JP4674531B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4674531B2
JP4674531B2 JP2005335357A JP2005335357A JP4674531B2 JP 4674531 B2 JP4674531 B2 JP 4674531B2 JP 2005335357 A JP2005335357 A JP 2005335357A JP 2005335357 A JP2005335357 A JP 2005335357A JP 4674531 B2 JP4674531 B2 JP 4674531B2
Authority
JP
Japan
Prior art keywords
exhaust
regeneration process
regeneration
air
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005335357A
Other languages
Japanese (ja)
Other versions
JP2007138861A (en
Inventor
亮児 西海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005335357A priority Critical patent/JP4674531B2/en
Publication of JP2007138861A publication Critical patent/JP2007138861A/en
Application granted granted Critical
Publication of JP4674531B2 publication Critical patent/JP4674531B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、排気通路の分岐部のそれぞれに再生式の排気浄化手段が設けられた内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine in which regenerative exhaust gas purification means is provided at each branch portion of an exhaust passage.

排気通路に設けられた互いに並列な2本の分岐部のそれぞれに、酸化触媒を担持したパティキュレートフィルタを排気浄化手段として設けた構成の排気浄化装置において、パティキュレートフィルタに堆積した堆積した粒子状物質(PM)を燃焼させ、あるいは触媒に蓄積した硫黄酸化物を還元してパティキュレートフィルタの排気浄化性能を回復させる再生処理を行う必要が生じた場合に、複数の分岐部のそれぞれに設けられた還元剤添加弁から還元剤としての燃料を同時に噴射して全てのパティキュレートフィルタを同時に昇温させる排気浄化装置が知られている(例えば特許文献1参照)。排気通路に設けられた2本の分岐部のそれぞれに酸化触媒を担持したパティキュレートフィルタを第1排気浄化手段として配置し、かつ分岐部の合流箇所から下流に延びる集合部に選択還元式触媒を第2排気浄化手段として配置した構成の排気浄化装置において、各パティキュレートフィルタへの排気導入を選択的に切り替える切替弁を分岐部の入口に配置し、一方のパティキュレートフィルタに排気を導入して排気を浄化している間に、他方のパティキュレートフィルタを再生処理するようにした排気浄化装置も知られている(例えば特許文献2参照)。
特開2003−97254号公報 特開2004−162600号公報
In the exhaust purification apparatus having a configuration in which a particulate filter carrying an oxidation catalyst is provided as an exhaust purification means at each of two parallel branch portions provided in the exhaust passage, the accumulated particulate matter deposited on the particulate filter Provided at each of the plurality of branch portions when it is necessary to perform a regeneration process to restore the exhaust gas purification performance of the particulate filter by burning the substance (PM) or reducing the sulfur oxide accumulated in the catalyst. There is known an exhaust emission control device that simultaneously injects fuel as a reducing agent from a reducing agent addition valve and simultaneously raises the temperature of all the particulate filters (see, for example, Patent Document 1). A particulate filter carrying an oxidation catalyst in each of the two branch portions provided in the exhaust passage is arranged as a first exhaust purification means, and a selective reduction catalyst is provided at a collecting portion extending downstream from the junction of the branch portions. In the exhaust gas purification apparatus configured as the second exhaust gas purification means, a switching valve for selectively switching the introduction of exhaust gas to each particulate filter is disposed at the inlet of the branch portion, and exhaust gas is introduced into one of the particulate filters. There is also known an exhaust emission control device that regenerates the other particulate filter while purifying exhaust gas (see, for example, Patent Document 2).
JP 2003-97254 A Japanese Patent Laid-Open No. 2004-162600

排気通路の分岐部のそれぞれに再生式の排気浄化手段が配置され、それらの下流の集合部に別の排気浄化手段が設けられた排気浄化装置において、特許文献1に記載の排気浄化装置のように分岐部の全ての排気浄化手段を同時に再生処理した場合には、集合部に導入される排気の熱でその集合部の排気浄化手段が必要以上に加熱されて熱劣化を起こすおそれがある。   In an exhaust gas purification apparatus in which a regenerative exhaust gas purification unit is disposed in each of the branch portions of the exhaust passage, and another exhaust gas purification unit is provided at a downstream gathering portion thereof, like the exhaust gas purification device described in Patent Document 1. If all the exhaust gas purification means at the branch part are regenerated at the same time, the exhaust gas purification means in the aggregate part may be heated more than necessary by the heat of the exhaust gas introduced into the aggregate part, causing thermal degradation.

特許文献2に記載の排気浄化装置では、一対の排気浄化手段のうち、いずれか一方の排気浄化手段のみで実質的に全量の排気を浄化処理しているので、各排気浄化手段が排気の略全量を処理し得る容量を備えている必要があり、排気浄化手段が大型化する。   In the exhaust gas purification apparatus described in Patent Document 2, since substantially the entire amount of exhaust gas is purified by only one of the pair of exhaust gas purification units, each exhaust gas purification unit is an abbreviation for exhaust gas. It is necessary to have a capacity capable of processing the entire amount, and the exhaust purification unit becomes larger.

そこで、本発明は分岐部の下流の集合部に設けられた排気浄化手段の熱劣化を抑制しつつ分岐部のそれぞれに設けられた排気浄化手段を再生処理することができ、しかも、分岐部の排気浄化手段の容量の削減にも有利な内燃機関の排気浄化装置を提供することを目的とする。   Therefore, the present invention can regenerate the exhaust gas purification means provided in each of the branch parts while suppressing thermal deterioration of the exhaust gas purification means provided in the gathering part downstream of the branch parts, An object of the present invention is to provide an exhaust gas purification apparatus for an internal combustion engine that is advantageous for reducing the capacity of the exhaust gas purification means.

本発明の内燃機関の排気浄化装置は、排気通路の互いに並列な複数の分岐部のそれぞれに設けられた再生式の第1排気浄化手段と、前記複数の分岐部の合流箇所から下流に延びる排気通路の集合部に設けられた第2排気浄化手段と、前記複数の分岐部のそれぞれの第1排気浄化手段を個別に昇温してこれらの第1排気浄化手段に対して再生処理を実行可能な再生実行手段と、全ての前記第1排気浄化手段の再生処理の要否を判定する判定手段と、前記第2排気浄化手段の温度を検出するための温度検出手段と、前記分岐部のそれぞれに導かれる排気流量を調整する排気流量調整手段と、前記判定手段により再生処理が必要と判定された場合には前記第1排気浄化手段に対する再生処理が実行され、前記再生処理が不要と判定された場合には全ての第1排気浄化手段に対する再生処理が禁止されるように前記再生実行手段を制御する再生制御手段と、を具備し、前記第2排気浄化手段は、再生に適した温度域よりも低温の活性温度域で浄化性能を発揮する触媒を含み、前記再生制御手段は、前記再生処理が必要と判定された場合、少なくとも一つの分岐部の第1排気浄化手段を再生処理の対象から除外しかつ他の分岐部の排気浄化手段に対して再生処理を実行する処理サイクルが、前記再生処理の対象から除外する第1排気浄化手段を順次切り替えつつ繰り返されることにより、全ての第1排気浄化手段が再生処理されるように前記再生実行手段を制御するとともに、前記再生処理の実行中、前記温度検出手段にて検出される前記第2排気浄化手段の温度が前記活性温度域に維持されるように前記排気流量調整手段を介して前記複数の分岐部のそれぞれを通過する排気流量を制御する、ことにより、上述した課題を解決する(請求項1)。
An exhaust gas purification apparatus for an internal combustion engine according to the present invention includes a regenerative first exhaust gas purification unit provided at each of a plurality of branch portions parallel to each other of an exhaust passage, and an exhaust gas extending downstream from a confluence of the plurality of branch portions. The temperature of the second exhaust gas purification means provided in the collective portion of the passage and the first exhaust gas purification means of each of the plurality of branch portions can be individually raised, and the regeneration process can be performed on these first exhaust gas purification means. Each of the regenerative execution means, the determination means for determining whether or not the regeneration processing of all the first exhaust purification means is necessary, the temperature detection means for detecting the temperature of the second exhaust purification means, and each of the branch portions The exhaust flow rate adjusting means for adjusting the exhaust flow rate guided to the engine and the determination means determine that the regeneration process is necessary, the regeneration process for the first exhaust gas purification means is executed, and it is determined that the regeneration process is unnecessary. If all Of a reproduction control means for reproducing processing for the first exhaust gas purification device for controlling the regeneration execution means to be inhibited, comprises a second exhaust gas purification unit, the low-temperature activity than the temperature range suitable for reproduction The regeneration control means excludes the first exhaust gas purification means of at least one branch portion from the target of the regeneration process and determines whether or not the regeneration process is necessary. The processing cycle for executing the regeneration process for the exhaust gas purifying means at the branch portion is repeated while sequentially switching the first exhaust gas purifying means excluded from the target of the regeneration process, whereby all the first exhaust gas purifying means are regenerated. It controls the regeneration execution means to be processed, during execution of the regeneration process, the temperature of the second exhaust gas purifying means is detected by said temperature detecting means is maintained at the activation temperature range Wherein controlling the flow rate of exhaust gas through the exhaust flow rate adjusting means passing through each of the plurality of branch portions as it allows to solve the problems described above (claim 1).

本発明の排気浄化装置によれば、再生制御手段が処理サイクルを繰り返すことにより、全ての分岐部の第1排気浄化手段が再生処理される。一回の処理サイクルでは、少なくとも一つの分岐部の第1排気浄化手段が再生処理の対象から除外され、かつ他の分岐部の第1排気浄化手段に対して再生処理が実行されるため、分岐部の全ての第1排気浄化手段を同時に再生処理する場合と比較して、集合部の第2排気浄化手段に流入する排気の温度が低下し、その結果、第2排気浄化手段の熱劣化が抑制される。また、分岐部の第1排気浄化手段に対する再生処理の要否を判定手段にて判定し、再生が必要と判定された場合に処理サイクルを繰り返す一方で、再生不要と判定された場合は全ての第1排気浄化手段に対する再生処理を禁止しているので、再生処理を要しない期間では全ての第1排気浄化手段を排気浄化に利用することができる。これにより、第1排気浄化手段に必要な容量を削減することができる。   According to the exhaust emission control device of the present invention, the regeneration control means repeats the processing cycle, whereby the first exhaust purification means of all the branch portions are regenerated. In one processing cycle, the first exhaust purification unit of at least one branch part is excluded from the target of the regeneration process, and the regeneration process is executed on the first exhaust purification unit of the other branch part. The temperature of the exhaust gas flowing into the second exhaust purification unit of the collecting unit is lowered compared with the case where all the first exhaust purification units of the unit are simultaneously regenerated, and as a result, thermal degradation of the second exhaust purification unit is reduced. It is suppressed. In addition, the determination unit determines whether or not the regeneration process for the first exhaust gas purification unit at the branching portion is necessary. When it is determined that regeneration is necessary, the processing cycle is repeated. Since the regeneration process for the first exhaust purification unit is prohibited, all the first exhaust purification units can be used for exhaust purification in a period in which the regeneration process is not required. Thereby, the capacity required for the first exhaust purification unit can be reduced.

また、本発明の排気浄化装置によれば、再生処理中の分岐部から集合部に導かれる高温の排気の流量と、再生処理の対象から除外されている分岐部から集合部に導かれる低温の排気の流量との比率を排気流量調整手段にて調整することにより、集合部の第2排気浄化手段に導入される排気の温度を変化させることができる。そして、その第2排気浄化手段に導入される温度が第2排気浄化手段に含まれる触媒の活性温度域に維持されるように排気流量調整手段を制御することにより、再生処理中でも集合部の第2排気浄化手段の浄化性能を十分に発揮させ、排気エミッションの悪化を抑えることができる。
Further , according to the exhaust gas purification apparatus of the present invention, the flow rate of the high-temperature exhaust gas that is led from the branch part during the regeneration process to the collecting part and the low-temperature gas that is led from the branch part excluded from the regeneration process to the gathering part. By adjusting the ratio of the exhaust flow rate with the exhaust flow rate adjusting means, it is possible to change the temperature of the exhaust gas introduced into the second exhaust purification means of the collecting portion. Then, by controlling the exhaust flow rate adjusting means so that the temperature introduced into the second exhaust purification means is maintained in the activation temperature range of the catalyst included in the second exhaust purification means, the first of the collecting portions is also generated during the regeneration process. (2) The purification performance of the exhaust gas purification means can be fully exerted and deterioration of exhaust emission can be suppressed.

本発明の一形態において、排気浄化装置は、前記第2排気浄化手段に流入する排気の空燃比を検出する空燃比検出手段と、前記分岐部のそれぞれに導かれる排気流量を調整する排気流量調整手段と、をさらに具備し、前記再生実行手段は、前記複数の分岐部のそれぞれの第1排気浄化手段に個別に燃料を添加する燃料添加弁を有し、前記第2排気浄化手段は所定の空燃比範囲で浄化性能を発揮する触媒を含み、前記再生制御手段は、前記再生処理の実行中、前記空燃比検出手段にて検出される空燃比が前記所定の空燃比範囲に維持されるように前記排気流量調整手段を介して前記複数の分岐部のそれぞれを通過する排気流量を制御してもよい(請求項2)。
In one aspect of the present invention, the exhaust gas purification device includes an air-fuel ratio detection unit that detects an air-fuel ratio of the exhaust gas flowing into the second exhaust gas purification unit, and an exhaust gas flow rate adjustment that adjusts an exhaust gas flow rate that is led to each of the branch portions. And the regeneration executing means has a fuel addition valve for individually adding fuel to the first exhaust purification means of each of the plurality of branch portions, and the second exhaust purification means Including a catalyst that exhibits purification performance in an air-fuel ratio range, wherein the regeneration control means maintains the air-fuel ratio detected by the air-fuel ratio detection means within the predetermined air-fuel ratio range during execution of the regeneration process. In addition, the exhaust flow rate passing through each of the plurality of branch portions may be controlled via the exhaust flow rate adjusting means ( claim 2 ).

この形態によれば、再生処理中の分岐部から集合部に導かれる燃料量の多い排気の流量と、再生処理の対象から除外されている分岐部から集合部に導かれる燃料量の少ない排気の流量との比率を排気流量調整手段にて調整することにより、集合部の第2排気浄化手段に導入される排気の空燃比を変化させることができる。そして、その第2排気浄化手段に導入される排気の空燃比を、第2排気浄化手段に含まれる触媒が浄化性能を発揮する空燃比範囲に制御することにより、再生処理中でも集合部の第2排気浄化手段の浄化性能を十分に発揮させ、排気エミッションの悪化を抑えることができる。   According to this aspect, the flow rate of the exhaust gas having a large amount of fuel guided from the branch part during regeneration processing to the collecting part, and the exhaust amount of the fuel having a small fuel amount guided from the branch part excluded from the regeneration process target to the collecting part. By adjusting the ratio with the flow rate by the exhaust flow rate adjusting means, the air-fuel ratio of the exhaust gas introduced into the second exhaust purification means of the collecting portion can be changed. Then, by controlling the air-fuel ratio of the exhaust gas introduced into the second exhaust gas purification unit to an air-fuel ratio range in which the catalyst included in the second exhaust gas purification unit exhibits the purification performance, the second portion of the collecting portion is also in the regeneration process. It is possible to sufficiently exhibit the purification performance of the exhaust purification means and suppress the deterioration of exhaust emission.

排気流量調整手段を利用して第2排気浄化手段に導入される排気の空燃比を制御する形態においては、さらに、前記第1排気浄化手段が吸蔵還元型NOx触媒を含み、前記第2排気浄化手段が、前記所定の空燃比範囲として、理論空燃比よりも空気量が多いリーン域でサルフェートに対する浄化性能を発揮する触媒を含んでいてもよい(請求項3)。
In a mode in which the air-fuel ratio of the exhaust gas introduced into the second exhaust gas purification unit is controlled using the exhaust gas flow rate adjusting unit, the first exhaust gas purification unit further includes an NOx storage reduction catalyst, and the second exhaust gas purification unit. It means, as the predetermined air-fuel ratio range, which may contain a catalyst which exerts purification performance against sulphate in many lean region air quantity than the stoichiometric air-fuel ratio (claim 3).

分岐部の第1排気浄化手段がNOx吸蔵還元型触媒を含む場合、その硫黄被毒を解消するための再生処理を実行するには触媒を活性温度域よりも高温に加熱し、かつ触媒に導入される排気の空燃比を理論空燃比よりも燃料量が多いリッチ域に制御する必要がある。しかし、全ての第1排気浄化手段を同時に再生処理する場合、あるいは分岐部を設けることなく単一の第1排気浄化手段を第2排気浄化手段の上流に配置する場合には、第1排気浄化手段に導入される排気の空燃比を深いリッチ状態、つまり燃料量の比率が理論空燃比よりもリッチ側に大きく偏った状態に制御すると、後段(下流)の排気浄化手段に導入される排気の空燃比もリッチ側に偏り、前段(上流)の排気浄化手段の硫黄被毒再生処理で発生したサルフェートを後段の排気浄化手段で浄化することができず、サルフェート白煙、あるいは悪臭が生じる。このような不都合を解消する一手段として、前段の排気浄化手段の再生処理中の空燃比を比較的浅いリッチ状態、つまり理論空燃比に近いリッチ状態に制限することが考えられるが、空燃比が浅いリッチ状態に制御された環境では硫黄被毒の解消が緩やかに進行するため、再生に必要な時間が長時間化する。再生処理が長くなれば再生処中の排気浄化手段の熱劣化のリスクが増大し、あるいは還元剤として供給する燃料量が増えて燃費悪化を招く、といった不都合が生じる。   When the first exhaust purification means at the branching portion contains a NOx occlusion reduction type catalyst, the regeneration process for eliminating the sulfur poisoning is performed by heating the catalyst to a temperature higher than the activation temperature range and introducing it into the catalyst. It is necessary to control the air-fuel ratio of the exhaust gas to a rich region where the fuel amount is larger than the stoichiometric air-fuel ratio. However, when all the first exhaust purification means are regenerated at the same time, or when a single first exhaust purification means is disposed upstream of the second exhaust purification means without providing a branch portion, the first exhaust purification means is provided. If the air-fuel ratio of the exhaust gas introduced into the means is controlled to a deep rich state, that is, the ratio of the fuel amount is greatly biased to the rich side from the stoichiometric air-fuel ratio, the exhaust gas introduced into the downstream (downstream) exhaust purification means The air-fuel ratio is also biased to the rich side, and the sulfate generated by the sulfur poisoning regeneration process of the upstream (upstream) exhaust purification means cannot be purified by the subsequent exhaust purification means, resulting in sulfate white smoke or bad odor. As a means for solving such inconvenience, it is conceivable to limit the air-fuel ratio during the regeneration process of the exhaust purification unit in the preceding stage to a relatively shallow rich state, that is, a rich state close to the theoretical air-fuel ratio. In an environment controlled in a shallow rich state, the elimination of sulfur poisoning proceeds slowly, so that the time required for regeneration increases. If the regeneration process is lengthened, the risk of thermal deterioration of the exhaust gas purification means during the regeneration process increases, or the amount of fuel supplied as a reducing agent increases, resulting in inconvenience of fuel consumption.

これに対して、本発明の上記形態によれば、少なくとも一つの分岐部の第1排気浄化手段を再生処理の対象から除外し、かつ、再生処理中の分岐部の排気流量と再生対象外の分岐部の排気流量との比率を排気流量調整弁で調整しているので、再生処理中であっても、集合部の第2排気浄化手段に導かれる排気の空燃比をサルフェート浄化に必要なリーン域へと制御することができる。このため、再生処理の対象の第1排気浄化手段に流入する排気の空燃比を比較的深いリッチ状態に制御することができ、これにより、硫黄被毒の再生を短時間で完了し、第1排気浄化手段の熱劣化を防止し、あるいは再生で添加する燃料量を削減して燃費を向上させることができる。さらに、再生中に第1排気浄化手段に流入する排気の空燃比を浅いリッチ状態に制限する必要がなくなるので、再生時の目標空燃比の幅が拡大し、再生処理に関する制御の安定性が向上する。   On the other hand, according to the above aspect of the present invention, the first exhaust gas purification means of at least one branch part is excluded from the target of the regeneration process, and the exhaust flow rate of the branch part during the regeneration process and the non-regeneration target Since the ratio with the exhaust flow rate of the branching portion is adjusted by the exhaust flow rate adjusting valve, the air-fuel ratio of the exhaust led to the second exhaust purification means of the collecting portion is the lean necessary for the sulfate purification even during the regeneration process. Can be controlled. For this reason, it is possible to control the air-fuel ratio of the exhaust gas flowing into the first exhaust gas purification means to be regenerated into a relatively deep rich state, whereby the sulfur poisoning regeneration is completed in a short time, and the first It is possible to improve the fuel consumption by preventing thermal deterioration of the exhaust purification means or reducing the amount of fuel added by regeneration. Further, since it is not necessary to limit the air-fuel ratio of the exhaust gas flowing into the first exhaust purification means during the regeneration to a shallow rich state, the range of the target air-fuel ratio at the time of regeneration is expanded, and the stability of the control relating to the regeneration processing is improved. To do.

以上に説明したように、本発明によれば、少なくとも一つの分岐部の第1排気浄化手段を再生処理の対象から除外し、かつ他の分岐部の第1排気浄化手段に対して再生処理を実行する処理サイクルを繰り返して全ての分岐部の第1排気浄化手段を再生するようにしたので、分岐部の全ての第1排気浄化手段を同時に再生処理する場合と比較して、集合部の第2排気浄化手段に流入する排気の温度を低下させ、それにより第2排気浄化手段の熱劣化を抑制することができる。しかも、分岐部の第1排気浄化手段に対する再生が必要と判定された場合に処理サイクルを繰り返す一方で、再生不要と判定された場合は全ての第1排気浄化手段に対する再生処理を禁止するようにしたので、再生処理を要しない期間では全ての第1排気浄化手段を排気浄化に利用することができる。これにより、第1排気浄化手段に必要な容量を削減することができる。   As described above, according to the present invention, the first exhaust purification unit of at least one branch part is excluded from the target of the regeneration process, and the regeneration process is performed on the first exhaust purification unit of the other branch part. Since the processing cycle to be executed is repeated to regenerate the first exhaust purification means of all the branch portions, the first exhaust purification means of all the branch portions is regenerated at the same time as compared with the case where all the first exhaust purification means of the branch portions are simultaneously regenerated. (2) The temperature of the exhaust gas flowing into the exhaust gas purification means can be lowered, thereby suppressing the thermal deterioration of the second exhaust gas purification means. In addition, the processing cycle is repeated when it is determined that regeneration of the first exhaust purification unit at the branch portion is necessary. On the other hand, when it is determined that regeneration is unnecessary, regeneration processing for all the first exhaust purification units is prohibited. Therefore, all the first exhaust gas purification means can be used for exhaust gas purification during a period when the regeneration process is not required. Thereby, the capacity required for the first exhaust purification unit can be reduced.

図1は本発明の一形態に係る排気浄化装置とこれが適用される内燃機関の概略を示している。内燃機関1は、車両の走行用の動力源として使用される4気筒直列式のディーゼルエンジンとして構成されている。以下では内燃機関1をエンジン1と略称する。エンジン1の排気通路2には、互いに並列な一対の分岐部3A、3Bと、それらの分岐部3A、3Bの合流箇所4から下流に延びる集合部5とが設けられている。分岐部3A、3Bは排気マニホールド2aの直下に設けられている。分岐部3A、3Bのそれぞれには第1排気浄化手段として前段触媒装置6A、6Bが設けられ、集合部5には第2排気浄化手段として後段触媒装置7が設けられている。前段触媒装置6A、6Bは、いずれもディーゼルエンジンの排気中に含まれる粒子状物質を捕捉する機能を備えたパティキュレートフィルタに、酸化機能を有する触媒を担持させた構成を備えている。酸化機能を有する触媒としては、吸蔵還元型NOx触媒、選択還元式NOx触媒等が存在するが、以下では、前段触媒装置6A、6Bに吸蔵還元型NOx触媒が使用されているものとして説明を続ける。一方、後段触媒装置7は前段触媒装置6A、6Bで処理し切れない排気エミッションを処理するためのものでスイーパ触媒と呼ばれることがある。後段触媒装置7は、サルフェートを浄化可能な触媒を含む。   FIG. 1 shows an outline of an exhaust emission control device according to one embodiment of the present invention and an internal combustion engine to which the exhaust purification device is applied. The internal combustion engine 1 is configured as a four-cylinder in-line type diesel engine that is used as a power source for driving a vehicle. Hereinafter, the internal combustion engine 1 is abbreviated as the engine 1. The exhaust passage 2 of the engine 1 is provided with a pair of branch portions 3A and 3B that are parallel to each other and a collective portion 5 that extends downstream from the junction 4 of the branch portions 3A and 3B. The branch portions 3A and 3B are provided directly below the exhaust manifold 2a. Each of the branch portions 3A and 3B is provided with front-stage catalyst devices 6A and 6B as first exhaust purification means, and the collecting portion 5 is provided with a rear-stage catalyst device 7 as second exhaust purification means. The pre-catalyst devices 6A and 6B each have a configuration in which a catalyst having an oxidation function is supported on a particulate filter having a function of capturing particulate matter contained in exhaust gas from a diesel engine. As a catalyst having an oxidation function, there are a storage reduction type NOx catalyst, a selective reduction type NOx catalyst, and the like. However, in the following description, it is assumed that a storage reduction type NOx catalyst is used in the pre-stage catalyst devices 6A and 6B. . On the other hand, the post-catalyst device 7 is for treating exhaust emissions that cannot be completely processed by the pre-catalyst devices 6A and 6B, and is sometimes called a sweeper catalyst. The post-catalyst device 7 includes a catalyst capable of purifying sulfate.

前段触媒装置6A、6Bは排気マニホールド2aの直下に配置されるいわゆるマニバータ方式の触媒装置である。一方、後段触媒装置7は一例として車両の床下に設置される。前段触媒装置6A、6Bのそれぞれの容量は、排気通路2に分岐部3A、3Bを設けることなく、これらの前段触媒装置6A、6Bを単一の前段触媒装置に置き換え、その単一の前段触媒装置と後段触媒装置7とによって排気を浄化すると仮定し、その単一の前段触媒装置に要求される容量を要求容量と定義した場合、その要求容量の1/2よりも大きくかつ要求容量よりも小さい範囲に設定される。後段触媒装置7の容量は各前段触媒装置6A、6Bのそれよりも大きく設定される。   The pre-catalyst devices 6A and 6B are so-called maniverter-type catalyst devices arranged immediately below the exhaust manifold 2a. On the other hand, the rear catalyst device 7 is installed under the floor of the vehicle as an example. The respective capacities of the pre-catalyst devices 6A and 6B are obtained by replacing the pre-catalyst devices 6A and 6B with a single pre-catalyst device without providing the branch portions 3A and 3B in the exhaust passage 2, Assuming that the exhaust gas is purified by the apparatus and the post-catalyst device 7 and the capacity required for the single pre-catalyst device is defined as the required capacity, it is larger than 1/2 of the required capacity and more than the required capacity Set to a small range. The capacity of the post-catalyst device 7 is set larger than that of each of the pre-catalyst devices 6A and 6B.

前段触媒装置6A、6Bは、堆積したパティキュレートの酸化、あるいは硫黄被毒の解消のために定期的な再生処理を必要とする再生式の触媒装置である。パティキュレートの酸化を目的としたPM再生処理、あるいは硫黄被毒の解消を目的とした硫黄被毒再生処理では、前段触媒装置6A、6Bを排気浄化、より具体的にはNOxの吸蔵に適した活性温度域よりも高温の再生温度域まで昇温させる必要がある。さらに、硫黄被毒再生処理では、前段触媒装置6A、6Bに流入する排気の空燃比を理論空燃比よりも燃料量が多いリッチ域に制御する必要がある。このような再生処理を実行するため、分岐部3A、3Bのそれぞれの前段触媒装置6A、6Bの上流には、前段触媒装置6A、6Bに流入する排気に燃料を添加する燃料添加弁8A、8Bが設けられている。これらの燃料添加弁8A、8Bは分岐部3A、3Bのそれぞれの前段触媒装置6A、6Bに対して個別に再生処理を実行可能な再生実行手段として機能する。さらに、分岐部3A、3Bには、前段触媒装置6A、6Bの温度を検出する温度センサ9A、9B、及び分岐部3A、3Bのそれぞれに導かれる排気流量を調整するための排気流量調整手段としての流量調整弁10A、10Bが設けられている。一方、集合部5の後段触媒装置7の上流には後段触媒装置7に流入する排気の空燃比を検出する空燃比検出手段としての空燃比センサ11が設けられ、後段触媒装置7の下流には後段触媒装置7の温度を検出する温度検出手段としての温度センサ12が設けられている。   The pre-catalyst devices 6A and 6B are regenerative catalyst devices that require periodic regeneration treatment to oxidize accumulated particulates or eliminate sulfur poisoning. In the PM regeneration process for the purpose of particulate oxidation or the sulfur poisoning regeneration process for the purpose of eliminating sulfur poisoning, the pre-catalyst devices 6A and 6B are suitable for exhaust purification, more specifically for storing NOx. It is necessary to raise the temperature to a regeneration temperature range higher than the activation temperature range. Furthermore, in the sulfur poisoning regeneration process, it is necessary to control the air-fuel ratio of the exhaust gas flowing into the upstream catalyst devices 6A and 6B to a rich region where the fuel amount is larger than the stoichiometric air-fuel ratio. In order to execute such a regeneration process, fuel addition valves 8A and 8B for adding fuel to the exhaust gas flowing into the upstream catalyst devices 6A and 6B are provided upstream of the upstream catalyst devices 6A and 6B of the branch portions 3A and 3B, respectively. Is provided. These fuel addition valves 8A and 8B function as regeneration executing means capable of individually performing regeneration processing on the preceding catalyst devices 6A and 6B of the branch portions 3A and 3B. Further, the branch portions 3A and 3B have temperature sensors 9A and 9B for detecting the temperatures of the preceding catalyst devices 6A and 6B, and exhaust flow rate adjusting means for adjusting the exhaust flow rates led to the branch portions 3A and 3B, respectively. The flow regulating valves 10A and 10B are provided. On the other hand, an air-fuel ratio sensor 11 as an air-fuel ratio detecting means for detecting the air-fuel ratio of the exhaust gas flowing into the rear-stage catalyst device 7 is provided upstream of the rear-stage catalyst device 7 of the collecting section 5. A temperature sensor 12 is provided as temperature detecting means for detecting the temperature of the rear catalyst device 7.

燃料添加弁8A、8B及び流量調整弁10A、10Bの動作はエンジンコントロールユニット(ECU)15にて制御される。ECU15はエンジン1の燃料噴射量、吸入空気量、動弁特性等を制御するためのコンピュータユニットとして構成されている。ECU15は、エンジン1の通常運転時において、前段触媒装置6A、6Bに流入する排気の空燃比を理論空燃比よりも空気量の多いリーン域に制御して前段触媒6A、6Bの温度をNOx浄化に適した活性温度域に維持する。また、ECU15は、前段触媒装置6A、6BのNOx吸蔵量が飽和しない周期で燃料添加弁8A、8Bから燃料を短時間噴射して前段触媒装置6A、6Bに流入する排気の空燃比を一時的にリッチ域に変化させるいわゆるリッチスパイク制御をも実行する。これらの制御は公知の排気浄化装置と同様でよい。なお、ECU15は、通常運転中、つまり前段触媒装置6A、6Bに対する再生処理が必要とされていない期間では、分岐部3A、3Bに略等量の排気が導かれるように流量調整弁10A、10Bのそれぞれの開度を調整する。例えば、流量調整弁10A、10Bをそれぞれ全開状態に制御する。リッチスパイク制御の実行時においては、流量調整弁10A、10Bを通常運転中と同様に制御してもよいが、流量調整弁10A、10Bを交互に開閉して分岐部3A、3B毎に交互にリッチスパイク制御を実行してもよい。   The operations of the fuel addition valves 8A and 8B and the flow rate adjustment valves 10A and 10B are controlled by an engine control unit (ECU) 15. The ECU 15 is configured as a computer unit for controlling the fuel injection amount, intake air amount, valve operating characteristics, and the like of the engine 1. During normal operation of the engine 1, the ECU 15 controls the air-fuel ratio of the exhaust gas flowing into the front-stage catalyst devices 6A and 6B to a lean region where the air amount is larger than the stoichiometric air-fuel ratio, and the temperature of the front-stage catalysts 6A and 6B is NOx purified. Keep the temperature in the active temperature range. Further, the ECU 15 temporarily injects fuel from the fuel addition valves 8A and 8B for a short period of time so that the NOx occlusion amounts of the upstream catalytic devices 6A and 6B are not saturated, and temporarily sets the air-fuel ratio of the exhaust gas flowing into the upstream catalytic devices 6A and 6B. The so-called rich spike control for changing to the rich region is also executed. These controls may be the same as those of a known exhaust purification device. Note that the ECU 15 controls the flow rate adjusting valves 10A, 10B so that substantially the same amount of exhaust gas is led to the branch portions 3A, 3B during normal operation, that is, during a period when regeneration processing for the upstream catalytic devices 6A, 6B is not required. Adjust the opening of each. For example, the flow rate adjusting valves 10A and 10B are each controlled to be fully opened. During the execution of the rich spike control, the flow rate adjustment valves 10A and 10B may be controlled in the same manner as during normal operation, but the flow rate adjustment valves 10A and 10B are alternately opened and closed alternately for each of the branch portions 3A and 3B. Rich spike control may be executed.

さらに、ECU15は、図2及び図3に示すPM再生処理ルーチン、並びに図4及び図5に示す硫黄被毒再生ルーチンを実行することにより、前段触媒装置6A、6BのPM再生処理又は移動被毒再生処理を実行する。まず、図2及び図3を参照してPM再生処理ルーチンを説明する。PM再生処理ルーチンはECU15が実行する他の様々な処理と並行して適当な周期で繰り返し実行される。   Further, the ECU 15 executes the PM regeneration processing routine shown in FIGS. 2 and 3 and the sulfur poisoning regeneration routine shown in FIGS. 4 and 5 to perform the PM regeneration processing or moving poisoning of the pre-stage catalyst devices 6A and 6B. Perform playback processing. First, the PM regeneration processing routine will be described with reference to FIGS. The PM regeneration processing routine is repeatedly executed at an appropriate period in parallel with various other processes executed by the ECU 15.

図2のPM再生処理ルーチンにおいて、ECU15はまずステップS11にて前段触媒装置6A、6Bに対するPM再生処理の要否を判定する。PM再生処理の要否は公知の排気浄化装置と同様に行うことができる。例えば、前段触媒装置6A、6Bにおけるパティキュレートの堆積量を前段触媒装置6A、6Bの前後における圧力損失、エンジン1の運転時間、車両の走行距離といったパティキュレートの堆積量に相関する物理量に基づいて推定し、その推定値が所定の許容値を超えたときにPM再生が必要と判定することができる。なお、パティキュレートの堆積量が許容値を超える状況であっても、何らかの理由によりPM再生処理を実行すべきでない場合、つまり、PM再生処理に対する禁止条件が成立しているか否かを併せて判定し、禁止条件が成立する場合をPM再生処理が不要な場合の一態様として判定してもよい。   In the PM regeneration processing routine of FIG. 2, the ECU 15 first determines in step S11 whether or not PM regeneration processing is necessary for the pre-catalyst devices 6A and 6B. The necessity of the PM regeneration process can be performed in the same manner as a known exhaust purification device. For example, the accumulated amount of particulates in the preceding catalyst devices 6A and 6B is based on physical quantities that correlate with the accumulated amount of particulates such as pressure loss before and after the preceding catalyst devices 6A and 6B, the operating time of the engine 1, and the travel distance of the vehicle. It is possible to estimate that PM regeneration is necessary when the estimated value exceeds a predetermined allowable value. It should be noted that even if the amount of accumulated particulates exceeds the allowable value, it is also determined whether the PM regeneration process should not be executed for some reason, that is, whether the prohibition condition for the PM regeneration process is satisfied. Then, the case where the prohibition condition is satisfied may be determined as one aspect when the PM regeneration process is unnecessary.

PM再生処理が必要と判定された場合、ECU15はステップS12に進み、前段触媒装置6A、6BのPM再生処理時における目標再生温度Ttrg_M、並びにPM再生処理中における後段触媒装置7の目標温度上限Ttrg_UF_H及び目標温度下限Ttrg_UF_Lをそれぞれ設定する。目標再生温度Ttrg_Mはパティキュレートの燃焼に必要な温度域(一例として600°C程度)に設定され、その温度域は一般に前段触媒装置6A、6BのNOx浄化処理に適した活性温度よりも高温である。一方、後段触媒目標温度上限Ttrg_UF_Hは後段触媒装置7が熱劣化を生じる温度よりも低温に設定され、より好ましくは後段触媒装置7の活性温度域(一例として350°C±α)の上限温度又はこれよりも幾らか低温に設定される。目標温度下限Ttrg_UF_Lは後段触媒装置7の活性温度域の下限温度又はこれよりも幾らか高温に設定される。   When it is determined that the PM regeneration process is necessary, the ECU 15 proceeds to step S12, in which the target regeneration temperature Ttrg_M during the PM regeneration process of the preceding catalyst devices 6A and 6B and the target temperature upper limit Ttrg_UF_H of the subsequent catalyst device 7 during the PM regeneration process are determined. And the target temperature lower limit Ttrg_UF_L, respectively. The target regeneration temperature Ttrg_M is set to a temperature range (about 600 ° C. as an example) necessary for particulate combustion, and the temperature range is generally higher than the activation temperature suitable for the NOx purification treatment of the pre-stage catalyst devices 6A and 6B. is there. On the other hand, the rear catalyst target temperature upper limit Ttrg_UF_H is set to a temperature lower than the temperature at which the rear catalyst device 7 undergoes thermal degradation, and more preferably, the upper limit temperature in the activation temperature range (350 ° C ± α as an example) of the rear catalyst device 7 or Somewhat lower than this is set. The target temperature lower limit Ttrg_UF_L is set to the lower limit temperature of the activation temperature range of the post-catalyst device 7 or somewhat higher than this.

続くステップS13において、ECU15は、一方の前段触媒装置6AのみをPM再生処理の対象として、その前段触媒装置6Aが設けられた分岐部3Aの燃料添加弁8Aから燃料を添加して前段触媒装置6Aを昇温させることにより、前段触媒装置6AのPM再生処理を開始する。この場合、温度センサ9Aが検出する前段触媒装置6Aの温度Tb_Maが前段触媒目標再生温度Ttrg_Mに一致するように燃料添加弁8Aからの燃料添加量が制御される。また、他方の前段触媒装置6BはPM再生処理の対象から除外され、その前段触媒装置6Bが設けられた分岐部3Bの燃料添加弁8Bからは燃料が添加されない。   In the subsequent step S13, the ECU 15 targets only one of the pre-catalyst devices 6A for PM regeneration processing, adds fuel from the fuel addition valve 8A of the branch portion 3A provided with the pre-catalyst device 6A, and performs the pre-catalyst device 6A. Is started, the PM regeneration process of the pre-catalyst device 6A is started. In this case, the amount of fuel added from the fuel addition valve 8A is controlled so that the temperature Tb_Ma of the upstream catalytic device 6A detected by the temperature sensor 9A matches the upstream catalytic target regeneration temperature Ttrg_M. The other front-stage catalyst device 6B is excluded from the target of the PM regeneration process, and no fuel is added from the fuel addition valve 8B of the branch portion 3B provided with the front-stage catalyst device 6B.

続くステップS14において、ECU15は温度センサ12が検出する後段触媒装置7の温度Tb_UFが目標温度下限Ttrg_UF_Lから目標温度上限Ttrg_UF_Hの範囲(以下、これを後段触媒装置7の目標温度範囲と呼ぶ。)にあるか否かを判定する。温度Tb_UFが目標温度上限Ttrg_UF_Hよりも高温、又は目標温度下限Ttrg_UF_Lよりも低温と判定された場合、ECU15はステップS15に進み、後段触媒装置7の温度Tb_UFがその目標温度範囲内に変化するように流量調整弁10A、10Bの開度を調整する。例えば、温度Tb_UFが目標温度上限Ttrg_UF_Hよりも高温側にずれている場合には、PM再生処理の対象とされている前段触媒装置6Aと同一の側の流量調整弁10Aの開度を減少させる操作、及びPM再生処理の対象から除外されている前段触媒装置6Bと同一の側の流量調整弁10Bの開度を増加させる操作の少なくともいずれか一方の操作を実行する。温度Tb_UFが目標温度下限Ttrg_UF_Lよりも低温側にずれている場合には、PM再生処理の対象とされている前段触媒装置6Aと同一の側の流量調整弁10Aの開度を増加させる操作、及びPM再生処理の対象から除外されている前段触媒装置6Bと同一の側の流量調整弁10Bの開度を減少させる操作の少なくともいずれか一方の操作を実行する。なお、この場合の流量調整弁10A、10Bの操作量は、目標温度範囲に対する触媒温度Tb_UFのずれ量に基づいて設定すればよい。ステップS15を実行した後、ECU15はステップS14へ戻る。   In the subsequent step S14, the ECU 15 causes the temperature Tb_UF of the rear catalyst device 7 detected by the temperature sensor 12 to fall within the range from the target temperature lower limit Ttrg_UF_L to the target temperature upper limit Ttrg_UF_H (hereinafter referred to as the target temperature range of the rear catalyst device 7). It is determined whether or not there is. When it is determined that the temperature Tb_UF is higher than the target temperature upper limit Ttrg_UF_H or lower than the target temperature lower limit Ttrg_UF_L, the ECU 15 proceeds to step S15 so that the temperature Tb_UF of the post-catalyst device 7 changes within the target temperature range. The opening degree of the flow regulating valves 10A and 10B is adjusted. For example, when the temperature Tb_UF is shifted to a higher temperature side than the target temperature upper limit Ttrg_UF_H, an operation for reducing the opening degree of the flow rate adjustment valve 10A on the same side as the preceding-stage catalyst device 6A that is the target of the PM regeneration process. , And at least one of the operations for increasing the opening degree of the flow rate adjustment valve 10B on the same side as the pre-catalyst device 6B excluded from the target of the PM regeneration process. When the temperature Tb_UF is shifted to a lower temperature side than the target temperature lower limit Ttrg_UF_L, an operation of increasing the opening of the flow rate adjustment valve 10A on the same side as the preceding stage catalyst device 6A that is the target of the PM regeneration process, and At least one of the operations of decreasing the opening degree of the flow rate adjustment valve 10B on the same side as the preceding stage catalyst device 6B excluded from the target of the PM regeneration process is executed. In this case, the operation amount of the flow rate adjusting valves 10A and 10B may be set based on the deviation amount of the catalyst temperature Tb_UF with respect to the target temperature range. After executing step S15, the ECU 15 returns to step S14.

一方、ステップS14にて後段触媒装置7の温度Tb_UFが目標温度範囲内にあると判断した場合、ECU15はステップS16へ進み、PM再生処理が終了したか否かを判断する。PM再生処理の終了は、例えばPM再生処理の継続時間、PM再生処理中に温度センサ9Aが検出する温度履歴、燃料添加弁8Aからの燃料添加量の積算値といった、パティキュレートの酸化燃焼の進行に相関する物理量に基づいて判別することができる。そして、ECU15は、ステップS16でPM再生処理が終了していないと判定した場合にはステップS14へ戻り、PM再生処理が終了したと判定した場合は図3のステップS17へ進む。   On the other hand, when it is determined in step S14 that the temperature Tb_UF of the rear catalyst device 7 is within the target temperature range, the ECU 15 proceeds to step S16 and determines whether or not the PM regeneration process is finished. The end of the PM regeneration process is, for example, the progress of particulate combustion such as the duration of the PM regeneration process, the temperature history detected by the temperature sensor 9A during the PM regeneration process, and the integrated value of the fuel addition amount from the fuel addition valve 8A. It can be determined based on a physical quantity correlated with. The ECU 15 returns to step S14 if it is determined in step S16 that the PM regeneration process has not ended, and proceeds to step S17 in FIG. 3 if it determines that the PM regeneration process has ended.

ステップS17において、ECU15は、PM再生処理の対象となる前段触媒装置を前段触媒装置6Aから前段触媒装置6Bへと交替させ、その前段触媒装置6Bが設けられた分岐部3Bの燃料添加弁8Bから燃料を添加して前段触媒装置6Bを昇温させることにより、前段触媒装置6BのPM再生処理を開始する。この場合、温度センサ9Bが検出する前段触媒装置6Bの温度Tb_Mbが前段触媒目標再生温度Ttrg_Mに一致するように燃料添加弁8Bからの燃料添加量が制御される。先にPM再生処理を実行した前段触媒装置6AはPM再生処理の対象から除外され、その前段触媒装置6Aが設けられた分岐部3Aの燃料添加弁8Aからは燃料が添加されない。   In step S17, the ECU 15 replaces the pre-stage catalyst device to be subjected to the PM regeneration process from the pre-stage catalyst device 6A to the pre-stage catalyst device 6B, and from the fuel addition valve 8B of the branch section 3B provided with the pre-stage catalyst device 6B. The PM regeneration process of the pre-catalyst device 6B is started by adding fuel and raising the temperature of the pre-catalyst device 6B. In this case, the amount of fuel added from the fuel addition valve 8B is controlled so that the temperature Tb_Mb of the pre-stage catalyst device 6B detected by the temperature sensor 9B matches the pre-stage catalyst target regeneration temperature Ttrg_M. The pre-catalyst device 6A that has previously executed the PM regeneration process is excluded from the target of the PM regeneration process, and no fuel is added from the fuel addition valve 8A of the branch section 3A in which the pre-catalyst device 6A is provided.

PM再生処理の開始後、ECU15はステップS18に進む。ステップS18〜S20までの処理は、PM再生処理の対象が前段触媒装置6Bに変更され、それに伴って流量調整弁10A、10Bが入れ替えられる点を除いて図2のステップS14〜S16と同様であり、説明を省略する。ECU15は、ステップS20にて前段触媒装置6BのPM再生処理が終了したと判定した場合、ステップS21へ進む。ステップS21において、ECU15は流量調整弁10A、10Bの開度をリセット、すなわちPM再生処理を実行する前の開度に戻し、その後、PM再生処理ルーチンを終了する。また、図2のステップS11にてPM再生処理が不要と判定された場合、ECU15はステップS12以下の処理をスキップしてPM再生処理ルーチンを終える。これにより、PM再生処理が不要な場合には全ての前段触媒装置6A、6Bに対するPM再生処理が禁止される。   After starting the PM regeneration process, the ECU 15 proceeds to step S18. The processes from Steps S18 to S20 are the same as Steps S14 to S16 in FIG. 2 except that the target of the PM regeneration process is changed to the pre-catalyst device 6B and the flow rate adjusting valves 10A and 10B are replaced accordingly. The description is omitted. If the ECU 15 determines in step S20 that the PM regeneration processing of the pre-catalyst device 6B has been completed, the ECU 15 proceeds to step S21. In step S21, the ECU 15 resets the opening degree of the flow rate adjusting valves 10A, 10B, that is, returns the opening degree before executing the PM regeneration process, and then ends the PM regeneration process routine. If it is determined in step S11 in FIG. 2 that the PM regeneration process is not necessary, the ECU 15 skips the processes in and after step S12 and ends the PM regeneration process routine. Thereby, when the PM regeneration process is unnecessary, the PM regeneration process for all the pre-catalyst devices 6A and 6B is prohibited.

次に、図4及び図5を参照して硫黄被毒再生処理ルーチンを説明する。硫黄被毒再生処理ルーチンは、ECU15が実行する他の様々な処理と並行して適当な周期で繰り返し実行される。図4の硫黄被毒再生処理ルーチンにおいて、ECU15はまずステップS31にて前段触媒装置6A、6Bに対する硫黄被毒再生処理の要否を判定する。硫黄被毒再生処理の要否は公知の排気浄化装置と同様に行うことができる。例えば、燃料中の硫黄成分が硫黄被毒量と密接に関係することから、ECU15が演算する燃料噴射量の積算値を利用して硫黄被毒量を推定し、その推定値が所定の許容値を超えたときに硫黄被毒再生処理が必要と判定することができる。車両の燃料タンクに蓄えられた燃料中の硫黄成分の濃度をセンサで検出して硫黄被毒量の推定精度を向上させてもよい。なお、硫黄被毒量が許容値を超える状況であっても、何らかの理由により硫黄被毒再生処理を実行すべきでない場合、つまり、硫黄被毒再生処理に対する禁止条件が成立しているか否かを併せて判定し、禁止条件が成立する場合を硫黄被毒再生処理が不要な場合の一態様として判定してもよい。   Next, the sulfur poisoning regeneration processing routine will be described with reference to FIGS. The sulfur poisoning regeneration processing routine is repeatedly executed at an appropriate cycle in parallel with various other processes executed by the ECU 15. In the sulfur poisoning regeneration processing routine of FIG. 4, the ECU 15 first determines in step S31 whether or not sulfur poisoning regeneration processing is necessary for the pre-stage catalyst devices 6A and 6B. Necessity of the sulfur poisoning regeneration treatment can be performed in the same manner as in a known exhaust purification device. For example, since the sulfur component in the fuel is closely related to the sulfur poisoning amount, the sulfur poisoning amount is estimated using the integrated value of the fuel injection amount calculated by the ECU 15, and the estimated value is a predetermined allowable value. When it exceeds, it can be determined that the sulfur poisoning regeneration process is necessary. The concentration of sulfur components in the fuel stored in the fuel tank of the vehicle may be detected by a sensor to improve the estimation accuracy of the sulfur poisoning amount. Even if the sulfur poisoning amount exceeds the allowable value, if the sulfur poisoning regeneration process should not be executed for some reason, that is, whether or not the prohibition condition for the sulfur poisoning regeneration process is satisfied. In addition, the determination may be made and the case where the prohibition condition is satisfied may be determined as an aspect in the case where the sulfur poisoning regeneration process is unnecessary.

硫黄被毒再生処理が必要と判定された場合、ECU15はステップS32に進み、前段触媒装置6A、6Bの硫黄被毒再生処理時における目標再生温度Ttrg_M、並びに硫黄被毒再生処理中における後段触媒装置7の目標温度上限Ttrg_UF_H及び目標温度下限Ttrg_UF_Lをそれぞれ設定する。目標再生温度Ttrg_Mは前段触媒装置6Aに堆積した硫黄成分の除去に必要な温度域(一例として650°C程度)に設定され、その温度域は一般に前段触媒装置6A、6BのNOx浄化処理に適した活性温度よりも高温である。後段触媒目標温度上限Ttrg_UF_H及び目標温度下限Ttrg_UF_LはPM再生処理のそれらと同等でよい。   When it is determined that the sulfur poisoning regeneration process is necessary, the ECU 15 proceeds to step S32, and the target regeneration temperature Ttrg_M at the time of the sulfur poisoning regeneration process of the preceding catalyst apparatuses 6A and 6B and the subsequent catalyst apparatus during the sulfur poisoning regeneration process. 7 target temperature upper limit Ttrg_UF_H and target temperature lower limit Ttrg_UF_L are set. The target regeneration temperature Ttrg_M is set to a temperature range (about 650 ° C. as an example) necessary for removing the sulfur component accumulated in the pre-catalyst device 6A, and this temperature range is generally suitable for the NOx purification treatment of the pre-catalyst devices 6A and 6B. Higher than the activation temperature. The post-catalyst target temperature upper limit Ttrg_UF_H and the target temperature lower limit Ttrg_UF_L may be equivalent to those in the PM regeneration process.

続くステップS33において、ECU15は、一方の前段触媒装置6Aのみを硫黄被毒再生処理の対象として、その前段触媒装置6Aが設けられた分岐部3Aの燃料添加弁8Aから燃料を添加して前段触媒装置6Aを昇温させることにより、前段触媒装置6Aの硫黄被毒再生処理を開始する。この場合、温度センサ9Aが検出する前段触媒装置6Aの温度Tb_Maが前段触媒目標再生温度Ttrg_Mに一致し、かつ前段触媒装置6Aに流入する排気の空燃比がリッチ域に設定された目標空燃比に一致するように燃料添加弁8Aからの燃料添加量が制御される。また、他方の前段触媒装置6Bは硫黄被毒再生処理の対象から除外され、その前段触媒装置6Bが設けられた分岐部3Bの燃料添加弁8Bからは燃料が添加されない。空燃比の制御のために流量調整弁10Aの開度がさらに調整されてもよい。   In subsequent step S33, the ECU 15 treats only one of the front-stage catalyst devices 6A as a target for sulfur poisoning regeneration processing, and adds fuel from the fuel addition valve 8A of the branch section 3A provided with the front-stage catalyst device 6A. By raising the temperature of the apparatus 6A, the sulfur poisoning regeneration process of the pre-catalyst apparatus 6A is started. In this case, the temperature Tb_Ma of the pre-catalyst device 6A detected by the temperature sensor 9A coincides with the pre-catalyst target regeneration temperature Ttrg_M, and the air-fuel ratio of the exhaust gas flowing into the pre-catalyst device 6A becomes the target air-fuel ratio set in the rich region. The amount of fuel added from the fuel addition valve 8A is controlled so as to match. The other front-stage catalyst device 6B is excluded from the sulfur poisoning regeneration process, and no fuel is added from the fuel addition valve 8B of the branching section 3B provided with the front-stage catalyst device 6B. In order to control the air-fuel ratio, the opening degree of the flow rate adjusting valve 10A may be further adjusted.

続くステップS34において、ECU15は温度センサ12が検出する後段触媒装置7の温度Tb_UFが目標温度下限Ttrg_UF_Lから目標温度上限Ttrg_UF_Hの範囲(以下、これを後段触媒装置7の目標温度範囲と呼ぶ。)にあるか否か、及び、空燃比センサ11が検出する空燃比A/Fが後段触媒装置7における目標空燃比A/Ftrg_UFよりも大きいか否かを判別する。目標空燃比A/Ftrg_UFは理論空燃比よりもリーン域に幾らか偏った値に設定される。つまり、ステップS34では、後段触媒装置7の温度に加えて、後段触媒装置7に流入する排気の空燃比が所定のリーン域に制御されているか否かを判定する点で図2のステップS14と相違する。温度Tb_UFが目標温度上限Ttrg_UF_Hよりも高温、又は目標温度下限Ttrg_UF_Lよりも低温、又は空燃比A/Fが目標空燃比A/Ftrg_UFよりも大きいと判定された場合、ECU15はステップS35に進み、後段触媒装置7の温度Tb_UFがその目標温度範囲内に制御され、かつ空燃比A/Fが目標空燃比A/Ftrg_UF以下、つまりリーン域に制御されるように流量調整弁10A、10Bの開度を調整する。この場合、温度のずれに対する操作は図2のステップS15と同様に流量調整弁10A、10Bを操作すればよい。空燃比A/Fが目標空燃比A/Ftrgよりも大きい場合には、硫黄被毒再生処理の対象とされている前段触媒装置6Aと同一の側の流量調整弁10Aの開度を減少させる操作、及び硫黄被毒再生処理の対象から除外されている前段触媒装置6Bと同一の側の流量調整弁10Bの開度を増加させる操作の少なくともいずれか一方の操作を実行すればよい。ステップS35を実行した後、ECU15はステップS34へ戻る。   In the subsequent step S34, the ECU 15 brings the temperature Tb_UF of the rear catalyst device 7 detected by the temperature sensor 12 into a range from the target temperature lower limit Ttrg_UF_L to the target temperature upper limit Ttrg_UF_H (hereinafter referred to as the target temperature range of the rear catalyst device 7). It is determined whether or not the air-fuel ratio A / F detected by the air-fuel ratio sensor 11 is greater than the target air-fuel ratio A / Ftrg_UF in the rear catalyst device 7. The target air-fuel ratio A / Ftrg_UF is set to a value that is somewhat biased toward the lean region from the stoichiometric air-fuel ratio. That is, in step S34, in addition to the temperature of the post-catalyst device 7, it is determined whether or not the air-fuel ratio of the exhaust gas flowing into the post-catalyst device 7 is controlled to a predetermined lean region, as shown in FIG. Is different. When it is determined that the temperature Tb_UF is higher than the target temperature upper limit Ttrg_UF_H, lower than the target temperature lower limit Ttrg_UF_L, or the air-fuel ratio A / F is higher than the target air-fuel ratio A / Ftrg_UF, the ECU 15 proceeds to step S35, and the subsequent stage The opening degree of the flow rate adjusting valves 10A, 10B is controlled so that the temperature Tb_UF of the catalyst device 7 is controlled within the target temperature range, and the air-fuel ratio A / F is controlled to the target air-fuel ratio A / Ftrg_UF or less, that is, the lean region. adjust. In this case, the operation for the temperature shift may be performed by operating the flow rate adjusting valves 10A and 10B in the same manner as in step S15 of FIG. When the air-fuel ratio A / F is larger than the target air-fuel ratio A / Ftrg, an operation for decreasing the opening degree of the flow rate adjustment valve 10A on the same side as the front-stage catalyst device 6A that is the target of the sulfur poisoning regeneration process. And at least one of the operations for increasing the opening degree of the flow rate adjustment valve 10B on the same side as the pre-catalyst device 6B excluded from the target of the sulfur poisoning regeneration process may be executed. After executing step S35, the ECU 15 returns to step S34.

一方、ステップS34にて後段触媒装置7の温度Tb_UFが目標温度範囲内にあり、かつ空燃比A/Fが目標空燃比A/Ftrg_UF以下であると判定された場合、ECU15はステップS36へ進み、硫黄被毒再生処理が終了したか否かを判断する。硫黄被毒再生処理の終了は、例えば硫黄被毒再生処理の継続時間、硫黄被毒再生処理中に温度センサ9Aが検出する温度履歴、燃料添加弁8Aからの燃料添加量の積算値といった、硫黄成分の除去の進行に相関する物理量に基づいて判別することができる。そして、ECU15は、ステップS36で硫黄被毒再生処理が終了していないと判定した場合にはステップS34へ戻り、硫黄被毒再生処理が終了したと判定した場合は図5のステップS37へ進む。   On the other hand, when it is determined in step S34 that the temperature Tb_UF of the post-catalyst device 7 is within the target temperature range and the air-fuel ratio A / F is equal to or less than the target air-fuel ratio A / Ftrg_UF, the ECU 15 proceeds to step S36. It is determined whether or not the sulfur poisoning regeneration process is completed. The end of the sulfur poisoning regeneration process is, for example, the sulfur poisoning regeneration process, such as the duration of the sulfur poisoning regeneration process, the temperature history detected by the temperature sensor 9A during the sulfur poisoning regeneration process, and the integrated value of the fuel addition amount from the fuel addition valve 8A. The determination can be made based on a physical quantity that correlates with the progress of component removal. If the ECU 15 determines in step S36 that the sulfur poisoning regeneration process has not ended, the ECU 15 returns to step S34. If the ECU 15 determines that the sulfur poisoning regeneration process has ended, the ECU 15 proceeds to step S37 in FIG.

ステップS37において、ECU15は、硫黄被毒再生処理の対象となる前段触媒装置を前段触媒装置6Aから前段触媒装置6Bへと交替させ、その前段触媒装置6Bが設けられた分岐部3Bの燃料添加弁8Bから燃料を添加して前段触媒装置6Bを昇温させることにより、前段触媒装置6Bの硫黄被毒再生処理を開始する。この場合、温度センサ9Bが検出する前段触媒装置6Bの温度Tb_Mbが前段触媒目標再生温度Ttrg_Mに一致し、かつ前段触媒装置6Bに流入する排気の空燃比がリッチ域に設定された目標空燃比に一致するように燃料添加弁8Bからの燃料添加量が制御される。また、先に硫黄被毒再生処理が行われた前段触媒装置6Aは硫黄被毒再生処理の対象から除外され、その前段触媒装置6Aが設けられた分岐部3Aの燃料添加弁8Aからは燃料が添加されない。空燃比の制御のために流量調整弁10Bの開度がさらに調整されてもよい。   In step S37, the ECU 15 replaces the pre-stage catalyst device to be subjected to the sulfur poisoning regeneration process from the pre-stage catalyst device 6A to the pre-stage catalyst device 6B, and the fuel addition valve of the branch portion 3B provided with the pre-stage catalyst device 6B. By adding fuel from 8B and raising the temperature of the pre-catalyst device 6B, the sulfur poisoning regeneration process of the pre-catalyst device 6B is started. In this case, the temperature Tb_Mb of the pre-catalyst device 6B detected by the temperature sensor 9B coincides with the pre-catalyst target regeneration temperature Ttrg_M, and the air-fuel ratio of the exhaust gas flowing into the pre-catalyst device 6B becomes the target air-fuel ratio set in the rich region. The amount of fuel added from the fuel addition valve 8B is controlled so as to match. Further, the pre-catalyst device 6A previously subjected to the sulfur poisoning regeneration process is excluded from the target of the sulfur poisoning regeneration process, and fuel is supplied from the fuel addition valve 8A of the branch portion 3A provided with the pre-catalyst device 6A. Not added. In order to control the air-fuel ratio, the opening degree of the flow rate adjustment valve 10B may be further adjusted.

硫黄被毒再生処理の開始後、ECU15はステップS38に進む。ステップS38〜S40までの処理は、硫黄被毒再生処理の対象が前段触媒装置6Bに変更され、それに伴って流量調整弁10A、10Bが入れ替えられる点を除いて図4のステップS34〜S36と同様であり、説明を省略する。ECU15は、ステップS40にて前段触媒装置6Bの硫黄被毒再生処理が終了したと判定した場合、ステップS41へ進んで流量調整弁10A、10Bの開度をリセット、すなわち硫黄被毒再生処理を実行する前の開度に戻し、その後、硫黄被毒再生処理ルーチンを終了する。また、図4のステップS31にて硫黄被毒再生処理が不要と判定された場合、ECU15はステップS32以下の処理をスキップして硫黄被毒再生処理ルーチンを終える。これにより、硫黄被毒再生処理が不要な場合には全ての前段触媒装置6A、6Bに対する硫黄被毒再生処理が禁止される。   After starting the sulfur poisoning regeneration process, the ECU 15 proceeds to step S38. The processes from Step S38 to S40 are the same as Steps S34 to S36 in FIG. 4 except that the target of the sulfur poisoning regeneration process is changed to the pre-catalyst device 6B and the flow control valves 10A and 10B are replaced accordingly. Therefore, the description is omitted. If the ECU 15 determines in step S40 that the sulfur poisoning regeneration process of the pre-catalyst device 6B has been completed, the ECU 15 proceeds to step S41 and resets the opening of the flow rate adjustment valves 10A and 10B, that is, executes the sulfur poisoning regeneration process. The opening is returned to the previous opening, and then the sulfur poisoning regeneration processing routine is terminated. Further, when it is determined in step S31 in FIG. 4 that the sulfur poisoning regeneration process is not necessary, the ECU 15 skips the processes after step S32 and ends the sulfur poisoning regeneration process routine. Thereby, when the sulfur poisoning regeneration process is unnecessary, the sulfur poisoning regeneration process for all the pre-catalyst devices 6A and 6B is prohibited.

以上の形態によれば、一対の分岐部3A、3Bに設けられている前段触媒装置6A、6BのPM再生処理、あるいは硫黄被毒再生処理を片側の分岐部ずつ交互に実行しているので、両側の前段触媒装置6A、6Bを同時に昇温させて再生処理を実行する場合と比較して後段触媒装置7に流入する排気の温度を大幅に低下させることができる。その結果、前段触媒装置6A、6Bの再生処理中でも後段触媒装置7の温度を熱劣化が生じる温度よりも低温に抑えることができる。また、再生処理中に流量調整弁10A、10Bの開度を調整して後段触媒装置7の温度を活性温度域に維持し、その排気浄化性能を十分に発揮させて排気エミッションの大気への放出を抑えることができる。   According to the above embodiment, the PM regeneration process or the sulfur poisoning regeneration process of the pre-catalyst devices 6A and 6B provided in the pair of branch parts 3A and 3B is alternately executed for each branch part. The temperature of the exhaust gas flowing into the rear catalyst device 7 can be greatly reduced as compared with the case where the regeneration processing is executed by simultaneously raising the temperature of the front catalyst devices 6A and 6B on both sides. As a result, the temperature of the post-catalyst device 7 can be suppressed to a temperature lower than the temperature at which thermal degradation occurs even during the regeneration process of the pre-catalyst devices 6A and 6B. Further, during the regeneration process, the opening degree of the flow rate adjusting valves 10A and 10B is adjusted to maintain the temperature of the post-catalyst device 7 in the active temperature range, and its exhaust purification performance is fully exhibited to release exhaust emissions to the atmosphere. Can be suppressed.

さらに、硫黄被毒再生処理においては、流量調整弁10A、10Bの開度制御によって後段触媒装置7に流入する排気の空燃比をリーン域に維持しているので、後段触媒装置7にてサルフェートを浄化することができる。このため、サルフェート白煙、あるいは悪臭防止を目的として硫黄被毒再生処理中における前段触媒装置6A、6Bの空燃比を浅いリッチ状態に制限する必要がなくなり、空燃比を比較的深いリッチ状態に制御して短時間で硫黄被毒再生処理を完了することができる。これにより、硫黄被毒再生処理中の前段触媒装置6A、6Bの熱劣化、あるいは燃費の悪化を抑えることができる。さらに、硫黄被毒再生処理中の空燃比を浅いリッチ状態に制限する必要がなくなるため、硫黄再生被毒中に前段触媒装置6A、6Bに流入する排気の目標空燃比の幅を拡大することができる。再生制御の安定性が向上する。   Further, in the sulfur poisoning regeneration process, the air-fuel ratio of the exhaust gas flowing into the rear catalyst device 7 is maintained in the lean region by controlling the opening degree of the flow rate adjusting valves 10A, 10B. Can be purified. Therefore, it is not necessary to limit the air-fuel ratio of the pre-catalyst devices 6A and 6B to the shallow rich state during the sulfur poisoning regeneration process for the purpose of preventing sulfate white smoke or offensive odor, and the air-fuel ratio is controlled to a relatively deep rich state. Thus, the sulfur poisoning regeneration process can be completed in a short time. As a result, it is possible to suppress the thermal deterioration of the pre-catalyst devices 6A and 6B or the deterioration of fuel consumption during the sulfur poisoning regeneration process. Further, since it is not necessary to limit the air-fuel ratio during the sulfur poisoning regeneration process to a shallow rich state, it is possible to expand the range of the target air-fuel ratio of the exhaust gas flowing into the upstream catalyst devices 6A, 6B during the sulfur regeneration poisoning. it can. The stability of playback control is improved.

以上の形態においては、ECU15が図2のステップS11及び図4のステップS31を実行することにより本発明の判定手段として機能し、ECU15が図2及び図3のステップS12〜S21、並びに図4及び図5のステップS32〜S41を実行すること、さらにはステップS11及びS31が否定判断された場合にこれらのステップS12〜21、S32〜S41の処理をスキップすることにより本発明の再生制御手段として機能する。また、図2及び図3のPM再生処理ルーチンでは、ステップS13〜S16が一回の処理サイクルに相当し、ステップS17〜S20が他の一回の処理サイクルに相当する。図4及び図5の硫黄被毒再生処理ルーチンでは、ステップS33〜S36が一回の処理サイクルに相当し、ステップS37〜S40が他の一回の処理サイクルに相当する。   In the above embodiment, the ECU 15 functions as the determination means of the present invention by executing step S11 in FIG. 2 and step S31 in FIG. 4, and the ECU 15 performs steps S12 to S21 in FIG. 2 and FIG. 5 is executed, and when steps S11 and S31 are negatively determined, the processes of steps S12 to S21 and S32 to S41 are skipped, thereby functioning as a reproduction control unit of the present invention. To do. In the PM regeneration processing routine of FIGS. 2 and 3, steps S13 to S16 correspond to one processing cycle, and steps S17 to S20 correspond to another one processing cycle. In the sulfur poisoning regeneration processing routine of FIG. 4 and FIG. 5, steps S33 to S36 correspond to one processing cycle, and steps S37 to S40 correspond to another one processing cycle.

本発明は以上の形態に限定されることなく、適宜の形態にて実施してよい。例えば、分岐部に配置される第1排気浄化手段は昇温操作を伴う再生処理を必要とするものであればよく、パティキュレートフィルタに吸蔵還元型NOx触媒を担持させた触媒装置に限られない。例えば、パティキュレートフィルタのみ、又はNOx触媒のみを第1排気浄化手段として設けてもよいし、パティキュレートフィルタ及びNOx触媒を排気の流れ方向に直列に配置した構成を第1排気浄化手段として採用してもよい。   The present invention is not limited to the above form, and may be implemented in an appropriate form. For example, the first exhaust gas purification means arranged at the branching portion may be any device that requires a regeneration process with a temperature raising operation, and is not limited to a catalyst device in which a NOx storage reduction catalyst is supported on a particulate filter. . For example, only the particulate filter or only the NOx catalyst may be provided as the first exhaust purification means, or a configuration in which the particulate filter and the NOx catalyst are arranged in series in the exhaust flow direction is adopted as the first exhaust purification means. May be.

集合部に配置される第2排気浄化手段も適宜に変更可能である。上記の形態では硫黄被毒再生処理時に発生するサルフェートの浄化のために、第2排気浄化手段における空燃比をリーン域に制御しているが、例えば、第2排気浄化手段が三元触媒のように理論空燃比で浄化性能を発揮する触媒を含む場合には、再生処理中の第2排気浄化手段の空燃比が理論空燃比に制御されるように排気流量調整手段を操作してもよい。第1排気浄化手段が硫黄被毒再生処理を必要としないものであれば、第2排気浄化手段における空燃比を考慮した排気流量調整手段の操作は省略してよい
The second exhaust gas purification means arranged in the gathering part can be changed as appropriate. In the above embodiment, the air-fuel ratio in the second exhaust purification unit is controlled to the lean region in order to purify the sulfate generated during the sulfur poisoning regeneration process. For example, the second exhaust purification unit is a three-way catalyst. If the catalyst includes a catalyst that exhibits purification performance at the stoichiometric air-fuel ratio, the exhaust flow rate adjusting means may be operated so that the air-fuel ratio of the second exhaust purification means during the regeneration process is controlled to the stoichiometric air-fuel ratio. If the first exhaust purification unit does not require the sulfur poisoning regeneration process, the operation of the exhaust flow rate adjusting unit in consideration of the air-fuel ratio in the second exhaust purification unit may be omitted .

分岐部の数は2本に限らず、3本以上でもよい。3本以上の分岐部が設けられる場合、一回の処理サイクルでは少なくとも一つの分岐部における第1排気浄化手段を再生処理の対象から除外し、他の分岐部における第1排気浄化手段を再生処理の対象として再生処理を実行すればよい。再生処理のための昇温は燃料添加弁によって実現する例に限らず、分岐部に設けたヒータ等の加熱手段によって実現されてもよい。   The number of branch portions is not limited to two, and may be three or more. When three or more branch portions are provided, the first exhaust purification means in at least one branch portion is excluded from the regeneration process target in one processing cycle, and the first exhaust purification means in the other branch portions is regenerated. The reproduction process may be executed as a target of the above. The temperature increase for the regeneration process is not limited to the example realized by the fuel addition valve, and may be realized by a heating means such as a heater provided at the branch portion.

本発明の一形態に係る排気浄化装置とこれが適用される内燃機関の概略を示す図。BRIEF DESCRIPTION OF THE DRAWINGS The figure which shows the outline of the exhaust gas purification apparatus which concerns on one form of this invention, and the internal combustion engine to which this is applied. 図1のECUにて実行されるPM再生処理ルーチンを示すフローチャート。The flowchart which shows PM regeneration process routine performed with ECU of FIG. 図2に続くフローチャート。The flowchart following FIG. 図1のECUにて実行される硫黄被毒再生処理ルーチンを示すフローチャート。The flowchart which shows the sulfur poisoning reproduction | regeneration processing routine performed with ECU of FIG. 図4に続くフローチャート。The flowchart following FIG.

符号の説明Explanation of symbols

1 内燃機関
2 排気通路
3A、3B 分岐部
4 分岐部の合流箇所
5 集合部
6A、6B 前段触媒装置(第1排気浄化手段)
7 後段触媒装置(第2排気浄化手段)
8A、8B 燃料添加弁(再生実行手段)
9A、9B 温度センサ
10A、10B 流量調整弁
11 空燃比センサ
12 温度センサ
15 エンジンコントロールユニット(判定手段、再生制御手段)
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Exhaust passage 3A, 3B Branch part 4 Junction part of a branch part 5 Aggregation part 6A, 6B Pre-stage catalyst apparatus (1st exhaust purification means)
7 Subsequent catalyst device (second exhaust purification means)
8A, 8B Fuel addition valve (regeneration execution means)
9A, 9B Temperature sensor 10A, 10B Flow rate adjusting valve 11 Air-fuel ratio sensor 12 Temperature sensor 15 Engine control unit (determination means, regeneration control means)

Claims (3)

排気通路の互いに並列な複数の分岐部のそれぞれに設けられた再生式の第1排気浄化手段と、
前記複数の分岐部の合流箇所から下流に延びる排気通路の集合部に設けられた第2排気浄化手段と、
前記複数の分岐部のそれぞれの第1排気浄化手段を個別に昇温してこれらの第1排気浄化手段に対して再生処理を実行可能な再生実行手段と、
全ての前記第1排気浄化手段の再生処理の要否を判定する判定手段と、
前記第2排気浄化手段の温度を検出するための温度検出手段と、
前記分岐部のそれぞれに導かれる排気流量を調整する排気流量調整手段と、
前記判定手段により再生処理が必要と判定された場合には前記第1排気浄化手段に対する再生処理が実行され、前記再生処理が不要と判定された場合には全ての第1排気浄化手段に対する再生処理が禁止されるように前記再生実行手段を制御する再生制御手段と、を具備し、
前記第2排気浄化手段は、再生に適した温度域よりも低温の活性温度域で浄化性能を発揮する触媒を含み、
前記再生制御手段は、前記再生処理が必要と判定された場合、少なくとも一つの分岐部の第1排気浄化手段を再生処理の対象から除外しかつ他の分岐部の排気浄化手段に対して再生処理を実行する処理サイクルが、前記再生処理の対象から除外する第1排気浄化手段を順次切り替えつつ繰り返されることにより、全ての第1排気浄化手段が再生処理されるように前記再生実行手段を制御するとともに、前記再生処理の実行中、前記温度検出手段にて検出される前記第2排気浄化手段の温度が前記活性温度域に維持されるように前記排気流量調整手段を介して前記複数の分岐部のそれぞれを通過する排気流量を制御する、ことを特徴とする内燃機関の排気浄化装置。
Regenerative first exhaust gas purification means provided in each of a plurality of branch portions parallel to each other in the exhaust passage;
A second exhaust purification means provided at a collection portion of exhaust passages extending downstream from a confluence of the plurality of branch portions;
Regeneration executing means capable of individually raising the temperature of the first exhaust purification means of each of the plurality of branch portions and executing regeneration processing on the first exhaust purification means;
Determination means for determining whether or not regeneration processing of all the first exhaust purification means is necessary;
Temperature detecting means for detecting the temperature of the second exhaust purification means;
Exhaust flow rate adjusting means for adjusting the exhaust flow rate guided to each of the branch portions;
When the determination unit determines that the regeneration process is necessary, the regeneration process for the first exhaust purification unit is executed, and when it is determined that the regeneration process is unnecessary, the regeneration process for all the first exhaust purification units. Replay control means for controlling the replay execution means so that is prohibited,
The second exhaust purification means includes a catalyst that exhibits purification performance in an active temperature range lower than a temperature range suitable for regeneration,
When it is determined that the regeneration process is necessary, the regeneration control means excludes the first exhaust purification means of at least one branch part from the target of the regeneration process and performs the regeneration process on the exhaust purification means of the other branch part. Is repeated while sequentially switching the first exhaust purification means excluded from the regeneration process target, thereby controlling the regeneration execution means so that all the first exhaust purification means are regenerated. In addition, during execution of the regeneration process, the plurality of branch portions are provided via the exhaust flow rate adjusting means so that the temperature of the second exhaust purification means detected by the temperature detecting means is maintained in the active temperature range. An exhaust gas purification apparatus for an internal combustion engine, wherein the exhaust gas flow rate passing through each of the engine is controlled .
前記第2排気浄化手段に流入する排気の空燃比を検出する空燃比検出手段と、前記分岐部のそれぞれに導かれる排気流量を調整する排気流量調整手段と、をさらに具備し、前記再生実行手段は、前記複数の分岐部のそれぞれの第1排気浄化手段に個別に燃料を添加する燃料添加弁を有し、前記第2排気浄化手段は所定の空燃比範囲で浄化性能を発揮する触媒を含み、前記再生制御手段は、前記再生処理の実行中、前記空燃比検出手段にて検出される空燃比が前記所定の空燃比範囲に維持されるように前記排気流量調整手段を介して前記複数の分岐部のそれぞれを通過する排気流量を制御することを特徴とする請求項1に記載の排気浄化装置。   The regeneration execution means further comprises: an air-fuel ratio detection means for detecting an air-fuel ratio of the exhaust flowing into the second exhaust purification means; and an exhaust flow rate adjustment means for adjusting an exhaust flow rate guided to each of the branch portions. Has a fuel addition valve for individually adding fuel to the first exhaust purification means of each of the plurality of branch portions, and the second exhaust purification means includes a catalyst that exhibits purification performance in a predetermined air-fuel ratio range. The regeneration control means, via the exhaust flow rate adjusting means, controls the plurality of air flow ratios so that the air-fuel ratio detected by the air-fuel ratio detection means is maintained within the predetermined air-fuel ratio range during execution of the regeneration process. The exhaust emission control device according to claim 1, wherein the exhaust gas flow rate passing through each of the branch portions is controlled. 前記第1排気浄化手段が吸蔵還元型NOx触媒を含み、前記第2排気浄化手段が、前記所定の空燃比範囲として、理論空燃比よりも空気量が多いリーン域でサルフェートに対する浄化性能を発揮する触媒を含んでいる、ことを特徴とする請求項2に記載の排気浄化装置。 The first exhaust purification means includes an NOx storage reduction catalyst, and the second exhaust purification means exhibits a purification performance against sulfate in a lean region where the air amount is larger than the stoichiometric air-fuel ratio as the predetermined air-fuel ratio range. The exhaust emission control device according to claim 2 , further comprising a catalyst.
JP2005335357A 2005-11-21 2005-11-21 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4674531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005335357A JP4674531B2 (en) 2005-11-21 2005-11-21 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005335357A JP4674531B2 (en) 2005-11-21 2005-11-21 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007138861A JP2007138861A (en) 2007-06-07
JP4674531B2 true JP4674531B2 (en) 2011-04-20

Family

ID=38202043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005335357A Expired - Fee Related JP4674531B2 (en) 2005-11-21 2005-11-21 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4674531B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8327625B2 (en) * 2007-01-31 2012-12-11 Umicore Ag & Co. Kg Method for regenerating soot filters in the exhaust gas system of a lean mix engine, and exhaust gas system therefor
JP4807420B2 (en) * 2009-02-26 2011-11-02 トヨタ自動車株式会社 Control device for internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05321637A (en) * 1992-05-25 1993-12-07 Nissan Motor Co Ltd Exhaust emission control device of internal combustion engine
JPH0763038A (en) * 1993-08-23 1995-03-07 Toyota Motor Corp Exhaust particulate eliminator of diesel engine
JPH10280941A (en) * 1997-04-04 1998-10-20 Mitsubishi Motors Corp Exhaust particulate remover for internal combustion engine
JP2004162600A (en) * 2002-11-13 2004-06-10 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05321637A (en) * 1992-05-25 1993-12-07 Nissan Motor Co Ltd Exhaust emission control device of internal combustion engine
JPH0763038A (en) * 1993-08-23 1995-03-07 Toyota Motor Corp Exhaust particulate eliminator of diesel engine
JPH10280941A (en) * 1997-04-04 1998-10-20 Mitsubishi Motors Corp Exhaust particulate remover for internal combustion engine
JP2004162600A (en) * 2002-11-13 2004-06-10 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine

Also Published As

Publication number Publication date
JP2007138861A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
US7640728B2 (en) Exhaust gas purification apparatus and exhaust gas purification method for internal combustion engine
JP3855818B2 (en) Diesel engine exhaust purification system
JP5115047B2 (en) Exhaust gas purification device for internal combustion engine
JP2004176663A (en) Exhaust emission control device for internal combustion engine
EP2559876B1 (en) Exhaust gas purification device, and control method for exhaust gas purification device
JP2006249961A (en) Exhaust emission control device for internal combustion engine
JP4203730B2 (en) Exhaust gas purification device for internal combustion engine
GB2541656B (en) A method of operating an engine
JP4135757B2 (en) Exhaust gas purification system for internal combustion engine
JP6773422B2 (en) Internal combustion engine exhaust purification system
JPH11117786A (en) Exhaust emission control device for internal combustion engine
JP4613787B2 (en) Exhaust gas purification device for internal combustion engine
JP4674531B2 (en) Exhaust gas purification device for internal combustion engine
JP4259275B2 (en) Method for poisoning regeneration of reforming catalyst and poisoning regeneration device
WO2006095918A1 (en) Exhaust gas purification system for internal combustion engine
JP2019138159A (en) Control device for engine
JP2019132227A (en) Exhaust emission control device of engine
JP4962740B2 (en) Exhaust gas purification device for internal combustion engine
JP2008128212A (en) Exhaust emission control device of internal combustion engine
JP6345962B2 (en) engine
JP2017145704A (en) Exhaust emission control system for internal combustion engine
JP2010133257A (en) Exhaust emission control device for internal combustion engine
JP5640028B2 (en) diesel engine
JP2010144557A (en) Exhaust emission control system and exhaust emission control method
JP2009002192A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees