JP2008008206A - Exhaust gas recirculation device for internal combustion engine - Google Patents

Exhaust gas recirculation device for internal combustion engine Download PDF

Info

Publication number
JP2008008206A
JP2008008206A JP2006179769A JP2006179769A JP2008008206A JP 2008008206 A JP2008008206 A JP 2008008206A JP 2006179769 A JP2006179769 A JP 2006179769A JP 2006179769 A JP2006179769 A JP 2006179769A JP 2008008206 A JP2008008206 A JP 2008008206A
Authority
JP
Japan
Prior art keywords
exhaust
pressure egr
catalyst
temperature
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006179769A
Other languages
Japanese (ja)
Other versions
JP4720647B2 (en
Inventor
Masahiro Nagae
正浩 長江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006179769A priority Critical patent/JP4720647B2/en
Publication of JP2008008206A publication Critical patent/JP2008008206A/en
Application granted granted Critical
Publication of JP4720647B2 publication Critical patent/JP4720647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique capable of completing warming up for an exhaust emission control catalyst for a shorter period of time. <P>SOLUTION: This exhaust gas recirculation device is provided with an oxidation catalyst 12 arranged in an exhaust pipe 4 on the downstream side of the turbine of a turbocharger 5, an exhaust gas throttle valve 19 provided in an exhaust pipe 4 arranged further downstream from the oxidation catalyst 12, a low pressure EGR (exhaust gas recirculation) passage 31 connecting the exhaust pipe 4 arranged further downstream from the exhaust gas throttle valve 19 and an intake pipe 3 on the upstream side of the compressor of the turbocharger 5, a low pressure EGR valve 32 arranged in the low pressure EGR passage 31, catalyst temperature detection means (18, 20, S104) detecting the temperature of the oxidation catalyst 12, and catalyst warming up means (20, S105, S106, S107) comparing the detected temperature with a case that the detected temperature is not lower than a predetermined temperature when temperature detected by the catalyst temperature detection means is lower than the predetermined temperature, controlling the exhaust gas throttle valve 19 in a valve closing direction, and controlling the low pressure EGR valve 32 in a valve opening direction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の排気還流装置に関する。   The present invention relates to an exhaust gas recirculation device for an internal combustion engine.

内燃機関からの排気中に含まれるNOxの量を低減する技術として、内燃機関の排気マニホールドと吸気マニホールドとを接続するEGR通路を設け、EGR通路を介して内燃機関からの排気の一部を内燃機関の燃焼室に再循環させる技術が知られている(例えば、特許文献1を参照)。   As a technique for reducing the amount of NOx contained in the exhaust gas from the internal combustion engine, an EGR passage that connects the exhaust manifold and the intake manifold of the internal combustion engine is provided, and a part of the exhaust gas from the internal combustion engine is subjected to the internal combustion through the EGR passage. A technique for recirculation to a combustion chamber of an engine is known (see, for example, Patent Document 1).

また、排気中の炭化水素(HC)や一酸化炭素(CO)等の未燃燃料を酸化して水や二酸化炭素等に変化させる酸化触媒等の排気浄化触媒を排気通路の途中に配置することで、大気中に排出される排気を浄化する技術が知られている。
特開2004−150319号公報 特開2003−269202号公報 特開2003−343287号公報 実開平5−61444号公報
In addition, an exhaust purification catalyst such as an oxidation catalyst that oxidizes unburned fuel such as hydrocarbon (HC) and carbon monoxide (CO) in the exhaust gas to change it into water, carbon dioxide, etc. is disposed in the middle of the exhaust passage. Thus, a technology for purifying exhaust gas discharged into the atmosphere is known.
JP 2004-150319 A JP 2003-269202 A JP 2003-343287 A Japanese Utility Model Publication No. 5-61444

ところで、排気浄化触媒の温度が低い場合、排気浄化触媒は未活性状態であり、排気浄化作用を好適に発揮することができない。このような場合、排気浄化触媒に流入する未燃燃料等は排気浄化触媒で酸化されずにそのまま排気浄化触媒を通過し、白煙となって大気中に排出されてしまう。特に、内燃機関の冷間始動時等の排気浄化触媒の温度が低い状況においては、排気エミッションの悪化を抑制するために、排気浄化触媒を暖機して可及的早期に排気浄化触媒を活性化状態にする必要がある。   By the way, when the temperature of the exhaust purification catalyst is low, the exhaust purification catalyst is in an inactive state, and the exhaust purification action cannot be suitably exhibited. In such a case, unburned fuel or the like flowing into the exhaust purification catalyst passes through the exhaust purification catalyst as it is without being oxidized by the exhaust purification catalyst, and is discharged into the atmosphere as white smoke. In particular, when the temperature of the exhaust purification catalyst is low, such as when the internal combustion engine is cold started, the exhaust purification catalyst is warmed up and activated as soon as possible in order to suppress the deterioration of exhaust emission. It is necessary to make it into a state.

本発明の目的とする所は、より短時間で触媒の暖機を完了させることを可能にする技術を提供することである。   An object of the present invention is to provide a technique that makes it possible to complete the warm-up of the catalyst in a shorter time.

上記目的を達成するため、本発明の内燃機関の排気還流装置は、
内燃機関の排気通路にタービンを有し且つ吸気通路にコンプレッサを有するターボチャージャと、
前記タービンより下流の排気通路に設けられた排気浄化触媒と、
前記排気浄化触媒より下流の排気通路に設けられ排気通路の流路断面積を変更する排気絞り弁と、
前記排気浄化触媒より下流の排気通路と前記コンプレッサより上流の吸気通路とを接続する低圧EGR通路と、
前記低圧EGR通路に設けられ低圧EGR通路の流路断面積を変更する低圧EGR弁と、
前記排気浄化触媒の温度を検出する触媒温度検出手段と、
前記触媒温度検出手段によって前記検出される温度が所定の温度を下回っている場合には、前記検出される温度が前記所定の温度を下回っていない場合と比較して前記排気絞り弁を閉弁方向に制御し且つ前記低圧EGR弁を開弁方向に制御する触媒暖機手段と、
を備えることを特徴とする。
In order to achieve the above object, an exhaust gas recirculation device for an internal combustion engine of the present invention comprises:
A turbocharger having a turbine in the exhaust passage of the internal combustion engine and a compressor in the intake passage;
An exhaust purification catalyst provided in an exhaust passage downstream from the turbine;
An exhaust throttle valve that is provided in an exhaust passage downstream from the exhaust purification catalyst and changes a flow passage cross-sectional area of the exhaust passage;
A low pressure EGR passage connecting an exhaust passage downstream from the exhaust purification catalyst and an intake passage upstream from the compressor;
A low pressure EGR valve that is provided in the low pressure EGR passage and changes a cross-sectional area of the low pressure EGR passage;
Catalyst temperature detecting means for detecting the temperature of the exhaust purification catalyst;
When the temperature detected by the catalyst temperature detecting means is lower than a predetermined temperature, the exhaust throttle valve is closed in a valve closing direction as compared with the case where the detected temperature is not lower than the predetermined temperature. And a catalyst warm-up means for controlling the low-pressure EGR valve in the valve opening direction.
It is characterized by providing.

ここで、所定の温度とは、排気浄化触媒が十分に活性化して排気浄化作用を発揮するこ
とが可能な温度であり、予め定められる。また、触媒温度検出手段は、排気浄化触媒の温度を直接測定するセンサであってもよいし、或いは、排気の温度、吸気の温度や流量、低圧EGR通路を介して吸気通路に還流する排気の流量等の内燃機関の運転状態や内燃機関の運転履歴に基づいて排気浄化触媒の温度を推定するものであってもよい。
Here, the predetermined temperature is a temperature at which the exhaust purification catalyst is sufficiently activated to exhibit an exhaust purification action, and is determined in advance. The catalyst temperature detecting means may be a sensor that directly measures the temperature of the exhaust purification catalyst, or the exhaust temperature, the temperature and flow rate of the intake air, and the exhaust gas that is recirculated to the intake passage through the low pressure EGR passage. The temperature of the exhaust purification catalyst may be estimated based on the operation state of the internal combustion engine such as the flow rate or the operation history of the internal combustion engine.

そして、上記構成によれば、排気浄化触媒の温度が低く排気浄化触媒が活性化していない時には、排気浄化触媒が活性化している場合よりも排気絞り弁が閉弁方向に制御されるとともに低圧EGR弁が開弁方向に制御される。排気絞り弁が閉弁方向に制御されることにより、排気絞り弁より上流の排気通路の背圧が上昇する。これにより内燃機関の負荷が増大し、燃料噴射量が増大するため、内燃機関からの排気の温度が上昇する。また、排気絞り弁より上流の排気通路の背圧が上昇することにより、排気行程において気筒内に残留する排気の量が増加する。そのため、高温の既燃ガスと混合した吸気が燃焼に供されるようになり、内燃機関からの排気の温度が上昇する。また、低圧EGR弁が開弁方向に制御されることで低圧EGR通路を介して内燃機関からの排気の一部が吸気通路の還流する。これにより吸気の温度が上昇し、内燃機関からの排気の温度が上昇する。このようにして高温になった排気によって排気浄化触媒が昇温されるため、排気浄化触媒を急速に活性化させることが可能になる。   According to the above configuration, when the temperature of the exhaust purification catalyst is low and the exhaust purification catalyst is not activated, the exhaust throttle valve is controlled in the valve closing direction and lower pressure EGR than when the exhaust purification catalyst is activated. The valve is controlled in the valve opening direction. By controlling the exhaust throttle valve in the valve closing direction, the back pressure in the exhaust passage upstream from the exhaust throttle valve increases. As a result, the load on the internal combustion engine increases and the fuel injection amount increases, so the temperature of the exhaust from the internal combustion engine rises. Further, the back pressure in the exhaust passage upstream of the exhaust throttle valve increases, so that the amount of exhaust remaining in the cylinder in the exhaust stroke increases. Therefore, the intake air mixed with the high-temperature burned gas is used for combustion, and the temperature of the exhaust gas from the internal combustion engine rises. Further, by controlling the low pressure EGR valve in the valve opening direction, a part of the exhaust gas from the internal combustion engine recirculates in the intake passage through the low pressure EGR passage. As a result, the temperature of the intake air rises and the temperature of the exhaust gas from the internal combustion engine rises. In this way, the temperature of the exhaust purification catalyst is raised by the exhaust gas that has become high in temperature, so that the exhaust purification catalyst can be rapidly activated.

本発明では、低圧EGR通路を介して吸気通路に還流する排気(以下、低圧EGRガスという)は排気浄化触媒を通過した後の排気であるため、排気中に含まれる未燃燃料やパティキュレート、煤等の不活性成分の量が少ない。そのため、タービンより上流の排気通路(例えば排気マニホールド)とコンプレッサより下流の吸気通路(例えば吸気マニホールド)とを接続するEGR通路(以下、本発明の低圧EGR通路と区別するため、高圧EGR通路という)を介して排気の還流が行われる従来の排気還流装置と比較してより確実に内燃機関からの排気の温度を上昇させることができ、より効率的に且つ信頼性の高い触媒暖機を行うことができる。   In the present invention, the exhaust gas recirculated to the intake passage through the low pressure EGR passage (hereinafter referred to as the low pressure EGR gas) is the exhaust after passing through the exhaust purification catalyst, and therefore, unburned fuel and particulates contained in the exhaust, There is little quantity of inactive ingredients such as soot. Therefore, an EGR passage that connects an exhaust passage (for example, an exhaust manifold) upstream from the turbine and an intake passage (for example, an intake manifold) downstream from the compressor (hereinafter referred to as a high-pressure EGR passage to distinguish it from the low-pressure EGR passage of the present invention). The temperature of the exhaust gas from the internal combustion engine can be more reliably increased as compared with the conventional exhaust gas recirculation device in which the exhaust gas is recirculated through the exhaust gas, and more efficient and reliable catalyst warm-up is performed. Can do.

本発明においては、低圧EGR通路を、排気絞り弁より下流の排気通路とコンプレッサより上流の吸気通路とを接続する通路としてもよい。この場合、排気絞り弁の開度を小さくした時に排気絞り弁より上流の排気通路の圧力が上昇するが、排気絞り弁より下流の排気通路に接続された低圧EGR通路内の排気の圧力は上昇しにくくなる。従って、触媒暖機効率をさらに上げるべく排気絞り弁の開度を更に小さくした場合においても、低圧EGR通路を流通する排気の量を低圧EGR弁によって調量する際の精度が低下することを抑制できる。そのため、低圧EGR通路を介した排気の還流を好適に行うことができる。その結果、内燃機関からの排気の温度をより確実に上昇させ、より短時間で触媒暖機を完了させることが可能になる。   In the present invention, the low pressure EGR passage may be a passage connecting the exhaust passage downstream of the exhaust throttle valve and the intake passage upstream of the compressor. In this case, when the opening of the exhaust throttle valve is reduced, the pressure of the exhaust passage upstream of the exhaust throttle valve increases, but the pressure of the exhaust gas in the low pressure EGR passage connected to the exhaust passage downstream of the exhaust throttle valve increases. It becomes difficult to do. Therefore, even when the opening degree of the exhaust throttle valve is further reduced to further increase the catalyst warm-up efficiency, it is possible to suppress a decrease in accuracy when the amount of exhaust gas flowing through the low pressure EGR passage is metered by the low pressure EGR valve. it can. Therefore, it is possible to favorably perform exhaust gas recirculation via the low pressure EGR passage. As a result, the temperature of the exhaust gas from the internal combustion engine can be increased more reliably, and the catalyst warm-up can be completed in a shorter time.

排気浄化触媒には、排気浄化触媒の温度が低い時には流入する未燃燃料等を吸着し、排気浄化触媒の温度が高くなるに従って吸着していた未燃燃料等を脱離する吸着能力を有するものがある。一方、排気浄化触媒の排気浄化作用は、排気浄化触媒の温度が前記所定の温度より高くなって排気浄化触媒が十分に活性化するまで好適に発揮されない。そのため、排気浄化触媒の温度によっては、排気浄化作用が活性化していないにもかかわらず未燃燃料等が脱離してしまう場合がある。その場合、排気浄化触媒から脱離した未燃燃料等が白煙となって大気中に排出される虞がある。   The exhaust purification catalyst has an adsorption capacity to adsorb unburned fuel that flows in when the temperature of the exhaust purification catalyst is low, and to desorb the unburned fuel that has been adsorbed as the temperature of the exhaust purification catalyst increases. There is. On the other hand, the exhaust purification action of the exhaust purification catalyst is not suitably exhibited until the temperature of the exhaust purification catalyst becomes higher than the predetermined temperature and the exhaust purification catalyst is sufficiently activated. For this reason, depending on the temperature of the exhaust purification catalyst, unburned fuel or the like may be desorbed even though the exhaust purification action is not activated. In that case, there is a possibility that unburned fuel or the like desorbed from the exhaust purification catalyst becomes white smoke and is discharged into the atmosphere.

それに対し、本発明によれば、上記のように急速に触媒暖機を完了させることができるため、従来の排気還流装置の場合と比較してより短時間で触媒暖機を完了することができる。従って、排気浄化触媒から脱離した未燃燃料等が浄化されずに白煙となって排出されることを抑制できる。   On the other hand, according to the present invention, since the catalyst warm-up can be completed rapidly as described above, the catalyst warm-up can be completed in a shorter time than in the case of the conventional exhaust gas recirculation device. . Accordingly, it is possible to suppress the unburned fuel and the like desorbed from the exhaust purification catalyst from being discharged as white smoke without being purified.

本発明により、可及的に短時間で触媒暖機を完了させることが可能になる。   The present invention makes it possible to complete catalyst warm-up in as short a time as possible.

以下に図面を参照して、この発明を実施するための最良の形態を例示的に詳しく説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に特定的な記載がない限りは、発明の技術的範囲をそれらのみに限定する趣旨のものではない。   The best mode for carrying out the present invention will be exemplarily described in detail below with reference to the drawings. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the present embodiment are not intended to limit the technical scope of the invention to those unless otherwise specified.

図1は本実施例に係る内燃機関の排気還流装置を適用する内燃機関とその吸気系及び排気系の概略構成を示す図である。図1に示す内燃機関1は、4つの気筒2を有する水冷式の4サイクルディーゼルエンジンである。   FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which an exhaust gas recirculation apparatus for an internal combustion engine according to this embodiment is applied, and its intake system and exhaust system. An internal combustion engine 1 shown in FIG. 1 is a water-cooled four-cycle diesel engine having four cylinders 2.

内燃機関1には、吸気管3及び排気管4が接続されている。吸気管3の途中には、吸気管3内を流通する吸気の流量を調節する第2吸気絞り弁9が設けられている。第2吸気絞り弁9は、電動アクチュエータにより開閉される。第2吸気絞り弁9より上流の吸気管3には、吸気と外気とで熱交換を行うインタークーラ8が設けられている。インタークーラ8より上流の吸気管3には、排気のエネルギを駆動源として作動するターボチャージャ5のコンプレッサハウジング5aが設けられている。コンプレッサハウジング5aより上流の吸気管3には、吸気管3内を流通する吸気の流量を調節する第1吸気絞り弁6が設けられている。第1吸気絞り弁6は電動アクチュエータにより開閉される。第1吸気絞り弁6より上流の吸気管3には、吸気管3内を流通する吸気の流量に応じた信号を出力するエアフローメータ7が設けられている。エアフローメータ7により内燃機関1の吸入空気量が測定される。   An intake pipe 3 and an exhaust pipe 4 are connected to the internal combustion engine 1. A second intake throttle valve 9 that adjusts the flow rate of intake air flowing through the intake pipe 3 is provided in the middle of the intake pipe 3. The second intake throttle valve 9 is opened and closed by an electric actuator. The intake pipe 3 upstream of the second intake throttle valve 9 is provided with an intercooler 8 that exchanges heat between intake air and outside air. The intake pipe 3 upstream of the intercooler 8 is provided with a compressor housing 5a of a turbocharger 5 that operates using exhaust energy as a drive source. The intake pipe 3 upstream of the compressor housing 5 a is provided with a first intake throttle valve 6 that adjusts the flow rate of intake air flowing through the intake pipe 3. The first intake throttle valve 6 is opened and closed by an electric actuator. The intake pipe 3 upstream of the first intake throttle valve 6 is provided with an air flow meter 7 that outputs a signal corresponding to the flow rate of the intake air flowing through the intake pipe 3. The intake air amount of the internal combustion engine 1 is measured by the air flow meter 7.

一方、排気管4の途中には、ターボチャージャ5のタービンハウジング5bが設けられている。タービンハウジング5bより下流の排気管4には、排気浄化装置10が設けられている。排気浄化装置10は、酸化触媒12と、酸化触媒12の後段にパティキュレートフィルタ(以下、フィルタという)13とを有している。フィルタ13には、吸蔵還元型NOx触媒(以下、NOx触媒という)が担持されている。フィルタ13は排気中の微粒子物質(以下、PMという)を捕集する。また、NOx触媒は、NOx触媒に流入する排気の酸素濃度が高い時は排気中の窒素酸化物(NOx)を吸蔵し、一方、NOx触媒に流入する排気の酸素濃度が低下した時は吸蔵していたNOxを放出する。その際、排気中に炭化水素(HC)や一酸化炭素(CO)等の還元成分が存在していれば、NOx触媒から放出されたNOxが還元される。排気浄化装置10の直下流の排気管4には、排気浄化装置10から流出する排気の温度を測定する温度センサ18が設けられている。温度センサ18によって測定される排気の温度から、酸化触媒12又はフィルタ13の温度を推定することができる。排気浄化装置10より下流の排気管4には、排気管4内を流通する排気の流量を調節する排気絞り弁19が設けられている。排気絞り弁19は電動アクチュエータにより開閉される。   On the other hand, a turbine housing 5 b of the turbocharger 5 is provided in the middle of the exhaust pipe 4. An exhaust gas purification device 10 is provided in the exhaust pipe 4 downstream from the turbine housing 5b. The exhaust emission control device 10 includes an oxidation catalyst 12 and a particulate filter (hereinafter referred to as a filter) 13 at the subsequent stage of the oxidation catalyst 12. The filter 13 carries an NOx storage reduction catalyst (hereinafter referred to as NOx catalyst). The filter 13 collects particulate matter (hereinafter referred to as PM) in the exhaust. Further, the NOx catalyst occludes nitrogen oxide (NOx) in the exhaust when the oxygen concentration of the exhaust flowing into the NOx catalyst is high, and occludes when the oxygen concentration of the exhaust flowing into the NOx catalyst decreases. Release the NOx that had been stored. At that time, if a reducing component such as hydrocarbon (HC) or carbon monoxide (CO) is present in the exhaust, NOx released from the NOx catalyst is reduced. A temperature sensor 18 that measures the temperature of the exhaust gas flowing out from the exhaust purification device 10 is provided in the exhaust pipe 4 immediately downstream of the exhaust purification device 10. The temperature of the oxidation catalyst 12 or the filter 13 can be estimated from the temperature of the exhaust gas measured by the temperature sensor 18. The exhaust pipe 4 downstream of the exhaust purification device 10 is provided with an exhaust throttle valve 19 that adjusts the flow rate of the exhaust gas flowing through the exhaust pipe 4. The exhaust throttle valve 19 is opened and closed by an electric actuator.

内燃機関1には、排気管4内を流通する排気の一部を低圧で吸気管3へ再循環させる低圧EGR装置30が備えられている。低圧EGR装置30は、低圧EGR通路31、低圧EGR弁32、及び低圧EGRクーラ33を備えて構成されている。   The internal combustion engine 1 is provided with a low pressure EGR device 30 that recirculates a part of the exhaust gas flowing through the exhaust pipe 4 to the intake pipe 3 at a low pressure. The low pressure EGR device 30 includes a low pressure EGR passage 31, a low pressure EGR valve 32, and a low pressure EGR cooler 33.

低圧EGR通路31は、排気絞り弁19より下流の排気管4と、コンプレッサハウジング5aよりも上流且つ第1吸気絞り弁6より下流の吸気管3と、を接続している。低圧EGR通路31を通って排気が低圧で再循環される。本実施例では、低圧EGR通路31を通って再循環される排気を低圧EGRガスと称している。低圧EGR弁32は、低圧EG
R通路31の流路断面積を変更することにより、低圧EGR通路31を流れる低圧EGRガスの量を調節する。低圧EGRクーラ33は、低圧EGRクーラ33を通過する低圧EGRガスと内燃機関1の冷却水とで熱交換をして、低圧EGRガスの温度を低下させる。
The low pressure EGR passage 31 connects the exhaust pipe 4 downstream of the exhaust throttle valve 19 and the intake pipe 3 upstream of the compressor housing 5a and downstream of the first intake throttle valve 6. Exhaust gas is recirculated through the low pressure EGR passage 31 at a low pressure. In this embodiment, the exhaust gas recirculated through the low-pressure EGR passage 31 is referred to as low-pressure EGR gas. The low pressure EGR valve 32 is a low pressure EG
By changing the cross-sectional area of the R passage 31, the amount of low-pressure EGR gas flowing through the low-pressure EGR passage 31 is adjusted. The low pressure EGR cooler 33 exchanges heat between the low pressure EGR gas passing through the low pressure EGR cooler 33 and the cooling water of the internal combustion engine 1 to reduce the temperature of the low pressure EGR gas.

また、内燃機関1には、排気管4内を流通する排気の一部を高圧で吸気管3へ再循環させる高圧EGR装置40が備えられている。高圧EGR装置40は、高圧EGR通路41、高圧EGR弁42、及び高圧EGRクーラ43を備えて構成されている。   Further, the internal combustion engine 1 is provided with a high pressure EGR device 40 that recirculates a part of the exhaust gas flowing through the exhaust pipe 4 to the intake pipe 3 at a high pressure. The high pressure EGR device 40 includes a high pressure EGR passage 41, a high pressure EGR valve 42, and a high pressure EGR cooler 43.

高圧EGR通路41は、タービンハウジング5bより上流側の排気管4と、第2吸気絞り弁9より下流の吸気管3と、を接続している。高圧EGR通路41を通って排気が高圧で再循環される。本実施例では、高圧EGR通路41を通って再循環される排気を高圧EGRガスと称している。高圧EGR弁42は、高圧EGR通路41の流路断面積を変更することにより、高圧EGR通路41を流れる高圧EGRガスの量を調節する。高圧EGRクーラ43は、高圧EGRクーラ43を通過する高圧EGRガスと内燃機関1の冷却水とで熱交換をして、高圧EGRガスの温度を低下させる。   The high pressure EGR passage 41 connects the exhaust pipe 4 upstream of the turbine housing 5 b and the intake pipe 3 downstream of the second intake throttle valve 9. Exhaust gas is recirculated at high pressure through the high pressure EGR passage 41. In the present embodiment, the exhaust gas recirculated through the high pressure EGR passage 41 is referred to as high pressure EGR gas. The high pressure EGR valve 42 adjusts the amount of high pressure EGR gas flowing through the high pressure EGR passage 41 by changing the flow path cross-sectional area of the high pressure EGR passage 41. The high pressure EGR cooler 43 performs heat exchange between the high pressure EGR gas passing through the high pressure EGR cooler 43 and the cooling water of the internal combustion engine 1 to reduce the temperature of the high pressure EGR gas.

以上述べたように構成された内燃機関1には、内燃機関1を制御するための電子制御ユニットであるECU20が併設されている。ECU20は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するコンピュータである。ECU20には、上記温度センサ18の他、運転者がアクセルペダル14を踏み込んだ量に応じた電気信号を出力し機関負荷を検出可能なアクセル開度センサ15、及び機関回転数を検出するクランクポジションセンサ16が電気配線を介して接続され、これら各種センサの出力信号がECU20に入力されるようになっている。また、ECU20には、第1吸気絞り弁6、第2吸気絞り弁9、排気絞り弁19、低圧EGR弁32、及び高圧EGR弁42が電気配線を介して接続されており、ECU20によりこれらの機器が制御される。   The internal combustion engine 1 configured as described above is provided with an ECU 20 that is an electronic control unit for controlling the internal combustion engine 1. The ECU 20 is a computer that controls the operation state of the internal combustion engine 1 in accordance with the operation conditions of the internal combustion engine 1 and the request of the driver. In addition to the temperature sensor 18, the ECU 20 outputs an electric signal corresponding to the amount of depression of the accelerator pedal 14 by the driver to detect the engine load, and a crank position for detecting the engine speed. Sensors 16 are connected via electrical wiring, and output signals from these various sensors are input to the ECU 20. The ECU 20 is connected to the first intake throttle valve 6, the second intake throttle valve 9, the exhaust throttle valve 19, the low pressure EGR valve 32, and the high pressure EGR valve 42 through electric wiring. The device is controlled.

ここで、本実施例において低圧EGR装置30及び高圧EGR装置40を用いて行われる排気の再循環について説明する。低圧EGR装置30によって行われる排気の再循環と高圧EGR装置40を用いて行われる排気の再循環とは、それぞれ好適に排気の再循環を行うことが可能な内燃機関の運転条件が予め等により実験的に求められている。本実施例では、内燃機関の運転状態に応じて低圧EGR装置30と高圧EGR装置40とを切り替えて、或いは併用して排気の再循環を行うようにしている。   Here, the exhaust gas recirculation performed using the low pressure EGR device 30 and the high pressure EGR device 40 in this embodiment will be described. The exhaust gas recirculation performed by the low pressure EGR device 30 and the exhaust gas recirculation performed by using the high pressure EGR device 40 are based on the operating conditions of the internal combustion engine capable of suitably performing exhaust gas recirculation in advance. It is sought experimentally. In the present embodiment, the exhaust gas is recirculated by switching the low pressure EGR device 30 and the high pressure EGR device 40 according to the operating state of the internal combustion engine or using them together.

図2は、内燃機関1の運転状態の領域毎に定められた、低圧EGR装置30及び高圧EGR装置40の切替パターンを示した図である。図2の横軸は内燃機関1の機関回転数を表し、縦軸は内燃機関1の燃料噴射量を表している。燃料噴射量は内燃機関1の機関負荷を代表するパラメータである。   FIG. 2 is a diagram showing switching patterns of the low pressure EGR device 30 and the high pressure EGR device 40 that are determined for each region of the operating state of the internal combustion engine 1. The horizontal axis in FIG. 2 represents the engine speed of the internal combustion engine 1, and the vertical axis represents the fuel injection amount of the internal combustion engine 1. The fuel injection amount is a parameter that represents the engine load of the internal combustion engine 1.

図2において、領域HPLは、内燃機関1の運転状態が低負荷低回転の領域であり、ここでは高圧EGR装置40によって排気の再循環が行われる。図2の領域MIXは、内燃機関1の運転状態が中負荷中回転の領域であり、ここでは高圧EGR装置40と低圧EGR装置30とが併用されて排気の再循環が行われる。図2の領域LPLは、内燃機関1の運転状態が高負荷高回転の領域であり、ここでは低圧EGR装置30によって排気の再循環が行われる。   In FIG. 2, a region HPL is a region where the operating state of the internal combustion engine 1 is a low load and low rotation, and here, exhaust gas is recirculated by the high pressure EGR device 40. A region MIX in FIG. 2 is a region in which the operation state of the internal combustion engine 1 is a medium load / medium speed rotation. Here, the high pressure EGR device 40 and the low pressure EGR device 30 are used together to perform exhaust gas recirculation. A region LPL in FIG. 2 is a region where the operating state of the internal combustion engine 1 is a high-load high-speed rotation, and here, exhaust gas is recirculated by the low-pressure EGR device 30.

このように、内燃機関1の運転状態に応じて高圧EGR装置40と低圧EGR装置30とを切り替えて、或いは併用して排気の再循環を行うことによって、広範な運転領域において排気の再循環を行うことができ、NOxの排出量を低減することが可能になる。   As described above, the exhaust gas is recirculated by switching the high pressure EGR device 40 and the low pressure EGR device 30 according to the operating state of the internal combustion engine 1 or using them together to perform exhaust gas recirculation in a wide operating range. This makes it possible to reduce NOx emissions.

また、本実施例では、低圧EGR弁32の開度を全開にしてもEGR率が目標EGR率
に達しない場合に、第1吸気絞り弁6を閉弁方向に制御することで低圧EGR通路31の上流側と下流側の差圧を上昇させ、これにより低圧EGRガス量を増大させるようにしている。第1吸気絞り弁6は低温の環境で作動するため、高い精度で開度制御を行うことが可能である。
Further, in this embodiment, when the EGR rate does not reach the target EGR rate even when the opening of the low pressure EGR valve 32 is fully opened, the low pressure EGR passage 31 is controlled by controlling the first intake throttle valve 6 in the valve closing direction. The differential pressure between the upstream side and the downstream side is increased, thereby increasing the amount of low-pressure EGR gas. Since the first intake throttle valve 6 operates in a low temperature environment, it is possible to control the opening degree with high accuracy.

酸化触媒12は排気中の炭化水素(HC)を吸着して排気中から除去するHC吸着機能と、触媒作用によってこれらのHC等の未燃燃料を酸化して水や二酸化炭素に変化させる排気浄化機能と、を有する。   The oxidation catalyst 12 adsorbs hydrocarbons (HC) in exhaust gas and removes it from the exhaust gas, and exhaust purification that oxidizes unburned fuel such as HC and converts it into water or carbon dioxide by catalytic action. And having a function.

酸化触媒12は触媒床温が低い時にHCを吸着し、触媒床温が高くなるほど吸着能力が低下して吸着していたHCを放出する性質を有する。また、酸化触媒12は触媒床温が低い時には排気浄化作用はほとんど発揮せず、触媒床温がある程度以上高温になると酸化触媒12の排気浄化作用が好適に発揮されて排気中の未燃燃料が酸化される。   The oxidation catalyst 12 has the property of adsorbing HC when the catalyst bed temperature is low, and releasing adsorbed HC by decreasing the adsorption capacity as the catalyst bed temperature increases. Further, the oxidation catalyst 12 hardly exhibits the exhaust purification action when the catalyst bed temperature is low, and when the catalyst bed temperature becomes higher than a certain level, the exhaust purification action of the oxidation catalyst 12 is suitably exerted so that the unburned fuel in the exhaust is Oxidized.

図3(A)は酸化触媒12の触媒床温とHC吸着量との相関関係の傾向を表すグラフである。また、図3(B)は酸化触媒12の触媒床温と触媒活性との相関関係の傾向を表すグラフである。図3に示すように、酸化触媒12のHC吸着量が低下し始める触媒床温の領域と酸化触媒12の触媒活性が上昇し始める触媒床温の領域とは近接している場合がある。この場合、触媒床温の温度領域Dでは、酸化触媒12に吸着されていたHCが脱離し始めるのに対し、酸化触媒12は未だ十分に活性化していないため、酸化触媒12から脱離したHCが酸化されずに酸化触媒12を通過してしまう可能性がある。この場合、HCは白煙となって大気中に排出されることになる。   FIG. 3A is a graph showing a trend of correlation between the catalyst bed temperature of the oxidation catalyst 12 and the HC adsorption amount. FIG. 3B is a graph showing a correlation trend between the catalyst bed temperature of the oxidation catalyst 12 and the catalyst activity. As shown in FIG. 3, the catalyst bed temperature region where the HC adsorption amount of the oxidation catalyst 12 begins to decrease may be close to the catalyst bed temperature region where the catalytic activity of the oxidation catalyst 12 begins to increase. In this case, in the temperature range D of the catalyst bed temperature, HC adsorbed on the oxidation catalyst 12 starts to be desorbed, whereas the oxidation catalyst 12 has not yet been sufficiently activated, so that the HC desorbed from the oxidation catalyst 12 May pass through the oxidation catalyst 12 without being oxidized. In this case, HC is discharged into the atmosphere as white smoke.

このような白煙は触媒床温が低い状態で酸化触媒12が使用される内燃機関1の冷間始動時等に特に発生し易い。これは、触媒昇温が低い状態から酸化触媒12の暖機を行う場合、触媒暖機に長い時間を要するため、白煙が発生する虞のある温度領域に触媒床温が属する時間が長くなる傾向があるからである。図4(A)は従来の排気還流装置において酸化触媒の触媒暖機を行った場合の触媒床温の時間変化を示すグラフである。図4(A)の横軸は触媒暖機開始後の経過時間を表し、縦軸は酸化触媒12の触媒床温を表している。図4(A)に示すように、触媒暖機に要する時間が長い場合、触媒床温が白煙発生の虞がある温度領域Dに属している時間ΔTaは長くなるため、未燃燃料が白煙となって大気中に排出される可能性がある。   Such white smoke is particularly likely to occur during a cold start of the internal combustion engine 1 in which the oxidation catalyst 12 is used in a state where the catalyst bed temperature is low. This is because, when warming up the oxidation catalyst 12 from a state where the catalyst temperature rise is low, it takes a long time for the catalyst to warm up, so that the time during which the catalyst bed temperature belongs to a temperature region where white smoke may be generated becomes long. This is because there is a tendency. FIG. 4A is a graph showing the change over time of the catalyst bed temperature when the catalyst of the oxidation catalyst is warmed up in the conventional exhaust gas recirculation apparatus. The horizontal axis of FIG. 4A represents the elapsed time after the start of catalyst warm-up, and the vertical axis represents the catalyst bed temperature of the oxidation catalyst 12. As shown in FIG. 4A, when the time required for warming up the catalyst is long, the time ΔTa belonging to the temperature region D in which the catalyst bed temperature may cause white smoke is long, so that the unburned fuel is white. There is a possibility of being discharged into the atmosphere as smoke.

これに対し、本実施例では、可及的に短時間で触媒暖機を完了させることで、白煙が発生する虞のある温度領域に触媒床温が属する時間を短縮するようにしている。具体的には、触媒暖機の実施時に、排気絞り弁19を閉弁方向に制御するとともに低圧EGR弁32を開弁方向に制御するようにしている。これにより、排気絞り弁19より上流の排気管4の圧力が上昇し、ポンプ損失が増大して内燃機関1の負荷が増大する。そのため内燃機関1における燃料噴射量が増加し、内燃機関1からの排気の温度が上昇する。これにより、酸化触媒12に高温の排気が流入するようになるため、酸化触媒12を昇温することができる。   On the other hand, in this embodiment, the catalyst warm-up is completed in as short a time as possible so that the time during which the catalyst bed temperature belongs to a temperature region where white smoke may be generated is shortened. Specifically, when the catalyst is warmed up, the exhaust throttle valve 19 is controlled in the valve closing direction and the low pressure EGR valve 32 is controlled in the valve opening direction. As a result, the pressure in the exhaust pipe 4 upstream from the exhaust throttle valve 19 increases, the pump loss increases, and the load on the internal combustion engine 1 increases. Therefore, the fuel injection amount in the internal combustion engine 1 increases, and the temperature of the exhaust gas from the internal combustion engine 1 rises. Thereby, since high temperature exhaust gas flows into the oxidation catalyst 12, the oxidation catalyst 12 can be heated.

また、低圧EGR装置30によって排気の再循環が行われる。本実施例では、排気絞り弁19の開度を非常に小さい開度まで絞った場合であっても、低圧EGR通路31が排気絞り弁19より下流の排気管4に接続されているため、低圧EGR通路31の圧力が過剰に上昇する虞がない。従って、上記のように内燃機関1の負荷を増大させるべく排気絞り弁19を絞った場合においても、低圧EGR弁32の調量精度が損なわれにくく、好適に低圧EGR装置30による排気の再循環を行うことが可能である。低圧EGR装置30によって排気の再循環を行うことによって、排気浄化装置10を通過したクリーンな排気を内燃機関1の吸気管3に還流させつつ触媒暖機を行うことができるため、高圧EGR装置
40のみを用いて排気の再循環を行うことで触媒暖機を補助していた従来の排気還流装置の場合と比較して、より効率よく且つ信頼性の高い触媒暖機を行うことが可能になる。また、低圧EGR通路31が高圧状態になる虞がないため、従来の排気還流装置と比較してより排気絞り弁19の開度を小さくすることができる。その結果、内燃機関1からの排気の温度をより確実に上昇させることができ、短時間で酸化触媒12の触媒床温を上昇させることが可能になる。
Further, exhaust gas is recirculated by the low pressure EGR device 30. In the present embodiment, even if the opening of the exhaust throttle valve 19 is throttled to a very small opening, the low pressure EGR passage 31 is connected to the exhaust pipe 4 downstream from the exhaust throttle valve 19, so that the low pressure There is no possibility that the pressure in the EGR passage 31 will rise excessively. Therefore, even when the exhaust throttle valve 19 is throttled to increase the load on the internal combustion engine 1 as described above, the metering accuracy of the low pressure EGR valve 32 is not easily lost, and the exhaust gas is preferably recirculated by the low pressure EGR device 30. Can be done. By performing exhaust gas recirculation by the low pressure EGR device 30, the catalyst warm-up can be performed while the clean exhaust gas that has passed through the exhaust gas purification device 10 is recirculated to the intake pipe 3 of the internal combustion engine 1. As compared with the case of the conventional exhaust gas recirculation device that assists the catalyst warm-up by recirculating the exhaust gas using only the exhaust gas, it is possible to perform the catalyst warm-up more efficiently and more reliably. . Further, since there is no possibility that the low pressure EGR passage 31 is in a high pressure state, the opening of the exhaust throttle valve 19 can be made smaller than that of the conventional exhaust gas recirculation device. As a result, the temperature of the exhaust gas from the internal combustion engine 1 can be increased more reliably, and the catalyst bed temperature of the oxidation catalyst 12 can be increased in a short time.

図4(B)は本実施例の排気還流装置において上述のような酸化触媒12の触媒暖機を行った場合の触媒床温の時間変化を示すグラフである。図4(B)の横軸は触媒暖機開始後の経過時間を表し、縦軸は酸化触媒12の触媒床温を表している。図4(B)に示すように、本実施例によれば、触媒暖機を短時間で完了させることができるため、触媒床温が白煙発生の虞がある温度領域Dに属している時間ΔTbが短くなる。これにより、内燃機関1の冷間始動時等、酸化触媒12の触媒床温が低い状態から触媒暖機を行う場合においても、白煙の発生を抑制することが可能になる。   FIG. 4B is a graph showing the change over time of the catalyst bed temperature when the above-described catalyst warm-up of the oxidation catalyst 12 is performed in the exhaust gas recirculation apparatus of the present embodiment. The horizontal axis in FIG. 4B represents the elapsed time after the start of catalyst warm-up, and the vertical axis represents the catalyst bed temperature of the oxidation catalyst 12. As shown in FIG. 4B, according to this embodiment, since the catalyst warm-up can be completed in a short time, the time when the catalyst bed temperature belongs to the temperature region D in which white smoke may be generated. ΔTb is shortened. Thereby, even when the catalyst is warmed up from a state where the catalyst bed temperature of the oxidation catalyst 12 is low, such as when the internal combustion engine 1 is cold started, generation of white smoke can be suppressed.

ここで、上述した本実施例の触媒暖機制御について、図5のフローチャートに基づいて説明する。図5のフローチャートは本実施例の触媒暖機制御を行うためのルーチンを示すフローチャートである。このルーチンは所定期間毎に繰り返し実行される。   Here, the catalyst warm-up control of this embodiment described above will be described based on the flowchart of FIG. The flowchart of FIG. 5 is a flowchart showing a routine for performing catalyst warm-up control of this embodiment. This routine is repeatedly executed every predetermined period.

まず、ステップS101において、ECU20は、内燃機関1の運転状態を検出する。具体的には、アクセル開度センサ15の検出値に基づいて内燃機関1の機関負荷を検出し、クランクポジションセンサ16の検出値に基づいて内燃機関1の機関回転数を読み込む。   First, in step S101, the ECU 20 detects the operating state of the internal combustion engine 1. Specifically, the engine load of the internal combustion engine 1 is detected based on the detection value of the accelerator opening sensor 15, and the engine speed of the internal combustion engine 1 is read based on the detection value of the crank position sensor 16.

次に、ステップS102において、ECU20は、前記ステップS101において検出した内燃機関1の運転状態に応じた目標高圧EGR弁開度及び目標低圧EGR弁開度を求める。目標高圧EGR弁開度及び目標低圧EGR弁開度は、それぞれ内燃機関1の機関負荷及び機関回転数に応じて定まる関数又はマップとして予め実験により求められている。   Next, in step S102, the ECU 20 obtains a target high pressure EGR valve opening and a target low pressure EGR valve opening corresponding to the operating state of the internal combustion engine 1 detected in step S101. The target high pressure EGR valve opening and the target low pressure EGR valve opening are obtained in advance by experiments as functions or maps determined according to the engine load and engine speed of the internal combustion engine 1, respectively.

次に、ステップS103において、ECU20は、高圧EGR弁42の開度が前記ステップS102において求めた目標高圧EGR弁開度となるように高圧EGR弁42を制御するとともに、低圧EGR弁32の開度が前記ステップS102において求めた目標低圧EGR弁開度となるように低圧EGR弁32を制御する。   Next, in step S103, the ECU 20 controls the high pressure EGR valve 42 so that the opening degree of the high pressure EGR valve 42 becomes the target high pressure EGR valve opening degree obtained in step S102, and the opening degree of the low pressure EGR valve 32. The low pressure EGR valve 32 is controlled so that the target low pressure EGR valve opening degree obtained in step S102 is obtained.

次に、ステップS104において、ECU20は、酸化触媒12の触媒床温Tを求める。具体的には、温度センサ18によって検出される排気浄化装置10直下流の排気の温度に基づいて触媒床温Tを推定する。   Next, in step S <b> 104, the ECU 20 obtains the catalyst bed temperature T of the oxidation catalyst 12. Specifically, the catalyst bed temperature T is estimated based on the temperature of the exhaust gas immediately downstream of the exhaust gas purification device 10 detected by the temperature sensor 18.

次に、ステップS105において、ECU20は、酸化触媒12が活性化しているか否かを判定する。具体的には、前記ステップS104において検出した触媒床温Tが所定温度T0より低いか否かを判定する。ここで、所定温度T0は酸化触媒12が十分活性化していると判断可能な触媒床温であり、予め実験により求められている。   Next, in step S105, the ECU 20 determines whether or not the oxidation catalyst 12 is activated. Specifically, it is determined whether or not the catalyst bed temperature T detected in step S104 is lower than a predetermined temperature T0. Here, the predetermined temperature T0 is a catalyst bed temperature at which it can be determined that the oxidation catalyst 12 is sufficiently activated, and is obtained in advance by experiments.

前記ステップS105において肯定判定された場合、ECU20は、酸化触媒12に対して触媒暖機を行うべくステップS106に進む。一方、前記ステップS105において否定判定された場合、ECU20は、酸化触媒12は十分活性化していると判定してステップS108に進む。   If an affirmative determination is made in step S105, the ECU 20 proceeds to step S106 in order to warm up the oxidation catalyst 12. On the other hand, if a negative determination is made in step S105, the ECU 20 determines that the oxidation catalyst 12 is sufficiently activated and proceeds to step S108.

ステップS106では、ECU20は、排気絞り弁19を閉弁方向に制御する。これにより内燃機関1の負荷が増大して内燃機関1からの排気の温度が上昇する。   In step S106, the ECU 20 controls the exhaust throttle valve 19 in the valve closing direction. As a result, the load on the internal combustion engine 1 increases and the temperature of the exhaust gas from the internal combustion engine 1 rises.

続くステップS107において、ECU20は、低圧EGR弁32を開弁方向に制御する。これにより低圧EGR装置30によって排気の再循環が行われ、内燃機関1からの排気の温度が上昇する。ステップS107を実行後、ECU20は前記ステップS105に戻り、再度酸化触媒12の活性状態を判定する。   In subsequent step S107, the ECU 20 controls the low pressure EGR valve 32 in the valve opening direction. As a result, the exhaust gas is recirculated by the low pressure EGR device 30 and the temperature of the exhaust gas from the internal combustion engine 1 rises. After executing Step S107, the ECU 20 returns to Step S105, and again determines the active state of the oxidation catalyst 12.

ステップS105において酸化触媒12が十分活性化している判定された場合、ステップS108に進み、排気絞り弁19を開弁するとともに、ステップS109において低圧EGR弁32の開度を通常制御による開度に戻す。   If it is determined in step S105 that the oxidation catalyst 12 is sufficiently activated, the process proceeds to step S108, the exhaust throttle valve 19 is opened, and the opening of the low pressure EGR valve 32 is returned to the opening by the normal control in step S109. .

なお、以上述べた実施の形態は本発明を説明するための一例であって、本発明の本旨を逸脱しない範囲内において上記の実施形態には種々の変更を加え得る。例えば、排気浄化装置10より下流の排気管4に後段の酸化触媒を更に設けるようにしても良い。これにより、上述した本実施例の触媒暖機を行ってもなお排気浄化装置10を通過してしまった未燃燃料を後段の酸化触媒において浄化することができ、さらに排気エミッションを向上できる。また、上記実施例では酸化触媒12の触媒床温を排気浄化装置10の直下流の排気の温度に基づいて推定しているが、内燃機関1の運転状態や運転履歴等に基づいて推定しても良いし、或いは酸化触媒12の触媒床温を測定するセンサを設けて直接触媒床温を検出するようにしても良い。また、上記実施例では触媒暖機中に低圧EGR装置30を用いて排気の再循環を行うようにしているが、この時同時に高圧EGR装置40による排気の再循環を行っても良いし、逆に、高圧EGR弁42を閉弁して高圧EGR装置40による排気の再循環を停止しても良い。   The embodiment described above is an example for explaining the present invention, and various modifications can be made to the above-described embodiment without departing from the gist of the present invention. For example, a downstream oxidation catalyst may be further provided in the exhaust pipe 4 downstream of the exhaust purification device 10. As a result, the unburned fuel that has passed through the exhaust purification device 10 even when the catalyst warm-up of the present embodiment described above is performed can be purified by the subsequent oxidation catalyst, and the exhaust emission can be further improved. Further, in the above embodiment, the catalyst bed temperature of the oxidation catalyst 12 is estimated based on the temperature of the exhaust immediately downstream of the exhaust purification device 10, but is estimated based on the operation state, operation history, etc. of the internal combustion engine 1. Alternatively, a sensor for measuring the catalyst bed temperature of the oxidation catalyst 12 may be provided to directly detect the catalyst bed temperature. In the above embodiment, the exhaust gas is recirculated using the low pressure EGR device 30 during the catalyst warm-up, but at the same time, the exhaust gas may be recirculated by the high pressure EGR device 40, or vice versa. In addition, the high pressure EGR valve 42 may be closed to stop the exhaust gas recirculation by the high pressure EGR device 40.

実施例1に係る内燃機関の排気還流装置を適用する内燃機関とその吸気系及び排気系の概略構成を示す図である。1 is a diagram illustrating a schematic configuration of an internal combustion engine to which an exhaust gas recirculation device for an internal combustion engine according to a first embodiment is applied, and an intake system and an exhaust system thereof. 実施例1における低圧EGR装置と高圧EGR装置との切り替えマップを示す図である。It is a figure which shows the switching map of the low voltage | pressure EGR apparatus and high voltage | pressure EGR apparatus in Example 1. FIG. 実施例1における酸化触媒の触媒床温とHC吸着量との相関関係を示すグラフ、及び、実施例1における酸化触媒の触媒床温と触媒活性との相関関係を示すグラフである。2 is a graph showing the correlation between the catalyst bed temperature of the oxidation catalyst and the HC adsorption amount in Example 1, and the graph showing the correlation between the catalyst bed temperature of the oxidation catalyst and catalyst activity in Example 1. FIG. 従来の排気還流装置における触媒暖機を行った場合の触媒暖機開始後の触媒床温の時間変化を示すグラフ、及び、実施例1における触媒暖機を行った場合の触媒暖機開始後の触媒床温の時間変化を示すグラフである。The graph which shows the time change of the catalyst bed temperature after the catalyst warm-up start when the catalyst warm-up in the conventional exhaust gas recirculation apparatus is performed, and the catalyst warm-up after the catalyst warm-up in Example 1 is performed It is a graph which shows the time change of a catalyst bed temperature. 実施例1における触媒暖機制御を行うためのルーチンを示すフローチャートである。3 is a flowchart illustrating a routine for performing catalyst warm-up control in the first embodiment.

符号の説明Explanation of symbols

1 内燃機関
2 気筒
3 吸気管
4 排気管
5 ターボチャージャ
5a コンプレッサハウジング
5b タービンハウジング
6 第1吸気絞り弁
7 エアフローメータ
8 インタークーラ
9 第2吸気絞り弁
10 排気浄化装置
12 酸化触媒
13 フィルタ
14 アクセルペダル
15 アクセル開度センサ
16 クランクポジションセンサ
18 温度センサ
19 排気絞り弁
20 ECU
30 低圧EGR装置
31 低圧EGR通路
32 低圧EGR弁
33 低圧EGRクーラ
40 高圧EGR装置
41 高圧EGR通路
42 高圧EGR弁
43 高圧EGRクーラ
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Cylinder 3 Intake pipe 4 Exhaust pipe 5 Turbocharger 5a Compressor housing 5b Turbine housing 6 First intake throttle valve 7 Air flow meter 8 Intercooler 9 Second intake throttle valve 10 Exhaust purification device 12 Oxidation catalyst 13 Filter 14 Accelerator pedal 15 Accelerator opening sensor 16 Crank position sensor 18 Temperature sensor 19 Exhaust throttle valve 20 ECU
30 Low pressure EGR device 31 Low pressure EGR passage 32 Low pressure EGR valve 33 Low pressure EGR cooler 40 High pressure EGR device 41 High pressure EGR passage 42 High pressure EGR valve 43 High pressure EGR cooler

Claims (2)

内燃機関の排気通路にタービンを有し且つ吸気通路にコンプレッサを有するターボチャージャと、
前記タービンより下流の排気通路に設けられた排気浄化触媒と、
前記排気浄化触媒より下流の排気通路に設けられ排気通路の流路断面積を変更する排気絞り弁と、
前記排気浄化触媒より下流の排気通路と前記コンプレッサより上流の吸気通路とを接続する低圧EGR通路と、
前記低圧EGR通路に設けられ低圧EGR通路の流路断面積を変更する低圧EGR弁と、
前記排気浄化触媒の温度を検出する触媒温度検出手段と、
前記触媒温度検出手段によって前記検出される温度が所定の温度を下回っている場合には、前記検出される温度が前記所定の温度を下回っていない場合と比較して前記排気絞り弁を閉弁方向に制御し且つ前記低圧EGR弁を開弁方向に制御する触媒暖機手段と、
を備えることを特徴とする内燃機関の排気還流装置。
A turbocharger having a turbine in the exhaust passage of the internal combustion engine and a compressor in the intake passage;
An exhaust purification catalyst provided in an exhaust passage downstream from the turbine;
An exhaust throttle valve that is provided in an exhaust passage downstream from the exhaust purification catalyst and changes a flow passage cross-sectional area of the exhaust passage;
A low pressure EGR passage connecting an exhaust passage downstream from the exhaust purification catalyst and an intake passage upstream from the compressor;
A low pressure EGR valve that is provided in the low pressure EGR passage and changes a cross-sectional area of the low pressure EGR passage;
Catalyst temperature detecting means for detecting the temperature of the exhaust purification catalyst;
When the temperature detected by the catalyst temperature detecting means is lower than a predetermined temperature, the exhaust throttle valve is closed in a valve closing direction as compared with the case where the detected temperature is not lower than the predetermined temperature. And a catalyst warm-up means for controlling the low-pressure EGR valve in the valve opening direction.
An exhaust gas recirculation device for an internal combustion engine, comprising:
請求項1において、
前記低圧EGR通路は、前記排気絞り弁より下流の排気通路と前記コンプレッサより上流の吸気通路とを接続する通路であることを特徴とする内燃機関の排気還流装置。
In claim 1,
The exhaust gas recirculation apparatus for an internal combustion engine, wherein the low pressure EGR passage is a passage connecting an exhaust passage downstream of the exhaust throttle valve and an intake passage upstream of the compressor.
JP2006179769A 2006-06-29 2006-06-29 Exhaust gas recirculation device for internal combustion engine Active JP4720647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006179769A JP4720647B2 (en) 2006-06-29 2006-06-29 Exhaust gas recirculation device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006179769A JP4720647B2 (en) 2006-06-29 2006-06-29 Exhaust gas recirculation device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008008206A true JP2008008206A (en) 2008-01-17
JP4720647B2 JP4720647B2 (en) 2011-07-13

Family

ID=39066639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006179769A Active JP4720647B2 (en) 2006-06-29 2006-06-29 Exhaust gas recirculation device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4720647B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139034A1 (en) * 2008-05-12 2009-11-19 トヨタ自動車株式会社 Control unit for supercharger-equipped internal combustion engine
US7895838B2 (en) * 2006-01-27 2011-03-01 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation apparatus of an internal combustion engine and control method thereof
JP2013501869A (en) * 2009-08-08 2013-01-17 ダイムラー・アクチェンゲゼルシャフト Internal combustion engine
JP2013155656A (en) * 2012-01-30 2013-08-15 Mitsubishi Motors Corp Regeneration control device
US8555615B2 (en) 2007-06-06 2013-10-15 Toyota Jidosha Kabushiki Kaisha Internal combustion engine exhaust gas control system and control method of internal combustion engine exhaust gas control system
JP2019112949A (en) * 2017-12-20 2019-07-11 株式会社クボタ engine
JP2019132227A (en) * 2018-02-01 2019-08-08 マツダ株式会社 Exhaust emission control device of engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256862A (en) * 2001-03-01 2002-09-11 Denso Corp Exhaust emission control device for internal combustion engine
JP2006070732A (en) * 2004-08-31 2006-03-16 Toyota Motor Corp Exhaust emission control system of internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256862A (en) * 2001-03-01 2002-09-11 Denso Corp Exhaust emission control device for internal combustion engine
JP2006070732A (en) * 2004-08-31 2006-03-16 Toyota Motor Corp Exhaust emission control system of internal combustion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7895838B2 (en) * 2006-01-27 2011-03-01 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation apparatus of an internal combustion engine and control method thereof
US8555615B2 (en) 2007-06-06 2013-10-15 Toyota Jidosha Kabushiki Kaisha Internal combustion engine exhaust gas control system and control method of internal combustion engine exhaust gas control system
WO2009139034A1 (en) * 2008-05-12 2009-11-19 トヨタ自動車株式会社 Control unit for supercharger-equipped internal combustion engine
JP2013501869A (en) * 2009-08-08 2013-01-17 ダイムラー・アクチェンゲゼルシャフト Internal combustion engine
JP2013155656A (en) * 2012-01-30 2013-08-15 Mitsubishi Motors Corp Regeneration control device
JP2019112949A (en) * 2017-12-20 2019-07-11 株式会社クボタ engine
JP2019132227A (en) * 2018-02-01 2019-08-08 マツダ株式会社 Exhaust emission control device of engine
JP7095295B2 (en) 2018-02-01 2022-07-05 マツダ株式会社 Engine exhaust purification control device

Also Published As

Publication number Publication date
JP4720647B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP4333725B2 (en) Exhaust gas recirculation device for internal combustion engine
JP4611941B2 (en) Exhaust gas recirculation device for internal combustion engine
JP5037263B2 (en) Control device for internal combustion engine
US6742329B2 (en) Exhaust emission control system of diesel engine
JP4737335B2 (en) EGR system for internal combustion engine
JP4270155B2 (en) Exhaust purification catalyst thermal degradation state detection device
JP4720647B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2008002351A (en) Exhaust gas recirculation device for internal combustion engine
JP2008138638A (en) Exhaust recirculating device of internal combustion engine
JP2007292028A (en) Exhaust gas recirculation device for internal combustion engine
JP4882688B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2010270715A (en) Internal combustion engine with sequential two-stage supercharger and method for controlling the same
JP5240514B2 (en) Engine exhaust gas recirculation system
JP4893493B2 (en) Exhaust gas purification device for internal combustion engine
JP2010007634A (en) Exhaust emission control device for an internal combustion engine
JP2008038622A (en) Exhaust emission control device and method of internal combustion engine
JP2006274985A (en) Exhaust gas aftertreatment device
WO2011114381A1 (en) Exhaust gas evacuation device for internal combustion engine
JP2006037857A (en) Exhaust emission control device
JP2014101812A (en) Exhaust recirculation device of engine
JP4539466B2 (en) Exhaust gas purification system for internal combustion engine
JP2007291975A (en) Exhaust recirculation device of internal combustion engine
JP4315121B2 (en) Exhaust purification catalyst deterioration judgment device
JP2007138768A (en) Exhaust emission control device of internal combustion engine
JP4682931B2 (en) Exhaust gas recirculation device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3