JP4203730B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4203730B2
JP4203730B2 JP2003117030A JP2003117030A JP4203730B2 JP 4203730 B2 JP4203730 B2 JP 4203730B2 JP 2003117030 A JP2003117030 A JP 2003117030A JP 2003117030 A JP2003117030 A JP 2003117030A JP 4203730 B2 JP4203730 B2 JP 4203730B2
Authority
JP
Japan
Prior art keywords
exhaust
dpf
temperature
rich
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003117030A
Other languages
Japanese (ja)
Other versions
JP2004324455A (en
Inventor
恵 信ヶ原
道博 畠
和郎 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2003117030A priority Critical patent/JP4203730B2/en
Priority to DE102004019660A priority patent/DE102004019660B4/en
Publication of JP2004324455A publication Critical patent/JP2004324455A/en
Application granted granted Critical
Publication of JP4203730B2 publication Critical patent/JP4203730B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1474Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method by detecting the commutation time of the sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気浄化装置に係り、詳しくは、ディーゼル・パティキュレート・フィルタ(DPF)の再生に適用される内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
一般に、DPFは、排気中のパティキュレート・マター(PM)を捕集して処理する排ガス後処理装置である。具体的には、ディーゼルエンジン等の排気中には、HC、CO、NOx等の他に、PMが多く含まれていることから、このPMをフィルタに捕集した後に約600℃程度の高温の排ガスを利用し、焼却除去させてDPFの再生を図る。
【0003】
ここで、DPFでは、運転条件によってはその自己再生が実現できるものの、あらゆる運転条件を想定した場合には、DPFの温度を強制的に昇温させる強制再生システムが不可欠である。しかし、この強制再生においては、例えば、DPFの温度が低すぎると再生速度が遅く、高すぎると急激な再生によってDPFの破損を招く等、その温度制御が困難である。そこで、DPFでは、内燃機関の空燃比制御により、DPFでの再生速度を制御する内燃機関の排気浄化装置の技術が提案されている(例えば、特許文献1参照)。
【0004】
当該装置では、排気系にDPFを備えており、DPFの強制再生時には、DPFが所定温度に達するまではリッチ空燃比に設定し、DPFが所定温度に昇温してからリーン空燃比に切換えてPMを燃焼除去している。これにより、DPFの強制再生を図る。
また、当該装置では、前記DPFの他、排気系にNOx吸蔵触媒をも備えており、S成分の放出(Sパージ)時には、上記DPFが所定温度に達してから、さらにSOxの脱離温度から所定時間に達するまでリッチ空燃比を継続してS被毒を解除している。
【0005】
このNOx吸蔵触媒は、リーン空燃比のときに排気中のNOxを吸蔵し、リッチ空燃比のときに吸蔵したNOxを放出還元する排ガス後処理装置である。
具体的には、酸素過剰状態(酸化雰囲気)において排気中のNOxを硝酸塩として吸蔵し、この吸蔵したNOxを一酸化炭素過剰状態(還元雰囲気)で窒素に還元させる特性を有している。そして、内燃機関は、NOx吸蔵量が飽和する前に排気空燃比を理論空燃比又はその近傍値に制御する如くの空気過剰率が低い(低λ)状態のリッチ運転へ定期的に切換えるリッチスパイクを行い、NOx吸蔵触媒の再生を図る。また、NOx吸蔵触媒には、燃料中のS成分の酸化によるSOxも硫酸塩として堆積されるため、当該堆積した前記S成分の放出(Sパージ)を行うべく、上記と同様にリッチ運転を定期的に実施してNOx吸蔵触媒の再生を図る。
【0006】
ここで、このSパージには、約650℃程度の高温であってリッチ乃至ストイキオの排ガスが必要になる。
そこで、上述した当該装置では、DPFの強制再生時には、DPFが所定温度に達するまではリッチ空燃比にしてPMの燃焼を抑え、Sパージ時には、さらにSOxの脱離温度から所定時間に達するまでリッチ空燃比にしている。これによってS被毒を解除する。
【0007】
【特許文献1】
特開2002−213229号公報(段落番号0015〜0020、図1等)
【0008】
【発明が解決しようとする課題】
ところで、DPFの強制再生とNOx吸蔵触媒のSパージとは、上述の如く、ともに約650℃程度に達した高温の排ガスを用いれば可能である点で共通するものである。
よって、DPFの強制再生とNOx吸蔵触媒のSパージとを同時に実施させることが考えられるが、前者はsoot酸化のためにリーン雰囲気の排気が要求されるの対し、後者はストイキオ乃至リッチ雰囲気の排気が要求されることから、基本的にはこれらを同時に実施させることは一般には困難とも考えられる。
【0009】
しかし、DPFの強制再生とNOx吸蔵触媒のSパージとを同時に近付けるように実施させることが可能であれば、その再生に要する総再生時間が短縮化され、燃費の悪化をより一層の防止を図ることが可能になる。
また、DPFの強制再生に要する再生時間が短縮化されるだけでも、燃費の悪化をさらに防止を図ることが可能になる。
【0010】
ここで、前記従来の技術に記載の内燃機関の排気浄化装置では、Sパージを行う場合には、DPFが所定温度を超えてから、さらに所定時間が経過するまではリッチ空燃比を維持し、その後リーン空燃比に切換えてこのリーン空燃比を維持している。つまり、まずDPFの強制再生を行わずにSパージを実施し、次にSパージを行わずにDPFの強制再生を実施していることから、DPFの強制再生とNOx吸蔵触媒のSパージとを明らかに別個に実施しており、しかも、DPFの強制再生に要する時間は、Sパージが実施される分だけ長期化される。
【0011】
換言すれば、この場合の総再生時間は、DPFが所定温度を超えた時点から始まり、Sパージの許可によってS被毒が解除され、その後、リーン雰囲気の排気に切換えられてDPFの強制再生が実施されて終了するまでに要する時間となって長期化し、その間に消費される燃料量が二重に必要なるという問題がある。すなわち、前記従来の技術では、燃費の悪化の防止を図る点については依然として課題が残されている。
【0012】
本発明は、このような課題に鑑みてなされたもので、DPF等に対する総強制再生時間の短縮化を図ることができる内燃機関の排気浄化装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記の目的を達成するべく、請求項1記載の内燃機関の排気浄化装置は、内燃機関の気筒に連通する排気通路と、排気通路に設けられ、リーン運転時に排気中のNOxを吸蔵するとともにリッチ運転を行うことで吸蔵したNOxを放出還元するNOx吸蔵触媒と、排気通路に設けられ、排気中のパティキュレート・マターを捕集するフィルタと、フィルタの温度を検出するフィルタ昇温検出手段と、フィルタ昇温検出手段によってフィルタが所定温度に達したと検出されたとき、内燃機関の排気空燃比をリッチ側とリーン側とに短い周期で変化させる排気浄化制御手段とを備え、前記排気浄化制御手段は、前記NOx吸蔵触媒の触媒温度及び触媒特性に基づいて前記排気空燃比のリッチ側の期間を設定するとともに、該設定されたリッチ側の期間、前記NOx吸蔵触媒と前記フィルタとの再生制御開始時におけるPMの堆積量に基づいて、前記排気空燃比のリーン側の期間を設定し、前記フィルタの下流側の排気温度によってパティキュレート・マターの燃焼温度が過大と判定された場合には該設定されたリッチ側の期間を長く、或いは該設定されたリーン側の期間を短く補正することを特徴としている。
【0014】
したがって、請求項1記載の内燃機関の排気浄化装置によれば、約600℃以上の如くのDPFの再生に必要な所定温度が実現されたときには、排気浄化制御手段が、排気空燃比をリッチ側とリーン側と短期間で切換えるので、DPFの強制再生とNOx吸蔵触媒のSパージとが可能な限り同時に近付けて実施されることになり、総再生時間の短縮化を図って消費される燃料量が削減され、燃費の悪化がより一層防止される。
【0015】
しかも、リッチ側とリーン側との複数回の切換えが周期的に行われることから、DPFの再生速度が過大にならずに適切に制御可能になる。特に、パティキュレート・マターの燃焼温度が過大と判定された場合においても、DPFの再生速度が適切に制御される。
なお、リッチ側の排気空燃比は、ストイキオを含み、該ストイキオよりも若干リッチ側であることが好ましい。
そして、排気浄化制御手段が、触媒温度、触媒特性及びPMの堆積量に応じて、排気空燃比のリッチ側の期間とリーン側の期間とを設定しているので、これらの期間の割合を最適に設定することが可能になり、排ガス性能が良好になる。
この場合、フィルタの昇温状態に応じて、排気空燃比のリッチ側の期間及びリーン側の期間を補正することが好ましく、DPFの再生速度がより一層適切に制御可能になる
【0018】
【発明の実施の形態】
以下、図面により本発明の実施形態について説明する。
図1は、本発明の第一実施形態に係る内燃機関の排気浄化装置が適用される多気筒のディーゼル機関(以下、単にエンジンという)1を備えたエンジンシステム構成図を示しており、以下図1に基づき本発明に係る内燃機関の排気浄化装置の構成を説明する。
【0019】
エンジン1の各気筒2には、コモンレール型等の燃料噴射装置を有した燃料供給系と、吸気弁6の開弁により燃焼室4に吸入空気を導入させる吸気通路8と、排気弁18の開弁により燃焼室4からの排気を導出させる排気通路20とが接続されている。
この吸気通路8の最上流部にはエアクリーナ16が接続され、その下流側には過給機14が介装されている。また、過給機14の下流側には、スロットル弁10及びサージタンク12の順に配設されている。なお、このスロットル弁10は、いわゆるドライブバイワイヤ式のスロットル弁(ETV)であり、エンジン運転状態に応じてその開度が変更される。
【0020】
一方、排気通路20の下流側にはNOx吸蔵触媒22が接続されている。NOx吸蔵触媒22は、排気空燃比がリーンのときに排気中のNOxを吸蔵し、排気空燃比がリッチ等で排気中に還元剤(HCやCO)が存在するときに、吸蔵したNOxの放出還元を行うものであり、このNOx吸蔵触媒は公知の構成ものである。なお、本実施形態では、ポスト噴射にてNOxの放出還元を行う。
【0021】
また、NOx吸蔵触媒22の下流側にはDPF(フィルタ)23が接続されている。DPF23は、排気中のPMを捕集するとともに、高温の排気でPMを焼却除去し、その再生を行うものであり、このDPFも公知の構成ものである。
排気通路20からは排気循環通路(EGR通路)24が分岐して延びており、排気の一部(EGRガス)を吸気通路8内に再循環させてNOxの排出を抑制させる。このEGR通路24の先端は、吸気通路8に接続されている。このEGR通路24には、EGRガスの冷却を図るEGRクーラ26と、電子コントロールユニット(ECU)44に電気的に接続されたEGRバルブ28とが設けられ、EGRバルブ28の開閉によってEGR通路24の流路面積が調節される。
【0022】
ETV10もまたECU44に電気的に接続されており、吸気通路8の流路面積が調節されることにより、通常の制御時にはEGRガス量を調整する。そして、エアクリーナ16からの新気は、過給機14を介して吸気通路8に入ってETV10で調整された後、EGRガスと合流して各気筒2の燃焼室4内に導かれる。そして、燃料の燃焼が終了すると、排ガスは排気通路20に排出され、NOx吸蔵触媒22及びDPF23に送られる。
【0023】
ここで、吸気通路8において、エアクリーナ16の下流側の適宜位置には、エアフローセンサ34が配設される。また、排気通路20において、NOx吸蔵触媒22の上流側の適宜位置には、温度センサ36とA/Fセンサ38とが配設され、エンジン1からの排気温度(NOx吸蔵触媒22の触媒温度)T1とその排気空燃比λとをそれぞれ検出している。また、排気通路20において、DPF23の下流側の適宜位置には、温度センサ(フィルタ昇温検出手段)40が配設され、NOx吸蔵触媒22を通過した排気の温度T2を検出している。
【0024】
ECU44の入力側には、上述の温度センサ36、A/Fセンサ38及び温度センサ40の他、エアフローセンサ34等のエンジン1の運転状態を検出する各種センサが電気的に接続されている。これに対してECU44の出力側には、上述のETV10及びEGRバルブ28の各種アクチュエータが電気的に接続されている。
【0025】
そして、ECU44は、排気浄化制御部46(排気浄化制御手段)を備えている。当該排気浄化制御部46では、エンジン1の通常制御時には、酸化雰囲気にて排ガス中のNOxをNOx吸蔵触媒22に吸蔵する一方、NOx吸蔵触媒22のSパージとDPF23の強制再生との再生制御時には、圧縮上死点後に追加燃料を噴射し、エンジン1からの高温かつストイキオ乃至リッチ雰囲気の排気をNOx吸蔵触媒22に導入させるリッチスパイクを行い、まずNOx吸蔵触媒22及びDPF23を昇温させ、そして、このDPF23の再生に必要な所定温度(約600℃以上)が実現されたとき、排気空燃比をリッチ側とリーン側とに複数回に亘って短い周期で切換えるよう構成される。
【0026】
排気空燃比がリッチの場合にはNOx吸蔵触媒22のSパージが実施され、吸蔵したNOxを還元雰囲気で放出還元させ及び付着したS成分を還元雰囲気で放出させてNOx吸蔵触媒22の再生を図るとともに、排気空燃比がリーンの場合にはDPF23の強制再生を図る。
次に、上記排気浄化装置の作用について説明する。
【0027】
図2は、排気浄化制御部46における再生制御のタイミングチャートである。まず、排気浄化制御部46では、1回の昇温でNOx吸蔵触媒22のSパージとDPF23の強制再生とを完了させることを目標としている。図示のように、温度センサ36によるNOx吸蔵触媒22の触媒温度T1が300℃から昇温して600℃以上になり、その後300℃に戻るまでの間に、NOx吸蔵触媒22のSパージとDPF23の強制再生との略同時に近付けた再生が実施される。
【0028】
そして、NOx吸蔵触媒22の上流側の排気空燃比が弱リッチに設定されると、A/Fセンサ38の検出値は、通常の制御における排気空燃比(λ=約2.0)から低λ側に移行され、昇温中のNOxは、NOx吸蔵触媒22の還元機能によってほぼ零に抑制される。排気浄化制御部46では、温度センサ36によるNOx吸蔵触媒22の触媒温度T1を読み込んで現在のNOx吸蔵触媒22の温度を認知し、この触媒温度T1と触媒特性とに基づき、NOx吸蔵触媒22からH2Sを放出されずに、S成分を適切にSO2として放出できるようにリッチ保持期間の設定がなされる。
【0029】
また、排気浄化制御部46では、A/Fセンサ38によるNOx吸蔵触媒22の排気上流側の排気空燃比λを読み込んで現在のエンジン1の排気空燃比を認知している。これにより、エンジン1の排気空燃比をストイキオ乃至リッチ雰囲気に設定することができ、リッチ側の空燃比として、ストイキオよりも若干リッチ側の弱リッチ雰囲気に設定すれば、前記SO2の放出がより可能になる。また、ストイキオ雰囲気に設定することは、排ガス性能において有利となる。なぜならば、NOx吸蔵触媒22が備える三元機能を利用してNOxを確実に浄化することができるし、DPF23においても、昇温中のPM燃焼を抑制できるため、温度不足によってDPF23内部が局所的で不均一になされるsoot再生をも防止できるからである。
【0030】
次いで、温度センサ40によるDPF23の下流側の温度T2が600℃以上になったとき、排気空燃比をリーン(λ=1より若干リーン)に切換えて所定のリーン保持時間だけ保持される。このときには、DPF23の強制再生が実施される。
このリーンを保持する時間もまた、排気浄化制御部46で設定されている。つまり、まず、再生制御の開始時におけるNOx吸蔵触媒22に付着されたS成分の堆積量とDPF23に捕集されたPMの堆積量とのそれぞれを触媒温度T1、排気温度T2及び排気空燃比λの読み込みによって推定し、Sパージに必要な総リッチ期間とPM燃焼に必要な総リーン期間とを導出する。
【0031】
そして、この総リッチ期間と総リーン期間とのデューティ比に対して上記設定されたリッチ保持期間を用い、リーン保持期間を設定している。このように、これらの堆積量に応じて排気空燃比のリッチ保持期間とリーン保持期間とを設定しており、これらの期間の割合を最適に設定し、排ガス性能の良好化を図っている。
【0032】
なお、排気浄化制御部46で設定されたリッチ保持期間及びとリーン保持期間は、温度センサ40によるDPF23の排気下流側の排気温度T2によってPMの燃焼速度が過大と判定された場合には、例えば、上記リッチ保持期間を長く、或いは上記リーン保持期間を短く補正する。このように、リッチ保持期間とリーン保持期間とが設定されると、DPF23の再生速度が適切に制御され、PMの燃焼による発熱量が急激に大きくなってDPF23が破損してしまうこと等を確実に防止できる。
【0033】
さらに、排気浄化制御部46では、総リッチ期間と総リーン期間とのデューティ比に対して上述のリッチ側の空燃比を用いることにより、又は上記デューティ比に対して時間平均の目標空燃比及びエンジン1の空気量情報に基づく排ガス流量を用いることにより、リーン空燃比も設定している。これは、PMの燃焼速度が上記目標空燃比(DPF23の上流側の酸素濃度)、又はDPF23への酸素供給量に依存すると考えられるからである。
【0034】
そして、所定のリーン保持時間の経過後には、排気空燃比を弱リッチ(λ=1より若干リッチ)に切換えて保持する。このときには、NOx吸蔵触媒22のSパージが実施される。
また、所定のリッチ保持時間の経過後には、上述したリーン側の排気空燃比に再度切換えられて所定時間保持され、その後上述したリッチ側の排気空燃比にさらに切換えられて所定時間保持される如く、複数回のリッチ側と複数回のリーン側との排気空燃比の切換えが短期間に周期的に実施される。これにより、DPF23の再生速度を適切に制御し、再生速度が過大となることによるDPF23の破損・溶損を防止する。
【0035】
なお、DPF23の強制再生やNOx吸蔵触媒22のSパージが要求された時間分行われた後は、通常のディーゼルエンジン制御に戻される。
以上のように、本発明では、DPF23が所定温度に達したとき、排気空燃比をリッチ側とリーン側とに周期的に切換え、かつ、切換えを複数回行う排気浄化制御手段46を備えているので、昇温中のリッチ乃至ストイキオ状態、及びDPF23再生中の周期的なリッチ状態を利用して、DPF23の強制再生とNOx吸蔵触媒22のSパージとを可能な限り同時に近付けて実施することができる。
【0036】
また、DPF23の強制再生は、充分な温度条件を与えつつ、排気空燃比の周期的な変化でPMの燃焼速度を制御しているため、DPF23の異常昇温による破損等を回避できる。
しかも、NOx吸蔵触媒22とDPF23とを同時に昇温させていることから、昇温に要する時間及び燃料量が削減され、燃費の悪化をより一層低減できる。
【0037】
なお、ストイキオでの昇温を行えば、DPF23の急激な再生を抑制させつつ、NOx吸蔵触媒22とDPF23との全体に亘って充分に昇温させることができる。
図3は、本発明の第二実施形態を示すものである。当該第二の実施形態では、触媒の構成等の点を除き、前記第一実施形態と同一の構成からなるものであることから、この触媒の構成等について詳細に説明する。
【0038】
本実施形態における排気通路20の下流側にはDPF(フィルタ)23Aのみが接続されている。そして、ECU44は、排気浄化制御部46A(排気浄化制御手段)を備えている。
当該排気浄化制御部46Aでは、エンジン1の通常制御時には、DPF23AにPMを捕集させる一方、DPF23Aの強制再生との再生制御時には、まず、エンジン1からの高温かつストイキオ乃至リッチ雰囲気の排気をDPF23Aに導入させて昇温させる。そして、このDPF23Aの再生に必要な所定温度(約600℃以上)が実現されたとき、排気空燃比がリッチ側とリーン側とを短期間に切換えてDPF23Aの強制再生を図っている。
【0039】
そして、図4の再生制御のタイミングチャートに示すように、本実施形態ではNOx吸蔵触媒が備えられていないことから、そのSパージを考慮する必要がなく、A/Fセンサ38による排気空燃比λの値が上記第一実施形態の場合に比してややストイキオ近傍に設定されている。
このように、本実施形態の排気浄化制御手段46Aによれば、短期間にてリッチ側とリーン側とに切換えられるので、リーン側の場合にはDPF23Aの再生速度が過大にならずにDPF23Aの強制再生を実施でき、従来に比してDPF23Aの強制再生に要する時間の短縮化が図られ、燃費の悪化のさらなる防止が図られる。
【0040】
以上で本発明の一実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
例えば、上記第一実施形態では、NOx吸蔵触媒22がDPF23の排気上流側に配置されている。これは、DPF23の強制再生によって、このDPF23の排気下流側の温度がより上昇することを考慮したものである。しかし、本発明は、必ずしもこの実施形態に限定されるものではなく、NOx吸蔵触媒22がDPF23の排気下流側に配置される、又は両者を一体化させても良い。
【0041】
また、エンジンとしてはディーゼル機関が好ましいが、これに限定されるものではなく、本発明の内燃機関の排気浄化装置は、排気通路にNOx吸蔵触媒を備え、リッチ運転可能な全てのエンジンシステムに適用させることができる。
【0042】
【発明の効果】
以上の説明から理解できるように、請求項1記載の本発明の内燃機関の排気浄化装置によれば、約600℃以上の如くのDPFの再生に必要な所定温度が実現されたときには、排気浄化制御手段が、排気空燃比をリッチ側とリーン側と短期間で切換えるので、DPFの強制再生とNOx吸蔵触媒のSパージとが可能な限り同時に近付けて実施されることになり、総再生時間の短縮化を図って消費される燃料量が削減され、燃費の悪化をより一層防止することができる。
【0043】
しかも、リッチ側とリーン側との複数回の切換えが周期的に行われることから、DPFの再生速度が過大にならずに適切に制御することができる。特に、パティキュレート・マターの燃焼温度が過大と判定された場合においてもDPFの再生速度を適切に制御でき、パティキュレート・マターの燃焼による発熱量が急激に大きくなってDPFが破損してしまうこと等を確実に防止できる。
さらに、排気浄化制御手段が、触媒温度、触媒特性及びPMの堆積量に応じて、排気空燃比のリッチ側の期間とリーン側の期間とを設定しているので、これらの期間の割合を最適に設定することが可能になり、排ガス性能を良好にすることができる
【図面の簡単な説明】
【図1】本発明の第一実施形態に係る内燃機関の排気浄化装置が適用されるエンジンの構成図である。
【図2】図1の排気浄化装置における再生制御のタイミングチャートである。
【図3】本発明の第二実施形態に係る内燃機関の排気浄化装置が適用されるエンジンの構成図である。
【図4】図3の排気浄化装置における再生制御のタイミングチャートである。
【符号の説明】
1 内燃機関
2 気筒
20 排気通路
22 NOx吸蔵触媒
23 DPF(フィルタ)
23A DPF(フィルタ)
40 温度センサ(フィルタ昇温検出手段)
44 ECU(電子コントロールユニット)
46 排気浄化制御部(排気浄化制御手段)
46A 排気浄化制御部(排気浄化制御手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification device for an internal combustion engine, and more particularly to an exhaust gas purification device for an internal combustion engine applied to regeneration of a diesel particulate filter (DPF).
[0002]
[Prior art]
In general, the DPF is an exhaust gas aftertreatment device that collects and processes particulate matter (PM) in exhaust gas. Specifically, since exhaust gas from a diesel engine or the like contains a large amount of PM in addition to HC, CO, NOx, etc., the temperature of about 600 ° C. is high after the PM is collected in a filter. Recycle DPF by incineration and removal using exhaust gas.
[0003]
Here, in the DPF, self-regeneration can be realized depending on operating conditions, but a forced regeneration system that forcibly raises the temperature of the DPF is indispensable when all operating conditions are assumed. However, in this forced regeneration, for example, if the temperature of the DPF is too low, the regeneration speed is slow, and if it is too high, the temperature of the DPF is difficult to control due to rapid regeneration. Therefore, in the DPF, a technique of an exhaust gas purification apparatus for an internal combustion engine that controls the regeneration speed in the DPF by air-fuel ratio control of the internal combustion engine has been proposed (see, for example, Patent Document 1).
[0004]
In this apparatus, the exhaust system is provided with a DPF, and when the DPF is forcibly regenerated, the rich air-fuel ratio is set until the DPF reaches a predetermined temperature, and after the DPF is raised to the predetermined temperature, the lean air-fuel ratio is switched. PM is burned and removed. Thereby, forced regeneration of DPF is aimed at.
In addition to the DPF, the apparatus also includes a NOx occlusion catalyst in the exhaust system. When the S component is released (S purge), the DPF reaches a predetermined temperature, and further from the desorption temperature of SOx. The rich poisoning is continued until the predetermined time is reached, and S poisoning is released.
[0005]
This NOx occlusion catalyst is an exhaust gas aftertreatment device that occludes NOx in exhaust gas at a lean air-fuel ratio and releases and reduces the NOx occluded at a rich air-fuel ratio.
Specifically, NOx in the exhaust gas is occluded as nitrate in an oxygen excess state (oxidation atmosphere), and the occluded NOx is reduced to nitrogen in a carbon monoxide excess state (reduction atmosphere). The internal combustion engine then periodically switches to a rich operation in which the excess air ratio is low (low λ) so that the exhaust air-fuel ratio is controlled to the stoichiometric air-fuel ratio or a value close thereto before the NOx occlusion amount is saturated. To regenerate the NOx storage catalyst. In addition, since SOx resulting from oxidation of the S component in the fuel is also deposited as a sulfate on the NOx storage catalyst, the rich operation is periodically performed in the same manner as described above in order to release the accumulated S component (S purge). To regenerate the NOx storage catalyst.
[0006]
Here, the S purge requires a high temperature of about 650 ° C. and rich or stoichiometric exhaust gas.
Therefore, in the above-described apparatus, when the DPF is forcibly regenerated, the rich air-fuel ratio is suppressed until the DPF reaches a predetermined temperature, and PM combustion is suppressed, and during the S purge, the rich is continued until the predetermined time is reached from the SOx desorption temperature. The air-fuel ratio is set. This releases S poisoning.
[0007]
[Patent Document 1]
JP 2002-213229 A (paragraph numbers 0015 to 0020, FIG. 1, etc.)
[0008]
[Problems to be solved by the invention]
By the way, the forced regeneration of the DPF and the S purge of the NOx storage catalyst are common in that both can be performed using high-temperature exhaust gas that has reached about 650 ° C. as described above.
Therefore, it is conceivable to simultaneously perform forced regeneration of the DPF and S purge of the NOx storage catalyst. The former requires exhaust in a lean atmosphere for soot oxidation, whereas the latter in exhaust in a stoichiometric or rich atmosphere. In general, it is generally considered difficult to implement these simultaneously.
[0009]
However, if the forced regeneration of the DPF and the S purge of the NOx storage catalyst can be performed at the same time, the total regeneration time required for the regeneration is shortened, and the deterioration of fuel consumption is further prevented. It becomes possible.
Further, it is possible to further prevent the deterioration of fuel consumption only by shortening the regeneration time required for the forced regeneration of the DPF.
[0010]
Here, in the exhaust gas purification apparatus for an internal combustion engine described in the conventional technique, when performing the S purge, the rich air-fuel ratio is maintained until a predetermined time elapses after the DPF exceeds a predetermined temperature, Thereafter, the lean air-fuel ratio is switched to maintain the lean air-fuel ratio. In other words, since the S purge is performed first without performing the forced regeneration of the DPF, and then the forced regeneration of the DPF is performed without performing the S purge, the forced regeneration of the DPF and the S purge of the NOx storage catalyst are performed. Obviously, it is performed separately, and the time required for forced regeneration of the DPF is prolonged by the amount of S purge.
[0011]
In other words, the total regeneration time in this case starts from the time when the DPF exceeds the predetermined temperature, the S poisoning is released by permitting the S purge, and then the exhaust gas is switched to a lean atmosphere to forcibly regenerate the DPF. There is a problem that the time required to complete the process is prolonged, and the amount of fuel consumed during that time is doubled. In other words, the conventional technique still has a problem in terms of preventing the deterioration of fuel consumption.
[0012]
The present invention has been made in view of such problems, and an object of the present invention is to provide an exhaust gas purification apparatus for an internal combustion engine that can shorten the total forced regeneration time for a DPF or the like.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, an exhaust emission control device for an internal combustion engine according to claim 1 is provided in an exhaust passage communicating with a cylinder of the internal combustion engine and an exhaust passage, and stores NOx in the exhaust during a lean operation and is rich. NOx occlusion catalyst that releases and reduces NOx occluded by operation, a filter that is provided in the exhaust passage and collects particulate matter in the exhaust, filter temperature rise detection means that detects the temperature of the filter, An exhaust purification control means for changing the exhaust air-fuel ratio of the internal combustion engine between a rich side and a lean side in a short cycle when the filter temperature rise detection means detects that the filter has reached a predetermined temperature, and the exhaust purification control The means sets the rich side period of the exhaust air-fuel ratio based on the catalyst temperature and the catalyst characteristics of the NOx storage catalyst, and sets the rich side of the set rich side. During the said that the NOx storage catalyst on the basis of the deposition amount of PM during regeneration control start of the filter, to set the duration of the lean side of the exhaust air-fuel ratio, particulate matter by the exhaust temperature on the downstream side of the filter When the combustion temperature is determined to be excessive, the set rich side period is corrected to be long, or the set lean side period is corrected to be short .
[0014]
Therefore, according to the exhaust gas purification apparatus for an internal combustion engine according to claim 1, when a predetermined temperature necessary for regeneration of the DPF such as about 600 ° C. or higher is realized, the exhaust gas purification control means sets the exhaust air / fuel ratio to the rich side. Therefore, the forced regeneration of the DPF and the S purge of the NOx storage catalyst are performed at the same time as close as possible, and the amount of fuel consumed by shortening the total regeneration time Is reduced and fuel consumption is further prevented from deteriorating.
[0015]
In addition, since the multiple switching between the rich side and the lean side is performed periodically, the DPF regeneration speed can be appropriately controlled without becoming excessive. In particular, even when the combustion temperature of the particulate matter is determined to be excessive, the regeneration rate of the DPF is appropriately controlled.
Note that the exhaust air-fuel ratio on the rich side includes stoichiometric and is preferably slightly richer than the stoichiometric.
The exhaust purification control means sets the rich side period and the lean side period of the exhaust air-fuel ratio in accordance with the catalyst temperature, catalyst characteristics, and PM accumulation amount, so the ratio of these periods is optimal. Therefore, the exhaust gas performance is improved.
In this case, it is preferable to correct the rich side period and the lean side period of the exhaust air-fuel ratio in accordance with the temperature rise state of the filter, so that the regeneration rate of the DPF can be controlled more appropriately .
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an engine system configuration diagram including a multi-cylinder diesel engine (hereinafter simply referred to as an engine) 1 to which an exhaust gas purification apparatus for an internal combustion engine according to a first embodiment of the present invention is applied. 1, the configuration of the exhaust emission control device for an internal combustion engine according to the present invention will be described.
[0019]
In each cylinder 2 of the engine 1, a fuel supply system having a common rail type fuel injection device, an intake passage 8 for introducing intake air into the combustion chamber 4 by opening the intake valve 6, and an exhaust valve 18 being opened. The valve is connected to an exhaust passage 20 through which exhaust from the combustion chamber 4 is led out.
An air cleaner 16 is connected to the most upstream portion of the intake passage 8, and a supercharger 14 is interposed downstream thereof. Further, the throttle valve 10 and the surge tank 12 are arranged in this order on the downstream side of the supercharger 14. The throttle valve 10 is a so-called drive-by-wire throttle valve (ETV), and its opening degree is changed according to the engine operating state.
[0020]
On the other hand, a NOx storage catalyst 22 is connected to the downstream side of the exhaust passage 20. The NOx occlusion catalyst 22 occludes NOx in the exhaust when the exhaust air-fuel ratio is lean, and releases the occluded NOx when the exhaust air-fuel ratio is rich or the like and a reducing agent (HC or CO) is present in the exhaust. This NOx occlusion catalyst has a known configuration. In the present embodiment, NOx is released and reduced by post injection.
[0021]
A DPF (filter) 23 is connected to the downstream side of the NOx storage catalyst 22. The DPF 23 collects PM in the exhaust gas, incinerates and removes the PM with high-temperature exhaust gas, and regenerates the DPF 23. This DPF is also a known configuration.
An exhaust circulation passage (EGR passage) 24 branches and extends from the exhaust passage 20, and a part of the exhaust gas (EGR gas) is recirculated into the intake passage 8 to suppress NOx emission. The tip of the EGR passage 24 is connected to the intake passage 8. The EGR passage 24 is provided with an EGR cooler 26 that cools the EGR gas and an EGR valve 28 that is electrically connected to an electronic control unit (ECU) 44. The EGR passage 24 opens and closes to open the EGR passage 24. The flow path area is adjusted.
[0022]
The ETV 10 is also electrically connected to the ECU 44 and adjusts the EGR gas amount during normal control by adjusting the flow passage area of the intake passage 8. Then, fresh air from the air cleaner 16 enters the intake passage 8 via the supercharger 14, is adjusted by the ETV 10, merges with the EGR gas, and is guided into the combustion chamber 4 of each cylinder 2. When the combustion of the fuel is completed, the exhaust gas is discharged into the exhaust passage 20 and sent to the NOx storage catalyst 22 and the DPF 23.
[0023]
Here, in the intake passage 8, an air flow sensor 34 is disposed at an appropriate position on the downstream side of the air cleaner 16. In the exhaust passage 20, a temperature sensor 36 and an A / F sensor 38 are disposed at appropriate positions upstream of the NOx storage catalyst 22, and the exhaust temperature from the engine 1 (the catalyst temperature of the NOx storage catalyst 22). T1 and its exhaust air-fuel ratio λ are detected. In the exhaust passage 20, a temperature sensor (filter temperature increase detection means) 40 is disposed at an appropriate position downstream of the DPF 23 to detect the temperature T 2 of the exhaust gas that has passed through the NOx storage catalyst 22.
[0024]
In addition to the temperature sensor 36, the A / F sensor 38, and the temperature sensor 40 described above, various sensors that detect the operating state of the engine 1 such as the air flow sensor 34 are electrically connected to the input side of the ECU 44. On the other hand, the actuators of the ETV 10 and the EGR valve 28 described above are electrically connected to the output side of the ECU 44.
[0025]
The ECU 44 includes an exhaust purification control unit 46 (exhaust purification control means). The exhaust purification control unit 46 stores NOx in the exhaust gas in the NOx occlusion catalyst 22 in the oxidizing atmosphere during normal control of the engine 1, while during regeneration control of the S purge of the NOx occlusion catalyst 22 and forced regeneration of the DPF 23. Then, after the compression top dead center, the additional fuel is injected, a rich spike is performed to introduce exhaust gas of high temperature and stoichiometric or rich atmosphere from the engine 1 into the NOx storage catalyst 22, firstly, the NOx storage catalyst 22 and the DPF 23 are heated, and When the predetermined temperature (about 600 ° C. or higher) necessary for regeneration of the DPF 23 is realized, the exhaust air-fuel ratio is switched between the rich side and the lean side at short intervals over a plurality of times.
[0026]
When the exhaust air-fuel ratio is rich, S purge of the NOx storage catalyst 22 is performed, and the stored NOx is released and reduced in a reducing atmosphere, and the adhering S component is released in a reducing atmosphere to regenerate the NOx storage catalyst 22. At the same time, when the exhaust air-fuel ratio is lean, the DPF 23 is forcedly regenerated.
Next, the operation of the exhaust purification device will be described.
[0027]
FIG. 2 is a timing chart of regeneration control in the exhaust purification control unit 46. First, the exhaust purification control unit 46 aims to complete the S purge of the NOx storage catalyst 22 and the forced regeneration of the DPF 23 with one temperature increase. As shown in the figure, the S purge of the NOx storage catalyst 22 and the DPF 23 until the catalyst temperature T1 of the NOx storage catalyst 22 is increased from 300 ° C. to 600 ° C. or higher and then returned to 300 ° C. by the temperature sensor 36. At the same time as the forced regeneration, the regeneration approaching is performed.
[0028]
When the exhaust air-fuel ratio upstream of the NOx storage catalyst 22 is set to be slightly rich, the detected value of the A / F sensor 38 is lower than the exhaust air-fuel ratio (λ = about 2.0) in normal control. The NOx during the temperature increase is suppressed to substantially zero by the reduction function of the NOx storage catalyst 22. The exhaust purification control unit 46 reads the catalyst temperature T1 of the NOx storage catalyst 22 by the temperature sensor 36, recognizes the current temperature of the NOx storage catalyst 22, and based on this catalyst temperature T1 and catalyst characteristics, from the NOx storage catalyst 22 The rich retention period is set so that the S component can be appropriately released as SO 2 without releasing H 2 S.
[0029]
Further, the exhaust purification control unit 46 reads the exhaust air-fuel ratio λ on the exhaust upstream side of the NOx storage catalyst 22 by the A / F sensor 38 and recognizes the current exhaust air-fuel ratio of the engine 1. As a result, the exhaust air-fuel ratio of the engine 1 can be set to a stoichiometric or rich atmosphere, and if the rich-side air-fuel ratio is set to a slightly rich atmosphere slightly richer than stoichio, the SO 2 emission is further reduced. It becomes possible. Moreover, setting to a stoichiometric atmosphere is advantageous in exhaust gas performance. This is because NOx can be reliably purified using the three-way function of the NOx storage catalyst 22, and PM combustion during temperature rise can be suppressed even in the DPF 23. This is because it is possible to prevent soot regeneration that is made uneven.
[0030]
Next, when the temperature T2 downstream of the DPF 23 by the temperature sensor 40 becomes 600 ° C. or higher, the exhaust air-fuel ratio is switched to lean (slightly lean from λ = 1) and held for a predetermined lean holding time. At this time, forced regeneration of the DPF 23 is performed.
The time during which the lean is maintained is also set by the exhaust purification control unit 46. That is, first, the accumulation amount of the S component adhering to the NOx storage catalyst 22 at the start of the regeneration control and the accumulation amount of PM collected in the DPF 23 are respectively determined as the catalyst temperature T1, the exhaust temperature T2, and the exhaust air-fuel ratio λ. The total rich period required for S purge and the total lean period required for PM combustion are derived.
[0031]
The lean retention period is set using the rich retention period set as described above for the duty ratio between the total rich period and the total lean period. In this way, the rich retention period and the lean retention period of the exhaust air-fuel ratio are set according to these accumulation amounts, and the ratio of these periods is set optimally to improve the exhaust gas performance.
[0032]
Note that the rich retention period and the lean retention period set by the exhaust purification control unit 46 are, for example, when the PM combustion speed is determined to be excessive by the exhaust gas temperature T2 on the exhaust downstream side of the DPF 23 by the temperature sensor 40, for example, The rich retention period is lengthened or the lean retention period is shortened. As described above, when the rich holding period and the lean holding period are set, the regeneration speed of the DPF 23 is appropriately controlled, and it is ensured that the amount of heat generated by the combustion of PM suddenly increases and the DPF 23 is damaged. Can be prevented.
[0033]
Further, the exhaust purification control unit 46 uses the above-mentioned rich-side air-fuel ratio with respect to the duty ratio between the total rich period and the total lean period, or the time-average target air-fuel ratio and engine with respect to the duty ratio. By using the exhaust gas flow rate based on the air quantity information of 1, the lean air-fuel ratio is also set. This is because the PM combustion speed is considered to depend on the target air-fuel ratio (the oxygen concentration upstream of the DPF 23) or the oxygen supply amount to the DPF 23.
[0034]
Then, after the elapse of a predetermined lean holding time, the exhaust air-fuel ratio is switched to slightly rich (slightly richer than λ = 1) and held. At this time, the S purge of the NOx storage catalyst 22 is performed.
In addition, after the predetermined rich holding time has elapsed, the above-described lean-side exhaust air-fuel ratio is switched again to be held for a predetermined time, and then further switched to the above-described rich-side exhaust air-fuel ratio to be held for a predetermined time. The exhaust air-fuel ratio switching between the rich side and the lean side is performed periodically in a short period of time. As a result, the regeneration speed of the DPF 23 is appropriately controlled, and damage or melting of the DPF 23 due to an excessive regeneration speed is prevented.
[0035]
After the forced regeneration of the DPF 23 and the S purge of the NOx storage catalyst 22 are performed for the required time, the control is returned to the normal diesel engine control.
As described above, the present invention includes the exhaust purification control means 46 that periodically switches the exhaust air-fuel ratio between the rich side and the lean side when the DPF 23 reaches a predetermined temperature and performs the switching a plurality of times. Therefore, the forced regeneration of the DPF 23 and the S purge of the NOx storage catalyst 22 may be performed as close as possible using the rich or stoichiometric state during the temperature rise and the periodic rich state during the regeneration of the DPF 23. it can.
[0036]
Further, the forced regeneration of the DPF 23 controls the PM combustion speed by periodically changing the exhaust air-fuel ratio while giving sufficient temperature conditions, so that damage due to abnormal temperature rise of the DPF 23 can be avoided.
In addition, since the NOx storage catalyst 22 and the DPF 23 are heated at the same time, the time and amount of fuel required for the temperature increase are reduced, and the deterioration of fuel consumption can be further reduced.
[0037]
If the temperature is increased by stoichiometry, the temperature of the NOx storage catalyst 22 and the DPF 23 can be sufficiently increased while suppressing the rapid regeneration of the DPF 23.
FIG. 3 shows a second embodiment of the present invention. Since the second embodiment has the same configuration as the first embodiment except for the configuration of the catalyst, the configuration of the catalyst will be described in detail.
[0038]
In the present embodiment, only the DPF (filter) 23A is connected to the downstream side of the exhaust passage 20. The ECU 44 includes an exhaust purification control unit 46A (exhaust purification control means).
In the exhaust purification control unit 46A, during normal control of the engine 1, the DPF 23A collects PM, while during regeneration control with forced regeneration of the DPF 23A, first, exhaust of high-temperature, stoichiometric or rich atmosphere from the engine 1 is DPF 23A. The temperature is increased by introducing it into When a predetermined temperature (about 600 ° C. or higher) necessary for regeneration of the DPF 23A is realized, the exhaust air / fuel ratio is switched between the rich side and the lean side in a short period of time, thereby forcibly regenerating the DPF 23A.
[0039]
As shown in the timing chart of the regeneration control in FIG. 4, since the NOx storage catalyst is not provided in this embodiment, it is not necessary to consider the S purge, and the exhaust air / fuel ratio λ by the A / F sensor 38 is not required. Is set slightly closer to the stoichiometric ratio than in the case of the first embodiment.
As described above, according to the exhaust purification control means 46A of the present embodiment, the rich side and the lean side can be switched in a short period of time, so that the regeneration speed of the DPF 23A does not become excessive in the case of the lean side. Compulsory regeneration can be performed, and the time required for forced regeneration of the DPF 23A can be shortened compared to the conventional case, thereby further preventing deterioration of fuel consumption.
[0040]
The description of one embodiment of the present invention is finished above, but the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the first embodiment, the NOx storage catalyst 22 is arranged on the exhaust upstream side of the DPF 23. This is because the temperature on the exhaust downstream side of the DPF 23 rises due to the forced regeneration of the DPF 23. However, the present invention is not necessarily limited to this embodiment, and the NOx storage catalyst 22 may be disposed on the exhaust downstream side of the DPF 23, or both may be integrated.
[0041]
The engine is preferably a diesel engine. However, the present invention is not limited to this, and the exhaust gas purification apparatus for an internal combustion engine of the present invention is applicable to all engine systems that have a NOx occlusion catalyst in the exhaust passage and are capable of rich operation. Can be made.
[0042]
【The invention's effect】
As can be understood from the above description, according to the exhaust gas purification apparatus for an internal combustion engine of the first aspect of the present invention, when a predetermined temperature necessary for regeneration of the DPF, such as about 600 ° C. or higher, is realized, the exhaust gas purification is performed. Since the control means switches the exhaust air-fuel ratio between the rich side and the lean side in a short period, the forced regeneration of the DPF and the S purge of the NOx storage catalyst are performed as close as possible, and the total regeneration time is reduced. The amount of fuel consumed by shortening can be reduced, and the deterioration of fuel consumption can be further prevented.
[0043]
In addition, since the switching between the rich side and the lean side is performed a plurality of times periodically, the DPF regeneration speed can be appropriately controlled without becoming excessive. In particular, even if the combustion temperature of the particulate matter is determined to be excessive, the regeneration rate of the DPF can be appropriately controlled, and the amount of heat generated by the burning of the particulate matter increases rapidly, resulting in damage to the DPF. Etc. can be reliably prevented.
Further, since the exhaust purification control means sets the rich-side period and lean-side period of the exhaust air-fuel ratio according to the catalyst temperature, catalyst characteristics and PM accumulation amount, the ratio of these periods is optimal. Therefore, the exhaust gas performance can be improved .
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an engine to which an exhaust gas purification apparatus for an internal combustion engine according to a first embodiment of the present invention is applied.
FIG. 2 is a timing chart of regeneration control in the exhaust gas purification apparatus of FIG.
FIG. 3 is a configuration diagram of an engine to which an exhaust gas purification apparatus for an internal combustion engine according to a second embodiment of the present invention is applied.
4 is a timing chart of regeneration control in the exhaust emission control device of FIG. 3;
[Explanation of symbols]
1 Internal combustion engine 2 Cylinder 20 Exhaust passage 22 NOx storage catalyst 23 DPF (filter)
23A DPF (filter)
40 Temperature sensor (filter temperature rise detection means)
44 ECU (Electronic Control Unit)
46 Exhaust purification control unit (exhaust purification control means)
46A Exhaust gas purification control unit (exhaust gas purification control means)

Claims (1)

内燃機関の気筒に連通する排気通路と、
該排気通路に設けられ、リーン運転時に排気中のNOxを吸蔵するとともにリッチ運転を行うことで該吸蔵したNOxを放出還元するNOx吸蔵触媒と、
前記排気通路に設けられ、排気中のパティキュレート・マターを捕集するフィルタと、
該フィルタの温度を検出するフィルタ昇温検出手段と、
該フィルタ昇温検出手段によって前記フィルタが所定温度に達したと検出されたとき、前記内燃機関の排気空燃比をリッチ側とリーン側とに短い周期で変化させる排気浄化制御手段と、を備え、
前記排気浄化制御手段は、前記NOx吸蔵触媒の触媒温度及び触媒特性に基づいて前記排気空燃比のリッチ側の期間を設定するとともに、該設定されたリッチ側の期間、前記NOx吸蔵触媒と前記フィルタとの再生制御開始時におけるPMの堆積量に基づいて、前記排気空燃比のリーン側の期間を設定し、前記フィルタの下流側の排気温度によってパティキュレート・マターの燃焼温度が過大と判定された場合には該設定されたリッチ側の期間を長く、或いは該設定されたリーン側の期間を短く補正することを特徴とする内燃機関の排気浄化装置。
An exhaust passage communicating with the cylinder of the internal combustion engine;
A NOx storage catalyst that is provided in the exhaust passage and stores NOx in the exhaust during lean operation and releases and stores the stored NOx by performing rich operation;
A filter that is provided in the exhaust passage and collects particulate matter in the exhaust;
Filter temperature rise detection means for detecting the temperature of the filter;
An exhaust purification control means for changing the exhaust air-fuel ratio of the internal combustion engine between a rich side and a lean side in a short cycle when the filter temperature rise detecting means detects that the filter has reached a predetermined temperature;
The exhaust purification control means sets the rich side period of the exhaust air-fuel ratio based on the catalyst temperature and the catalyst characteristics of the NOx storage catalyst, and the NOx storage catalyst and the filter during the set rich side period Based on the amount of PM accumulated at the start of regeneration control, a lean period of the exhaust air-fuel ratio is set , and the combustion temperature of the particulate matter is determined to be excessive due to the exhaust temperature downstream of the filter. In this case, the exhaust purification apparatus for an internal combustion engine is characterized in that the set rich side period is lengthened or the set lean side period is shortened .
JP2003117030A 2003-04-22 2003-04-22 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP4203730B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003117030A JP4203730B2 (en) 2003-04-22 2003-04-22 Exhaust gas purification device for internal combustion engine
DE102004019660A DE102004019660B4 (en) 2003-04-22 2004-04-22 Emission control method for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003117030A JP4203730B2 (en) 2003-04-22 2003-04-22 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004324455A JP2004324455A (en) 2004-11-18
JP4203730B2 true JP4203730B2 (en) 2009-01-07

Family

ID=33497060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003117030A Expired - Lifetime JP4203730B2 (en) 2003-04-22 2003-04-22 Exhaust gas purification device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP4203730B2 (en)
DE (1) DE102004019660B4 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4609178B2 (en) * 2005-05-02 2011-01-12 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
DE102005046830A1 (en) * 2005-09-29 2007-06-06 Fev Motorentechnik Gmbh Method for operating an internal combustion engine with a particle filter
JP4597876B2 (en) * 2006-01-24 2010-12-15 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP4660446B2 (en) * 2006-09-11 2011-03-30 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
FR2921685B1 (en) * 2007-09-27 2011-04-01 Peugeot Citroen Automobiles Sa METHOD AND DEVICE FOR TREATING EXHAUST GAS OF AN INTERNAL COMBUSTION ENGINE.
DE502007002874D1 (en) * 2007-09-28 2010-04-01 Umicore Ag & Co Kg Removal of particles from the exhaust gas of combustion engines operated with predominantly stoichiometric air / fuel mixture
FR2927362B1 (en) * 2008-02-07 2013-10-18 Renault Sas METHOD AND DEVICE FOR REGENERATING AN EXHAUST GAS POST-TREATMENT DEVICE
FR2930968B1 (en) * 2008-05-07 2014-10-24 Renault Sas METHOD FOR REGENERATING A POST PROCESSING SYSTEM BY FRACTIONING WEALTH
DE102008036127A1 (en) 2008-08-01 2010-02-04 Emitec Gesellschaft Für Emissionstechnologie Mbh Method for operating an exhaust system with lambda control
FR2938876A1 (en) * 2008-11-27 2010-05-28 Peugeot Citroen Automobiles Sa STRATEGY FOR REGENERATING A PARTICLE FILTER
JP5254845B2 (en) * 2009-03-03 2013-08-07 本田技研工業株式会社 Exhaust purification device
JP5306867B2 (en) * 2009-03-23 2013-10-02 本田技研工業株式会社 Exhaust purification device
JP5553243B2 (en) * 2011-11-01 2014-07-16 株式会社豊田自動織機 Exhaust gas purification device for internal combustion engine
JP5738249B2 (en) * 2012-09-13 2015-06-17 本田技研工業株式会社 Exhaust gas purification system for internal combustion engine
JP6201765B2 (en) 2014-01-10 2017-09-27 トヨタ自動車株式会社 Control device for internal combustion engine
KR101567209B1 (en) 2014-04-24 2015-11-06 현대자동차주식회사 Exhaust processing device control method for vehicle
JP6504339B2 (en) * 2014-12-08 2019-04-24 三菱自動車工業株式会社 Engine exhaust purification system
FR3079556B1 (en) * 2018-03-28 2020-09-11 Renault Sas METHOD AND SYSTEM FOR CONTROLLING THE REGENERATION OF A PARTICULATE FILTER

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10040554B4 (en) * 2000-08-15 2013-05-02 Daimler Ag Method for operating an exhaust gas purification system with particle filter and nitrogen oxide storage
DE10126455B4 (en) * 2001-05-31 2006-03-23 Daimlerchrysler Ag Process for desulfating a nitrogen oxide storage catalyst
JP4241032B2 (en) * 2002-12-26 2009-03-18 日産自動車株式会社 Sulfur poisoning release control device for diesel engine catalyst

Also Published As

Publication number Publication date
JP2004324455A (en) 2004-11-18
DE102004019660A1 (en) 2005-01-27
DE102004019660B4 (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP4203730B2 (en) Exhaust gas purification device for internal combustion engine
US6962045B2 (en) Exhaust gas apparatus and method for purifying exhaust gas in internal combustion engine
US6742329B2 (en) Exhaust emission control system of diesel engine
US20040128985A1 (en) Exhaust gas purification device
US9051859B2 (en) Exhaust gas purification device and control method for exhaust gas purification device
US20140341781A1 (en) Exhaust gas purification system and exhaust gas purification method
JP2004324454A (en) Exhaust emission control device of internal combustion engine
JP4435300B2 (en) Control device for internal combustion engine
JP4613787B2 (en) Exhaust gas purification device for internal combustion engine
US10933374B2 (en) Exhaust emission control device, method and computer program product for an engine
JP4709733B2 (en) Exhaust gas purification device for internal combustion engine
JP2006226190A (en) Controller of lean burn engine
JP3933015B2 (en) Exhaust gas purification device for internal combustion engine
JP2019138159A (en) Control device for engine
JP4075822B2 (en) Diesel engine exhaust purification system
JP4727472B2 (en) Exhaust purification device
JP4674531B2 (en) Exhaust gas purification device for internal combustion engine
JP4000929B2 (en) Exhaust gas purification device for internal combustion engine
JP2006274985A (en) Exhaust gas aftertreatment device
JP2004346844A (en) Exhaust emission control system
JP4523317B2 (en) Diesel engine exhaust purification system
JP3899820B2 (en) Exhaust gas purification device for internal combustion engine
JP2006274911A (en) Temperature rise controller of aftertreatment device
JP3838100B2 (en) Exhaust gas purification device for internal combustion engine
JP2007255368A (en) Postprocessor of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080528

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080917

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4203730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term