JP4069043B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4069043B2
JP4069043B2 JP2003320027A JP2003320027A JP4069043B2 JP 4069043 B2 JP4069043 B2 JP 4069043B2 JP 2003320027 A JP2003320027 A JP 2003320027A JP 2003320027 A JP2003320027 A JP 2003320027A JP 4069043 B2 JP4069043 B2 JP 4069043B2
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
exhaust
exhaust gas
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003320027A
Other languages
Japanese (ja)
Other versions
JP2005083351A (en
Inventor
辰久 横井
幸久 山本
豊盛 立木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Denso Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Denso Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP2003320027A priority Critical patent/JP4069043B2/en
Publication of JP2005083351A publication Critical patent/JP2005083351A/en
Application granted granted Critical
Publication of JP4069043B2 publication Critical patent/JP4069043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、排気系に配設された添加弁による排気中への燃料添加を制御する排気燃料添加制御装置に関するものである。   The present invention relates to an exhaust fuel addition control device that controls fuel addition to exhaust gas by an addition valve disposed in an exhaust system.

近年、排気系に設けられたフィルタによって排気中の微粒子物質(PM:Particulate Matter)を捕集して浄化する排気浄化装置が、車載用ディーゼル機関等の内燃機関に採用されている。こうした排気浄化装置では、捕集されたPMの堆積によるフィルタの目詰まりが発生する前に、堆積したPMを除去してフィルタを再生させる必要がある。   2. Description of the Related Art In recent years, exhaust gas purification apparatuses that collect and purify particulate matter (PM) in exhaust gas using a filter provided in an exhaust system have been adopted in internal combustion engines such as in-vehicle diesel engines. In such an exhaust purification device, before the filter is clogged due to the accumulated PM, it is necessary to regenerate the filter by removing the accumulated PM.

従来、そうしたフィルタのPM再生を行う排気浄化装置として特許文献1のものが知られている。この排気浄化装置では、PMの酸化を促進する触媒を上記フィルタに担持させるとともに、排気系のフィルタの排気上流側に排気中に燃料を添加する添加弁を設けるようにしている。そして添加弁からの燃料添加を通じて炭化窒素(HC)等の未燃燃料成分をフィルタに供給して、フィルタ上で未燃燃料成分の酸化反応を発生させることで、その反応に伴う発熱により触媒床温を上昇させるようにしている。これにより、触媒を十分な活性状態としてPMの酸化反応を促進することで、上記フィルタの再生を図るようにしている。   Conventionally, the thing of patent document 1 is known as an exhaust gas purification apparatus which performs PM regeneration of such a filter. In this exhaust purification apparatus, a catalyst for promoting the oxidation of PM is carried on the filter, and an addition valve for adding fuel to the exhaust is provided on the exhaust upstream side of the exhaust system filter. Then, an unburned fuel component such as nitrogen carbide (HC) is supplied to the filter through fuel addition from the addition valve, and an oxidation reaction of the unburned fuel component is generated on the filter. I try to raise the temperature. Thus, the filter is regenerated by promoting the oxidation reaction of PM with the catalyst in a sufficiently active state.

またそうした添加弁を備える内燃機関の排気浄化装置では、排気中への燃料添加を通じてフィルタ等に担持された触媒に燃料を直接送り込むことで、その触媒における上記PMや窒素酸化物(NOx)等の排気成分の浄化に必要な還元剤となる未燃燃料成分の供給を行うこともある。   In addition, in an exhaust gas purification apparatus for an internal combustion engine equipped with such an addition valve, fuel is directly fed to a catalyst carried on a filter or the like through addition of fuel into the exhaust, so that the PM, nitrogen oxide (NOx), etc. In some cases, an unburned fuel component serving as a reducing agent necessary for purification of exhaust components is supplied.

更に内燃機関の各気筒に配設された燃料噴射弁から燃焼に供される主たる燃料噴射がなされた後の圧縮行程や排気行程中に別途に副噴射、いわゆるアフター噴射を実施することで、触媒に対する未燃燃料成分の供給を行う内燃機関の排気浄化装置も知られている。
特開平5−44434号公報
Further, by performing sub-injection, so-called after injection, separately during the compression stroke or exhaust stroke after the main fuel injection for combustion is performed from the fuel injection valve disposed in each cylinder of the internal combustion engine, the catalyst An exhaust gas purification apparatus for an internal combustion engine that supplies unburned fuel components to the fuel is also known.
Japanese Patent Laid-Open No. 5-44434

ところで上記添加弁による排気への燃料添加や、上記燃料噴射弁からのアフター噴射を通じて、触媒に対して未燃燃料成分を供給する内燃機関の排気浄化装置にあっては、そうした未燃燃料の供給の結果、排気中の未燃燃料成分が過剰となってしまうことがある。そしてその結果、未燃燃料成分の多くが触媒にて十分に酸化されぬまま、不完全燃焼状態で排出されてしまい、排気中に白煙が多量発生してしまう虞がある。   By the way, in an exhaust gas purification apparatus for an internal combustion engine that supplies unburned fuel components to the catalyst through addition of fuel to the exhaust by the addition valve and after-injection from the fuel injection valve, supply of such unburned fuel As a result, the unburned fuel component in the exhaust gas may become excessive. As a result, most of the unburned fuel components are not fully oxidized by the catalyst and are discharged in an incomplete combustion state, and a large amount of white smoke may be generated in the exhaust.

本発明の解決しようとする課題は、そうした白煙の発生を好適に抑制することのできる排気燃料添加制御装置を提供することにある。   The problem to be solved by the present invention is to provide an exhaust fuel addition control device capable of suitably suppressing the generation of such white smoke.

以下、上記課題を解決するための手段、及びその作用効果を記載する。
(手段)
請求項1に記載の発明は、機関出力の発生に係る燃焼に応じて内燃機関の排気系に排出される量を超えて、前記排気系に配設された触媒に対する未燃燃料成分の供給量を増大させる増大制御を実施する内燃機関の排気浄化装置において、高背圧の加速状態、すなわち背圧の増大にともない排気中の未燃燃料成分の量と排気の流量及び流速とが白煙の発生をまねく程度にまで増大する加速状態について、内燃機関がこの加速状態にあるか否かを機関回転速度の変化量に基づいて判定する判定手段と、この判定手段により内燃機関が前記加速状態にある旨判定されているとき、そうでないときに比して、前記増大制御における前記未燃燃料成分の供給量の増大量を低減させる処理を行う低減手段を備えることをその要旨とする。
Hereinafter, means for solving the above-described problems and the effects thereof will be described.
(means)
According to the first aspect of the present invention, the supply amount of the unburned fuel component to the catalyst disposed in the exhaust system exceeds the amount discharged to the exhaust system of the internal combustion engine in accordance with the combustion related to the generation of the engine output. In an exhaust gas purification apparatus for an internal combustion engine that implements an increase control that increases the amount of white smoke, the acceleration state of high back pressure, that is, the amount of unburned fuel component in the exhaust, the flow rate and the flow rate of exhaust gas, A determination means for determining whether or not the internal combustion engine is in this acceleration state based on the amount of change in the engine rotational speed with respect to an acceleration state that increases to an extent that causes generation, and the determination means causes the internal combustion engine to enter the acceleration state. when it is certain effect determination, than when it is not, as its gist in that it comprises a reduction unit for performing a process for reducing the amount of increase in the supply amount of the unburned fuel component in the increasing control.

請求項2に記載の発明は、機関出力の発生に係る燃焼に応じて内燃機関の排気系に排出される量を超えて、前記排気系に配設された触媒に対する未燃燃料成分の供給量を増大させる増大制御を実施する内燃機関の排気浄化装置において、高背圧の加速状態、すなわち背圧の増大にともない排気中の未燃燃料成分の量と排気の流量及び流速とが白煙の発生をまねく程度にまで増大する加速状態について、内燃機関がこの加速状態にあるか否かを機関回転速度の変化量に基づいて判定する判定手段と、この判定手段により内燃機関が前記加速状態にある旨判定されているとき、前記増大制御を中止させる処理を行う中止手段を備えることをその要旨とする。 According to the second aspect of the present invention, the supply amount of the unburned fuel component to the catalyst disposed in the exhaust system exceeds the amount discharged to the exhaust system of the internal combustion engine in accordance with the combustion related to the generation of the engine output. In an exhaust gas purification apparatus for an internal combustion engine that implements an increase control that increases the amount of white smoke, the acceleration state of high back pressure, that is, the amount of unburned fuel component in the exhaust, the flow rate and the flow rate of exhaust gas, A determination means for determining whether or not the internal combustion engine is in this acceleration state based on the amount of change in the engine rotational speed with respect to an acceleration state that increases to an extent that causes generation, and the determination means causes the internal combustion engine to enter the acceleration state. when it is certain fact determined, and its gist in that it comprises a stop means for processing for stopping the increase control.

請求項3に記載の発明は、請求項1又は2に記載の内燃機関の排気浄化装置において、前記増大制御は、排気系に配設された添加弁によって排気中に燃料を添加することで行われることをその要旨とする。   According to a third aspect of the present invention, in the exhaust gas purification apparatus for an internal combustion engine according to the first or second aspect, the increase control is performed by adding fuel into the exhaust gas by an addition valve disposed in the exhaust system. The gist of this is

請求項4に記載の発明は、請求項1又は2に記載の内燃機関の排気浄化装置において、前記増大制御は、前記燃焼に供される燃料を噴射する燃料噴射弁によって、該燃焼に供される燃料の噴射とは別の燃料の副噴射を実施することで行われることをその要旨とする。   According to a fourth aspect of the present invention, in the exhaust gas purification apparatus for an internal combustion engine according to the first or second aspect, the increase control is provided for the combustion by a fuel injection valve for injecting the fuel for the combustion. The gist of the present invention is that the sub-injection of fuel is performed separately from the fuel injection.

請求項5に記載の発明は、内燃機関の排気系に設けられて排気中に燃料を添加する添加弁を備える内燃機関の排気浄化装置において、高背圧の加速状態、すなわち背圧の増大にともない排気中の未燃燃料成分の量と排気の流量及び流速とが白煙の発生をまねく程度にまで増大する加速状態について、内燃機関がこの加速状態にあるか否かを機関回転速度の変化量に基づいて判定する判定手段と、この判定手段により内燃機関が前記加速状態にある旨判定されているとき、そうでないときに比して、前記添加弁からの燃料の添加量を低減させる処理を行う低減手段を備えることをその要旨とする。 According to a fifth aspect of the present invention, in an exhaust gas purification apparatus for an internal combustion engine that is provided in an exhaust system of the internal combustion engine and includes an addition valve that adds fuel to the exhaust gas, an acceleration state of high back pressure, that is, an increase in back pressure is achieved. With respect to the acceleration state in which the amount of unburned fuel component in the exhaust gas and the flow rate and flow rate of the exhaust gas increase to such a level that white smoke is generated, whether the internal combustion engine is in this acceleration state or not is changed. A determination means for determining based on the amount, and a process for reducing the amount of fuel added from the addition valve when the determination means determines that the internal combustion engine is in the acceleration state, as compared to when it is not The gist of the present invention is to include a reducing means for performing the above.

請求項6に記載の発明は、内燃機関の排気系に設けられて排気中に燃料を添加する添加弁を備える内燃機関の排気浄化装置において、高背圧の加速状態、すなわち背圧の増大にともない排気中の未燃燃料成分の量と排気の流量及び流速とが白煙の発生をまねく程度にまで増大する加速状態について、内燃機関がこの加速状態にあるか否かを機関回転速度の変化量に基づいて判定する判定手段と、この判定手段により内燃機関が前記加速状態にある旨判定されているとき、前記燃料添加の実施を中止させる処理を行う中止手段を備えることをその要旨とする。
請求項7に記載の発明は、請求項1又は5に記載の内燃機関の排気浄化装置において、前記低減手段は、前記判定手段により内燃機関が前記加速状態にある旨判定されているとき、排気中への燃料供給量を低減させる前記処理を常に実行することをその要旨とする。
請求項8に記載の発明は、請求項2又は6に記載の内燃機関の排気浄化装置において、前記中止手段は、前記判定手段により内燃機関が前記加速状態にある旨判定されているとき、排気中への燃料供給を停止させる前記処理を常に実行することをその要旨とする。
According to a sixth aspect of the present invention, in an exhaust gas purification apparatus for an internal combustion engine that is provided in an exhaust system of the internal combustion engine and includes an addition valve that adds fuel to the exhaust gas, an acceleration state of high back pressure, that is, an increase in back pressure is achieved. With respect to the acceleration state in which the amount of unburned fuel component in the exhaust gas and the flow rate and flow rate of the exhaust gas increase to such a level that white smoke is generated, whether the internal combustion engine is in this acceleration state or not is changed. a determination unit based on the amount, when it is determined that the engine is in the accelerating state by the judging means, and its gist in that it comprises a stop means for processing for stopping the implementation of the fuel addition To do.
According to a seventh aspect of the present invention, in the exhaust gas purification apparatus for an internal combustion engine according to the first or fifth aspect, the reduction means is configured to perform exhaust when the determination means determines that the internal combustion engine is in the acceleration state. The gist of the present invention is to always execute the processing for reducing the amount of fuel supplied to the inside.
According to an eighth aspect of the present invention, in the exhaust gas purification apparatus for an internal combustion engine according to the second or sixth aspect, when the stop means determines that the internal combustion engine is in the acceleration state by the determination means, The gist is to always execute the process of stopping the fuel supply to the inside.

(作用効果)
排気系に配設された触媒を備える内燃機関の排気浄化装置では、触媒に対する未燃燃料成分の供給を通じて触媒床温の高温化を図ったり、その未燃燃料成分を還元剤として触媒に供給することで、触媒により触発される排気成分の浄化反応を促進させたりすることがある。そうした触媒に対する未燃燃料成分の供給は、請求項3や請求項5,6に記載のように、排気系に配設された添加弁によって排気中に燃料を添加したり、請求項4に記載のように、燃焼に供される燃料の噴射を行う燃料噴射弁によって、その燃焼に供される燃料の噴射とは別の燃料の副噴射を実施したりすることで行うことができる。
(Function and effect)
In an exhaust gas purification apparatus for an internal combustion engine having a catalyst disposed in an exhaust system, the catalyst bed temperature is increased through supply of unburned fuel components to the catalyst, or the unburned fuel components are supplied to the catalyst as a reducing agent. As a result, the purification reaction of exhaust components triggered by the catalyst may be promoted. The supply of the unburned fuel component to such a catalyst is performed by adding fuel into the exhaust by an addition valve arranged in the exhaust system, as described in claim 3 and claims 5 and 6. As described above, the fuel injection valve that injects the fuel to be used for combustion can perform the sub injection of the fuel different from the injection of the fuel to be used for the combustion.

一方、無負荷レーシング時等、内燃機関が加速状態にあるときには、燃焼に供される燃料が増量されて、その燃料と空気との混合気の空燃比が通常よりもリッチとされるため、その燃焼に応じて排出される炭化水素等の未燃燃料成分は通常よりも多くなる。すなわち、内燃機関の急加速時には、機関出力の発生に係る燃焼に伴って排気系に排出される未燃燃料成分が多く、上記排気中への燃料添加や副噴射がなされずとも、元より排気中の未燃燃料成分が多い状態となっている。更にそうした加速時には、燃焼室からの排気の排出量が増加して背圧が増大している。そのため、このとき上記燃料添加や副噴射による未燃燃料成分の供給を行えば、排気中の未燃燃料成分が過多となり、しかも背圧の増大により排気の流量・流速が増しているため、多量の未燃燃料成分が十分に酸化されぬまま排出されてしまうようになり、白煙の多量発生を招く虞がある。   On the other hand, when the internal combustion engine is in an acceleration state, such as during no-load racing, the amount of fuel used for combustion is increased, and the air-fuel ratio of the mixture of fuel and air is made richer than usual. Unburned fuel components such as hydrocarbons discharged in response to combustion increase more than usual. That is, at the time of rapid acceleration of the internal combustion engine, many unburned fuel components are discharged to the exhaust system due to combustion related to the generation of engine output, and even if fuel addition or sub-injection is not performed in the exhaust, There are many unburned fuel components inside. Further, during such acceleration, the exhaust pressure from the combustion chamber increases and the back pressure increases. Therefore, if unburned fuel components are supplied by the above fuel addition or sub-injection at this time, the unburned fuel components in the exhaust gas will be excessive, and the exhaust gas flow rate / flow velocity will increase due to the increase in back pressure. This causes the unburned fuel component to be discharged without being sufficiently oxidized, which may cause a large amount of white smoke.

その点、請求項1に記載の構成では、内燃機関が加速状態にあるときには、触媒に対する未燃燃料成分の供給量を増大すべく実施される増大制御における未燃燃料成分の供給量の増大量が通常よりも低減されるようになる。また請求項5に記載の構成では、内燃機関の急加速時には、添加弁による排気中への燃料の添加量が通常よりも低減されるようになる。したがってこれらの構成によれば、内燃機関の急加速時に排気中の未燃燃料成分が過多となることが抑えられ、白煙の発生を好適に抑制することができる。   In this regard, in the configuration according to claim 1, when the internal combustion engine is in an acceleration state, the increase amount of the supply amount of the unburned fuel component in the increase control performed to increase the supply amount of the unburned fuel component to the catalyst. Is reduced more than usual. According to the fifth aspect of the present invention, during the rapid acceleration of the internal combustion engine, the amount of fuel added to the exhaust by the addition valve is reduced more than usual. Therefore, according to these configurations, it is possible to suppress an excessive amount of unburned fuel components in the exhaust during sudden acceleration of the internal combustion engine, and it is possible to suitably suppress the generation of white smoke.

さらに請求項2に記載の構成では、増大制御の実施中に内燃機関が加速状態となると、その増大制御の実施が中止されるようになる。また請求項6に記載の構成では、添加弁による排気中への燃料添加の実施中に内燃機関が加速状態となると、その燃料添加の実施が中止されるようになる。そのため、これらの構成によれば、白煙発生を更に確実に抑制することができる。   Further, in the configuration of the second aspect, when the internal combustion engine is in an acceleration state during the execution of the increase control, the execution of the increase control is stopped. According to the sixth aspect of the present invention, when the internal combustion engine is accelerated while fuel is being added to the exhaust gas by the addition valve, the fuel addition is stopped. Therefore, according to these structures, generation | occurrence | production of white smoke can be suppressed further reliably.

以下、本発明に係る排気燃料添加制御装置を具体化した一実施形態を、図を参照して詳細に説明する。
図1は、本実施形態の適用される内燃機関10の構成を示している。この内燃機関10は、コモンレール方式の燃料噴射装置、及びターボチャージャ11を備えるディーゼル機関となっており、大きくは吸気通路12、燃焼室13、及び排気通路14を備えて構成されている。
Hereinafter, an embodiment of an exhaust fuel addition control device according to the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a configuration of an internal combustion engine 10 to which the present embodiment is applied. The internal combustion engine 10 is a diesel engine including a common rail fuel injection device and a turbocharger 11, and mainly includes an intake passage 12, a combustion chamber 13, and an exhaust passage 14.

内燃機関10の吸気系を構成する吸気通路12には、その最上流部に配設されたエアクリーナ15から下流側に向けて順に、エアフローメータ16、上記ターボチャージャ11のコンプレッサ17、インタークーラ18、及び吸気絞り弁19が配設されている。また吸気通路12は、吸気絞り弁19の下流側に設けられた吸気マニホールド20において分岐され、吸気ポート21を介して内燃機関10の各気筒の燃焼室13に接続されている。   In an intake passage 12 constituting the intake system of the internal combustion engine 10, an air flow meter 16, a compressor 17 of the turbocharger 11, an intercooler 18, And an intake throttle valve 19 is provided. The intake passage 12 is branched at an intake manifold 20 provided on the downstream side of the intake throttle valve 19 and connected to the combustion chamber 13 of each cylinder of the internal combustion engine 10 via an intake port 21.

一方、内燃機関10の排気系を構成する排気通路14では、各気筒の燃焼室13にそれぞれ接続された排気ポート22は、排気マニホールド23を介して上記ターボチャージャ11の排気タービン24に接続されている。また排気通路14の排気タービン24下流には、上流側から順に、NOx触媒コンバータ25、PMフィルタ26、酸化触媒コンバータ27が配設されている。   On the other hand, in the exhaust passage 14 constituting the exhaust system of the internal combustion engine 10, the exhaust port 22 connected to the combustion chamber 13 of each cylinder is connected to the exhaust turbine 24 of the turbocharger 11 via the exhaust manifold 23. Yes. In addition, a NOx catalytic converter 25, a PM filter 26, and an oxidation catalytic converter 27 are disposed downstream from the exhaust turbine 24 in the exhaust passage 14 in order from the upstream side.

NOx触媒コンバータ25には、吸蔵還元型のNOx触媒が担持されている。このNOx触媒は、排気の酸素濃度が高いときに排気中のNOxを吸蔵し、排気の酸素濃度が低いときにその吸蔵したNOxを放出する。またNOx触媒は、上記NOx放出時に、還元剤となる未燃燃料成分がその周囲に十分存在していれば、その放出されたNOxを還元して浄化する。   The NOx catalytic converter 25 carries an NOx storage reduction catalyst. The NOx catalyst stores NOx in the exhaust when the oxygen concentration of the exhaust is high, and releases the stored NOx when the oxygen concentration of the exhaust is low. Further, the NOx catalyst reduces and purifies the released NOx if there is sufficient unburned fuel component as a reducing agent at the time of releasing the NOx.

PMフィルタ26は、多孔質材料によって形成されており、排気中のPMが捕集されるようになっている。このPMフィルタ26にも、上記NOx触媒コンバータ25と同様に、吸蔵還元型のNOx触媒が担持されており、排気中のNOxの浄化が行われる。またそのNOx触媒によって触発される反応により、捕集されたPMが酸化され、除去されるようにもなっている。   The PM filter 26 is formed of a porous material, and PM in exhaust gas is collected. Similarly to the NOx catalytic converter 25, the PM filter 26 also supports an NOx storage reduction catalyst, which purifies NOx in the exhaust gas. Further, the trapped PM is oxidized and removed by a reaction triggered by the NOx catalyst.

酸化触媒コンバータ27には、酸化触媒が担持されており、排気中のHCやCOが酸化されて浄化されるようになっている。
なお排気通路14の上記PMフィルタ26の上流側及び下流側には、PMフィルタ26に流入する排気の温度である入ガス温度を検出する入ガス温度センサ28、及びPMフィルタ26通過後の排気の温度である出ガス温度を検出する出ガス温度センサ29がそれぞれ配設されている。また排気通路14には、上記PMフィルタ26の排気上流側とその排気下流側との差圧を検出する差圧センサ30が配設されている。更に排気通路14の上記NOx触媒コンバータ25の排気上流側、及び上記PMフィルタ26と上記酸化触媒コンバータ27との間には、排気中の酸素濃度を検出する2つの酸素センサ31、32がそれぞれ配設されている。
The oxidation catalyst converter 27 carries an oxidation catalyst, and HC and CO in the exhaust are oxidized and purified.
In addition, on the upstream side and the downstream side of the PM filter 26 in the exhaust passage 14, an inlet gas temperature sensor 28 that detects the inlet gas temperature that is the temperature of the exhaust gas flowing into the PM filter 26, and the exhaust gas after passing through the PM filter 26. An outgas temperature sensor 29 for detecting an outgas temperature, which is a temperature, is provided. The exhaust passage 14 is provided with a differential pressure sensor 30 for detecting a differential pressure between the exhaust upstream side of the PM filter 26 and the exhaust downstream side thereof. Further, two oxygen sensors 31 and 32 for detecting the oxygen concentration in the exhaust gas are arranged on the exhaust gas upstream side of the NOx catalytic converter 25 in the exhaust passage 14 and between the PM filter 26 and the oxidation catalytic converter 27, respectively. It is installed.

更にこの内燃機関10には、排気の一部を吸気通路12内の空気に再循環させる排気再循環(以下、EGRと記載する)装置が設けられている。EGR装置は、排気通路14と吸気通路12とを連通するEGR通路33を備えて構成されている。EGR通路33の最上流部は、排気通路14の上記排気タービン24の排気上流側に接続されている。EGR通路33には、その上流側から、再循環される排気を改質するEGR触媒34、その排気を冷却するEGRクーラ35、その排気の流量を調整するEGR弁36が配設されている。そしてEGR通路33の最下流部は、吸気通路12の上記吸気絞り弁19の下流側に接続されている。   Further, the internal combustion engine 10 is provided with an exhaust gas recirculation (hereinafter referred to as EGR) device that recirculates a part of the exhaust gas to the air in the intake passage 12. The EGR device includes an EGR passage 33 that allows the exhaust passage 14 and the intake passage 12 to communicate with each other. The most upstream portion of the EGR passage 33 is connected to the exhaust upstream side of the exhaust turbine 24 in the exhaust passage 14. The EGR passage 33 is provided with an EGR catalyst 34 for reforming the recirculated exhaust, an EGR cooler 35 for cooling the exhaust, and an EGR valve 36 for adjusting the flow rate of the exhaust from the upstream side. The most downstream portion of the EGR passage 33 is connected to the downstream side of the intake throttle valve 19 in the intake passage 12.

一方、内燃機関10の各気筒の燃焼室13には、同燃焼室13内での燃焼に供される燃料を噴射する燃料噴射弁40がそれぞれ配設されている。各気筒の燃料噴射弁40は、高圧燃料供給管41を介してコモンレール42に接続されている。コモンレール42には、燃料ポンプ43を通じて高圧燃料が供給される。コモンレール42内の高圧燃料の圧力は、同コモンレール42に取り付けられたレール圧センサ44によって検出されるようになっている。   On the other hand, a fuel injection valve 40 that injects fuel to be used for combustion in the combustion chamber 13 is disposed in the combustion chamber 13 of each cylinder of the internal combustion engine 10. The fuel injection valve 40 of each cylinder is connected to a common rail 42 via a high pressure fuel supply pipe 41. High pressure fuel is supplied to the common rail 42 through a fuel pump 43. The pressure of the high-pressure fuel in the common rail 42 is detected by a rail pressure sensor 44 attached to the common rail 42.

更に燃料ポンプ43からは、低圧燃料供給管45を通じて、低圧燃料が添加弁46に供給されるようになっている。添加弁46は、特定の気筒の排気ポート22に配設されており、排気タービン24側に向けて燃料を噴射して、排気中に燃料を添加する。   Further, low pressure fuel is supplied from the fuel pump 43 to the addition valve 46 through the low pressure fuel supply pipe 45. The addition valve 46 is disposed in the exhaust port 22 of a specific cylinder, injects fuel toward the exhaust turbine 24 side, and adds the fuel into the exhaust.

こうした内燃機関10の各種制御を司る電子制御装置50は、内燃機関10の制御に係る各種演算処理を実行するCPU、その制御に必要なプログラムやデータの記憶されたROM、CPUの演算結果等が一時記憶されるRAM、外部との間で信号を入・出力するための入・出力ポート等を備えて構成されている。電子制御装置50の入力ポートには、上述した各センサに加え、機関回転速度を検出するNEセンサ51やアクセル操作量を検出するアクセルセンサ52、吸気絞り弁19の開度を検出する絞り弁センサ53等が接続されている。また電子制御装置50の出力ポートには、上記吸気絞り弁19や燃料噴射弁40、燃料ポンプ43、添加弁46、EGR弁36等の駆動回路が接続されている。   The electronic control unit 50 that controls various controls of the internal combustion engine 10 includes a CPU that executes various calculation processes related to the control of the internal combustion engine 10, a ROM that stores programs and data necessary for the control, a calculation result of the CPU, and the like. A RAM that is temporarily stored, an input / output port for inputting / outputting signals to / from the outside, and the like are provided. In addition to the sensors described above, the input port of the electronic control unit 50 includes an NE sensor 51 that detects the engine speed, an accelerator sensor 52 that detects the accelerator operation amount, and a throttle valve sensor that detects the opening of the intake throttle valve 19. 53 etc. are connected. The output port of the electronic control unit 50 is connected to drive circuits such as the intake throttle valve 19, the fuel injection valve 40, the fuel pump 43, the addition valve 46, and the EGR valve 36.

電子制御装置50は、上記各センサから入力される検出信号より把握される機関運転状態に応じて、上記出力ポートに接続された各機器類の駆動回路に指令信号を出力する。こうして上記燃料噴射弁40による燃料噴射時期や燃料噴射量の制御、上記吸気絞り弁19の開度制御、上記EGR弁36の開度制御に基づくEGR制御等の各種制御が電子制御装置50により実施されている。   The electronic control unit 50 outputs a command signal to the drive circuit of each device connected to the output port according to the engine operating state grasped from the detection signal input from each sensor. Thus, the electronic control unit 50 performs various controls such as control of the fuel injection timing and fuel injection amount by the fuel injection valve 40, opening control of the intake throttle valve 19, and EGR control based on the opening control of the EGR valve 36. Has been.

また電子制御装置50は、そうした制御の一環として、上記添加弁46による排気に対する燃料添加を実施する。この添加弁46による排気への燃料添加は、下記の各制御、すなわちPM再生制御、NOx還元制御、及びS被毒回復制御に際して実施される。   Further, the electronic control unit 50 performs fuel addition to the exhaust gas by the addition valve 46 as part of such control. The addition of fuel to the exhaust gas by the addition valve 46 is performed in the following controls, that is, PM regeneration control, NOx reduction control, and S poisoning recovery control.

PM再生制御は、上記PMフィルタ26に捕集されたPMを燃焼させて二酸化炭素(CO2)と水(H2O)として排出することで、同PMフィルタ26の目詰まりを解消するために行われる。PM再生制御時には、添加弁46から排気への燃料添加を継続的に繰り返すことで、排気中や触媒上で添加された燃料を酸化させて、その酸化反応に伴う発熱で触媒床温を高温化(例えば600〜700℃)することで、上記PMの燃焼を図るようにしている。 In the PM regeneration control, the PM collected by the PM filter 26 is burned and discharged as carbon dioxide (CO 2 ) and water (H 2 O) to eliminate clogging of the PM filter 26. Done. During PM regeneration control, the fuel added to the exhaust from the addition valve 46 is continuously repeated to oxidize the fuel added in the exhaust or on the catalyst, and the catalyst bed temperature is raised by the heat generated by the oxidation reaction. (For example, 600-700 degreeC) WHEREIN: Combustion of the said PM is aimed at.

NOx還元制御は、上記NOx触媒コンバータ25及びPMフィルタ26のNOx触媒に吸蔵されたNOxを、窒素(N2)、二酸化炭素(CO2)及び水(H2O)に還元して放出するために行われる。NOx還元制御時には、上記添加弁46から排気へと一定の時間をおいて間欠的に燃料添加をすることで、NOx触媒周囲の排気を一時的に酸素濃度が低く、未燃燃料成分が多い状態とする、いわゆるリッチスパイクを間欠的に行うようにしている。これにより、NOx触媒からのNOxの放出及びその還元を促進して、上記NOxの還元浄化を図るようにしている。 In the NOx reduction control, NOx occluded in the NOx catalyst of the NOx catalytic converter 25 and the PM filter 26 is reduced to nitrogen (N 2 ), carbon dioxide (CO 2 ), and water (H 2 O) and released. To be done. During NOx reduction control, by intermittently adding fuel from the addition valve 46 to the exhaust after a certain period of time, the exhaust around the NOx catalyst has a temporarily low oxygen concentration and a large amount of unburned fuel components. The so-called rich spike is intermittently performed. As a result, the release and reduction of NOx from the NOx catalyst are promoted to reduce and purify the NOx.

S被毒回復制御は、NOx触媒にNOxとともに吸蔵された硫黄酸化物(SOx)によって低下したNOx吸蔵能力を回復するために行われる。S被毒回復制御が開始されると、まず上記PM再生制御と同様に、添加弁46から排気へと継続的に燃料を添加することで、触媒床温を高温化(例えば600〜700℃)する昇温制御が行われる。その後、NOx還元制御時と同様に、上記添加弁46からの間欠的な燃料添加を行い、間欠的にリッチスパイクを行うことで、NOx触媒からのSOxの放出及びその還元を促進して、上記NOx吸蔵能力の回復を図るようにしている。なお本実施形態では、PMフィルタ26に捕集されたPMがほぼ完全に浄化されるまで上記昇温制御を継続することで、SOxの還元と同時にPMの燃焼がなされることによる触媒床温の過昇温の発生を防止するようにしている。   The S poison recovery control is performed in order to recover the NOx occlusion ability reduced by the sulfur oxide (SOx) occluded together with NOx in the NOx catalyst. When the S poison recovery control is started, first, similarly to the PM regeneration control, the catalyst bed temperature is raised (for example, 600 to 700 ° C.) by continuously adding fuel from the addition valve 46 to the exhaust. The temperature rise control is performed. Thereafter, as in NOx reduction control, intermittent fuel addition from the addition valve 46 is performed, and intermittent rich spikes are performed to promote the release and reduction of SOx from the NOx catalyst, and The NOx occlusion capacity is restored. In this embodiment, the temperature rise control is continued until the PM collected by the PM filter 26 is almost completely purified, so that the catalyst bed temperature is reduced by the combustion of PM simultaneously with the reduction of SOx. The occurrence of excessive temperature rise is prevented.

ちなみに、この内燃機関10では、上記PM再生制御中や、上記S被毒回復制御における触媒床温の高温化中に、上記燃料噴射弁40による昇温マルチ噴射を行うようにしている。この昇温マルチ噴射では、パイロット噴射及びメイン噴射がなされた後の圧縮行程中や排気行程中に更なる燃料の噴射、すなわちアフター噴射を実施するようにしている。このアフター噴射は、パイロット噴射やメイン噴射のような燃焼室13での燃焼に供される燃料の噴射とは別の燃料の副噴射となっている。そうしたアフター噴射において噴射された燃料の多くは、燃焼室13内で燃焼されることなく排気系に排出される。そのため、こうした昇温マルチ噴射の実施によっても、排気中の未燃燃料成分を増量して触媒床温の高温化が促進されることとなる。   Incidentally, in the internal combustion engine 10, the temperature increase multi-injection by the fuel injection valve 40 is performed during the PM regeneration control or during the temperature increase of the catalyst bed temperature in the S poison recovery control. In this temperature rising multi-injection, further fuel injection, that is, after-injection is performed during the compression stroke and exhaust stroke after the pilot injection and the main injection are performed. This after-injection is a sub-injection of fuel different from the injection of fuel used for combustion in the combustion chamber 13 such as pilot injection or main injection. Most of the fuel injected in such after-injection is discharged into the exhaust system without being burned in the combustion chamber 13. For this reason, even when such temperature-increasing multi-injection is performed, the amount of unburned fuel components in the exhaust gas is increased, and the temperature of the catalyst bed is increased.

以上のように本実施形態では、排気系に設けられた添加弁46から排気への燃料添加や、燃料噴射弁40からのアフター噴射を通じて、排気系の触媒に対する未燃燃料成分の供給量を、機関出力の発生に係る燃焼に伴って排気系に排出される量を超えて増大させる増大制御がなされている。そしてそうした増大制御を通じて、内燃機関10の排気浄化性能の維持を図るようにしている。   As described above, in the present embodiment, the amount of unburned fuel component supplied to the exhaust system catalyst through the addition of fuel to the exhaust gas from the addition valve 46 provided in the exhaust system and the after injection from the fuel injection valve 40 is as follows. Increasing control is performed to increase the amount that is discharged to the exhaust system in association with combustion related to the generation of engine output. Through such increase control, the exhaust gas purification performance of the internal combustion engine 10 is maintained.

ところが、無負荷レーシング時等の内燃機関10の急加速時にそうした増大制御が実施されると、排気に多量の白煙が発生することがある。その理由を以下に説明する。
すなわち、内燃機関10の急加速時には、燃焼室13での燃焼に共されるべく上記燃料噴射弁40から噴射される燃料の噴射量が増大され、燃焼室13で燃焼される混合気の空燃比が通常よりもリッチとなる。そのため、機関急加速時には、添加弁46から排気への燃料添加や燃料噴射弁40からのアフター噴射を行わずとも、排気の未燃成分量は通常よりも多い状態となっている。このとき、排気中に上記添加弁46からの燃料添加や上記アフター噴射によって更なる未燃燃料成分の供給がなされれば、排気中の未燃燃料成分量が過多となり、触媒の処理能力を上回ってしまう。更にそうした急加速時には、燃焼室13からの排気の排出量が増加され、排気の流量や流速が増すため、そうした傾向が更に助長されることとなる。そのため、多量の未燃燃料成分が十分に酸化されぬまま排出されてしまうようになり、上記白煙の多量発生を招いてしまうこととなる。
However, when such increase control is performed during sudden acceleration of the internal combustion engine 10 such as during no-load racing, a large amount of white smoke may be generated in the exhaust. The reason will be described below.
That is, at the time of rapid acceleration of the internal combustion engine 10, the amount of fuel injected from the fuel injection valve 40 is increased so as to be shared with the combustion in the combustion chamber 13, and the air-fuel ratio of the air-fuel mixture combusted in the combustion chamber 13 Becomes richer than usual. Therefore, at the time of rapid engine acceleration, the amount of unburned components in the exhaust gas is larger than usual without adding fuel from the addition valve 46 to the exhaust gas or performing after injection from the fuel injection valve 40. At this time, if additional unburned fuel components are supplied to the exhaust gas by adding fuel from the addition valve 46 or after-injection, the amount of unburned fuel components in the exhaust gas will be excessive, exceeding the processing capacity of the catalyst. End up. Further, during such rapid acceleration, the amount of exhaust discharged from the combustion chamber 13 is increased, and the flow rate and flow velocity of the exhaust are increased. This tendency is further promoted. For this reason, a large amount of unburned fuel components are discharged without being sufficiently oxidized, and a large amount of white smoke is generated.

そこで本実施形態では、以下のような添加中止制御を実施することで、そうした白煙の発生を抑制するようにしている。具体的には、添加弁46による排気への燃料添加の実施中に機関回転速度NEの推移を監視し、その結果、内燃機関10が加速状態にあることが確認されたときには、上記排気への燃料添加を一時的に中止させるようにしている。   Therefore, in the present embodiment, such generation of white smoke is suppressed by performing the following addition stop control. Specifically, the transition of the engine rotational speed NE is monitored during the fuel addition to the exhaust gas by the addition valve 46. As a result, when it is confirmed that the internal combustion engine 10 is in the accelerated state, The fuel addition is temporarily stopped.

図2は、そうした燃料添加の一時中止を行うか否かを決定する中止判定処理のルーチンを示している。本ルーチンの処理は、上記PM再生制御、NOx還元制御、及びS被毒回復制御の実施中に、所定時間(例えば65ミリ秒)毎の定時割込み処理として、電子制御装置50によって周期的に実行される。   FIG. 2 shows a routine for a stop determination process for determining whether or not to stop such fuel addition temporarily. The processing of this routine is periodically executed by the electronic control unit 50 as a scheduled interruption process every predetermined time (for example, 65 milliseconds) during the execution of the PM regeneration control, NOx reduction control, and S poison recovery control. Is done.

さて本ルーチンの処理が開始されると、電子制御装置50はまずステップS100において、機関回転速度の上昇率ΔNEを算出する。ここでは上昇率ΔNEを、前回の本ルーチンの処理が実行されたときの機関回転速度NEOLと現状の機関回転速度NEとの差から求めている(ΔNE←NE−NEOL)。   When the processing of this routine is started, the electronic control unit 50 first calculates an increase rate ΔNE of the engine speed in step S100. Here, the increase rate ΔNE is obtained from the difference between the engine speed NEOL when the process of the previous routine was executed and the current engine speed NE (ΔNE ← NE−NEOL).

次に電子制御装置50は、ステップS110において、上記算出された機関回転速度の上昇率ΔNEに基づき、内燃機関10が加速状態にあるか否かの判定を行う。具体的には、このとき電子制御装置50は、上記上昇率ΔNEが所定の判定値α(例えば50rpm)以上であれば、内燃機関10が加速状態にあると判定し、そうでなければ加速状態に無いと判定する。そして電子制御装置50は、その上昇率ΔNEが判定値α以上であり、内燃機関10が加速状態であれば(YES)、処理をステップS120に進めて添加中止フラグをオンとして、本ルーチンの処理を一旦終了する。また電子制御装置50は、上昇率ΔNEが判定値α未満であり、内燃機関10が加速状態に無ければ(S110:NO)、処理をステップS130に進めて添加中止フラグをオフとして、本ルーチンの処理を一旦終了する。   Next, in step S110, the electronic control unit 50 determines whether or not the internal combustion engine 10 is in an acceleration state based on the calculated engine rotation speed increase rate ΔNE. Specifically, at this time, the electronic control unit 50 determines that the internal combustion engine 10 is in an acceleration state if the increase rate ΔNE is equal to or greater than a predetermined determination value α (for example, 50 rpm), and otherwise, the acceleration state. It is determined that there is not. If the increase rate ΔNE is equal to or greater than the determination value α and the internal combustion engine 10 is in an accelerated state (YES), the electronic control unit 50 advances the process to step S120, turns on the addition stop flag, and performs the process of this routine. Is temporarily terminated. If the increase rate ΔNE is less than the determination value α and the internal combustion engine 10 is not in the acceleration state (S110: NO), the electronic control unit 50 proceeds to step S130 to turn off the addition stop flag and The process is temporarily terminated.

その後、電子制御装置50は、上記添加弁46からの燃料添加の実施に係る制御において、添加中止フラグがオフとされていることを条件に、添加弁46に対して燃料添加実施の指令信号を出力する。すなわち、添加中止フラグがオンとされている間は、添加弁46による排気への燃料添加の実施が要求されていても、燃料添加は実施されないこととなる。   Thereafter, the electronic control unit 50 sends a fuel addition command signal to the addition valve 46 on condition that the addition stop flag is turned off in the control related to the fuel addition from the addition valve 46. Output. That is, while the addition stop flag is on, fuel addition is not performed even if fuel addition to the exhaust by the addition valve 46 is requested.

図3に、PM再生制御中の上記添加中止制御の一態様を示す。通常、PM再生制御中には、所定のクランク角β毎に上記添加弁46による排気への燃料添加が周期的に実施されている。   FIG. 3 shows one mode of the addition stop control during PM regeneration control. Normally, during PM regeneration control, fuel addition to the exhaust by the addition valve 46 is periodically performed at every predetermined crank angle β.

同図の時刻t1以前は、内燃機関10は加速状態にはなく、機関回転速度の上昇率ΔNEが上記判定値αを超えていないことから、添加中止フラグはオフとされている。よって電子制御装置50は、添加弁46に対して燃料添加実施の指令信号を上記クランク角β毎に出力し、添加弁46からの燃料添加を周期的に実施させる。   Prior to time t1 in the figure, the internal combustion engine 10 is not in an accelerated state, and the increase rate ΔNE of the engine rotational speed does not exceed the determination value α, so the addition stop flag is turned off. Therefore, the electronic control unit 50 outputs a fuel addition command signal to the addition valve 46 at each crank angle β, and periodically adds fuel from the addition valve 46.

一方、同図の時刻t1に、機関回転速度の上昇率ΔNEが上記判定値α以上となると、添加中止フラグがオンとされる。すなわち、この時刻t1から内燃機関10は急加速され、上述したように、添加弁46からの燃料添加に伴って白煙が発生し易い状態となる。   On the other hand, when the increase rate ΔNE of the engine rotation speed becomes equal to or higher than the determination value α at time t1 in the figure, the addition stop flag is turned on. That is, the internal combustion engine 10 is rapidly accelerated from this time t1, and as described above, white smoke is likely to be generated with the addition of fuel from the addition valve 46.

そしてその後の時刻t2には、前回の燃料添加から上記クランク角βが経過して、本来は燃料添加を実施すべきタイミングとなっている。ただし同図の例では、この時刻t2においても、機関回転速度の上昇率ΔNEが上記判定値α以上の状態が継続されており、上記添加中止フラグはオンとされたままとなっている。そのため、この時刻t2には、燃料添加実施の指令信号は出力されず、このときの添加弁46からの燃料添加の実施は中止される。したがって、上述したような急加速中に排気への燃料添加が実施されることに起因する白煙の発生が回避されるようになる。   At the subsequent time t2, the crank angle β elapses from the previous fuel addition, and it is the timing at which fuel addition should be performed. However, in the example shown in the figure, even at this time t2, the state in which the increase rate ΔNE of the engine speed is equal to or higher than the determination value α is continued, and the addition stop flag remains on. Therefore, at this time t2, the command signal for performing fuel addition is not output, and the fuel addition from the addition valve 46 at this time is stopped. Therefore, the generation of white smoke due to the addition of fuel to the exhaust during the rapid acceleration as described above is avoided.

その後、時刻t3において、内燃機関10の加速が終わり、機関回転速度の上昇率ΔNEが上記判定値αを下回ると、上記添加中止フラグはオフとされ、その後は、上記周期的な燃料添加の実施が再開される。   Thereafter, when the acceleration of the internal combustion engine 10 ends at time t3 and the increase rate ΔNE of the engine speed falls below the determination value α, the addition stop flag is turned off, and thereafter the periodic fuel addition is performed. Is resumed.

ちなみに本実施形態では、上記のような急加速中の燃料添加の一時中止に係る制御を実施する電子制御装置50が上記中止手段に相当する処理を実施している。なお、そうした燃料添加の中止は、排気に対する燃料の添加量を「0」まで低減することと同義である。よって本実施形態では、電子制御装置50が上記低減手段に相当するの処理を実施してもいる。   Incidentally, in the present embodiment, the electronic control unit 50 that performs the control related to the temporary stop of the fuel addition during the rapid acceleration as described above performs the process corresponding to the stop unit. Note that such stopping of fuel addition is synonymous with reducing the amount of fuel added to exhaust to “0”. Therefore, in the present embodiment, the electronic control device 50 also performs a process corresponding to the reduction means.

このように本実施形態の排気燃料添加制御装置では、機関急加速中は排気への燃料添加の実施が中止されるため、排気中の未燃燃料成分の過剰増大を回避して、白煙の発生を好適に抑制することができる。なお、そうした機関急加速中の燃料添加の一時中止は、以上のようなPM再生制御中の燃料添加に限らず、上記NOx還元制御やS被毒回復制御中の燃料添加においても同様に行われる。   As described above, in the exhaust fuel addition control device of the present embodiment, since the fuel addition to the exhaust is stopped during the engine rapid acceleration, the excessive increase of the unburned fuel component in the exhaust is avoided, and the white smoke Generation | occurrence | production can be suppressed suitably. It should be noted that such temporary suspension of fuel addition during engine rapid acceleration is not limited to fuel addition during PM regeneration control as described above, but is similarly performed in fuel addition during NOx reduction control and S poison recovery control. .

上記実施形態は、以下のように変更して実施することもできる。
・上記添加中止判定処理では、内燃機関10が加速状態にあることを、機関回転速度NEの検出値の推移に基づいて判定していた。これと同様の判定を、アクセル操作量や燃料噴射量等の他の制御パラメータに基づいて行うようにしても良い。例えばアクセル操作量や燃料噴射量が急激に増大されたことをもって、内燃機関10が加速状態にあると判定し、上記添加弁46からの燃料添加を中止させても、上記実施形態と同様に白煙の発生を抑制することができる。
The embodiment described above can be implemented with the following modifications.
In the addition stop determination process, it is determined that the internal combustion engine 10 is in an accelerated state based on the transition of the detected value of the engine rotational speed NE. A similar determination may be made based on other control parameters such as the accelerator operation amount and the fuel injection amount. For example, even if it is determined that the internal combustion engine 10 is in an accelerated state when the accelerator operation amount or the fuel injection amount is suddenly increased and fuel addition from the addition valve 46 is stopped, the white state is the same as in the above embodiment. Smoke generation can be suppressed.

・内燃機関10が加速状態にあるときに、上記添加弁46から排気への燃料添加量を減量させることでも、白煙の発生を抑制することはできる。すなわち、排気に対する燃料添加を「0」まで低減しなくても、機関加速時の排気中の未燃燃料成分量が白煙の発生限界以下となるまで上記添加弁46からの燃料添加量を減量すれば、白煙発生の回避は可能である。   -When the internal combustion engine 10 is in an acceleration state, the generation of white smoke can also be suppressed by reducing the amount of fuel added from the addition valve 46 to the exhaust. That is, even if the fuel addition to the exhaust gas is not reduced to “0”, the fuel addition amount from the addition valve 46 is reduced until the amount of unburned fuel component in the exhaust during engine acceleration becomes equal to or less than the white smoke generation limit. If so, it is possible to avoid the generation of white smoke.

・上記添加弁46からの燃料添加を中止、減量する代りに、上記昇温マルチ噴射でのアフター噴射を中止したり、そのアフター噴射の燃料噴射量を減量するようにしても良い。こうした場合にも、機関加速に伴う排気中の未燃燃料成分の過剰増大を抑制することは可能であり、白煙の発生を同様に抑制することができる。   Instead of stopping and reducing the fuel addition from the addition valve 46, after injection in the temperature rising multi-injection may be stopped, or the fuel injection amount of the after injection may be reduced. Even in such a case, it is possible to suppress an excessive increase of the unburned fuel component in the exhaust accompanying the acceleration of the engine, and the generation of white smoke can be similarly suppressed.

・また排気に対する添加弁46からの燃料添加、及び上記昇温マルチ噴射でのアフター噴射の双方を中止したり、それらにおける燃料添加量及びアフター噴射の噴射量を共に減量したりすることでも、白煙の発生の抑制は可能である。要は、上記添加弁46からの燃料添加や上記アフター噴射などを通じて、機関出力の発生に係る燃焼に応じて内燃機関10の排気系に排出される量を超えて触媒に対する未燃燃料成分の供給量を増大させる制御の実施する内燃機関の排気浄化装置であれば、本発明を適用することができる。そしてそうした制御の実施中に、内燃機関10が加速状態となったときに、それらによる上記供給量の増大量を低減、乃至はその供給量の増大を中止すれば、白煙発生を抑制することができる。   It is also possible to stop both the fuel addition from the addition valve 46 to the exhaust and the after-injection in the above-mentioned temperature rising multi-injection, or to reduce both the fuel addition amount and the after-injection amount in them. Smoke generation can be suppressed. In short, the supply of unburned fuel components to the catalyst exceeds the amount discharged to the exhaust system of the internal combustion engine 10 in accordance with the combustion related to the generation of engine output through the addition of fuel from the addition valve 46 or the after-injection. The present invention can be applied to any exhaust gas purification apparatus for an internal combustion engine that performs control to increase the amount. And when the internal combustion engine 10 is in an accelerated state during the execution of such control, if the increase in the supply amount due to them is reduced or the increase in the supply amount is stopped, the generation of white smoke is suppressed. Can do.

本発明の一実施形態の適用される内燃機関及びその排気浄化装置の構成を示す模式図。1 is a schematic diagram showing a configuration of an internal combustion engine to which an embodiment of the present invention is applied and an exhaust purification device thereof. 同実施形態に適用される中止判定処理のフローチャート。The flowchart of the cancellation determination process applied to the embodiment. 同実施形態におけるPM再生制御中の排気への燃料添加に係る制御の一例を示すタイムチャート。The time chart which shows an example of the control which concerns on the fuel addition to exhaust_gas | exhaustion in PM regeneration control in the embodiment.

符号の説明Explanation of symbols

10…内燃機関、11…ターボチャージャ、12…吸気通路、13…燃焼室、14…排気通路、15…エアクリーナ、16…エアフローメータ、17…コンプレッサ、18…インタークーラ、19…吸気絞り弁、20…吸気マニホールド、21…吸気ポート、22…排気ポート、23…排気マニホールド、24…排気タービン、25…NOx触媒コンバータ、26…PMフィルタ、27…酸化触媒コンバータ、28…入ガス温度センサ、29…出ガス温度センサ、30…差圧センサ、31,32…酸素センサ、33…EGR通路、34…EGR触媒、35…EGRクーラ、36…EGR弁、40…燃料噴射弁、41…高圧燃料供給管、42…コモンレール、43…燃料ポンプ、44…レール圧センサ、45…低圧燃料供給管、46…添加弁、50…電子制御装置、51…NEセンサ、52…アクセルセンサ、53…絞り弁センサ。   DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine, 11 ... Turbocharger, 12 ... Intake passage, 13 ... Combustion chamber, 14 ... Exhaust passage, 15 ... Air cleaner, 16 ... Air flow meter, 17 ... Compressor, 18 ... Intercooler, 19 ... Intake throttle valve, 20 DESCRIPTION OF SYMBOLS ... Intake manifold, 21 ... Intake port, 22 ... Exhaust port, 23 ... Exhaust manifold, 24 ... Exhaust turbine, 25 ... NOx catalytic converter, 26 ... PM filter, 27 ... Oxidation catalytic converter, 28 ... Incoming gas temperature sensor, 29 ... Outgas temperature sensor, 30 ... Differential pressure sensor, 31, 32 ... Oxygen sensor, 33 ... EGR passage, 34 ... EGR catalyst, 35 ... EGR cooler, 36 ... EGR valve, 40 ... Fuel injection valve, 41 ... High pressure fuel supply pipe 42 ... Common rail, 43 ... Fuel pump, 44 ... Rail pressure sensor, 45 ... Low pressure fuel supply pipe, 46 ... Addition valve, 0 ... electronic control unit, 51 ... NE sensor 52: accelerator sensor, 53 ... throttle valve sensor.

Claims (8)

機関出力の発生に係る燃焼に応じて内燃機関の排気系に排出される量を超えて、前記排気系に配設された触媒に対する未燃燃料成分の供給量を増大させる増大制御を実施する内燃機関の排気浄化装置において、
高背圧の加速状態、すなわち背圧の増大にともない排気中の未燃燃料成分の量と排気の流量及び流速とが白煙の発生をまねく程度にまで増大する加速状態について、内燃機関がこの加速状態にあるか否かを機関回転速度の変化量に基づいて判定する判定手段と、
この判定手段により内燃機関が前記加速状態にある旨判定されているとき、そうでないときに比して、前記増大制御における前記未燃燃料成分の供給量の増大量を低減させる処理を行う低減手段を備える
ことを特徴とする内燃機関の排気浄化装置。
An internal combustion engine that performs an increase control that increases the amount of unburned fuel component supplied to the catalyst disposed in the exhaust system in excess of the amount discharged to the exhaust system of the internal combustion engine in response to combustion related to the generation of engine output In an engine exhaust gas purification device,
The internal combustion engine is in a high back pressure acceleration state, that is, an acceleration state in which the amount of unburned fuel component in the exhaust gas and the flow rate and flow rate of the exhaust gas increase to such an extent that white smoke is generated as the back pressure increases. Determination means for determining whether or not the engine is in an acceleration state based on the amount of change in the engine rotational speed;
When it is determined that the engine is in the accelerating state by the judging means, compared and otherwise, reducing means for performing a process for reducing the amount of increase in supply amount of the unburned fuel component in the increase control exhaust purification system of an internal combustion engine, characterized in that it comprises and.
機関出力の発生に係る燃焼に応じて内燃機関の排気系に排出される量を超えて、前記排気系に配設された触媒に対する未燃燃料成分の供給量を増大させる増大制御を実施する内燃機関の排気浄化装置において、
高背圧の加速状態、すなわち背圧の増大にともない排気中の未燃燃料成分の量と排気の流量及び流速とが白煙の発生をまねく程度にまで増大する加速状態について、内燃機関がこの加速状態にあるか否かを機関回転速度の変化量に基づいて判定する判定手段と、
この判定手段により内燃機関が前記加速状態にある旨判定されているとき、前記増大制御を中止させる処理を行う中止手段を備える
ことを特徴とする内燃機関の排気浄化装置。
An internal combustion engine that performs an increase control that increases the supply amount of the unburned fuel component to the catalyst disposed in the exhaust system in excess of the amount discharged to the exhaust system of the internal combustion engine in accordance with the combustion related to the generation of the engine output In an engine exhaust gas purification device,
The internal combustion engine is in a high back pressure acceleration state, that is, an acceleration state in which the amount of unburned fuel component in the exhaust gas and the flow rate and flow rate of the exhaust gas increase to such an extent that white smoke is generated as the back pressure increases. Determination means for determining whether or not the engine is in an acceleration state based on the amount of change in the engine rotational speed;
When it is determined that the engine is in the accelerating state by the judging means, the exhaust gas purifying apparatus for an internal combustion engine, characterized in that it comprises a stop means for processing for stopping the increase control.
請求項1又は2に記載の内燃機関の排気浄化装置において、
前記増大制御は、排気系に配設された添加弁によって排気中に燃料を添加することで行われる
ことを特徴とする内燃機関の排気浄化装置。
The exhaust gas purification apparatus for an internal combustion engine according to claim 1 or 2,
The increase control is performed by adding fuel into the exhaust by an addition valve disposed in the exhaust system.
An exhaust emission control device for an internal combustion engine.
請求項1又は2に記載の内燃機関の排気浄化装置において、
前記増大制御は、前記燃焼に供される燃料を噴射する燃料噴射弁によって、該燃焼に供される燃料の噴射とは別の燃料の副噴射を実施することで行われる
ことを特徴とする内燃機関の排気浄化装置。
The exhaust gas purification apparatus for an internal combustion engine according to claim 1 or 2,
The increase control is performed by performing a sub-injection of fuel different from the injection of the fuel provided for the combustion by the fuel injection valve for injecting the fuel provided for the combustion.
An exhaust emission control device for an internal combustion engine.
内燃機関の排気系に設けられて排気中に燃料を添加する添加弁を備える内燃機関の排気浄化装置において、
高背圧の加速状態、すなわち背圧の増大にともない排気中の未燃燃料成分の量と排気の流量及び流速とが白煙の発生をまねく程度にまで増大する加速状態について、内燃機関がこの加速状態にあるか否かを機関回転速度の変化量に基づいて判定する判定手段と、
この判定手段により内燃機関が前記加速状態にある旨判定されているとき、そうでないときに比して、前記添加弁からの燃料の添加量を低減させる処理を行う低減手段を備える
ことを特徴とする内燃機関の排気浄化装置。
In an exhaust gas purification apparatus for an internal combustion engine, which is provided in an exhaust system of the internal combustion engine and includes an addition valve for adding fuel to the exhaust gas,
The internal combustion engine is in a high back pressure acceleration state, that is, an acceleration state in which the amount of unburned fuel component in the exhaust gas and the flow rate and flow rate of the exhaust gas increase to such an extent that white smoke is generated as the back pressure increases. Determination means for determining whether or not the engine is in an acceleration state based on the amount of change in the engine rotational speed;
When it is determined that the engine is in the accelerating state by the judging means, characterized in that it comprises in comparison with otherwise, and reduction means for performing processing to reduce the amount of fuel from the addition valve An exhaust purification device for an internal combustion engine.
内燃機関の排気系に設けられて排気中に燃料を添加する添加弁を備える内燃機関の排気浄化装置において、
高背圧の加速状態、すなわち背圧の増大にともない排気中の未燃燃料成分の量と排気の流量及び流速とが白煙の発生をまねく程度にまで増大する加速状態について、内燃機関がこの加速状態にあるか否かを機関回転速度の変化量に基づいて判定する判定手段と、
この判定手段により内燃機関が前記加速状態にある旨判定されているとき、前記燃料添加の実施を中止させる処理を行う中止手段を備える
ことを特徴とする内燃機関の排気浄化装置。
In an exhaust gas purification apparatus for an internal combustion engine, which is provided in an exhaust system of the internal combustion engine and includes an addition valve for adding fuel to the exhaust gas,
The internal combustion engine is in a high back pressure acceleration state, that is, an acceleration state in which the amount of unburned fuel component in the exhaust gas and the flow rate and flow rate of the exhaust gas increase to such an extent that white smoke is generated as the back pressure increases. Determination means for determining whether or not the engine is in an acceleration state based on the amount of change in the engine rotational speed;
When it is determined that the engine is in the accelerating state by the judging means, the exhaust gas purifying apparatus for an internal combustion engine, characterized in that it comprises a stop means for processing for stopping the implementation of the fuel additive.
請求項1又は5に記載の内燃機関の排気浄化装置において、  The exhaust emission control device for an internal combustion engine according to claim 1 or 5,
前記低減手段は、前記判定手段により内燃機関が前記加速状態にある旨判定されているとき、排気中への燃料供給量を低減させる前記処理を常に実行する  The reduction means always executes the process for reducing the amount of fuel supplied into the exhaust when the determination means determines that the internal combustion engine is in the acceleration state.
ことを特徴とする内燃機関の排気浄化装置。  An exhaust emission control device for an internal combustion engine.
請求項2又は6に記載の内燃機関の排気浄化装置において、  The exhaust gas purification apparatus for an internal combustion engine according to claim 2 or 6,
前記中止手段は、前記判定手段により内燃機関が前記加速状態にある旨判定されているとき、排気中への燃料供給を停止させる前記処理を常に実行する  The stop means always executes the process for stopping the fuel supply into the exhaust when the determination means determines that the internal combustion engine is in the acceleration state.
ことを特徴とする内燃機関の排気浄化装置。  An exhaust emission control device for an internal combustion engine.
JP2003320027A 2003-09-11 2003-09-11 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4069043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003320027A JP4069043B2 (en) 2003-09-11 2003-09-11 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003320027A JP4069043B2 (en) 2003-09-11 2003-09-11 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005083351A JP2005083351A (en) 2005-03-31
JP4069043B2 true JP4069043B2 (en) 2008-03-26

Family

ID=34418799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003320027A Expired - Fee Related JP4069043B2 (en) 2003-09-11 2003-09-11 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4069043B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4760661B2 (en) * 2006-10-19 2011-08-31 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2009174502A (en) * 2008-01-28 2009-08-06 Toyota Motor Corp Exhaust emission control system for internal combustion engine
WO2009130800A1 (en) 2008-04-25 2009-10-29 トヨタ自動車株式会社 Exhaust purification system for internal combustion engine
JP5060540B2 (en) * 2009-11-17 2012-10-31 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP5961995B2 (en) 2011-12-12 2016-08-03 いすゞ自動車株式会社 Internal combustion engine and control method thereof

Also Published As

Publication number Publication date
JP2005083351A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
JP4548309B2 (en) Exhaust gas purification device for internal combustion engine
US7607290B2 (en) Exhaust purifying apparatus for internal combustion engine
US7340884B2 (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
US20050050881A1 (en) Exhaust gas purification system for internal combustion engine
JP2004176663A (en) Exhaust emission control device for internal combustion engine
EP1515015B1 (en) Exhaust purifying apparatus of internal combustion engine
KR100785751B1 (en) Exhaust purifying apparatus for internal combustion engine
US20060168939A1 (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
JP4075746B2 (en) Exhaust gas purification device for internal combustion engine
JP4613787B2 (en) Exhaust gas purification device for internal combustion engine
JP5761255B2 (en) Exhaust gas purification device for internal combustion engine
JP4069044B2 (en) Exhaust gas purification device for internal combustion engine
JP4069043B2 (en) Exhaust gas purification device for internal combustion engine
JP2005155500A (en) Exhaust gas control apparatus for internal combustion engine
JP2016151183A (en) Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method
JP4357241B2 (en) Exhaust purification equipment
JP2009103044A (en) Control device of internal combustion engine
JP2009002192A (en) Exhaust emission control device for internal combustion engine
JP6447214B2 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP2019132165A (en) Exhaust emission control device for engine
JP2007032396A (en) Exhaust emission control device for internal combustion engine
JP2004036552A (en) Exhaust emission control device for internal combustion engine
JP2006291826A (en) Controller of internal combustion engine
JP2010185423A (en) Exhaust emission purifying apparatus for internal-combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4069043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees