JP2008128212A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2008128212A
JP2008128212A JP2006317783A JP2006317783A JP2008128212A JP 2008128212 A JP2008128212 A JP 2008128212A JP 2006317783 A JP2006317783 A JP 2006317783A JP 2006317783 A JP2006317783 A JP 2006317783A JP 2008128212 A JP2008128212 A JP 2008128212A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
catalyst
dpf
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006317783A
Other languages
Japanese (ja)
Other versions
JP4709733B2 (en
Inventor
Norio Suzuki
典男 鈴木
Tomoko Morita
智子 森田
Katsuji Wada
勝治 和田
Takashi Kimoto
隆史 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006317783A priority Critical patent/JP4709733B2/en
Publication of JP2008128212A publication Critical patent/JP2008128212A/en
Application granted granted Critical
Publication of JP4709733B2 publication Critical patent/JP4709733B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine capable of highly efficiently performing DPF regeneration and a sulfur purge, without deteriorating fuel economy. <P>SOLUTION: This exhaust emission control device 10 of the internal combustion engine is formed by arranging a TWC 7, a DPF 8 and an LNC 9 in a row in this order from the upstream side in an exhaust passage, and has a DPF regenerating means and a sulfur purge means of the TWC and the LNC. The sulfur purge is performed in parallel to the DPF regeneration. A target value of the exhaust air-fuel ratio is alternately switched to the lean side and the rich side in a state of setting at least any of the TWC and the LNC to the predetermined temperature or more. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の排気を浄化する触媒装置に吸着された硫黄分の除去処理を行う手段と、粒子状物質(PM)を捕捉するフィルタ装置の再生処理を行う手段とを備えた内燃機関の排気浄化装置に関するものである。   The present invention includes an internal combustion engine that includes a means for removing sulfur adsorbed by a catalyst device that purifies exhaust gas from an internal combustion engine, and a means for performing regeneration processing of a filter device that captures particulate matter (PM). The present invention relates to an exhaust purification device.

自動車用内燃機関の燃焼室から排出されるCO(一酸化炭素)、HC(炭化水素)、NO(窒素酸化物)を無害化する処理を行うために、内燃機関の排気通路には三元触媒(以下、TWCと記す)が設けられている。このTWCは、主に理論空燃比(以下、ストイキと記す)での燃焼状態に適合しており、特に希薄燃焼を行う内燃機関(例えばディーゼル機関)はNOの排出量が大きいので、これを無害化するためのリーンNO触媒(以下、LNCと記す)がTWCの下流側に設けられることがある。 In order to detoxify CO (carbon monoxide), HC (hydrocarbon), and NO x (nitrogen oxide) discharged from the combustion chamber of an automobile internal combustion engine, a three-way is provided in the exhaust passage of the internal combustion engine. A catalyst (hereinafter referred to as TWC) is provided. This TWC is mainly adapted to the combustion state at the stoichiometric air-fuel ratio (hereinafter referred to as stoichiometric), and particularly an internal combustion engine (for example, a diesel engine) that performs lean combustion has a large NO X emission amount. A lean NO X catalyst (hereinafter referred to as LNC) for detoxification may be provided downstream of the TWC.

また、ディーゼル機関は、粒子状物質(Particulate Matter:煤、以下、PMと記す)が発生するので、これを捕捉するDPF(Diesel Particulate Filter)がTWCの下流側且つLNCの上流側に設置されている。このDPFに対するPMの堆積量が増加すると、目詰まりによる背圧の上昇(出力の低下)がもたらされるので、適時、強制的にPMを再燃焼させて除去する処理(以下、DPF再生と記す)を行う必要がある。このDPF再生を行うには、排出ガスの温度が所定値よりも高く、且つ空燃比(以下、排気A/Fと記す)が所定値よりも高い(以下、リーンと記す)状態にする必要がある(特許文献1を参照されたい)。   In addition, particulate matter (Particulate Matter: hereinafter referred to as PM) is generated in the diesel engine, so a DPF (Diesel Particulate Filter) that captures the particulate matter is installed downstream of the TWC and upstream of the LNC. Yes. When the amount of accumulated PM on the DPF increases, back pressure increases (decreases in output) due to clogging. Therefore, the PM is forcibly reburned and removed at a proper time (hereinafter referred to as DPF regeneration). Need to do. In order to perform this DPF regeneration, it is necessary that the temperature of the exhaust gas is higher than a predetermined value and the air-fuel ratio (hereinafter referred to as exhaust A / F) is higher than a predetermined value (hereinafter referred to as lean). Yes (see Patent Document 1).

他方、燃料には硫黄分が含まれているため、SO(硫黄酸化物)やHS(硫化水素)も排出される。これらの硫黄分がTWC或いはLNCに吸収された状態(以下、S被毒と記す)になると、これらのNO浄化性能が低下するので、吸収された硫黄分を適時無害化して放出する必要がある。この硫黄分の放出処理(以下、サルファパージと記す)を行うには、TWC或いはLNCに流入する排出ガスの温度が所定値よりも高く、且つ排気A/Fが所定値よりも低い(以下、リッチと呼称する)状態にする必要がある(特許文献2を参照されたい)。
特開2000−161044号公報 特開2003−120373号公報
On the other hand, since the fuel contains sulfur, SO X (sulfur oxide) and H 2 S (hydrogen sulfide) are also discharged. State in which these sulfur is absorbed in the TWC or LNC (or less, S referred to as poisoning) becomes, because these of the NO X purification performance is lowered, must be released in a timely manner harmless absorbed sulfur is there. In order to perform this sulfur release process (hereinafter referred to as sulfur purge), the temperature of the exhaust gas flowing into the TWC or LNC is higher than a predetermined value, and the exhaust A / F is lower than a predetermined value (hereinafter, referred to as “sulfur purge”). (Referred to Patent Document 2).
JP 2000-161044 A JP 2003-120373 A

つまり、DPF再生並びにサルファパージは、共に高温で行う必要があるが、DPF再生はリーン雰囲気下で、サルファパージはリッチ雰囲気下で、と互いに異なる燃焼状態で行わねばならないので、従来は、これらの処理を個別に行っていた。これらの処理は、通常運転の燃焼状態を処理のために強制的に変更して行うので、特にリッチ雰囲気とするサルファパージは、その処理時間が長引くと燃費が悪化するという不都合がある。   In other words, both DPF regeneration and sulfur purge must be performed at high temperatures, but DPF regeneration must be performed in a lean atmosphere, and sulfur purge must be performed in a different combustion state in a rich atmosphere. Processing was done individually. Since these processes are performed by forcibly changing the combustion state in the normal operation for the process, the sulfur purge particularly in a rich atmosphere has a disadvantage that the fuel consumption deteriorates if the process time is prolonged.

本発明は、このような従来技術の課題を解決すべく創案されたものであり、その主な目的は、DPF再生及びサルファパージを、燃費の悪化を招かずに高効率に実行し得る内燃機関の排気浄化装置を提供することにある。   The present invention was devised to solve such problems of the prior art, and its main purpose is an internal combustion engine capable of executing DPF regeneration and sulfur purge with high efficiency without causing deterioration of fuel consumption. An object of the present invention is to provide an exhaust purification device.

このような課題を解決するため、本発明の請求項1は、少なくとも還元機能を有する第1の触媒(例えばTWC7)と、DPF8と、排気A/Fがリーン状態でNOを吸着し且つリッチ状態で吸着したNOを還元浄化する第2の触媒(例えばLNC9)とを排気通路に上流からこの順に列設してなる内燃機関の排気浄化装置10において、DPF再生手段と、第1の触媒並びに第2の触媒のサルファパージ手段とを備え、サルファパージを、DPF再生と並行して行うことを特徴とするものとした。
特に請求項2の発明は、第1の触媒及び第2の触媒の少なくともいずれかが所定温度以上の状態で排気A/Fの目標値をリーン側とリッチ側とに交互に切換えることを特徴とするものとした。
To solve such problems, claim 1 of the present invention, the first catalyst having at least reducing function (e.g. TWC7), and DPF 8, and the exhaust A / F adsorbs NO X in the lean state rich in the exhaust purification apparatus 10 of the second catalyst (e.g. LNC 9) and the internal combustion engine formed by arrayed in this order from the upstream in the exhaust passage to reduce and purify the NO X adsorbed in the state, the DPF regeneration means, the first catalyst In addition, a sulfur purge means for the second catalyst is provided, and the sulfur purge is performed in parallel with the DPF regeneration.
Particularly, the invention of claim 2 is characterized in that the target value of the exhaust A / F is alternately switched between the lean side and the rich side in a state where at least one of the first catalyst and the second catalyst is equal to or higher than a predetermined temperature. To do.

このような本発明によれば、第1の触媒並びにその下流に配した第2の触媒のサルファパージを、DPF再生に同期して短時間な高温・リッチ雰囲気下で行うことができるので、燃費への悪影響が及ぶことを最低限に抑えた上で第1の触媒並びに第2の触媒のNO浄化性能が悪化することを防止することができる。特にサルファパージは、これを単独で行うと、燃費悪化の要因となるので、並行処理とすれば、処理時間の短縮化を図ることができ、しかも両処理の進行が平均的になるので、何らかの理由で処理が中断しても、DPF、第1の触媒、及び第2の触媒の機能が損なわれずに済む。 According to the present invention, the sulfur purge of the first catalyst and the second catalyst disposed downstream thereof can be performed in a short time in a high temperature / rich atmosphere in synchronization with the DPF regeneration. first catalyst and NO X purification performance of the second catalyst while suppressing to a minimum the adverse spans can be prevented from being deteriorated. In particular, sulfur purge, when performed alone, causes a deterioration in fuel consumption. Parallel processing can shorten processing time, and the progress of both processes becomes average. Even if the process is interrupted for the reason, the functions of the DPF, the first catalyst, and the second catalyst are not impaired.

以下に添付の図面を参照して本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明が適用される内燃機関Eの基本的な構成図である。この内燃機関(ディーゼルエンジン)Eは、その機械的な構成自体は周知のものと何ら変わるところはなく、過給圧可変機構付きターボチャージャ1を備えるものであり、ターボチャージャ1のコンプレッサ側に吸気通路2が連結され、ターボチャージャ1のタービン側に排気通路3が連結されている。そして吸気通路2の上流端にエアクリーナ4が接続され、吸気通路2の適所に燃焼室に流入する新気の流量を調節するための吸気制御弁5と、低回転速度・低負荷運転域で流路断面積を絞って吸気流速を高めるためのスワールコントロール弁6とが設けられている。また排気通路3の過給機1よりも下流側には、ストイキ雰囲気下において排気中のHCおよびCOを酸化すると共にNOを還元するTWC7(第1の触媒)と、煤などの粒子状物質(PM)を除去するフィルタ(DPF)8と、酸素濃度が高い(リーン)ときに排気中のNOを捕捉すると共に、酸素濃度が低い(リッチ)ときに吸蔵したNOを放出・還元するLNC9(第2の触媒)とを、排気の流れに沿って上流からこの順に連設してなる排気浄化装置10が接続されている。 FIG. 1 is a basic configuration diagram of an internal combustion engine E to which the present invention is applied. The internal combustion engine (diesel engine) E has a mechanical structure itself that is not different from that of a known one, and includes a turbocharger 1 with a supercharging pressure variable mechanism. A passage 2 is connected, and an exhaust passage 3 is connected to the turbine side of the turbocharger 1. An air cleaner 4 is connected to the upstream end of the intake passage 2, and an intake control valve 5 for adjusting the flow rate of fresh air flowing into the combustion chamber at an appropriate position of the intake passage 2, and flows in a low rotation speed / low load operation region. A swirl control valve 6 is provided for reducing the cross-sectional area of the road and increasing the intake air flow velocity. Further, on the downstream side of the supercharger 1 in the exhaust passage 3, a TWC 7 (first catalyst) that oxidizes HC and CO in the exhaust and reduces NO X under a stoichiometric atmosphere, and particulate matter such as soot A filter (DPF) 8 that removes (PM) and captures NO X in the exhaust when the oxygen concentration is high (lean), and releases and reduces the stored NO X when the oxygen concentration is low (rich) An exhaust purification device 10 is connected, which is connected to the LNC 9 (second catalyst) in this order from the upstream along the exhaust flow.

スワールコントロール弁6と排気通路3における燃焼室の直後との間は、排気再循環(以下、EGRと記す)通路11を介して互いに連結されている。このEGR通路11は、切換弁12を介して分岐されたクーラー通路11aとバイパス通路11bとからなり、その合流部に、燃焼室に流入するEGR流量を調節するEGR制御弁13が設けられている。   The swirl control valve 6 and the portion immediately after the combustion chamber in the exhaust passage 3 are connected to each other via an exhaust recirculation (hereinafter referred to as EGR) passage 11. The EGR passage 11 includes a cooler passage 11a and a bypass passage 11b branched via a switching valve 12, and an EGR control valve 13 for adjusting the EGR flow rate flowing into the combustion chamber is provided at the junction. .

内燃機関Eのシリンダヘッドには、その先端を燃焼室に臨ませた燃料噴射弁14が設けられている。この燃料噴射弁14は、燃料を所定の高圧状態で蓄えるコモンレール15に連結され、コモンレール15には、クランク軸にて駆動されて燃料タンク16から燃料を汲み上げる燃料ポンプ17が接続されている。   The cylinder head of the internal combustion engine E is provided with a fuel injection valve 14 with its tip facing the combustion chamber. The fuel injection valve 14 is connected to a common rail 15 that stores fuel in a predetermined high pressure state, and a fuel pump 17 that is driven by a crankshaft and pumps fuel from the fuel tank 16 is connected to the common rail 15.

これらのターボチャージャ1の過給圧可変機構19、吸気制御弁5、EGR通路切換弁12およびEGR制御弁13、燃料噴射弁14、燃料ポンプ17・・・等は、電子制御装置(以下、ECUと略称する)18からの制御信号によって作動するように構成されている(図2参照)。   These turbocharger 1 supercharging pressure variable mechanism 19, intake control valve 5, EGR passage switching valve 12 and EGR control valve 13, fuel injection valve 14, fuel pump 17... (Referred to as FIG. 2).

一方、ECU18には、図2に示すように、内燃機関Eの所定箇所に配置された吸気弁開度センサ20、クランク軸回転速度センサ21、吸気流量センサ22、過給圧センサ23、EGR弁開度センサ24、コモンレール圧センサ25、アクセルペダル操作量センサ26、Oセンサ27U・27L、NOセンサ28U・28L、TWC温度センサ29、LNC温度センサ30・・・等からの出力信号が入力されている。 On the other hand, as shown in FIG. 2, the ECU 18 includes an intake valve opening sensor 20, a crankshaft rotation speed sensor 21, an intake flow rate sensor 22, a supercharging pressure sensor 23, and an EGR valve disposed at predetermined locations of the internal combustion engine E. Output signals from the opening sensor 24, the common rail pressure sensor 25, the accelerator pedal operation amount sensor 26, the O 2 sensors 27U and 27L, the NO X sensors 28U and 28L, the TWC temperature sensor 29, the LNC temperature sensor 30, and so on are input. Has been.

ECU18のメモリには、クランク軸回転速度および要求トルク(アクセルペダル操作量)に応じてベンチテスト等によって予め求めた最適燃料噴射量をはじめとする各制御対象の制御目標値を設定したマップが格納されており、内燃機関Eの負荷状況に応じて最適な燃焼状態が得られるように、各部の制御が行われる。   In the memory of the ECU 18, a map is set in which control target values for each control object including the optimum fuel injection amount obtained in advance by a bench test or the like according to the crankshaft rotation speed and the required torque (accelerator pedal operation amount) are set. Thus, each part is controlled so that an optimal combustion state is obtained in accordance with the load state of the internal combustion engine E.

この内燃機関Eにおいては、DPF8に堆積したPMを除去するDPF再生処理と、TWC7或いはLNC9に吸蔵された硫黄分を除去するサルファパージ処理とを適時行う必要がある。これらのうち、サルファパージは、比較的長時間かつ継続的なリッチ雰囲気下で行われるため、排気中のPM発生量が増大するが、一般に、DPF再生よりは頻度が低い。そこで本発明においては、リーン雰囲気下でのDPF再生を実行する際に、間欠リッチ化制御を同時に行うことにより、サルファパージがDPF再生と並行して行われるようにした。   In the internal combustion engine E, it is necessary to perform a DPF regeneration process for removing PM accumulated in the DPF 8 and a sulfur purge process for removing sulfur stored in the TWC 7 or LNC 9 in a timely manner. Among these, sulfur purge is carried out in a rich atmosphere that lasts for a relatively long time, so that the amount of PM generated in the exhaust gas increases, but in general, the frequency is lower than that of DPF regeneration. Therefore, in the present invention, when performing DPF regeneration under a lean atmosphere, intermittent rich control is performed at the same time so that sulfur purge is performed in parallel with DPF regeneration.

次に本発明によるDPF再生並びにサルファパージの処理手順について図3を参照して説明する。先ず、エンジンの負荷情況や燃料供給量などを常時監視してPM発生量を推定し、それを積算して得たDPF8のPM堆積量が所定のしきい値に達しているか否かを判別する(ステップ1)。   Next, DPF regeneration and sulfur purge processing procedures according to the present invention will be described with reference to FIG. First, the engine load situation, fuel supply amount, etc. are constantly monitored to estimate the PM generation amount, and it is determined whether or not the PM accumulation amount of the DPF 8 obtained by integrating the amount has reached a predetermined threshold value. (Step 1).

この値が所定値以下であれば(ステップ1:否定)、未だDPF再生処理は不要と判断し、この処理を終了する。ここで所定値に達していると判断されたとき(ステップ1:肯定)は、TWC7の温度が所定値に達しているか否かを判別し(ステップ2)、所定値に達していなければ(ステップ2:否定)、例えばポスト噴射などによる昇温処理を行う(ステップ3)。ここで所定値に達していることが判断された(ステップ2:肯定)場合は、PM堆積量と再生時間との関係を設定した処理時間テーブル(図4)を参照し、DPF再生時間を算出する(ステップ4)。   If this value is equal to or less than the predetermined value (No at Step 1 :), it is determined that the DPF regeneration process is not yet required, and this process is terminated. When it is determined that the predetermined value has been reached (step 1: affirmative), it is determined whether or not the temperature of the TWC 7 has reached the predetermined value (step 2). 2: No), for example, temperature increase processing by post injection or the like is performed (step 3). If it is determined that the predetermined value has been reached (step 2: affirmative), the DPF regeneration time is calculated with reference to the processing time table (FIG. 4) in which the relationship between the PM accumulation amount and the regeneration time is set. (Step 4).

これと同時に、走行距離、走行時間、燃料消費量、酸素濃度などからS被毒量の積算値を推定し、S被毒量と再生時間との関係を設定した処理時間テーブル(図5)を参照し、サルファパージに要する時間を算出する(ステップ5)。   At the same time, an integrated value of the S poison amount is estimated from the travel distance, travel time, fuel consumption, oxygen concentration, etc., and a processing time table (FIG. 5) in which the relationship between the S poison amount and the regeneration time is set. Refer to and calculate the time required for sulfur purge (step 5).

両処理時間からリッチタイマとリーンタイマとの運転切換え時間を設定し(ステップ6)、所定の高温状態におけるリッチ、リーン運転を交互に繰り返す(ステップ7)。   The operation switching time between the rich timer and the lean timer is set from both processing times (step 6), and the rich and lean operations at a predetermined high temperature state are alternately repeated (step 7).

この処理を、ステップ8でタイマのカウント終了が判断されるまで繰り返す。   This process is repeated until it is determined in step 8 that the timer has finished counting.

ディーゼル機関は、定常運転がリーンなので、DPF8に捕捉されたPMは、高温リーン雰囲気下でTWC7にNOが捕捉される時に発生した活性酸素によっても再燃焼させることができる。またNO浄化のために行うリッチスパイク制御時に発生する活性酸素によってもPMは再燃焼する。つまりDPF再生は、広い運転範囲で処理可能である。 Since the diesel engine is lean in steady operation, PM trapped in the DPF 8 can be reburned also by active oxygen generated when NO X is trapped in the TWC 7 under a high temperature lean atmosphere. The PM by active oxygen generated during the rich spike control performed for of the NO X purification is afterburning. That is, DPF regeneration can be processed over a wide operating range.

これに対し、サルファパージは、高温リッチ雰囲気下で行われるが、高負荷域では過給機の温度が上がりすぎ、低負荷域では温度が不足する。つまり処理に最適な負荷領域はある程度限られている(図6参照)。   On the other hand, the sulfur purge is performed in a high temperature rich atmosphere, but the temperature of the supercharger is too high in the high load region, and the temperature is insufficient in the low load region. That is, the optimum load area for processing is limited to some extent (see FIG. 6).

このように、サルファパージとDPF再生との進行度合いは、運転状態に大きく影響されるので、リッチタイマとリーンタイマとの切換時間配分を、全体の処理に必要な時間に対する達成度に応じて適宜に修正することが考えられる。   As described above, since the progress of sulfur purge and DPF regeneration is greatly influenced by the operating state, the switching time distribution between the rich timer and the lean timer is appropriately determined according to the degree of achievement with respect to the time required for the entire processing. It is possible to correct it.

即ち、DPF再生可能領域に比してサルファパージ可能領域は狭いので、市街地での発進・停止を繰り返すような運転状態時は、サルファパージを優先して実行すると良い。   That is, since the sulfur purgeable area is narrower than the DPF recyclable area, it is preferable to prioritize sulfur purge in an operation state in which start / stop is repeated in an urban area.

また過度な低負荷域、あるいは過度な高負荷域では、サルファパージができないので、必然的にDPF再生処理のみが実行される。   Further, since sulfur purge cannot be performed in an excessively low load region or an excessively high load region, only the DPF regeneration process is necessarily executed.

そして高速定速走行など、常にサルファパージが可能な状態で走行する場合は、単純に、PM堆積量並びにS被毒量に対応して最短処理時間を計算し、処理時間の配分をタイマで切換えれば良い。   And when traveling in a state where sulfur purge is always possible, such as high-speed constant speed traveling, simply calculate the shortest processing time corresponding to the amount of PM deposition and S poisoning, and switch the processing time distribution with a timer Just do it.

以上のように、リッチタイマとリーンタイマとの切換えでDPF再生とサルファパージとを並列的に行うことにより、常に両者が平均して処理されることとなり、DPF8のPM捕捉能力とTWC7並びにLNC9のNO捕捉能力とを高いレベルに維持することができる。 As described above, the DPF regeneration and the sulfur purge are performed in parallel by switching between the rich timer and the lean timer, so that they are always processed on average, and the PM capturing ability of the DPF 8 and the NOC of the TWC 7 and the LNC 9 are always processed. X capture capability can be maintained at a high level.

本発明が適用される内燃機関の全体構成図である。1 is an overall configuration diagram of an internal combustion engine to which the present invention is applied. 本発明が適用される制御装置のブロック図である。It is a block diagram of a control device to which the present invention is applied. 本発明処理に関わるフロー図である。It is a flowchart in connection with this invention process. PM堆積量と再生時間との関係を設定した処理時間テーブルである。It is the processing time table which set the relationship between PM deposition amount and regeneration time. S被毒量と再生時間との関係を設定した処理時間テーブルである。It is the processing time table which set the relationship between S poison amount and reproduction | regeneration time. 各処理に最適な運転領域の分布図である。It is a distribution map of the optimal operation area | region for each process.

符号の説明Explanation of symbols

7 TWC
8 DPF
9 LNC
7 TWC
8 DPF
9 LNC

Claims (2)

少なくとも還元機能を有する第1の触媒と、粒子状物質捕捉フィルタと、排気空燃比がリーン状態でNOを吸着し且つリッチ状態で吸着したNOを還元浄化する第2の触媒とを排気通路に上流からこの順に列設してなる内燃機関の排気浄化装置であって、
前記粒子状物質捕捉フィルタの再生処理手段と、前記第1の触媒並びに前記第2の触媒の硫黄被毒回復処理手段とを備え、前記硫黄被毒回復処理は、前記粒子状物質捕捉フィルタの再生処理と並行して行うことを特徴とする内燃機関の制御装置。
An exhaust passage includes at least a first catalyst having a reduction function, a particulate matter trapping filter, and a second catalyst that adsorbs NO X when the exhaust air-fuel ratio is lean and reduces and purifies NO X adsorbed when rich. An exhaust purification device for an internal combustion engine arranged in this order from the upstream,
The particulate matter trapping filter regeneration processing means, and the sulfur poisoning recovery processing means of the first catalyst and the second catalyst, wherein the sulfur poisoning recovery processing is the regeneration of the particulate matter trapping filter. A control apparatus for an internal combustion engine, which is performed in parallel with the processing.
前記第1の触媒及び前記第2の触媒の少なくともいずれかが所定温度以上の状態で排気空燃比の目標値をリーン側とリッチ側とに交互に切換えることを特徴とする請求項1に記載の内燃機関の制御装置。   2. The exhaust air / fuel ratio target value is alternately switched between a lean side and a rich side in a state where at least one of the first catalyst and the second catalyst is equal to or higher than a predetermined temperature. Control device for internal combustion engine.
JP2006317783A 2006-11-24 2006-11-24 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4709733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006317783A JP4709733B2 (en) 2006-11-24 2006-11-24 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006317783A JP4709733B2 (en) 2006-11-24 2006-11-24 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008128212A true JP2008128212A (en) 2008-06-05
JP4709733B2 JP4709733B2 (en) 2011-06-22

Family

ID=39554288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006317783A Expired - Fee Related JP4709733B2 (en) 2006-11-24 2006-11-24 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4709733B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127179A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
GB2581493A (en) * 2019-02-19 2020-08-26 Jaguar Land Rover Ltd Control apparatus and method
CN113027571A (en) * 2019-12-09 2021-06-25 保时捷股份公司 Method and drive device for reactivating an exhaust gas aftertreatment component
JP2021134664A (en) * 2020-02-25 2021-09-13 本田技研工業株式会社 Exhaust emission control device of internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021544A (en) * 2000-05-12 2002-01-23 Dmc 2 Degussa Metals Catalysts Cerdec Ag Method for removing nitrogen oxide and carbon-black particulate from dilute exhaust in internal combustion engine, and exhaust emission control system therefor
JP2005155374A (en) * 2003-11-21 2005-06-16 Isuzu Motors Ltd Exhaust emission control method and exhaust emission control system
WO2005103461A1 (en) * 2004-04-19 2005-11-03 Honda Motor Co., Ltd. Exhaust purifying device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021544A (en) * 2000-05-12 2002-01-23 Dmc 2 Degussa Metals Catalysts Cerdec Ag Method for removing nitrogen oxide and carbon-black particulate from dilute exhaust in internal combustion engine, and exhaust emission control system therefor
JP2005155374A (en) * 2003-11-21 2005-06-16 Isuzu Motors Ltd Exhaust emission control method and exhaust emission control system
WO2005103461A1 (en) * 2004-04-19 2005-11-03 Honda Motor Co., Ltd. Exhaust purifying device for internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127179A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
GB2581493A (en) * 2019-02-19 2020-08-26 Jaguar Land Rover Ltd Control apparatus and method
GB2581493B (en) * 2019-02-19 2021-11-03 Jaguar Land Rover Ltd Control apparatus and method
CN113027571A (en) * 2019-12-09 2021-06-25 保时捷股份公司 Method and drive device for reactivating an exhaust gas aftertreatment component
JP2021134664A (en) * 2020-02-25 2021-09-13 本田技研工業株式会社 Exhaust emission control device of internal combustion engine
JP7061146B2 (en) 2020-02-25 2022-04-27 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
JP4709733B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP5257024B2 (en) Exhaust gas purification device for internal combustion engine
JP4203730B2 (en) Exhaust gas purification device for internal combustion engine
US7963101B2 (en) Exhaust gas purifying device for an internal combustion engine
EP3133258B1 (en) Control system for internal combustion engine and control method
JP2008101575A (en) Exhaust emission control device for internal combustion engine
JP4709733B2 (en) Exhaust gas purification device for internal combustion engine
JP4435300B2 (en) Control device for internal combustion engine
JP2004324454A (en) Exhaust emission control device of internal combustion engine
JP4613787B2 (en) Exhaust gas purification device for internal combustion engine
WO2016132875A1 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP2009287515A (en) Controller of internal combustion engine
JP2005155500A (en) Exhaust gas control apparatus for internal combustion engine
JP2010196551A (en) Exhaust emission control device of internal combustion engine
JP4291650B2 (en) Exhaust purification equipment
JP2008128213A (en) Exhaust emission control device of internal combustion engine
JP2004176636A (en) Exhaust emission control device for internal combustion engine
JP4069043B2 (en) Exhaust gas purification device for internal combustion engine
JP2009264203A (en) Exhaust device for internal combustion engine
JP4727472B2 (en) Exhaust purification device
JP6447214B2 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP2006266220A (en) Rising temperature controller of aftertreatment device
JP5379733B2 (en) Engine exhaust purification system
JP2005344617A (en) Exhaust emission control device of diesel engine
JP4523317B2 (en) Diesel engine exhaust purification system
JP2010180709A (en) Exhaust emission control device of engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110318

LAPS Cancellation because of no payment of annual fees