, and various changes can be made without departing from the spirit of the present invention.
For example, in the above-described embodiment, the A / F sensor 42 is installed downstream of the DPF 23 in order to feedback-control the amount of secondary air, but instead, the A / F sensor 42 is controlled by the air flow sensor 34 and the fuel supply system. The air-fuel ratio calculated from the fuel injection amount may be used. In this case, the same effect as described above can be obtained.
[0041]
In the above-described embodiment, the A / F sensor 38 is provided to control the exhaust air-fuel ratio from the engine 1. However, an O 2 sensor may be provided instead. An upstream temperature sensor (upstream or downstream of the supercharger 14) may be used for the S purge control of the NOx storage catalyst 22.
Further, when an intercooler is installed in the intake passage 8, the rear end portion 31 of the secondary air supply passage 30 may be disposed upstream of the intercooler so that the temperature of the secondary air does not drop too much.
[0042]
The engine is preferably a diesel engine, but is not limited to this. The exhaust gas purifying apparatus for an internal combustion engine of the present invention is applicable to all engine systems that have a NOx storage catalyst in an exhaust passage and can perform a rich operation. Can be done.
[0043]
【The invention's effect】
As can be understood from the above description, according to the exhaust gas purifying apparatus for an internal combustion engine according to the first aspect of the present invention, the NOx storage catalyst is installed on the upstream side of the exhaust gas, the DPF is installed on the downstream side thereof, and Since secondary air is taken out from the upstream and introduced between the NOx storage catalyst and the DPF, high-temperature and stoichiometric or rich exhaust gas from the internal combustion engine can be introduced into the NOx storage catalyst to perform S purge. At the same time, secondary air is combined with exhaust gas in the stoichiometric or rich atmosphere that has passed through the NOx storage catalyst to generate lean exhaust gas, and the lean exhaust gas can be introduced into the DPF to perform forced regeneration. That is, the forced regeneration of the DPF and the S purge of the NOx storage catalyst can be performed simultaneously. As a result, the total regeneration time can be shortened, and the deterioration of fuel efficiency can be further prevented.
[0044]
According to the second aspect of the present invention, the exhaust gas purification control means uses the excess air existing upstream of the intake throttle means as the air for regeneration of the DPF, and according to the situation of the exhaust gas downstream of the DPF, Since the amount of air is controlled, the DPF regeneration speed can be appropriately controlled.
Further, according to the third aspect of the present invention, the exhaust gas purification control means also controls the exhaust air-fuel ratio from the internal combustion engine in accordance with the state of the exhaust gas upstream of the NOx storage catalyst. The original function can be used, NOx can be reliably purified, and the exhaust gas performance can be improved.
[0045]
According to the fourth aspect of the present invention, the control of the amount of secondary air by the exhaust gas purification control means and the control of the exhaust air-fuel ratio from the internal combustion engine are not affected by the EGR gas. Thus, the S purge of the NOx storage catalyst and the forced regeneration of the DPF can be performed simultaneously and appropriately.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an engine to which an exhaust gas purification device for an internal combustion engine according to an embodiment of the present invention is applied.
FIG. 2 is a flowchart of a simultaneous regeneration control in the exhaust gas purification device of FIG.
[Explanation of symbols]
Reference Signs List 1 internal combustion engine 2 cylinder 8 intake passage 10 ETV (intake throttle means)
14 Supercharger 20 Exhaust passage 22 NOx storage catalyst 23 DPF (filter)
24 EGR passage 30 Secondary air supply passage 36 Temperature sensor 38 Air-fuel ratio sensor 40 Temperature sensor 42 Air-fuel ratio sensor 44 ECU (electronic control unit)
46 Exhaust gas purification control unit (Exhaust gas purification control means)

Claims (4)

内燃機関の気筒に連通する吸気通路及び排気通路と、
前記吸気通路に設けられた過給機及び吸気絞り手段と、
前記排気通路に設けられ、リーン運転時に排気中のNOxを吸蔵するとともにリッチ運転を行うことで該吸蔵したNOxを放出還元するNOx吸蔵触媒と、
該NOx吸蔵触媒の排気下流側に設けられ、排気中のパティキュレート・マターを捕集するフィルタと、
前記吸気絞り手段の吸気上流側から前記フィルタの排気上流側に該フィルタの再生用空気を導入させる二次空気供給通路と、
該二次空気供給通路の空気量を制御する排気浄化制御手段と、を備えたことを特徴とする内燃機関の排気浄化装置。
An intake passage and an exhaust passage communicating with a cylinder of the internal combustion engine,
A supercharger and intake throttle means provided in the intake passage;
A NOx storage catalyst provided in the exhaust passage, which stores NOx in exhaust gas during a lean operation and performs a rich operation to release and reduce the stored NOx;
A filter provided on the exhaust gas downstream side of the NOx storage catalyst to collect particulate matter in the exhaust gas;
A secondary air supply passage for introducing air for regeneration of the filter from an intake upstream side of the intake throttle means to an exhaust upstream side of the filter,
An exhaust gas purification apparatus for an internal combustion engine, comprising: exhaust gas purification control means for controlling the amount of air in the secondary air supply passage.
前記フィルタの排気下流側には、前記空気量を制御するための温度センサ又は空燃比センサが設けられていることを特徴とする請求項1記載の内燃機関の排気浄化装置。The exhaust gas purification device for an internal combustion engine according to claim 1, wherein a temperature sensor or an air-fuel ratio sensor for controlling the amount of air is provided downstream of the filter. 前記排気浄化制御手段は、さらに前記気筒内の空燃比を制御し、前記NOx吸蔵触媒の排気上流側には、温度センサ又は空燃比センサが設けられていることを特徴とする請求項1又は2記載の内燃機関の排気浄化装置。The exhaust gas purification control means further controls an air-fuel ratio in the cylinder, and a temperature sensor or an air-fuel ratio sensor is provided on an exhaust gas upstream side of the NOx storage catalyst. An exhaust gas purifying apparatus for an internal combustion engine according to claim 1. 前記内燃機関は、前記吸気通路と前記排気通路とを連通するEGR通路を備え、前記排気浄化制御手段は、前記NOx吸蔵触媒に吸蔵したNOx及び該NOx吸蔵触媒に付着したS成分を放出させるとき、並びに、前記フィルタに捕集したパティキュレートを焼却除去させるとき、前記EGR通路による排気還流を抑えることを特徴とする請求項1から3のいずれか一項に記載の内燃機関の排気浄化装置。The internal combustion engine includes an EGR passage that communicates the intake passage and the exhaust passage, and the exhaust gas purification control unit releases the NOx stored in the NOx storage catalyst and the S component attached to the NOx storage catalyst. The exhaust gas purifying apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein, when the particulate matter trapped in the filter is incinerated and removed, exhaust gas recirculation through the EGR passage is suppressed.
JP2003117029A 2003-04-22 2003-04-22 Exhaust emission control device of internal combustion engine Pending JP2004324454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003117029A JP2004324454A (en) 2003-04-22 2003-04-22 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003117029A JP2004324454A (en) 2003-04-22 2003-04-22 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004324454A true JP2004324454A (en) 2004-11-18

Family

ID=33497059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003117029A Pending JP2004324454A (en) 2003-04-22 2003-04-22 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004324454A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005299477A (en) * 2004-04-09 2005-10-27 Honda Motor Co Ltd Exhaust emission control device for diesel engine
WO2007136148A1 (en) * 2006-05-24 2007-11-29 Sk Energy Co., Ltd. Exhaust gas purifying device for diesel engine with exhaust gas recirculation line
JP2010203320A (en) * 2009-03-03 2010-09-16 Honda Motor Co Ltd Exhaust emission control device
JP2010540217A (en) * 2007-09-28 2010-12-24 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Removal of particles from exhaust gas of internal combustion engines operated mainly with stoichiometric mixtures
DE102009043087A1 (en) * 2009-09-25 2011-03-31 Volkswagen Ag Internal-combustion engine i.e. diesel engine, of motor vehicle, has secondary air lines for supplying secondary air into exhaust system and arranged such that secondary air lines divert from combustion air system
CN102032031A (en) * 2009-09-29 2011-04-27 福特环球技术公司 Controlling operation of exhaust of an engine including a particulate filter
CN102251834A (en) * 2009-09-29 2011-11-23 福特环球技术公司 Reproduction of particulate filter of exhaust system of engine
JP2018031301A (en) * 2016-08-24 2018-03-01 三菱自動車工業株式会社 Exhaust emission control device for engine
KR20180110623A (en) * 2017-03-29 2018-10-10 로베르트 보쉬 게엠베하 Method and control unit for operating a particle filter
CN111022201A (en) * 2018-10-10 2020-04-17 丰田自动车株式会社 Control device for internal combustion engine, and vehicle
US11111838B2 (en) * 2019-02-13 2021-09-07 Indmar Products Company, Inc. Marine engine exhaust system having secondary air injection
DE102010046897B4 (en) 2009-09-29 2023-09-21 Ford Global Technologies, Llc Method for regenerating a particulate filter for a direct injection engine

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134717U (en) * 1988-03-09 1989-09-14
JPH05106518A (en) * 1991-10-16 1993-04-27 Nissan Motor Co Ltd Exhaust gas reflux device of diesel engine
JPH0719029A (en) * 1993-06-30 1995-01-20 Toyota Autom Loom Works Ltd Exhaust gas emission control device for diesel engine
JPH07332071A (en) * 1994-04-12 1995-12-19 Toyota Motor Corp Exhaust emission control method for internal combustion engine
JPH08210123A (en) * 1995-02-03 1996-08-20 Nippondenso Co Ltd Exhaust emission control device for diesel engine
JPH11294145A (en) * 1998-04-06 1999-10-26 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2000170521A (en) * 1998-12-08 2000-06-20 Toyota Motor Corp Capturing amount calculating method of particulate filter and regenerating method
JP2002364346A (en) * 2001-06-06 2002-12-18 Mazda Motor Corp Exhaust emission control device for engine
JP2002364432A (en) * 2001-06-06 2002-12-18 Mazda Motor Corp Exhaust emission control device for engine
JP2003003833A (en) * 2001-06-26 2003-01-08 Isuzu Motors Ltd Regeneration control method for continuous regeneration type diesel particulate filter device
JP2003041929A (en) * 2001-08-01 2003-02-13 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2003113710A (en) * 2001-10-04 2003-04-18 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2003201828A (en) * 2002-01-08 2003-07-18 Nissan Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2003286832A (en) * 2002-03-29 2003-10-10 Isuzu Motors Ltd Exhaust gas control system and control method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134717U (en) * 1988-03-09 1989-09-14
JPH05106518A (en) * 1991-10-16 1993-04-27 Nissan Motor Co Ltd Exhaust gas reflux device of diesel engine
JPH0719029A (en) * 1993-06-30 1995-01-20 Toyota Autom Loom Works Ltd Exhaust gas emission control device for diesel engine
JPH07332071A (en) * 1994-04-12 1995-12-19 Toyota Motor Corp Exhaust emission control method for internal combustion engine
JPH08210123A (en) * 1995-02-03 1996-08-20 Nippondenso Co Ltd Exhaust emission control device for diesel engine
JPH11294145A (en) * 1998-04-06 1999-10-26 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2000170521A (en) * 1998-12-08 2000-06-20 Toyota Motor Corp Capturing amount calculating method of particulate filter and regenerating method
JP2002364346A (en) * 2001-06-06 2002-12-18 Mazda Motor Corp Exhaust emission control device for engine
JP2002364432A (en) * 2001-06-06 2002-12-18 Mazda Motor Corp Exhaust emission control device for engine
JP2003003833A (en) * 2001-06-26 2003-01-08 Isuzu Motors Ltd Regeneration control method for continuous regeneration type diesel particulate filter device
JP2003041929A (en) * 2001-08-01 2003-02-13 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2003113710A (en) * 2001-10-04 2003-04-18 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2003201828A (en) * 2002-01-08 2003-07-18 Nissan Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2003286832A (en) * 2002-03-29 2003-10-10 Isuzu Motors Ltd Exhaust gas control system and control method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005299477A (en) * 2004-04-09 2005-10-27 Honda Motor Co Ltd Exhaust emission control device for diesel engine
JP4523317B2 (en) * 2004-04-09 2010-08-11 本田技研工業株式会社 Diesel engine exhaust purification system
WO2007136148A1 (en) * 2006-05-24 2007-11-29 Sk Energy Co., Ltd. Exhaust gas purifying device for diesel engine with exhaust gas recirculation line
JP2010540217A (en) * 2007-09-28 2010-12-24 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Removal of particles from exhaust gas of internal combustion engines operated mainly with stoichiometric mixtures
JP2010203320A (en) * 2009-03-03 2010-09-16 Honda Motor Co Ltd Exhaust emission control device
DE102009043087A1 (en) * 2009-09-25 2011-03-31 Volkswagen Ag Internal-combustion engine i.e. diesel engine, of motor vehicle, has secondary air lines for supplying secondary air into exhaust system and arranged such that secondary air lines divert from combustion air system
DE102009043087B4 (en) 2009-09-25 2023-08-03 Volkswagen Ag Internal combustion engine with secondary air supply and a method for operating this
US8739518B2 (en) 2009-09-29 2014-06-03 Ford Global Technologies, Llc Controlling operation of exhaust of an engine including a particulate filter
CN102251834A (en) * 2009-09-29 2011-11-23 福特环球技术公司 Reproduction of particulate filter of exhaust system of engine
CN102032031A (en) * 2009-09-29 2011-04-27 福特环球技术公司 Controlling operation of exhaust of an engine including a particulate filter
DE102010046897B4 (en) 2009-09-29 2023-09-21 Ford Global Technologies, Llc Method for regenerating a particulate filter for a direct injection engine
DE102010046747B4 (en) 2009-09-29 2023-09-21 Ford Global Technologies, Llc Petrol particulate filter regeneration and diagnosis
JP2018031301A (en) * 2016-08-24 2018-03-01 三菱自動車工業株式会社 Exhaust emission control device for engine
KR20180110623A (en) * 2017-03-29 2018-10-10 로베르트 보쉬 게엠베하 Method and control unit for operating a particle filter
KR102517209B1 (en) * 2017-03-29 2023-04-04 로베르트 보쉬 게엠베하 Method and control unit for operating a particle filter
CN111022201A (en) * 2018-10-10 2020-04-17 丰田自动车株式会社 Control device for internal combustion engine, and vehicle
US11111838B2 (en) * 2019-02-13 2021-09-07 Indmar Products Company, Inc. Marine engine exhaust system having secondary air injection
US11473474B2 (en) 2019-02-13 2022-10-18 Indmar Products Company, Inc. Method of injecting secondary air into an exhaust gas stream of a marine engine

Similar Documents

Publication Publication Date Title
JP4337809B2 (en) Exhaust gas purification system for internal combustion engine
US6962045B2 (en) Exhaust gas apparatus and method for purifying exhaust gas in internal combustion engine
JP3855818B2 (en) Diesel engine exhaust purification system
US20040128985A1 (en) Exhaust gas purification device
JP4203730B2 (en) Exhaust gas purification device for internal combustion engine
WO2007004471A1 (en) Control device for diesel engine
JP4433861B2 (en) Exhaust gas purification device for internal combustion engine
JP2004324454A (en) Exhaust emission control device of internal combustion engine
JP2008128162A (en) Exhaust emission control device of internal combustion engine
JP4435300B2 (en) Control device for internal combustion engine
EP1536120B1 (en) Exhaust gas control apparatus for internal combustion engine and control method thereof
JP2016145532A (en) Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method for internal combustion engine
JP2009287515A (en) Controller of internal combustion engine
JP4709733B2 (en) Exhaust gas purification device for internal combustion engine
WO2016132875A1 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP4075822B2 (en) Diesel engine exhaust purification system
JP2010007634A (en) Exhaust emission control device for an internal combustion engine
JP2004176636A (en) Exhaust emission control device for internal combustion engine
JP4727472B2 (en) Exhaust purification device
JP2006274985A (en) Exhaust gas aftertreatment device
JP4894615B2 (en) Exhaust gas purification device for internal combustion engine
JP2007040223A (en) Exhaust emission control device
JP6447214B2 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP5379733B2 (en) Engine exhaust purification system
JP4000929B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090121