JP2004162600A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2004162600A
JP2004162600A JP2002329076A JP2002329076A JP2004162600A JP 2004162600 A JP2004162600 A JP 2004162600A JP 2002329076 A JP2002329076 A JP 2002329076A JP 2002329076 A JP2002329076 A JP 2002329076A JP 2004162600 A JP2004162600 A JP 2004162600A
Authority
JP
Japan
Prior art keywords
exhaust gas
regeneration
regenerative
filter
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002329076A
Other languages
Japanese (ja)
Inventor
Kenji Kodama
健司 児玉
Shinichi Saito
真一 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2002329076A priority Critical patent/JP2004162600A/en
Publication of JP2004162600A publication Critical patent/JP2004162600A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Treating Waste Gases (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve exhaust gas emission control performance by preventing the degradation of a catalyst caused by the temperature rise of exhaust gas in an exhaust emission control device for an internal combustion engine. <P>SOLUTION: Regenerative filters 14, 15 are juxtaposed at an exhaust passage 11 through branch passages 12, 13. Selector valves 19, 20 are mounted to the branch passages 12, 13, while a selective reduction type catalyst 18 is connected through confluence passages 16, 17, and the selective reduction type catalyst 18 is provided with an injection nozzle 27 for supplying urea or ammonia. A control means 35 alternately operates the regenerative filters 14, 15 and changeover-controls the selector valves 19, 20 according to the collected amount of particulate matter, and carries out the regenerating function of the selected regenerative filter. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼルエンジンなどの内燃機関から排出される排気ガス中の有害物質や微粒子などを浄化する内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
従来より自動車に搭載されるディーゼルエンジンにおいて、その排気通路を介して大気に放出される排気ガス中の微粒子(PM:Particulate matter)やNOx(窒素酸化物)を低減する技術が開発されている。このような技術として、下記の特許文献1に記載された技術がある。
【0003】
【特許文献1】
特開2000−008833(第4頁、図3)
【0004】
図4に従来の内燃機関の排気浄化装置の概略、図5に触媒再生時のタイムチャートを示す。
【0005】
特許文献1に記載された従来の従来の内燃機関の排気浄化装置は、図4に示すように、ディーゼルエンジンの排気ガス通路101に連続再生式フィルタ(CR−DPF:continuously regenerating−diesel particulate filter )102と選択還元式触媒(NOx触媒装置)103とが直列に配設されて構成されている。連続再生式フィルタ102は、酸化触媒104と黒煙などの微粒子を捕集するフィルタ105とが設けられると共に、その上流側に温度センサ106が設けられている。選択還元式触媒103は、その上流側に温度センサ107が設けられると共に、尿素を添加する噴射ノズル108が設けられている。
【0006】
従って、連続再生式フィルタ102に流入した排気ガスは、酸化触媒104によりHC、CO成分がCO、HOに酸化されると共に、NOxが酸化されてNOとなり、フィルタ105に捕集された黒煙などの微粒子が酸化燃焼される。また、選択還元式触媒にて、噴射ノズル108から噴射された尿素が熱分解してアンモニアとなり、排気ガス中のNOがNやHOに還元されて浄化される。
【0007】
【発明が解決しようとする課題】
上述した従来の排気ガス処理装置にあっては、排気ガスは、黒煙などの微粒子がフィルタ105に捕集されて浄化されるため、このフィルタ105が捕集した微粒子を定期的に再燃焼して再生する必要がある。ところが、排気ガスの温度が触媒の活性化温度以上にならないと捕集した黒煙を燃焼することができないため、従来は、膨張行程に追加燃料噴射を行うなどして排気ガスを昇温することで、フィルタ105を加熱している。しかし、このように排気ガス温度を上げてフィルタ105を強制的に再生した場合、図5に示すように、フィルタ105の出口での排気ガス温度が700℃〜1000℃まで到達してしまう場合があり、この場合には、アンモニアを還元剤とする選択還元式触媒103に一般的に担持されるバナジウムが昇華して飛散し、大気中に放出されてしまうおそれがある。
【0008】
本発明は、このような問題を解決するものであって、排気ガス温度の上昇による触媒の劣化を防止して排気ガス浄化性能の向上を図った内燃機関の排気浄化装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上述の目的を達成するための請求項1の発明の内燃機関の排気浄化装置では、内燃機関の排気通路に排気ガス中の微粒子を捕集する複数の再生式フィルタを並設し、各再生式フィルタへの排気導入を選択的に切り換える通路切換手段を設け、各再生式フィルタの下流側に選択還元式触媒を設けると共に、この選択還元式触媒に尿素またはアンモニアを供給する還元剤供給手段を設け、制御手段が各再生式フィルタの捕集量あるいは捕集量に起因するパラメータに応じて通路切換手段を切換制御すると共に、切り換えられた側の再生式フィルタの再生機能を実行するようにしている。
【0010】
従って、排気ガスが排気通路から通路切換手段により切り換えられた再生式フィルタに導入すると、排気ガス中の微粒子がここで捕集され、選択還元式触媒にて、還元剤供給手段により供給された尿素またはアンモニアにより排気ガス中の有害物質が還元処理されて浄化される。そして、一方の再生式フィルタに所定量の微粒子が捕集されると、制御装置は通路切換手段により使用する再生式フィルタを切り換えると共に、切り換えられた側の再生式フィルタの再生機能を実行することで、付着した微粒子を燃焼して除去する。このとき、選択還元式触媒には微粒子が燃焼した高温の排気ガスと微粒子が捕集された低温の排気ガスとが混合して流入することとなり、高温の排気ガスによるバナジウムの飛散等の選択還元式触媒の劣化を防止すると共に、再生式フィルタにより微粒子を常時捕集することで、連続して安定した排気ガス浄化性能を維持することができる。
【0011】
請求項2の発明の内燃機関の排気浄化装置では、再生式フィルタに酸化触媒を担持している。従って、再生式フィルタにて、微粒子の燃焼時に生成されたNOが酸化されてNOとなり、選択還元式触媒に導入されること似寄り効率良くNOxを浄化することができる。
【0012】
請求項3の発明の内燃機関の排気浄化装置では、各再生式フィルタが再生用加熱手段を有し、この再生式フィルタの再生時に所定量の排気ガスを再生加熱手段に導入する排気ガス導入手段を設けている。従って、再生式フィルタの再生時に排ガス温度が低いときは、制御手段が再生用加熱手段を作動すると共に、排気ガス導入手段によりこの再生加熱手段に排気ガスを導入することで、排気ガスが昇温されて高温の排気ガスにより付着した微粒子が燃焼して除去されることとなり、少量の排気ガスにより再生式フィルタを確実に再生することができる。
【0013】
請求項4の発明の内燃機関の排気浄化装置では、排気ガス導入手段は、再生式フィルタ上流側の排気通路と再生加熱手段とを連通する連通路と、この連通路を流れる排気ガス流量を調整する流量制御弁とを有している。従って、簡単な構成で再生式フィルタを適正に再生することができる。
【0014】
請求項5の発明の内燃機関の排気浄化装置では、選択還元式触媒の上流側に排気ガス温度を計測する温度センサを設け、制御手段は温度センサが計測した排気ガス温度に応じて再生式フィルタの再生動作を制御している。従って、選択還元式触媒に導入される排気ガスの温度に応じて再生式フィルタの再生動作を制御するため、選択還元式触媒への高温の排気ガスの流入を防止して選択還元式触媒の劣化を確実に防止することができる。
【0015】
【発明の実施の形態】
以下、図面に基づいて本発明の実施形態を詳細に説明する。
【0016】
図1に本発明の第1実施形態に係る内燃機関の排気浄化装置の概略構成、図2にフィルタ再生時のタイムチャートを示す。
【0017】
本実施形態の排気浄化装置において、図1に示すように、図示しないエンジンの排気通路11は、2つの分岐した一対の分岐通路12,13に連結され、各分岐通路12,13には第1及び第2再生式フィルタ(DPF:diesel particulate filter )14,15が装着されている。そして、この第1及び第2再生式フィルタ14,15の下流側には一対の合流通路16,17を介して選択還元式触媒(SCR:selective catalytic reduction)18が連結されている。
【0018】
各分岐通路12,13には通路切換手段を構成する切換弁19,20が装着されており、この切換弁19,20の開閉操作により排気ガスを排気通路11から分岐通路12を介して第1再生式フィルタ14に導入するか、分岐通路13を介して第2再生式フィルタ15に導入するか選択切換できるようになっている。
【0019】
第1及び第2再生式フィルタ14,15は、セラミックスの多孔質壁をハニカム形状にして多数の排気流路を形成したフィルタに酸化触媒が担持されて構成されている。従って、この各再生式フィルタ14,15では、排気ガス中のHC、CO成分を酸化してCO、HOに変換すると共に、NOを酸化してNOに変換することができる。また、再生式フィルタ14,15では、排気ガスが多孔質壁を通過することでこの排気ガス中の微粒子(PM:パティキュレート)、特に黒煙を捕集することができる。なお、酸化機能を有する触媒と微粒子を捕集するフィルタを一体に設けて再生式フィルタ14,15を構成したが、上流側に酸化触媒を、下流側にフィルタを、更に下流側に酸化触媒を別々に直列に配設してもよい。
【0020】
また、第1及び第2再生式フィルタ14,15の各上流部には再生用加熱手段としての電気ヒータ21,22が設けられ、電源部23,24に接続されている。更に、各再生式フィルタ14,15の上流側は、再生時に所定量の排気ガスを導入する排気ガス導入手段としての連通路25により連通されていると共に、この連通路25に流動する排気ガス流量を調整する流量制御弁26が設けられている。
【0021】
従って、例えば、第1再生式フィルタ14の微粒子の捕集量が所定量となった場合に、切換弁19を閉止して切換弁20を開放し、排気ガスが排気通路11から分岐通路13を通って第2再生式フィルタ15に導入させるとき、連通路25を介して排気ガスの一部を第1再生式フィルタ14に流入させることで、流入排気ガス中の酸素により第1再生式フィルタ14に付着した微粒子を燃焼することができる。このとき、流量制御弁26により第1再生式フィルタ14に導入される排気ガスの流量を調整することで、微粒子を燃焼するための排気ガスの温度を調節することができる。また、排気ガス温度が低いとき、電源部22を用いて電気ヒータ21を作動して連通路25から導入された排気ガスを加熱することで、排気ガスを第1再生式フィルタ14を再生可能な温度とすることができる。
【0022】
選択還元式触媒18はNOx触媒であって少なくともバナジウムが担持されており、上流側に尿素(またはアンモニア)を供給する還元剤供給手段としての噴射ノズル27及び噴射ポンプ28が設けられている。酸化触媒を担持した再生式フィルタ14,15により微粒子が除去された際に発生したNOが高活性のNOに変換された排気ガスが、この選択還元式触媒18に導入されることにより、排気ガスがアンモニアにより効率良く還元されて浄化される。
【0023】
また、排気通路11の下流側には分岐通路12,13に流入する排気ガスの温度を計測する温度センサ31が装着される一方、第1及び第2再生式フィルタ14,15の下流側には合流通路16,17に流入する排気ガスの温度を計測する温度センサ32,33が装着されている。更に、選択還元式触媒18の上流側にはこの選択還元式触媒18に流入する排気ガスの温度を計測する温度センサ34が装着されている。
【0024】
そして、前述した切換弁19,20、電源部23,24、流量制御弁26、温度センサ31〜34に制御装置35に接続されている。従って、この制御装置35は、一方の再生式フィルタ14,15の捕集量、あるいはこの捕集量に起因するパラメータ(圧力損失、エンジン駆動時間、走行距離など)に応じて切換弁19,20を切換制御すると共に、切り換えられた側の再生式フィルタ14,15の再生機能を実行、つまり、電気ヒータ21,22により排気ガスを加熱することで、高温の排気ガスにより再生式フィルタ14,15に付着した微粒子を燃焼することができる。
【0025】
このように構成された本実施形態の排気浄化装置にて、制御装置35は、切換弁19を閉止する一方で切換弁20を開放し、排気ガスを排気通路11から分岐通路13を通して第2再生式フィルタ15に導入する。すると、排気ガスは、まず、第2再生式フィルタ15により排気ガス中の有害物質(HC、CO)が酸化処理されると共に、排気ガス中のNOが酸化されてNOとなり、また、排気ガス中の微粒子(PM)が捕集されて浄化される。次に、排気ガスに対して噴射ノズル27から尿素を噴射すると、尿素が排気ガスの熱により熱分解してアンモニア(NH)が生成され、選択還元式触媒18上で排気ガス中のNOやNOこのNHと反応してNやHOに還元され、排気ガスが浄化されて大気に排出される。
【0026】
このとき、エンジンが比較的高負荷で連続的に運転される場合は、排気ガスの温度が第2再生式フィルタ15の活性化温度以上になるため、この第2再生式フィルタ15が昇温されて捕集した微粒子を燃焼し、第2再生式フィルタ15を良好に再生することができる。
【0027】
一方、エンジンの低負荷運転が連続して行われる場合は、排気ガスの温度が第2再生式フィルタ15の活性化温度以上になる機会が少なく、この第2再生式フィルタ15を所定の温度以上に昇温することができず、第2再生式フィルタ15が捕集した微粒子を効率よく燃焼して再生することができない。すると、第2再生式フィルタ15にて、微粒子の捕集量が増加して圧力損失が大きくなり、制御装置35は第2再生式フィルタ15の圧力損失をエンジン駆動時間や走行距離に置き換えて検出する。そして、制御装置35は、使用する浄化装置を第2再生式フィルタ15から第1再生式フィルタ14に切り換え、第2再生式フィルタ15に捕集された微粒子を燃焼除去して再生する。
【0028】
即ち、制御装置35は、切換弁19を開放する一方で切換弁20を閉止し、排気ガスを排気通路11から分岐通路12を通して第1再生式フィルタ14に導入する。すると、排気ガスは、前述と同様に、第1再生式フィルタ14によりHCやCOが酸化処理されると共にNOxがNOやNOとなり、また、微粒子が捕集される。そして、選択還元式触媒18にて、噴射ノズル27から噴射されて熱分解したアンモニア(NH)がNOやNOと反応してNやHOに還元して浄化する。
【0029】
一方、大量の微粒子を捕集して圧力損失が大きくなった第2再生式フィルタ15に対して、制御装置35は流量制御弁26により連通路25を開放し、第1再生式フィルタ14に流入する排気ガスの一部を第2再生式フィルタ15に導入し、導入された排気ガス中の酸素ガスにより第2再生式フィルタ15に付着した微粒子を燃焼することで除去する。このとき、排気ガスの温度が低い場合、制御装置35は電気ヒータ22を作動して排気ガスを加熱することで、高温の排気ガスにより第2再生式フィルタ15を再生可能な温度とすることができる。
【0030】
そして、この状態で、再びエンジンの低負荷運転が連続して行われと、第1再生式フィルタ14における微粒子の捕集量が増加して圧力損失が大きくなるため、制御装置35はこれを検出し、前述と同様に、使用する浄化装置を第1再生式フィルタ14から再生が完了した第2再生式フィルタ15に切り換え、第1再生式フィルタ14を再生する。
【0031】
このような微粒子の捕集量に応じて第1、第2再生式フィルタ14,15を切り換えて使用することで、排気ガス中の有害物質の酸化処理と微粒子の捕集を連続して行うことができ、安定した排気ガス浄化性能を維持することができる。
【0032】
このような第1実施形態の内燃機関の排気浄化装置にあっては、排気通路11に分岐通路12,13を介して再生式フィルタ14,15をそれぞれ並設し、分岐通路12,13に切換弁19,20を装着する一方、合流通路16,17を介して選択還元式触媒18を連結し、選択還元式触媒18に尿素またはアンモニアを供給する噴射ノズル27を設け、制御手段35は再生式フィルタ14,15を交互運転して微粒子の捕集量に応じて切換弁19,20を切換制御すると共に、切り換えられた側の再生式フィルタの再生機能を実行するようにしている。
【0033】
従って、排気ガスが排気通路11から分岐通路12,13を介して再生式フィルタ14,15の一方に導入すると、まず、排気ガス中の微粒子がここで捕集され、次に選択還元式触媒18でアンモニアにより排気ガス中の有害物質が還元処理されて浄化されることとなり、再生式フィルタ14,15に所定量の微粒子が捕集されると、制御装置35は切換弁19,20により排気ガスを再生式フィルタ14,15の他方に導入して浄化処理する一方、微粒子を捕集した再生式フィルタ14,15の再生機能を実行することで、排気ガス中の浄化処理を連続して行うことができ、また、選択還元式触媒18には微粒子を燃焼した高温の排気ガスと微粒子が捕集された低温の排気ガスとが混合して流入することとなり、高温の排気ガスによる選択還元式触媒18のバナジウムの飛散等の熱劣化を防止して安定した排気ガス浄化性能を維持することができる。
【0034】
例えば、図2に示すように、第1再生式フィルタ14に捕集された微粒子を燃焼して再生するため、制御装置35が電気ヒータ21により排気ガスを加熱して強制再生制御を実行(ON)すると、再生式フィルタ14から排出される排気ガス温度(温度センサ32)は700℃を越えて高温となるものの、微粒子を捕集している第2再生式フィルタ15から排出される排気ガス温度(温度センサ33)は300℃程度であり、両者が混合されて選択還元式触媒18に流入する排気ガス温度(温度センサ34)は400℃程度となり、選択還元式触媒18が熱劣化することはなく、この選択還元式触媒18に担持されたバナジウムが昇華して飛散せずに、選択還元式触媒18は安定した排気ガス浄化性能を維持できる。
【0035】
図3に本発明の第2実施形態に係る内燃機関の排気浄化装置におけるフィルタ再生時のタイムチャートを示す。
【0036】
第2実施形態の内燃機関の排気浄化装置は、全体の構成は前述した第1実施形態と同様であるため、図1を用いて第1実施形態で説明したものと同様の機能については重複する説明は省略する。
【0037】
第2実施形態の内燃機関の排気浄化装置では、図1に示すように、選択還元式触媒18の上流側に設けられた温度センサ34の出力に基づいて第1、第2再生式フィルタ14,15の再生動作を制御するようにしている。例えば、図1及び図3に示すように、制御装置35が電気ヒータ21の電力を最大(FULL)にして排気ガスを加熱すると共に、流量制御弁26の開度を最大(FULL)にして連通路25を開放し、第1再生式フィルタ14に流入する排気ガスを加熱して再生制御を実行すると、第1再生式フィルタ14から排出される排気ガス温度が上昇するため、第2再生式フィルタ15からの排気ガス温度と混合して選択還元式触媒18に流入する排気ガス温度も上昇する。
【0038】
このとき、制御装置35は、温度センサ34により選択還元式触媒18に流入する排気ガスの温度を監視し、選択還元式触媒18の浄化性能が維持できる第1排気ガス温度(担持したバナジウムが昇華しない温度、例えば、650℃±α)を越えると、制御装置35は電気ヒータ21を停止(OFF)すると共に、流量制御弁26により連通路25を閉止(OFF)し、第1再生式フィルタ14の強制再生制御を停止する。従って、一時的に選択還元式触媒18に流入する排気ガスの温度が上昇するが、所定時間を経過すると低下し、第1排気ガス温度より低くなる。従って、選択還元式触媒18に流入する排気ガスの温度が、選択還元式触媒18が熱劣化する第2排気ガス温度(担持したバナジウムが昇華する温度、例えば、700℃±α)を越えることはなく、選択還元式触媒18は安定した排気ガス浄化性能を維持できる。
【0039】
そして、選択還元式触媒18に流入する排気ガスの温度が、第1排気ガス温度より低くなったとき、第1再生式フィルタ14の再生処理が完了していなければ、再び、制御装置35は電気ヒータ21により排気ガスを加熱すると共に、流量制御弁26により連通路25を開放し、第1再生式フィルタ14に流入する排気ガスを加熱して再生制御を実行する。
【0040】
なお、選択還元式触媒18に流入する排気ガスの温度が第1排気ガス温度を越えたとき、制御装置35は電気ヒータ21を停止するだけ、あるいは流量制御弁26により連通路25を閉止するだけとしてもよい。また、このとき、制御装置35は電気ヒータ21を停止せずに、選択還元式触媒18に流入する排気ガスの温度が第2排気ガス温度を越えないように電力を低下させたり、流量制御弁26により連通路25を閉止せずに、選択還元式触媒18に流入する排気ガスの温度が第2排気ガス温度を越えないように流量を低下させるようにしてもよい。
【0041】
【発明の効果】
以上、実施形態において詳細に説明したように請求項1の発明の内燃機関の排気浄化装置によれば、内燃機関の排気通路に排気ガス中の微粒子を捕集する複数の再生式フィルタを並設し、各再生式フィルタへの排気導入を選択的に切り換える通路切換手段を設け、各再生式フィルタの下流側に選択還元式触媒を設けると共に、この選択還元式触媒に尿素またはアンモニアを供給する還元剤供給手段を設け、制御手段が各再生式フィルタの捕集量あるいは捕集量に起因するパラメータに応じて通路切換手段を切換制御すると共に、切り換えられた側の再生式フィルタの再生機能を実行するので、一方の再生式フィルタに所定量の微粒子が捕集されると、制御装置は通路切換手段により使用する再生式フィルタを切り換えると共に、切り換えられた側の再生式フィルタの再生機能を実行することで、付着した微粒子を燃焼して除去こととなり、選択還元式触媒には微粒子が燃焼した高温の排気ガスと微粒子が捕集された低温の排気ガスとが混合して流動することとなり、高温の排気ガスによる選択還元式触媒の熱劣化を防止すると共に、再生式フィルタにより微粒子を常時捕集することで、連続して安定した排気ガス浄化性能を維持することができる。
【0042】
請求項2の発明の内燃機関の排気浄化装置によれば、再生式フィルタに酸化機能を担持すると共に、選択還元式触媒にバナジウムを担持したので、再生式フィルタにてNOが酸化されてNOとなり、選択還元式触媒にて排気ガス中のNOxを効率良く浄化処理することができる。
【0043】
請求項3の発明の内燃機関の排気浄化装置によれば、各再生式フィルタが再生用加熱手段を有し、この再生式フィルタの再生時に所定量の排気ガスを再生加熱手段に導入する排気ガス導入手段を設けてたので、再生式フィルタの再生時に排ガス温度が低いときは、制御手段が再生用加熱手段を作動すると共に、排気ガス導入手段によりこの再生加熱手段に排気ガスを導入することで、微粒子を燃焼させるための酸素が供給されると共に、排気ガスが昇温されて捕集した微粒子が燃焼して除去されることとなり、少量の排気ガスにより再生式フィルタを確実に再生することができる。
【0044】
請求項4の発明の内燃機関の排気浄化装置によれば、排気ガス導入手段は、再生式フィルタの上流側の排気通路と再生加熱手段とを連通する連通路と、この連通路を流れる排気ガス流量を調整する流量制御弁とを有するので、簡単な構成で再生式フィルタを適正に再生することができる。
【0045】
請求項5の発明の内燃機関の排気浄化装置によれば、選択還元式触媒の上流側に排気ガス温度を計測する温度センサを設け、制御手段は温度センサが計測した排気ガス温度に応じて再生式フィルタの再生動作を制御するので、選択還元式触媒に導入される排気ガスの温度に応じて再生式フィルタの再生動作を制御するため、選択還元式触媒への高温の排気ガスの流入を防止して選択還元式触媒の劣化を確実に防止することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る内燃機関の排気浄化装置の概略構成図である。
【図2】フィルタ再生時のタイムチャートである。
【図3】本発明の第2実施形態に係る内燃機関の排気浄化装置におけるフィルタ再生時のタイムチャートである。
【図4】従来の内燃機関の排気浄化装置の概略図である。
【図5】触媒再生時のタイムチャートである。
【符号の説明】
11 排気通路
12,13 分岐通路
14,15 再生式フィルタ
16,17 合流通路
18 選択還元式触媒
19,20 切換弁(通路切換手段)
21,22 電気ヒータ(再生用加熱手段)
25 連通路(排気ガス導入手段)
26 流量制御弁(排気ガス導入手段)
27 噴射ノズル(還元剤供給手段)
31〜34 温度センサ
35 制御装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust purification device for an internal combustion engine that purifies harmful substances and fine particles in exhaust gas discharged from an internal combustion engine such as a diesel engine.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a diesel engine mounted on an automobile, a technology for reducing particulate matter (PM) and NOx (nitrogen oxide) in exhaust gas discharged to the atmosphere via an exhaust passage has been developed. As such a technique, there is a technique described in Patent Document 1 below.
[0003]
[Patent Document 1]
JP 2000-008833 (page 4, FIG. 3)
[0004]
FIG. 4 shows an outline of a conventional exhaust gas purifying apparatus for an internal combustion engine, and FIG. 5 shows a time chart at the time of catalyst regeneration.
[0005]
As shown in FIG. 4, the conventional exhaust gas purifying apparatus for a conventional internal combustion engine described in Patent Literature 1 has a continuous regeneration type filter (CR-DPF) in an exhaust gas passage 101 of a diesel engine. 102 and a selective reduction catalyst (NOx catalyst device) 103 are arranged in series. The continuous regeneration type filter 102 is provided with an oxidation catalyst 104 and a filter 105 for collecting fine particles such as black smoke, and a temperature sensor 106 is provided on the upstream side thereof. The selective reduction catalyst 103 is provided with a temperature sensor 107 on the upstream side and an injection nozzle 108 for adding urea.
[0006]
Accordingly, the exhaust gas flowing into the continuous regeneration filter 102 is oxidized by the oxidation catalyst 104 into HC and CO components into CO 2 and H 2 O, and NOx is oxidized into NO 2 , and is collected by the filter 105. Fine particles such as black smoke are oxidized and burned. Further, the urea injected from the injection nozzle 108 is thermally decomposed into ammonia by the selective reduction catalyst, and NO 2 in the exhaust gas is reduced to N 2 or H 2 O and purified.
[0007]
[Problems to be solved by the invention]
In the above-described conventional exhaust gas treatment apparatus, since the exhaust gas is purified by the particulates such as black smoke collected by the filter 105, the particulates collected by the filter 105 are periodically reburned. Need to play. However, the collected black smoke cannot be burned unless the temperature of the exhaust gas exceeds the activation temperature of the catalyst.Therefore, conventionally, the temperature of the exhaust gas was increased by performing additional fuel injection during the expansion stroke. Thus, the filter 105 is heated. However, when the filter 105 is forcibly regenerated by raising the exhaust gas temperature in this way, as shown in FIG. 5, the exhaust gas temperature at the outlet of the filter 105 may reach 700 ° C. to 1000 ° C. In this case, there is a possibility that vanadium generally supported on the selective reduction catalyst 103 using ammonia as a reducing agent sublimates and scatters, and is released into the atmosphere.
[0008]
An object of the present invention is to solve such a problem, and an object of the present invention is to provide an exhaust gas purifying apparatus for an internal combustion engine which prevents deterioration of a catalyst due to a rise in exhaust gas temperature and improves exhaust gas purifying performance. And
[0009]
[Means for Solving the Problems]
In the exhaust gas purifying apparatus for an internal combustion engine according to the first aspect of the present invention, a plurality of regenerative filters for collecting particulates in exhaust gas are arranged in parallel in an exhaust passage of the internal combustion engine. Passage switching means for selectively switching the introduction of exhaust gas to the filter is provided, a selective reduction catalyst is provided downstream of each regenerative filter, and reducing agent supply means for supplying urea or ammonia to the selective reduction catalyst is provided. The control means controls the switching of the passage switching means in accordance with the trapping amount of each regenerative filter or a parameter caused by the trapping amount, and executes the regenerating function of the regenerative filter on the switched side. .
[0010]
Therefore, when the exhaust gas is introduced from the exhaust passage into the regenerative filter switched by the passage switching means, the fine particles in the exhaust gas are collected here, and the urea supplied by the reducing agent supply means is supplied by the selective reduction catalyst. Alternatively, harmful substances in the exhaust gas are reduced and purified by ammonia. When a predetermined amount of particulates is collected by one of the regenerative filters, the control device switches the regenerative filter to be used by the passage switching means, and executes the regeneration function of the regenerative filter on the switched side. Then, the attached fine particles are burned and removed. At this time, the high-temperature exhaust gas in which the fine particles are burned and the low-temperature exhaust gas in which the fine particles are collected flow into the selective reduction catalyst in a mixed manner, so that the high-temperature exhaust gas selectively reduces vanadium scattering and the like. In addition to preventing deterioration of the catalytic catalyst and constantly collecting fine particles with a regenerative filter, continuously stable exhaust gas purification performance can be maintained.
[0011]
In the exhaust gas purifying apparatus for an internal combustion engine according to the second aspect of the present invention, the regenerating filter carries an oxidation catalyst. Thus, in regenerative filter, the NO that is generated upon combustion of particulates oxidation becomes NO 2, it is possible to purify Niyori efficient NOx being introduced into the selective reduction catalyst.
[0012]
In the exhaust gas purifying apparatus for an internal combustion engine according to the present invention, each regenerative filter has a regenerating heating means, and an exhaust gas introducing means for introducing a predetermined amount of exhaust gas to the regenerative heating means during regeneration of the regenerative filter. Is provided. Therefore, when the temperature of the exhaust gas is low during regeneration of the regeneration filter, the control means operates the heating means for regeneration and the exhaust gas is introduced into the regeneration heating means by the exhaust gas introduction means, whereby the exhaust gas is heated. Then, the attached fine particles are burned and removed by the high-temperature exhaust gas, and the regenerative filter can be reliably regenerated by a small amount of the exhaust gas.
[0013]
In the exhaust gas purifying apparatus for an internal combustion engine according to a fourth aspect of the present invention, the exhaust gas introducing means adjusts a communication path for communicating the exhaust passage upstream of the regenerative filter with the regeneration heating means, and a flow rate of exhaust gas flowing through the communication path. And a flow control valve. Therefore, the regeneration filter can be properly reproduced with a simple configuration.
[0014]
In the exhaust gas purifying apparatus for an internal combustion engine according to the fifth aspect of the present invention, a temperature sensor for measuring an exhaust gas temperature is provided upstream of the selective reduction catalyst, and the control means controls the regeneration type filter in accordance with the exhaust gas temperature measured by the temperature sensor. Is controlled. Accordingly, since the regeneration operation of the regeneration filter is controlled according to the temperature of the exhaust gas introduced into the selective reduction catalyst, the inflow of high-temperature exhaust gas into the selective reduction catalyst is prevented, and the degradation of the selective reduction catalyst is prevented. Can be reliably prevented.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0016]
FIG. 1 shows a schematic configuration of an exhaust gas purifying apparatus for an internal combustion engine according to a first embodiment of the present invention, and FIG. 2 shows a time chart at the time of filter regeneration.
[0017]
In the exhaust purification device of the present embodiment, as shown in FIG. 1, an exhaust passage 11 of an engine (not shown) is connected to a pair of two branched passages 12 and 13, and each of the branch passages 12 and 13 has a first passage. And second regeneration type filters (DPF: diesel particulate filters) 14 and 15 are mounted. A selective catalytic reduction (SCR) 18 is connected to the downstream side of the first and second regenerative filters 14 and 15 via a pair of merging passages 16 and 17.
[0018]
Switching valves 19, 20 constituting passage switching means are mounted on the branch passages 12, 13. Exhaust gas is discharged from the exhaust passage 11 through the branch passage 12 through the branch passage 12 by opening and closing the switching valves 19, 20. It is possible to selectively switch between introduction into the regeneration type filter 14 and introduction into the second regeneration type filter 15 via the branch passage 13.
[0019]
Each of the first and second regenerative filters 14 and 15 is configured such that a porous wall of ceramic is formed in a honeycomb shape to form a large number of exhaust passages, and an oxidation catalyst is supported on the filters. Therefore, in each of the regenerative filters 14 and 15, HC and CO components in the exhaust gas can be oxidized and converted into CO 2 and H 2 O, and NO can be oxidized and converted into NO 2 . Further, in the regenerative filters 14 and 15, fine particles (PM: particulates), particularly black smoke, in the exhaust gas can be collected by passing the exhaust gas through the porous wall. The regenerative filters 14 and 15 were constructed by integrally providing a catalyst having an oxidation function and a filter for collecting fine particles, but an oxidation catalyst was provided on the upstream side, a filter was provided on the downstream side, and an oxidation catalyst was provided on the downstream side. They may be separately arranged in series.
[0020]
In addition, electric heaters 21 and 22 as heating means for regeneration are provided at upstream portions of the first and second regeneration filters 14 and 15, respectively, and are connected to power supplies 23 and 24. Further, the upstream side of each of the regeneration filters 14 and 15 is communicated with a communication passage 25 as an exhaust gas introduction means for introducing a predetermined amount of exhaust gas at the time of regeneration. Is provided.
[0021]
Therefore, for example, when the amount of trapped fine particles of the first regeneration filter 14 reaches a predetermined amount, the switching valve 19 is closed and the switching valve 20 is opened, and the exhaust gas flows from the exhaust passage 11 to the branch passage 13. When a part of the exhaust gas flows into the first regenerative filter 14 through the communication passage 25 when the gas is introduced into the second regenerative filter 15, the first regenerative filter 14 The fine particles adhering to the can be burned. At this time, by adjusting the flow rate of the exhaust gas introduced into the first regenerative filter 14 by the flow control valve 26, the temperature of the exhaust gas for burning the fine particles can be adjusted. When the temperature of the exhaust gas is low, the electric heater 21 is operated by using the power supply unit 22 to heat the exhaust gas introduced from the communication passage 25, so that the first regeneration filter 14 can regenerate the exhaust gas. It can be temperature.
[0022]
The selective reduction catalyst 18 is a NOx catalyst, which carries at least vanadium, and is provided with an injection nozzle 27 and an injection pump 28 as a reducing agent supply means for supplying urea (or ammonia) on the upstream side. Exhaust gas in which NO generated when particulates are removed by the regenerative filters 14 and 15 carrying an oxidation catalyst is converted into highly active NO 2 is introduced into the selective reduction catalyst 18, whereby the exhaust gas is exhausted. The gas is efficiently reduced by ammonia and purified.
[0023]
A temperature sensor 31 for measuring the temperature of the exhaust gas flowing into the branch passages 12 and 13 is mounted on the downstream side of the exhaust passage 11, and on the downstream side of the first and second regenerative filters 14 and 15. Temperature sensors 32 and 33 for measuring the temperature of the exhaust gas flowing into the merging passages 16 and 17 are mounted. Further, a temperature sensor 34 for measuring the temperature of the exhaust gas flowing into the selective reduction catalyst 18 is mounted on the upstream side of the selective reduction catalyst 18.
[0024]
The control device 35 is connected to the switching valves 19 and 20, the power supplies 23 and 24, the flow control valve 26, and the temperature sensors 31 to 34. Therefore, the control device 35 switches the switching valves 19 and 20 in accordance with the trapping amount of one of the regenerative filters 14 and 15 or the parameters (pressure loss, engine driving time, running distance, etc.) resulting from the trapping amount. And the regeneration function of the regenerative filters 14 and 15 on the switched side is executed, that is, the exhaust gas is heated by the electric heaters 21 and 22, so that the regenerative filters 14 and 15 are heated by the high-temperature exhaust gas. The fine particles adhering to the can be burned.
[0025]
In the exhaust gas purification apparatus of the present embodiment configured as described above, the control device 35 closes the switching valve 19 and opens the switching valve 20, and discharges the exhaust gas from the exhaust passage 11 through the branch passage 13 to the second regeneration. It is introduced into the expression filter 15. Then, the exhaust gas is first harmful substances in the exhaust gas by the second regenerative filter 15 (HC, CO) together are oxidized, NO is oxidized and becomes NO 2 in the exhaust gas and the exhaust gas The fine particles (PM) in the inside are collected and purified. Next, when urea is injected from the injection nozzle 27 to the exhaust gas, the urea is thermally decomposed by the heat of the exhaust gas to produce ammonia (NH 3 ). NO 2 Reacts with this NH 3 to be reduced to N 2 and H 2 O, and the exhaust gas is purified and discharged to the atmosphere.
[0026]
At this time, when the engine is continuously operated with a relatively high load, the temperature of the exhaust gas becomes equal to or higher than the activation temperature of the second regenerative filter 15, so that the temperature of the second regenerative filter 15 is increased. The fine particles collected by the combustion are burned, and the second regenerative filter 15 can be satisfactorily regenerated.
[0027]
On the other hand, when the low load operation of the engine is continuously performed, there is little chance that the temperature of the exhaust gas becomes equal to or higher than the activation temperature of the second regenerative filter 15, and the temperature of the second regenerative filter 15 is equal to or higher than the predetermined temperature. Therefore, the particles collected by the second regenerative filter 15 cannot be efficiently burned and regenerated. Then, in the second regenerative filter 15, the amount of trapped fine particles increases and the pressure loss increases, and the control device 35 detects the pressure loss of the second regenerative filter 15 by replacing the pressure loss with the engine driving time or the traveling distance. I do. Then, the control device 35 switches the purifier to be used from the second regenerative filter 15 to the first regenerative filter 14, and burns and removes the fine particles trapped by the second regenerative filter 15 to regenerate.
[0028]
That is, the control device 35 closes the switching valve 20 while opening the switching valve 19, and introduces exhaust gas from the exhaust passage 11 to the first regenerative filter 14 through the branch passage 12. Then, the exhaust gas in the same manner as described above, NOx is NO and NO 2 next with HC and CO by the first regenerative filter 14 is oxidized, and particulates are trapped. Then, in the selective reduction catalyst 18, the ammonia (NH 3 ) injected from the injection nozzle 27 and thermally decomposed reacts with NO or NO 2 to reduce it to N 2 or H 2 O for purification.
[0029]
On the other hand, for the second regenerative filter 15 in which a large amount of fine particles are collected and the pressure loss is increased, the control device 35 opens the communication passage 25 by the flow control valve 26 and flows into the first regenerative filter 14. A part of the exhaust gas to be introduced is introduced into the second regenerative filter 15, and the fine particles attached to the second regenerative filter 15 are removed by burning the oxygen gas in the introduced exhaust gas. At this time, when the temperature of the exhaust gas is low, the control device 35 operates the electric heater 22 to heat the exhaust gas, so that the temperature of the second regenerative filter 15 can be regenerated by the high-temperature exhaust gas. it can.
[0030]
Then, in this state, if the low-load operation of the engine is continuously performed again, the trapping amount of the fine particles in the first regenerative filter 14 increases, and the pressure loss increases. Then, in the same manner as described above, the purifying device to be used is switched from the first regeneration type filter 14 to the second regeneration type filter 15 whose regeneration has been completed, and the first regeneration type filter 14 is regenerated.
[0031]
By switching and using the first and second regenerative filters 14 and 15 in accordance with the amount of trapped fine particles, oxidizing harmful substances in exhaust gas and collecting fine particles can be performed continuously. And stable exhaust gas purification performance can be maintained.
[0032]
In the exhaust gas purifying apparatus for an internal combustion engine according to the first embodiment, regenerative filters 14 and 15 are arranged in parallel with the exhaust passage 11 via branch passages 12 and 13, respectively, and are switched to the branch passages 12 and 13. While the valves 19 and 20 are mounted, the selective reduction catalyst 18 is connected via the merging passages 16 and 17, and an injection nozzle 27 for supplying urea or ammonia to the selective reduction catalyst 18 is provided. The filters 14 and 15 are alternately operated to control the switching of the switching valves 19 and 20 according to the amount of trapped fine particles, and to execute the regeneration function of the regenerative filter on the switched side.
[0033]
Therefore, when the exhaust gas is introduced from the exhaust passage 11 into one of the regenerative filters 14 and 15 via the branch passages 12 and 13, the particulates in the exhaust gas are first collected here, and then the selective reduction catalyst 18 At this time, the harmful substances in the exhaust gas are reduced and purified by the ammonia, and when a predetermined amount of fine particles are collected in the regenerative filters 14 and 15, the control device 35 switches the exhaust gas by the switching valves 19 and 20. Is introduced into the other of the regenerative filters 14 and 15 to purify the exhaust gas, while performing the regenerating function of the regenerative filters 14 and 15 that trap the fine particles to continuously perform the purifying process in the exhaust gas. In addition, the high-temperature exhaust gas which burns the fine particles and the low-temperature exhaust gas in which the fine particles are collected flow into the selective reduction catalyst 18 in a mixed manner, so that selection by the high-temperature exhaust gas is performed. To prevent thermal degradation of the scattering and the like of vanadium Motoshiki catalyst 18 can be maintained a stable exhaust gas purification performance.
[0034]
For example, as shown in FIG. 2, in order to burn and regenerate the fine particles collected by the first regenerative filter 14, the controller 35 heats the exhaust gas by the electric heater 21 and executes the forced regeneration control (ON). Then, although the temperature of the exhaust gas (temperature sensor 32) discharged from the regenerative filter 14 becomes higher than 700 ° C., the temperature of the exhaust gas discharged from the second regenerative filter 15 that traps the fine particles is increased. The temperature of the (temperature sensor 33) is about 300 ° C., and the temperature of the exhaust gas (temperature sensor 34) mixed with the mixture and flowing into the selective reduction catalyst 18 is about 400 ° C. In addition, the vanadium supported on the selective reduction catalyst 18 does not sublimate and scatter, and the selective reduction catalyst 18 can maintain stable exhaust gas purification performance.
[0035]
FIG. 3 shows a time chart at the time of filter regeneration in the exhaust gas purification device for an internal combustion engine according to the second embodiment of the present invention.
[0036]
The exhaust gas purifying apparatus for an internal combustion engine according to the second embodiment has the same overall configuration as that of the above-described first embodiment, and thus the same functions as those described in the first embodiment with reference to FIG. Description is omitted.
[0037]
In the exhaust gas purifying apparatus for an internal combustion engine according to the second embodiment, as shown in FIG. 1, based on the output of a temperature sensor 34 provided on the upstream side of the selective catalytic reduction catalyst 18, the first and second regeneration filters 14, Fifteen playback operations are controlled. For example, as shown in FIGS. 1 and 3, the control device 35 heats the exhaust gas by maximizing the electric power of the electric heater 21 (FULL) and heats the exhaust gas while maximizing the opening degree of the flow control valve 26 (FULL). When the passage 25 is opened and the exhaust gas flowing into the first regenerative filter 14 is heated to perform regeneration control, the temperature of the exhaust gas exhausted from the first regenerative filter 14 increases. The temperature of the exhaust gas flowing into the selective reduction catalyst 18 mixed with the temperature of the exhaust gas from 15 also increases.
[0038]
At this time, the control device 35 monitors the temperature of the exhaust gas flowing into the selective catalytic reduction catalyst 18 using the temperature sensor 34, and determines the first exhaust gas temperature (the carried vanadium is sublimated to maintain the purification performance of the selective catalytic reduction catalyst 18). If the temperature exceeds the temperature (for example, 650 ° C. ± α), the control device 35 stops (OFF) the electric heater 21 and closes (OFF) the communication passage 25 by the flow control valve 26, and the first regenerative filter 14. Stop forced regeneration control. Accordingly, the temperature of the exhaust gas flowing into the selective reduction catalyst 18 temporarily increases, but decreases after a predetermined time has elapsed, and becomes lower than the first exhaust gas temperature. Therefore, the temperature of the exhaust gas flowing into the selective reduction catalyst 18 does not exceed the second exhaust gas temperature at which the selective reduction catalyst 18 thermally degrades (the temperature at which the carried vanadium sublimates, for example, 700 ° C. ± α). In addition, the selective reduction catalyst 18 can maintain stable exhaust gas purification performance.
[0039]
Then, when the temperature of the exhaust gas flowing into the selective reduction catalyst 18 becomes lower than the first exhaust gas temperature, if the regeneration processing of the first regeneration filter 14 has not been completed, the control device 35 returns to the electric The exhaust gas is heated by the heater 21, the communication passage 25 is opened by the flow control valve 26, and the exhaust gas flowing into the first regeneration filter 14 is heated to execute the regeneration control.
[0040]
When the temperature of the exhaust gas flowing into the selective reduction catalyst 18 exceeds the first exhaust gas temperature, the control device 35 only stops the electric heater 21 or only closes the communication passage 25 by the flow control valve 26. It may be. At this time, the control device 35 does not stop the electric heater 21 and reduces the electric power so that the temperature of the exhaust gas flowing into the selective catalytic reduction catalyst 18 does not exceed the second exhaust gas temperature. Without closing the communication passage 25 by 26, the flow rate may be reduced so that the temperature of the exhaust gas flowing into the selective reduction catalyst 18 does not exceed the second exhaust gas temperature.
[0041]
【The invention's effect】
As described above in detail in the embodiment, according to the exhaust gas purifying apparatus for an internal combustion engine according to the first aspect of the present invention, a plurality of regenerative filters for collecting particulates in exhaust gas are arranged in parallel in an exhaust passage of the internal combustion engine. In addition, a passage switching means for selectively switching the introduction of exhaust gas to each regenerative filter is provided, a selective reduction catalyst is provided downstream of each regenerative filter, and urea or ammonia is supplied to the selective reduction catalyst. Agent supply means, and the control means controls the switching of the passage switching means in accordance with the trapped amount of each regenerative filter or a parameter caused by the trapped amount, and executes the regeneration function of the regenerative filter on the switched side. Therefore, when a predetermined amount of fine particles are collected by one of the regenerative filters, the control device switches the regenerative filter to be used by the passage switching means and switches the regenerative filter. By executing the regeneration function of the regeneration filter on the side, the attached fine particles are burned and removed, and the selective reduction catalyst has a high-temperature exhaust gas in which the fine particles are burned and a low-temperature exhaust gas in which the fine particles are collected. Is mixed and flows, preventing thermal degradation of the selective reduction catalyst due to high-temperature exhaust gas, and constantly collecting fine particles with a regenerative filter, thereby achieving a continuously stable exhaust gas purification performance. Can be maintained.
[0042]
According to the exhaust gas purifying apparatus for an internal combustion engine according to the second aspect of the present invention, since the regenerative filter has an oxidizing function and the selective reduction catalyst carries vanadium, NO is oxidized by the regenerative filter and NO 2 Thus, NOx in the exhaust gas can be efficiently purified by the selective reduction catalyst.
[0043]
According to the exhaust gas purifying apparatus for an internal combustion engine according to the third aspect of the present invention, each regenerative filter has a heating means for regeneration, and exhaust gas for introducing a predetermined amount of exhaust gas to the regenerative heating means during regeneration of the regenerative filter. Since the introduction means is provided, when the exhaust gas temperature is low during regeneration of the regenerative filter, the control means operates the heating means for regeneration, and the exhaust gas introduction means introduces exhaust gas into the regeneration heating means. In addition, oxygen is supplied for burning the particulates, and the exhaust gas is heated to remove the collected particulates by burning.Thus, it is possible to reliably regenerate the regenerative filter with a small amount of exhaust gas. it can.
[0044]
According to the exhaust gas purifying apparatus for an internal combustion engine of the fourth aspect, the exhaust gas introducing means includes a communication path that connects the exhaust passage on the upstream side of the regenerative filter with the regeneration heating means, and the exhaust gas flowing through the communication path. Since the apparatus has the flow control valve for adjusting the flow rate, the regenerative filter can be properly regenerated with a simple configuration.
[0045]
According to the exhaust gas purifying apparatus for an internal combustion engine according to the fifth aspect of the present invention, a temperature sensor for measuring the exhaust gas temperature is provided upstream of the selective reduction catalyst, and the control means performs regeneration in accordance with the exhaust gas temperature measured by the temperature sensor. Controls the regeneration operation of the regenerative filter, so that the regeneration operation of the regenerative filter is controlled according to the temperature of the exhaust gas introduced into the selective reduction catalyst, thus preventing high-temperature exhaust gas from flowing into the selective reduction catalyst. As a result, deterioration of the selective reduction catalyst can be reliably prevented.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an exhaust gas purification device for an internal combustion engine according to a first embodiment of the present invention.
FIG. 2 is a time chart at the time of filter regeneration.
FIG. 3 is a time chart at the time of filter regeneration in an exhaust gas purification device for an internal combustion engine according to a second embodiment of the present invention.
FIG. 4 is a schematic view of a conventional exhaust gas purification device for an internal combustion engine.
FIG. 5 is a time chart at the time of catalyst regeneration.
[Explanation of symbols]
Reference Signs List 11 Exhaust passages 12, 13 Branch passages 14, 15 Regenerative filters 16, 17 Merging passages 18 Selective reduction catalysts 19, 20 Switching valves (path switching means)
21, 22 electric heater (regeneration heating means)
25 Communication passage (exhaust gas introduction means)
26 Flow control valve (exhaust gas introduction means)
27 Injection nozzle (reducing agent supply means)
31-34 temperature sensor 35 controller

Claims (5)

内燃機関の排気通路に並設されて排気ガス中の微粒子を捕集する複数の再生式フィルタと、該各再生式フィルタへの排気導入を選択的に切り換える通路切換手段と、前記各再生式フィルタの下流側に設けられた選択還元式触媒と、該選択還元式触媒に尿素またはアンモニアを供給する還元剤供給手段と、前記再生式フィルタの捕集量あるいは該捕集量に起因するパラメータに応じて前記通路切換手段を切換制御すると共に切り換えられた側の前記再生式フィルタの再生機能を実行する制御手段とを具えたことを特徴とする内燃機関の排気浄化装置。A plurality of regenerative filters arranged in parallel in an exhaust passage of an internal combustion engine for trapping particulates in exhaust gas, passage switching means for selectively switching the introduction of exhaust gas to each of the regenerative filters, and each of the regenerative filters A reducing agent supply means for supplying urea or ammonia to the selective reduction catalyst, and a collecting amount of the regenerative filter or a parameter caused by the collecting amount. Control means for controlling the switching of the passage switching means and performing the regeneration function of the regeneration filter on the switched side. 請求項1記載の内燃機関の排気浄化装置において、前記再生式フィルタに酸化触媒を担持することを特徴とする内燃機関の排気浄化装置。The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein an oxidation catalyst is carried on the regenerative filter. 請求項1記載の内燃機関の排気浄化装置において、前記各再生式フィルタは再生用加熱手段を有し、該再生式フィルタの再生時に所定量の排気ガスを該再生加熱手段に導入する排気ガス導入手段を設けたことを特徴とする内燃機関の排気浄化装置。2. An exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein each of said regeneration filters has a heating means for regeneration, and an exhaust gas introduction for introducing a predetermined amount of exhaust gas into said regeneration heating means during regeneration of said regeneration filter. An exhaust gas purifying apparatus for an internal combustion engine, characterized by comprising means. 請求項3記載の内燃機関の排気浄化装置において、前記排気ガス導入手段は、前記再生式フィルタ上流側の前記排気通路と前記再生加熱手段とを連通する連通路と、該連通路を流れる排気ガス流量を調整する流量制御弁とを有することを特徴とする内燃機関の排気浄化装置。4. The exhaust gas purifying apparatus for an internal combustion engine according to claim 3, wherein the exhaust gas introduction unit communicates with the exhaust passage upstream of the regenerative filter and the regeneration heating unit, and the exhaust gas flows through the communication passage. 5. An exhaust purification device for an internal combustion engine, comprising: a flow control valve for adjusting a flow rate. 請求項1記載の内燃機関の排気浄化装置において、前記選択還元式触媒の上流側に排気ガス温度を計測する温度センサが設けられ、前記制御手段は該温度センサが計測した排気ガス温度に応じて前記再生式フィルタの再生動作を制御することを特徴とする内燃機関の排気浄化装置。2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, further comprising a temperature sensor for measuring an exhaust gas temperature on an upstream side of the selective catalytic reduction catalyst, wherein the control unit controls the exhaust gas temperature in accordance with the exhaust gas temperature measured by the temperature sensor. An exhaust gas purifying apparatus for an internal combustion engine, which controls a regeneration operation of the regeneration filter.
JP2002329076A 2002-11-13 2002-11-13 Exhaust emission control device for internal combustion engine Withdrawn JP2004162600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002329076A JP2004162600A (en) 2002-11-13 2002-11-13 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002329076A JP2004162600A (en) 2002-11-13 2002-11-13 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004162600A true JP2004162600A (en) 2004-06-10

Family

ID=32807183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002329076A Withdrawn JP2004162600A (en) 2002-11-13 2002-11-13 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004162600A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116481A (en) * 2004-10-25 2006-05-11 Toyo Netsu Kogyo Kk Gas purification apparatus
JP2006183509A (en) * 2004-12-27 2006-07-13 Mitsubishi Fuso Truck & Bus Corp Exhaust gas agitating device of internal combustion engine
JP2006320854A (en) * 2005-05-20 2006-11-30 Hino Motors Ltd Selective reduction type catalyst and exhaust gas purifier of engine for use therein
JP2007051608A (en) * 2005-08-19 2007-03-01 Isuzu Motors Ltd Emission treatment method and device
JP2007138861A (en) * 2005-11-21 2007-06-07 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2007192148A (en) * 2006-01-20 2007-08-02 Bosch Corp Exhaust emission control device and exhaust emission control method for internal combustion engine
JP2010516948A (en) * 2007-01-31 2010-05-20 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Method for regenerating a soot filter in an exhaust system of a lean engine and an exhaust system for the same
JP2011069324A (en) * 2009-09-28 2011-04-07 Volvo Powertrain Ab Exhaust emission control device for engine
JP2011241690A (en) * 2010-05-14 2011-12-01 Isuzu Motors Ltd Dpf regeneration device
US8105542B2 (en) 2007-06-19 2012-01-31 Hino Motors, Ltd. Engine exhaust gas purifier
KR101246843B1 (en) * 2010-09-10 2013-03-25 한국전력공사 Device and Method comprising Grid Units for Flue Gas Denitrogenization
CN103557057A (en) * 2013-11-06 2014-02-05 苏州佑瑞检测技术有限公司 Automobile exhaust purifier with multiple working modes
WO2014125628A1 (en) * 2013-02-15 2014-08-21 日新電機株式会社 Particulate matter removal device
KR20180020788A (en) * 2016-08-19 2018-02-28 한국전력공사 After-treatment apparatus for exhaust gas and after-treatment method for exhaust gas using the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116481A (en) * 2004-10-25 2006-05-11 Toyo Netsu Kogyo Kk Gas purification apparatus
JP4520274B2 (en) * 2004-10-25 2010-08-04 東洋熱工業株式会社 Gas purification device
JP4502800B2 (en) * 2004-12-27 2010-07-14 三菱ふそうトラック・バス株式会社 Exhaust gas stirrer for internal combustion engine
JP2006183509A (en) * 2004-12-27 2006-07-13 Mitsubishi Fuso Truck & Bus Corp Exhaust gas agitating device of internal combustion engine
JP2006320854A (en) * 2005-05-20 2006-11-30 Hino Motors Ltd Selective reduction type catalyst and exhaust gas purifier of engine for use therein
JP4581130B2 (en) * 2005-08-19 2010-11-17 いすゞ自動車株式会社 Exhaust gas treatment method and exhaust gas treatment apparatus
JP2007051608A (en) * 2005-08-19 2007-03-01 Isuzu Motors Ltd Emission treatment method and device
JP2007138861A (en) * 2005-11-21 2007-06-07 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP4674531B2 (en) * 2005-11-21 2011-04-20 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2007192148A (en) * 2006-01-20 2007-08-02 Bosch Corp Exhaust emission control device and exhaust emission control method for internal combustion engine
JP2010516948A (en) * 2007-01-31 2010-05-20 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Method for regenerating a soot filter in an exhaust system of a lean engine and an exhaust system for the same
US8327625B2 (en) 2007-01-31 2012-12-11 Umicore Ag & Co. Kg Method for regenerating soot filters in the exhaust gas system of a lean mix engine, and exhaust gas system therefor
US8105542B2 (en) 2007-06-19 2012-01-31 Hino Motors, Ltd. Engine exhaust gas purifier
JP2011069324A (en) * 2009-09-28 2011-04-07 Volvo Powertrain Ab Exhaust emission control device for engine
JP2011241690A (en) * 2010-05-14 2011-12-01 Isuzu Motors Ltd Dpf regeneration device
KR101246843B1 (en) * 2010-09-10 2013-03-25 한국전력공사 Device and Method comprising Grid Units for Flue Gas Denitrogenization
WO2014125628A1 (en) * 2013-02-15 2014-08-21 日新電機株式会社 Particulate matter removal device
CN103557057A (en) * 2013-11-06 2014-02-05 苏州佑瑞检测技术有限公司 Automobile exhaust purifier with multiple working modes
KR20180020788A (en) * 2016-08-19 2018-02-28 한국전력공사 After-treatment apparatus for exhaust gas and after-treatment method for exhaust gas using the same
KR102488787B1 (en) 2016-08-19 2023-01-17 한국전력공사 After-treatment apparatus for exhaust gas and after-treatment method for exhaust gas using the same

Similar Documents

Publication Publication Date Title
JP4972914B2 (en) Exhaust gas purification system regeneration control method and exhaust gas purification system
JP4290037B2 (en) Engine exhaust purification system
JP4702318B2 (en) Exhaust gas purification system for internal combustion engine
WO2005071236A1 (en) Exhaust gas purifier and method of control therefor
JP3788501B2 (en) Exhaust gas purification device for internal combustion engine
JP2004162600A (en) Exhaust emission control device for internal combustion engine
WO2006059470A1 (en) Sulfur purge control method for exhaust gas purifying system and exhaust gas purifying system
US9777654B2 (en) Method and apparatus for improved lightoff performance of aftertreatment catalysts
KR20010090826A (en) Integrated apparatus for removing pollutants from a fluid stream in a lean-burn environment with heat recovery
KR101028556B1 (en) System for purifying exhaust gas
JP2010019239A (en) Exhaust emission control device
JP2006183507A (en) Exhaust emission control device for internal combustion engine
WO2007010985A1 (en) Exhaust gas purifier
JP2006320854A (en) Selective reduction type catalyst and exhaust gas purifier of engine for use therein
JP2001280121A (en) Continuous regeneration-type particulate filter device
CN111255551A (en) High-power diesel engine pollutant discharge countercurrent catalytic conversion coprocessing device with sulfur catcher
JP5282568B2 (en) Exhaust gas purification method and exhaust gas purification system
JP2007198315A (en) Exhaust emission control device for internal combustion engine and exhaust emission control method
JP2006316758A (en) Exhaust emission control method and exhaust emission control system
JP2018145869A (en) Exhaust emission control system and sulfur poisoning restriction method for exhaust emission control system
JP2002295298A (en) Exhaust emission control system and its recovery control method
JP6743498B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP3905264B2 (en) Engine exhaust gas purification device
JP2010185369A (en) Fuel supply device of engine
JP2004176679A (en) Emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040910

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070412