JP2009174502A - Exhaust emission control system for internal combustion engine - Google Patents

Exhaust emission control system for internal combustion engine Download PDF

Info

Publication number
JP2009174502A
JP2009174502A JP2008016555A JP2008016555A JP2009174502A JP 2009174502 A JP2009174502 A JP 2009174502A JP 2008016555 A JP2008016555 A JP 2008016555A JP 2008016555 A JP2008016555 A JP 2008016555A JP 2009174502 A JP2009174502 A JP 2009174502A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust
internal combustion
reducing agent
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008016555A
Other languages
Japanese (ja)
Inventor
Kenichi Tsujimoto
健一 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008016555A priority Critical patent/JP2009174502A/en
Publication of JP2009174502A publication Critical patent/JP2009174502A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a response delay when an increase in an engine load of an internal combustion engine is requested, in an exhaust emission control device for an internal combustion engine the temperature of which is increased by supplying a reducing agent to a front stage catalyst which is provided on an exhaust passage on the upstream side from the exhaust emission control device, has a smaller heat capacity than that of the exhaust emission control device, is formed to make exhaust gas flow between the outer peripheral face of the catalyst and the inner peripheral face of the exhaust passage, and also has an oxidation function. <P>SOLUTION: When the increase in the engine load of the internal combustion engine is requested (S102) while the reducing agent is being supplied to the front stage catalyst to increase the temperature of the exhaust emission control device, the amount of the reducing agent to be supplied to the front stage catalyst is reduced, or supply of the reducing agent to the front stage catalyst is stopped (S103). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関の排気通路における排気浄化装置よりも上流側に設けられ、排気浄化装置よりも熱容量が小さく且つその外周面と排気通路の内周面との間を排気が流れるように形成された、酸化機能を有する前段触媒を備えた内燃機関の排気浄化システムに関する。   The present invention is provided upstream of the exhaust purification device in the exhaust passage of the internal combustion engine, has a smaller heat capacity than the exhaust purification device, and is formed so that the exhaust flows between the outer peripheral surface thereof and the inner peripheral surface of the exhaust passage. The present invention relates to an exhaust gas purification system for an internal combustion engine having a pre-stage catalyst having an oxidation function.

内燃機関の排気通路において、酸化触媒、吸蔵還元型NOx触媒および/またはパティキュレートフィルタ等から構成される排気浄化装置を設けると共に、その上流側にさらに酸化機能を有する前段触媒を設ける場合がある。この場合、前段触媒に還元剤を供給することにより、前段触媒において還元剤を酸化させ、その酸化熱によって排気浄化装置を昇温させることが出来る。   In an exhaust passage of an internal combustion engine, an exhaust purification device including an oxidation catalyst, an NOx storage reduction catalyst, and / or a particulate filter may be provided, and a pre-stage catalyst having an oxidation function may be further provided upstream thereof. In this case, by supplying the reducing agent to the upstream catalyst, the reducing agent is oxidized in the upstream catalyst, and the temperature of the exhaust emission control device can be raised by the oxidation heat.

上記の場合において、前段触媒を、排気浄化装置よりも熱容量が小さく且つその外周面と排気通路の内周面との間を排気が流れるように形成されたものとする技術が知られている。   In the above case, a technique is known in which the pre-stage catalyst is formed so that the heat capacity is smaller than that of the exhaust purification device and the exhaust gas flows between the outer peripheral surface thereof and the inner peripheral surface of the exhaust passage.

前段触媒の熱容量が比較的小さい場合、該前段触媒に還元剤を供給した際に該前段触媒の温度がより速やかに上昇する。その結果、排気浄化装置をより速やかに昇温させることが可能となる。   When the heat capacity of the pre-stage catalyst is relatively small, the temperature of the pre-stage catalyst rises more rapidly when the reducing agent is supplied to the pre-stage catalyst. As a result, it becomes possible to raise the temperature of the exhaust purification device more quickly.

また、前段触媒が、その外周面と排気通路の内周面との間を排気が流れるように形成されている場合、前段触媒の排気の流れる方向と垂直方向の断面積が比較的小さい。そのため、前段触媒内を排気が通過するときの排気の流通抵抗が大きくなる。その結果、排気と共に前段触媒に流入した還元剤が該前段触媒を通過するのにかかる時間が長くなり、前段触媒における還元剤の酸化反応がより促進される。従って、排気浄化装置の昇温をより促進させることが可能となる。   Further, when the front catalyst is formed so that the exhaust flows between the outer peripheral surface thereof and the inner peripheral surface of the exhaust passage, the cross-sectional area of the front catalyst in the direction perpendicular to the exhaust flow direction is relatively small. Therefore, the flow resistance of the exhaust when the exhaust passes through the front catalyst increases. As a result, it takes a long time for the reducing agent that has flowed into the upstream catalyst together with the exhaust gas to pass through the upstream catalyst, and the oxidation reaction of the reducing agent in the upstream catalyst is further promoted. Therefore, it is possible to further increase the temperature of the exhaust purification device.

特許文献1には、排気通路におけるNOx触媒よりも上流側に、供給される燃料を改質する改質触媒を設ける技術が記載されている。この特許文献1には、改質触媒を排気通路の中央部に配置し、該改質触媒の外周に排気が流れる迂回路を形成させる技術が開示されている。
特開2005−127257号公報
Patent Document 1 describes a technique in which a reforming catalyst for reforming supplied fuel is provided upstream of the NOx catalyst in the exhaust passage. Patent Document 1 discloses a technique in which a reforming catalyst is disposed in the center of an exhaust passage, and a detour in which exhaust flows is formed on the outer periphery of the reforming catalyst.
JP 2005-127257 A

排気浄化装置を昇温すべく、排気浄化装置よりも熱容量が小さく且つその外周面と排気通路の内周面との間を排気が流れるように形成された前段触媒に還元剤が供給され、該還元剤が酸化されることで前段触媒の温度が上昇した場合、該前段触媒を通過する排気の流通抵抗がさらに上昇する。その結果、前段触媒よりも上流側の背圧が上昇し易くなる。   In order to raise the temperature of the exhaust gas purification device, a reducing agent is supplied to a pre-stage catalyst that has a smaller heat capacity than the exhaust gas purification device and is configured such that exhaust gas flows between the outer peripheral surface and the inner peripheral surface of the exhaust passage. When the temperature of the front catalyst rises due to oxidation of the reducing agent, the flow resistance of the exhaust gas passing through the front catalyst further increases. As a result, the back pressure upstream of the upstream catalyst is likely to increase.

前段触媒よりも上流側の背圧が過剰に高い状態で内燃機関の機関負荷の増加が要求された場合、該機関負荷が増加し難く応答遅れが大きくなる虞がある。   When an increase in the engine load of the internal combustion engine is required in a state where the back pressure upstream of the upstream catalyst is excessively high, the engine load is difficult to increase and the response delay may increase.

本発明は、上記問題に鑑みてなされたものであって、排気浄化装置よりも上流側の排気通路に設けられ、排気浄化装置よりも熱容量が小さく且つその外周面と排気通路の内周面との間を排気が流れるように形成された、酸化機能を有する前段触媒に還元剤を供給する
ことで排気浄化装置を昇温させる内燃機関の排気浄化装置において、内燃機関の機関負荷の増加要求があった場合の応答遅れを抑制することが可能な技術を提供することを目的とする。
The present invention has been made in view of the above problems, and is provided in an exhaust passage upstream of the exhaust purification device, has a smaller heat capacity than the exhaust purification device, and has an outer peripheral surface and an inner peripheral surface of the exhaust passage. In an exhaust gas purification apparatus for an internal combustion engine that raises the temperature of the exhaust gas purification apparatus by supplying a reducing agent to a pre-stage catalyst that has an oxidizing function and is configured so that exhaust gas flows between them, there is a demand to increase the engine load of the internal combustion engine. An object of the present invention is to provide a technique capable of suppressing a response delay when there is a problem.

本発明に係る内燃機関の排気浄化システムは、
内燃機関の排気通路に設けられた排気浄化装置と、
前記排気浄化装置よりも上流側の排気通路に設けられ、前記排気浄化装置よりも熱容量が小さく且つその外周面と排気通路の内周面との間を排気が流れるように形成された、酸化機能を有する前段触媒と、
前記排気浄化装置を昇温させるときに前記前段触媒に還元剤を供給する還元剤供給手段と、を備え、
前記還元剤供給手段によって前記前段触媒に還元剤を供給しているときに前記内燃機関の機関負荷の増加要求があった場合、前記還元剤供給手段によって前記前段触媒に供給される還元剤の量を減少させる又は前記還元剤供給手段による前記前段触媒への還元剤の供給を停止させることを特徴とする。
An exhaust purification system for an internal combustion engine according to the present invention includes:
An exhaust purification device provided in the exhaust passage of the internal combustion engine;
An oxidation function provided in an exhaust passage upstream of the exhaust purification device, having a smaller heat capacity than the exhaust purification device and configured to allow exhaust to flow between an outer peripheral surface thereof and an inner peripheral surface of the exhaust passage. A pre-stage catalyst having
A reducing agent supply means for supplying a reducing agent to the preceding catalyst when raising the temperature of the exhaust gas purification device,
When there is a request to increase the engine load of the internal combustion engine when the reducing agent is supplied to the upstream catalyst by the reducing agent supply means, the amount of the reducing agent supplied to the upstream catalyst by the reducing agent supply means Or the supply of the reducing agent to the preceding catalyst by the reducing agent supply means is stopped.

本発明によれば、還元剤供給手段によって前段触媒に還元剤を供給しているときに内燃機関の機関負荷の増加要求があった場合は、前段触媒の昇温が抑制される。その結果、前段触媒を通過する排気の流通抵抗の上昇が抑制されるため、前段触媒よりも上流側の背圧が過剰に上昇することを抑制することが出来る。従って、内燃機関の機関負荷をより速やかに増加させることが可能となり、その応答遅れを小さくすることが出来る。   According to the present invention, when there is a request to increase the engine load of the internal combustion engine when the reducing agent is supplied to the upstream catalyst by the reducing agent supply means, the temperature increase of the upstream catalyst is suppressed. As a result, an increase in the flow resistance of the exhaust gas passing through the front catalyst is suppressed, so that it is possible to suppress an excessive increase in the back pressure upstream of the front catalyst. Therefore, the engine load of the internal combustion engine can be increased more quickly, and the response delay can be reduced.

本発明によれば、排気浄化装置よりも上流側の排気通路に設けられ、排気浄化装置よりも熱容量が小さく且つその外周面と排気通路の内周面との間を排気が流れるように形成された、酸化機能を有する前段触媒に還元剤を供給することで排気浄化装置を昇温させる内燃機関の排気浄化装置において、内燃機関の機関負荷の増加要求があった場合の応答遅れを抑制することが出来る。   According to the present invention, the exhaust passage is provided in the exhaust passage upstream of the exhaust purification device, has a smaller heat capacity than the exhaust purification device, and is formed so that the exhaust flows between the outer peripheral surface and the inner peripheral surface of the exhaust passage. In addition, in an exhaust gas purification device for an internal combustion engine that raises the temperature of the exhaust gas purification device by supplying a reducing agent to a pre-stage catalyst having an oxidation function, it is possible to suppress a response delay when there is a request to increase the engine load of the internal combustion engine. I can do it.

以下、本発明に係る内燃機関の排気浄化システムの具体的な実施形態について図面に基づいて説明する。   Hereinafter, specific embodiments of an exhaust gas purification system for an internal combustion engine according to the present invention will be described with reference to the drawings.

<実施例1>
<内燃機関およびその吸排気系の概略構成>
図1は、本実施例に係る内燃機関およびその吸排気系の概略構成を示す図である。内燃機関1は4つの気筒2を有する車両駆動用のディーゼルエンジンである。各気筒2には該気筒2内に燃料を直接噴射する燃料噴射弁3が設けられている。
<Example 1>
<Schematic configuration of internal combustion engine and intake / exhaust system thereof>
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine and its intake / exhaust system according to the present embodiment. The internal combustion engine 1 is a diesel engine for driving a vehicle having four cylinders 2. Each cylinder 2 is provided with a fuel injection valve 3 that directly injects fuel into the cylinder 2.

内燃機関1には、インテークマニホールド5およびエキゾーストマニホールド7が接続されている。インテークマニホールド5には吸気通路4が接続されている。エキゾーストマニホールド7には排気通路6が接続されている。   An intake manifold 5 and an exhaust manifold 7 are connected to the internal combustion engine 1. An intake passage 4 is connected to the intake manifold 5. An exhaust passage 6 is connected to the exhaust manifold 7.

吸気通路4にはターボチャージャ8のコンプレッサハウジング8aが設置されている。排気通路6にはターボチャージャ8のタービンハウジング8bが設置されている。   A compressor housing 8 a of a turbocharger 8 is installed in the intake passage 4. A turbine housing 8 b of a turbocharger 8 is installed in the exhaust passage 6.

吸気通路に4におけるコンプレッサハウジング8aよりも上流側にはエアフローメータ12が設けられている。吸気通路4におけるコンプレッサハウジング8aよりも下流側にはスロットル弁13が設けられている。   An air flow meter 12 is provided in the intake passage 4 upstream of the compressor housing 8a. A throttle valve 13 is provided in the intake passage 4 downstream of the compressor housing 8a.

排気通路6におけるタービンハウジング8bより下流側には酸化触媒9が設けられている。また、排気通路6における酸化触媒9より下流側には、排気中の粒子状物質(Particulate Matter:以下、PMと称する)を捕集するパティキュレートフィルタ(以下、単にフィルタと称する)10が設けられている。フィルタ10には吸蔵還元型NOx触媒(以下、単にNOx触媒と称する)11が担持されている。   An oxidation catalyst 9 is provided in the exhaust passage 6 on the downstream side of the turbine housing 8b. In addition, a particulate filter (hereinafter simply referred to as a filter) 10 that collects particulate matter (hereinafter referred to as PM) in the exhaust gas is provided downstream of the oxidation catalyst 9 in the exhaust passage 6. ing. The filter 10 carries an NOx storage reduction catalyst (hereinafter simply referred to as NOx catalyst) 11.

本実施例に係る酸化触媒9は、円柱状の形状であって、その外径は排気通路6の内径よりも小さくなっている。つまり、酸化触媒9の排気を流れる方向と垂直方向の断面積は、排気通路6の排気を流れる方向と垂直方向の断面積よりも小さくなっている。このような構成により、酸化触媒9の外周面と排気通路6の内周面との間に排気が流れるバイパス経路18が形成される。また、酸化触媒9の熱容量はフィルタ10の熱容量よりも小さい。   The oxidation catalyst 9 according to the present embodiment has a cylindrical shape, and the outer diameter thereof is smaller than the inner diameter of the exhaust passage 6. That is, the cross-sectional area in the direction perpendicular to the direction in which the exhaust gas of the oxidation catalyst 9 flows is smaller than the cross-sectional area in the direction perpendicular to the direction in which the exhaust gas flows through the exhaust passage 6. With such a configuration, a bypass path 18 through which exhaust flows is formed between the outer peripheral surface of the oxidation catalyst 9 and the inner peripheral surface of the exhaust passage 6. Further, the heat capacity of the oxidation catalyst 9 is smaller than the heat capacity of the filter 10.

尚、本実施例においては、NOx触媒11を担持したフィルタ10が本発明に係る排気浄化装置に相当する。本発明に係る排気浄化装置はこのような構成に限られるものではなく、例えば、NOx触媒等の触媒とフィルタとが直列に並んで配置されたものであってもよく、また、触媒単体またはフィルタ単体であってもよい。また、本実施例においては、酸化触媒9が本発明に係る前段触媒に相当する。酸化触媒9は、酸化機能を有する触媒であればよく、例えば、三元触媒やNOx触媒等であってもよい。   In this embodiment, the filter 10 carrying the NOx catalyst 11 corresponds to the exhaust purification device according to the present invention. The exhaust emission control device according to the present invention is not limited to such a configuration. For example, a catalyst such as a NOx catalyst and a filter may be arranged in series, or a single catalyst or filter It may be a simple substance. In the present embodiment, the oxidation catalyst 9 corresponds to the former stage catalyst according to the present invention. The oxidation catalyst 9 may be any catalyst having an oxidation function, and may be, for example, a three-way catalyst or a NOx catalyst.

酸化触媒9より上流側の排気通路6には還元剤として燃料を添加する燃料添加弁17が設けられている。該燃料添加弁17は、燃料が噴射される燃料噴射孔が酸化触媒9の上流側端面と対向するように酸化触媒9に近接して配置されている。燃料添加弁17の燃料噴射孔から噴射された燃料が酸化触媒9に供給される(図1においては、斜線部が燃料の噴霧を表している)。本実施例においては、燃料添加弁17が本発明に係る還元剤添加弁に相当する。   A fuel addition valve 17 for adding fuel as a reducing agent is provided in the exhaust passage 6 upstream of the oxidation catalyst 9. The fuel addition valve 17 is disposed close to the oxidation catalyst 9 so that the fuel injection hole through which the fuel is injected faces the upstream end face of the oxidation catalyst 9. The fuel injected from the fuel injection hole of the fuel addition valve 17 is supplied to the oxidation catalyst 9 (in FIG. 1, the shaded area represents fuel spray). In this embodiment, the fuel addition valve 17 corresponds to the reducing agent addition valve according to the present invention.

排気通路6におけるフィルタ10より下流側には、排気の空燃比を検出する空燃比センサ23及び排気の温度を検出する温度センサ24が設けられている。   An air-fuel ratio sensor 23 that detects the air-fuel ratio of exhaust gas and a temperature sensor 24 that detects the temperature of exhaust gas are provided downstream of the filter 10 in the exhaust passage 6.

エキゾーストマニホールド7及びインテークマニホールド5にはEGR通路15の一端と他端がそれぞれ接続されている。内燃機関1から排出された排気の一部が該EGR通路15を介してEGRガスとしてエキゾーストマニホールド7からインテークマニホールド5に導入される。EGR通路15にはEGR弁16が設けられている。該EGR弁16によって、インテークマニホールド5に導入されるEGRガス量が制御される。   One end and the other end of an EGR passage 15 are connected to the exhaust manifold 7 and the intake manifold 5, respectively. A part of the exhaust discharged from the internal combustion engine 1 is introduced into the intake manifold 5 from the exhaust manifold 7 as EGR gas through the EGR passage 15. An EGR valve 16 is provided in the EGR passage 15. The EGR valve 16 controls the amount of EGR gas introduced into the intake manifold 5.

内燃機関1には電子制御ユニット(ECU)20が併設されている。このECU20は内燃機関1の運転状態等を制御するユニットである。ECU20には、エアフローメータ12、空燃比センサ23、温度センサ24、クランクポジションセンサ21およびアクセル開度センサ22が電気的に接続されている。クランクポジションセンサ21は内燃機関1のクランク角を検出する。アクセル開度センサ22は内燃機関1を搭載した車両のアクセル開度を検出する。各センサの出力信号がECU20に入力される。   The internal combustion engine 1 is provided with an electronic control unit (ECU) 20. The ECU 20 is a unit that controls the operating state of the internal combustion engine 1 and the like. An air flow meter 12, an air-fuel ratio sensor 23, a temperature sensor 24, a crank position sensor 21 and an accelerator opening sensor 22 are electrically connected to the ECU 20. The crank position sensor 21 detects the crank angle of the internal combustion engine 1. The accelerator opening sensor 22 detects the accelerator opening of a vehicle on which the internal combustion engine 1 is mounted. Output signals from the sensors are input to the ECU 20.

ECU20は、クランクポジションセンサ21の検出値に基づいて内燃機関1の機関回転数を導出する。また、ECU20は、アクセル開度センサ22の検出値に基づいて内燃機関1の機関負荷を導出する。また、ECU20は、温度センサ18の検出値に基づいてフィルタ10の温度(即ちNOx触媒11の温度)を導出する。また、ECU20は、空燃比センサ23の検出値に基づいてフィルタ10に流入する排気の空燃比(即ちNOx触媒11の周囲雰囲気の空燃比)を導出する。   The ECU 20 derives the engine speed of the internal combustion engine 1 based on the detected value of the crank position sensor 21. Further, the ECU 20 derives the engine load of the internal combustion engine 1 based on the detection value of the accelerator opening sensor 22. Further, the ECU 20 derives the temperature of the filter 10 (that is, the temperature of the NOx catalyst 11) based on the detection value of the temperature sensor 18. Further, the ECU 20 derives the air-fuel ratio of the exhaust gas flowing into the filter 10 based on the detection value of the air-fuel ratio sensor 23 (that is, the air-fuel ratio in the atmosphere surrounding the NOx catalyst 11).

また、ECU20には、各燃料噴射弁3、スロットル弁13、燃料添加弁17およびEGR弁16が電気的に接続されている。そして、ECU20によってこれらが制御される。   In addition, each fuel injection valve 3, throttle valve 13, fuel addition valve 17, and EGR valve 16 are electrically connected to the ECU 20. These are controlled by the ECU 20.

<昇温制御>
フィルタ10に捕集されたPMを酸化させて除去する場合やNOx触媒11に吸蔵されたSOxを放出させ還元する場合にはフィルタ10(NOx触媒11)を昇温させる必要がある。本実施例においては、燃料添加弁17から燃料を添加し、該燃料を酸化触媒9に供給することで、フィルタ10を昇温させる昇温制御が行われる。
<Temperature control>
When the PM collected by the filter 10 is oxidized and removed, or when the SOx stored in the NOx catalyst 11 is released and reduced, it is necessary to raise the temperature of the filter 10 (NOx catalyst 11). In the present embodiment, the temperature increase control for increasing the temperature of the filter 10 is performed by adding fuel from the fuel addition valve 17 and supplying the fuel to the oxidation catalyst 9.

酸化触媒9に燃料が供給されると該燃料が酸化する。このときに生じる酸化熱によって排気が昇温され、昇温された排気がフィルタ10に流入することで該フィルタ10の温度が上昇する。   When fuel is supplied to the oxidation catalyst 9, the fuel is oxidized. The temperature of the exhaust gas is raised by the oxidation heat generated at this time, and the temperature of the filter 10 rises as the heated exhaust gas flows into the filter 10.

このとき、本実施例においては、酸化触媒9の熱容量が比較的小さいため、酸化触媒9の温度がより速やかに上昇する。従って、フィルタ10をより速やかに昇温させることが出来る。   At this time, in this embodiment, since the heat capacity of the oxidation catalyst 9 is relatively small, the temperature of the oxidation catalyst 9 rises more rapidly. Therefore, the temperature of the filter 10 can be raised more quickly.

また、上述したように、本実施例においては、酸化触媒9の外径が排気通路6の内径よりも小さい。この場合、酸化触媒9の外径が排気通路6の内径と同一もしくはそれ以上の場合に比べて酸化触媒9内を排気が通過するときの排気の流通抵抗が大きくなる。そのため、酸化触媒9内を流れる排気の流量が少なくなる。これにより、燃料添加弁17から燃料が供給されたときに該燃料が酸化触媒9内を通過するのにかかる時間が長くなり、該酸化触媒9における燃料の酸化反応がより促進され易くなる。従って、フィルタ10の昇温をより促進させることが可能となる。   Further, as described above, in the present embodiment, the outer diameter of the oxidation catalyst 9 is smaller than the inner diameter of the exhaust passage 6. In this case, compared with the case where the outer diameter of the oxidation catalyst 9 is equal to or larger than the inner diameter of the exhaust passage 6, the exhaust flow resistance when the exhaust gas passes through the oxidation catalyst 9 is increased. Therefore, the flow rate of the exhaust gas flowing through the oxidation catalyst 9 is reduced. As a result, when fuel is supplied from the fuel addition valve 17, it takes a longer time for the fuel to pass through the oxidation catalyst 9, and the oxidation reaction of the fuel in the oxidation catalyst 9 is more facilitated. Therefore, the temperature rise of the filter 10 can be further promoted.

<機関負荷増加時の燃料添加量制御>
上記のような昇温制御が実行されることより、酸化触媒9の温度が上昇すると、該酸化触媒9を通過する排気の流通抵抗がさらに上昇する。その結果、酸化触媒9よりも上流側の背圧が上昇し易くなる。
<Control of fuel addition when engine load increases>
By performing the temperature increase control as described above, when the temperature of the oxidation catalyst 9 rises, the flow resistance of the exhaust gas passing through the oxidation catalyst 9 further increases. As a result, the back pressure upstream of the oxidation catalyst 9 is likely to increase.

ここで、昇温制御が実行されているときにおいても、内燃機関1を搭載した車両を加速させるときのように内燃機関1の機関負荷の増加が要求される場合がある。このような場合に、上記のような理由で酸化触媒9よりも上流側の背圧が過剰に高い状態にあると、機関負荷が増加し難いために応答遅れが大きくなる虞がある。   Here, even when the temperature raising control is being executed, there is a case where an increase in the engine load of the internal combustion engine 1 is required as in the case of accelerating a vehicle on which the internal combustion engine 1 is mounted. In such a case, if the back pressure upstream of the oxidation catalyst 9 is excessively high for the reasons described above, the engine load is difficult to increase and the response delay may increase.

そこで、本実施例においては、昇温制御が実行されているときに内燃機関1の機関負荷の増加要求があった場合、機関負荷の増加の応答遅れを抑制すべく、燃料添加弁17からの燃料添加量を制御する。以下、本実施例に係る機関負荷増加時の燃料添加量制御のルーチンについて、図2に示すフローチャートに基づいて説明する。本ルーチンは、ECU20に予め記憶されており、内燃機関1の運転中、所定の間隔で繰り返し実行される。   Therefore, in the present embodiment, when there is a request for increasing the engine load of the internal combustion engine 1 while the temperature raising control is being performed, the fuel addition valve 17 is used to suppress a delay in response to the increase in the engine load. Control the amount of fuel added. Hereinafter, the fuel addition amount control routine when the engine load is increased according to this embodiment will be described based on the flowchart shown in FIG. This routine is stored in advance in the ECU 20 and is repeatedly executed at predetermined intervals during the operation of the internal combustion engine 1.

本ルーチンでは、ECU20は、先ずS101において、上記昇温制御が実行されているか否かを判別する。S101において、肯定判定された場合、ECU20はS102に進み、否定判定された場合、ECU20は本ルーチンの実行を一旦終了する。   In this routine, the ECU 20 first determines in S101 whether or not the temperature increase control is being executed. If an affirmative determination is made in S101, the ECU 20 proceeds to S102, and if a negative determination is made, the ECU 20 once ends the execution of this routine.

S102において、ECU20は、内燃機関1の機関負荷の増加要求があるか否かを判別する。これは、例えばアクセル開度センサ22の検出値等に基づいて判別することが出来る。S102において、肯定判定された場合、ECU20はS103に進み、否定判定された場合、ECU20は本ルーチンの実行を一旦終了する。   In S102, the ECU 20 determines whether or not there is a request to increase the engine load of the internal combustion engine 1. This can be determined based on, for example, the detection value of the accelerator opening sensor 22 or the like. If an affirmative determination is made in S102, the ECU 20 proceeds to S103, and if a negative determination is made, the ECU 20 once ends the execution of this routine.

S103において、ECU20は、燃料添加弁17からの燃料添加量、即ち酸化触媒9への燃料供給量を、機関負荷の増加要求がある前の時点よりも減少させる。このとき、燃料添加弁17からの燃料添加量を予め定められた量以下に減少させてもよく、また、要求された機関負荷の増加量、排気の流量及び酸化触媒9の温度等に基づいて定まる量以下に減少させてもよい。その後、ECU20は本ルーチンの実行を一旦終了する。   In S103, the ECU 20 decreases the amount of fuel added from the fuel addition valve 17, that is, the amount of fuel supplied to the oxidation catalyst 9, from the point before the request for increasing the engine load. At this time, the amount of fuel added from the fuel addition valve 17 may be decreased to a predetermined amount or less, and based on the requested increase amount of the engine load, the flow rate of the exhaust gas, the temperature of the oxidation catalyst 9, and the like. It may be reduced below a fixed amount. Thereafter, the ECU 20 once terminates execution of this routine.

以上説明したルーチンによれば、昇温制御が実行されているときに内燃機関1の機関負荷の増加要求があった場合、酸化触媒9への燃料供給量が減少する。酸化触媒9への燃料供給量が減少すると該酸化触媒9の昇温が抑制される。その結果、酸化触媒9を通過する排気の流通抵抗の上昇が抑制されるため、酸化触媒9よりも上流側の背圧が過剰に上昇することを抑制することが出来る。   According to the routine described above, when there is a request to increase the engine load of the internal combustion engine 1 while the temperature raising control is being performed, the amount of fuel supplied to the oxidation catalyst 9 decreases. When the amount of fuel supplied to the oxidation catalyst 9 decreases, the temperature rise of the oxidation catalyst 9 is suppressed. As a result, an increase in the flow resistance of the exhaust gas passing through the oxidation catalyst 9 is suppressed, so that an excessive increase in the back pressure upstream of the oxidation catalyst 9 can be suppressed.

従って、本実施例によれば、昇温制御が実行されているときに内燃機関1の機関負荷の増加要求があった場合であっても、内燃機関1の機関負荷をより速やかに増加させることが可能となり、その応答遅れを小さくすることが出来る。これのより、ドライバビリティの悪化が抑制される。   Therefore, according to the present embodiment, the engine load of the internal combustion engine 1 can be increased more quickly even when there is a request for an increase in the engine load of the internal combustion engine 1 when the temperature raising control is being executed. The response delay can be reduced. As a result, deterioration of drivability is suppressed.

尚、本実施例においては、昇温制御が実行されているときに内燃機関1の機関負荷の増加要求があった場合、燃料添加弁17からの燃料添加を停止してもよい。これによれば、酸化触媒9よりも上流側の背圧の過剰な上昇をより抑制することが出来る。   In the present embodiment, when there is a request to increase the engine load of the internal combustion engine 1 while the temperature raising control is being executed, the fuel addition from the fuel addition valve 17 may be stopped. According to this, an excessive increase in the back pressure upstream of the oxidation catalyst 9 can be further suppressed.

本実施例においては、内燃機関1の冷間始動時に、NOx触媒11を昇温させるべく上記昇温制御を実行してもよい。この場合、酸化触媒9よりも上流側の背圧が上昇することで内燃機関1の暖機がより促進することとなる。   In the present embodiment, the temperature increase control may be executed to increase the temperature of the NOx catalyst 11 when the internal combustion engine 1 is cold-started. In this case, the warming up of the internal combustion engine 1 is further promoted by increasing the back pressure upstream of the oxidation catalyst 9.

実施例に係る内燃機関の吸排気系の概略構成を示す図。The figure which shows schematic structure of the intake / exhaust system of the internal combustion engine which concerns on an Example. 実施例に係る機関負荷増加時の燃料添加量制御のルーチンを示すフローチャート。The flowchart which shows the routine of fuel addition amount control at the time of the engine load increase which concerns on an Example.

符号の説明Explanation of symbols

1・・・内燃機関
2・・・気筒
3・・・燃料噴射弁
4・・・吸気通路
5・・・インテークマニホールド
6・・・排気通路
7・・・エキゾーストマニホールド
8・・・ターボチャージャ
8a・・コンプレッサハウジング
8b・・タービンハウジング
9・・・酸化触媒
10・・パティキュレートフィルタ
11・・吸蔵還元型NOx触媒
12・・エアフローメータ
13・・スロットル弁
15・・EGR通路
16・・EGR弁
17・・燃料添加弁
17・・空燃比センサ
18・・バイパス通路
20・・ECU
21・・クランクポジションセンサ
22・・アクセル開度センサ
23・・空燃比センサ
24・・温度センサ
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Cylinder 3 ... Fuel injection valve 4 ... Intake passage 5 ... Intake manifold 6 ... Exhaust passage 7 ... Exhaust manifold 8 ... Turbocharger 8a Compressor housing 8b Turbine housing 9 Oxidation catalyst 10 Particulate filter 11 Occlusion reduction type NOx catalyst 12 Air flow meter 13 Throttle valve 15 EGR passage 16 EGR valve 17 -Fuel addition valve 17-Air-fuel ratio sensor 18-Bypass passage 20-ECU
21 .. Crank position sensor 22 .. Accelerator opening sensor 23 .. Air-fuel ratio sensor 24 .. Temperature sensor

Claims (1)

内燃機関の排気通路に設けられた排気浄化装置と、
前記排気浄化装置よりも上流側の排気通路に設けられ、前記排気浄化装置よりも熱容量が小さく且つその外周面と排気通路の内周面との間を排気が流れるように形成された、酸化機能を有する前段触媒と、
前記排気浄化装置を昇温させるときに前記前段触媒に還元剤を供給する還元剤供給手段と、を備え、
前記還元剤供給手段によって前記前段触媒に還元剤を供給しているときに前記内燃機関の機関負荷の増加要求があった場合、前記還元剤供給手段によって前記前段触媒に供給される還元剤の量を減少させる又は前記還元剤供給手段による前記前段触媒への還元剤の供給を停止させることを特徴とする内燃機関の排気浄化システム。
An exhaust purification device provided in the exhaust passage of the internal combustion engine;
An oxidation function provided in an exhaust passage upstream of the exhaust purification device, having a smaller heat capacity than the exhaust purification device and configured to allow exhaust to flow between an outer peripheral surface thereof and an inner peripheral surface of the exhaust passage. A pre-stage catalyst having
A reducing agent supply means for supplying a reducing agent to the preceding catalyst when raising the temperature of the exhaust gas purification device,
When there is a request to increase the engine load of the internal combustion engine when the reducing agent is supplied to the upstream catalyst by the reducing agent supply means, the amount of the reducing agent supplied to the upstream catalyst by the reducing agent supply means Or reducing the supply of the reducing agent to the pre-stage catalyst by the reducing agent supply means.
JP2008016555A 2008-01-28 2008-01-28 Exhaust emission control system for internal combustion engine Pending JP2009174502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008016555A JP2009174502A (en) 2008-01-28 2008-01-28 Exhaust emission control system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008016555A JP2009174502A (en) 2008-01-28 2008-01-28 Exhaust emission control system for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009174502A true JP2009174502A (en) 2009-08-06

Family

ID=41029833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008016555A Pending JP2009174502A (en) 2008-01-28 2008-01-28 Exhaust emission control system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2009174502A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264720A (en) * 1993-03-12 1994-09-20 Nissan Motor Co Ltd After-exhaust processing device for diesel engine
JP2005083351A (en) * 2003-09-11 2005-03-31 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2005127257A (en) * 2003-10-24 2005-05-19 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2005171846A (en) * 2003-12-10 2005-06-30 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2007321614A (en) * 2006-05-31 2007-12-13 Toyota Motor Corp Exhaust emission control device of internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264720A (en) * 1993-03-12 1994-09-20 Nissan Motor Co Ltd After-exhaust processing device for diesel engine
JP2005083351A (en) * 2003-09-11 2005-03-31 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2005127257A (en) * 2003-10-24 2005-05-19 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2005171846A (en) * 2003-12-10 2005-06-30 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2007321614A (en) * 2006-05-31 2007-12-13 Toyota Motor Corp Exhaust emission control device of internal combustion engine

Similar Documents

Publication Publication Date Title
JP4706659B2 (en) Method for estimating N2O generation amount in ammonia oxidation catalyst and exhaust gas purification system for internal combustion engine
JP5093238B2 (en) Exhaust gas purification device for internal combustion engine
JP2008057364A (en) Exhaust emission control system of internal combustion engine
US8511068B2 (en) Temperature raising system for an exhaust gas purification catalyst
JP2015010470A (en) Exhaust emission control device for internal combustion engine
JPWO2011033620A1 (en) Exhaust purification device and exhaust purification method for internal combustion engine
JP5045339B2 (en) Exhaust gas purification system for internal combustion engine
JP2009103064A (en) Exhaust emission control device for internal combustion engine
JP4788664B2 (en) Exhaust gas purification system for internal combustion engine
JP2016079852A (en) Abnormality determination system of exhaust emission control device of internal combustion engine
JP2008008206A (en) Exhaust gas recirculation device for internal combustion engine
JP4811333B2 (en) Exhaust gas purification system for internal combustion engine
JP2007315233A (en) Exhaust emission control system of internal combustion engine
JP4730351B2 (en) Exhaust gas purification device for internal combustion engine
JP4254664B2 (en) Exhaust gas purification device for internal combustion engine
JP2008231926A (en) Exhaust emission control device of internal combustion engine
JP5880592B2 (en) Abnormality detection device for exhaust purification system
JP2008261302A (en) Exhaust emission control device for internal combustion engine
JP2010185434A (en) Exhaust emission control device for internal combustion engine
JP6534941B2 (en) Abnormality diagnosis device for exhaust purification mechanism
JP2008038622A (en) Exhaust emission control device and method of internal combustion engine
JP2009174502A (en) Exhaust emission control system for internal combustion engine
JP2007224742A (en) Exhaust emission control device of internal combustion engine
JP6100666B2 (en) Engine additive supply device
JP4877159B2 (en) EGR control system for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612