WO2011114381A1 - Exhaust gas evacuation device for internal combustion engine - Google Patents

Exhaust gas evacuation device for internal combustion engine Download PDF

Info

Publication number
WO2011114381A1
WO2011114381A1 PCT/JP2010/001970 JP2010001970W WO2011114381A1 WO 2011114381 A1 WO2011114381 A1 WO 2011114381A1 JP 2010001970 W JP2010001970 W JP 2010001970W WO 2011114381 A1 WO2011114381 A1 WO 2011114381A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
combustion engine
internal combustion
passage
bypass valve
Prior art date
Application number
PCT/JP2010/001970
Other languages
French (fr)
Japanese (ja)
Inventor
宇野幸樹
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/001970 priority Critical patent/WO2011114381A1/en
Publication of WO2011114381A1 publication Critical patent/WO2011114381A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • F01N3/0256Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases the fuel being ignited by electrical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/02Exhaust treating devices having provisions not otherwise provided for for cooling the device
    • F01N2260/022Exhaust treating devices having provisions not otherwise provided for for cooling the device using air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2270/00Mixing air with exhaust gases
    • F01N2270/02Mixing air with exhaust gases for cooling exhaust gases or the apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10229Fluid connections to the air intake system; their arrangement of pipes, valves or the like the intake system acting as a vacuum or overpressure source for auxiliary devices, e.g. brake systems; Vacuum chambers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust device having a function of reducing the exhaust temperature of an internal combustion engine.
  • the exhaust temperature outside the exhaust passage of the internal combustion engine is lower than a predetermined external reference value.
  • a predetermined external reference value for example, “300 ° C. or less at the outermost end of the vehicle (haystack fire standard)” and “180 ° C. or less at a point 300 mm from the outermost end of the vehicle (burn standard)” are used. There is.
  • a bypass passage is used to blow off unburned fuel and condensed water inside the low-pressure EGR passage in an intake and exhaust system having a turbocharger.
  • the low-pressure EGR passage connects the downstream side of the turbine in the exhaust passage and the upstream side of the compressor in the intake passage.
  • the bypass passage connects a midway portion of the low pressure EGR passage and a downstream side of the compressor in the intake passage. Air compressed by the pressure of the turbine is supplied to the low-pressure EGR passage through the bypass passage and discharged to the exhaust passage.
  • An object of the present invention is to provide a novel means capable of suppressing the influence of the exhaust temperature outside the exhaust passage on the outside.
  • One embodiment of the present invention provides: A bypass passage connecting an intake passage downstream of a supercharging device of an internal combustion engine of a vehicle and an exhaust passage of the internal combustion engine; A bypass valve for opening and closing the bypass passage; An exhaust system for an internal combustion engine comprising a controller for controlling the bypass valve, The controller controls the bypass valve so that the temperature within a predetermined range including the end of the exhaust passage falls below a predetermined external reference value, and intake air pressurized by the supercharger is supplied to the exhaust passage. An exhaust device for an internal combustion engine to be supplied.
  • the controller controls the bypass valve so that the temperature within a predetermined range including the end of the exhaust passage is lower than a predetermined external reference value. Therefore, the influence of the exhaust temperature outside the exhaust passage on the outside can be suppressed.
  • the exhaust passage further includes a PM collection device that collects PM in the exhaust
  • the bypass valve is connected to the exhaust passage on the downstream side of the PM collection device
  • the controller includes: The bypass valve is opened during the regeneration operation for burning or oxidizing the PM collected by the PM collection device.
  • the influence of the exhaust temperature outside the exhaust passage on the outside can be suitably suppressed even during the regeneration operation in which the PM trapping device may be particularly hot.
  • the apparatus supplies a fuel supply device for supplying fuel into the exhaust passage to perform the regeneration operation, an ignition device for igniting the fuel supplied from the fuel supply device, Is further provided.
  • a fuel supply device for supplying fuel into the exhaust passage to perform the regeneration operation
  • an ignition device for igniting the fuel supplied from the fuel supply device
  • the controller has a temperature at a predetermined position in the exhaust passage downstream of the PM collection device and downstream of the position where the bypass passage is connected exceeds a predetermined internal reference value.
  • the bypass valve is opened.
  • the influence of the exhaust temperature outside the exhaust passage on the outside can be suitably suppressed even when the exhaust temperature outside the exhaust passage can be high, such as during or immediately after a high load. Can do.
  • the controller opens the bypass valve when the traveling speed of the vehicle is smaller than a predetermined value.
  • a situation in which an external object is easily affected by the exhaust temperature is avoided as much as possible. Therefore, the influence of the exhaust temperature outside the exhaust passage on the outside can be particularly preferably suppressed.
  • the upstream end of the bypass passage is connected to the downstream side of the intercooler provided in the intake passage.
  • the intercooler since the intake air from the intake passage is cooled by the intercooler, the effect of the present invention can be realized particularly suitably.
  • the means for solving the problems in the present invention can be used in combination as much as possible.
  • the influence of the exhaust temperature outside the exhaust passage on the outside can be suitably suppressed.
  • FIG. 1 is a conceptual diagram of a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing a bypass valve control process in the first embodiment.
  • FIG. 3 is a graph showing an example of intake air temperature / internal reference value map setting in the second embodiment.
  • FIG. 4 is a flowchart showing a bypass valve control process in the second embodiment.
  • FIG. 5 is a conceptual diagram of the third embodiment.
  • FIG. 6 is a graph showing a setting example of the bypass valve opening map in the modification.
  • FIG. 1 shows a first embodiment of the present invention.
  • the engine body 1 is a compression ignition internal combustion engine (diesel engine) using light oil as fuel, but may be another type of internal combustion engine.
  • the engine body 1 has the combustion chamber 2 in each of the four cylinders, the present invention is not limited to a four-cylinder engine.
  • Each combustion chamber 2 is provided with an electronically controlled fuel injection valve 3 for injecting fuel.
  • An intake manifold 4 and an exhaust manifold 5 are connected to the combustion chamber 2.
  • the intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 via the intake pipe 6.
  • An inlet of the compressor 7 a is connected to an air cleaner 9 via an air flow meter 8.
  • the upstream side of the air cleaner 9 is open to the atmosphere.
  • a throttle valve 10 driven by a step motor is disposed in the intake pipe 6, a throttle valve 10 driven by a step motor.
  • the actuator that drives the throttle valve 10 is not limited to a step motor, and other configurations such as a DC motor may be employed.
  • An intercooler 11 for cooling the intake air flowing through the intake pipe 6 is disposed around the intake pipe 6. Engine cooling water is guided into the intercooler 11 and the intake air is cooled by the engine cooling water.
  • the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7.
  • the outlet of the exhaust turbine 7 b is connected to the PM collection device 13 via the exhaust pipe 12.
  • a small oxidation catalyst 14 is disposed in the engine exhaust passage upstream of the PM collection device 13, that is, in the exhaust pipe 12.
  • the small oxidation catalyst 14 has a smaller volume than the PM collection device 13 and a part of the exhaust gas flowing into the PM collection device 13 flows.
  • the present invention is not limited to the exhaust device provided with the small oxidation catalyst 14.
  • the PM collection device 13 and the small oxidation catalyst 14 are obtained by supporting an oxidation catalyst on a base material.
  • the base material is, for example, a honeycomb structure made of porous ceramic, and the honeycomb structure is formed of a ceramic material such as cordierite, silica, or alumina.
  • the base material includes a large number of gas passages each defined by a large number of partition walls and parallel to the flow direction of the exhaust gas.
  • the base material of the PM collecting device 13 is a so-called wall flow type in which a first passage having a plug on the upstream side and a second passage having a plug on the downstream side are alternately formed. .
  • the base material of the small oxidation catalyst 14 is a so-called flow-through type that does not have such plugging and has open end faces on the upstream side and the downstream side of the gas flow path.
  • the oxidation catalyst for example, Pt / CeO 2 , Mn / CeO 2 , Fe / CeO 2 , Ni / CeO 2 , Cu / CeO 2 or the like can be used.
  • a fuel supply valve 15 for supplying fuel to the small oxidation catalyst 14 is arranged with its injection port facing the inside of the exhaust pipe 12.
  • the fuel in the fuel tank 44 is supplied to the fuel supply valve 15 via the fuel pump 43.
  • a pipe line, a control valve, and a compressor for supplying combustion air into the exhaust pipe 12 from the outside may be provided.
  • a glow plug 16 is provided in the exhaust pipe 12 on the downstream side of the fuel supply valve 15.
  • the glow plug 16 is arranged so that the fuel added from the fuel supply valve 15 is in contact with the tip portion which is the heat generating portion.
  • the glow plug 16 is connected to a DC power source and a booster circuit (both not shown) for supplying power thereto.
  • a ceramic heater may be used instead of the glow plug.
  • a collision plate for colliding the fuel injected from the fuel supply valve 15 may be disposed in the exhaust pipe 12.
  • the small oxidation catalyst 14, the fuel supply valve 15, and the glow plug 16 constitute an exhaust temperature raising device 40, which is controlled by an ECU 50 described later.
  • the exhaust manifold 5 and the intake manifold 4 are connected to each other via an EGR passage 18.
  • An electronically controlled EGR control valve 19 is disposed in the EGR passage 18.
  • an EGR cooler 20 for cooling the EGR gas flowing in the EGR passage 18 is disposed.
  • the engine cooling water is guided into the EGR cooler 20, and the EGR gas is cooled by the engine cooling water.
  • a NOx catalyst 21 and a silencer 22 are connected in series to the exhaust pipe 12 on the downstream side of the PM collection device 13.
  • the NOx catalyst is, for example, an NOx storage reduction (NSR) catalyst, and a NOx absorption, such as platinum Pt as a catalyst component, on the surface of a base material made of an oxide such as alumina Al 2 O 3 and the like. Components are supported.
  • the NOx absorbing component is at least one selected from, for example, an alkali metal such as potassium K, sodium Na, lithium Li, and cesium Cs, an alkaline earth such as barium Ba and calcium Ca, and a rare earth such as lanthanum La and yttrium Y. It consists of one.
  • the NOx catalyst 21 absorbs NOx (nitrogen oxide) when the air-fuel ratio of the exhaust gas flowing into the exhaust gas is leaner than a predetermined value (typically the theoretical air-fuel ratio), and the NOx catalyst 21 in the exhaust gas flowing into the NOx catalyst 21 When the oxygen concentration decreases, the absorbed and released NOx soot is released.
  • NOx nitrogen oxide
  • a predetermined value typically the theoretical air-fuel ratio
  • the NOx catalyst 21 absorbs NOx in the exhaust.
  • fuel as a reducing agent is supplied upstream of the NOx catalyst 21 and the air-fuel ratio of the inflowing exhaust gas becomes rich, the NOx catalyst 21 releases the absorbed NOx. The released NOx reacts with the reducing agent and is reduced and purified.
  • a tail pipe 23 constituting the end of the exhaust passage is connected to the downstream side of the silencer 22.
  • the downstream side of the tail pipe 23 is open to the atmosphere.
  • the intake pipe 6 and the exhaust pipe 12 are connected via a bypass passage 30.
  • the bypass passage 30 connects the intake pipe 6 downstream of the compressor 7 a of the exhaust turbocharger 7 and the exhaust pipe 12 downstream of the turbine 7 b and the PM collection device 13 and upstream of the NOx catalyst 21. Yes.
  • the bypass passage 30 is provided with a bypass valve 33 that opens and closes the bypass passage 30.
  • a known butterfly valve or poppet valve can be used as the bypass valve 33.
  • the bypass valve 33 is driven by a step motor, but may be driven by other means such as a DC motor or a negative pressure actuator. When the bypass valve 33 is opened, the intake air pressurized by the compressor 7 a of the exhaust turbocharger 7 is supplied to the downstream side of the PM collection device 13.
  • a catalyst outlet temperature sensor 38 is installed in the intake pipe 12 downstream of the connection point with the bypass passage 30 and upstream of the NOx catalyst 21.
  • the catalyst outlet temperature sensor 38 has a thermistor whose resistance value changes depending on the temperature, and can detect a change in the exhaust temperature based on a change in the resistance value of the thermistor.
  • Each fuel injection valve 3 is connected to a common rail 42 via a fuel supply pipe 41, and this common rail 42 is connected to a fuel tank 44 via an electronically controlled fuel pump 43 with variable discharge amount.
  • the fuel stored in the fuel tank 44 is supplied into the common rail 42 by the fuel pump 43, and the fuel supplied into the common rail 42 is supplied to the fuel injection valve 3 through each fuel supply pipe 41.
  • An electronic control unit (ECU) 50 which is a controller, is composed of a well-known digital computer, and is connected to each other by a bidirectional bus, a ROM (read only memory), a RAM (random access memory), a CPU (microprocessor), an input port. And an output port.
  • ECU electronice control unit
  • the output signal of the catalyst outlet temperature sensor 38 is input to the input port of the ECU 50 via the corresponding AD converter.
  • a load sensor 52 that generates an output voltage proportional to the amount of depression of the accelerator pedal 51 is connected to the accelerator pedal 51, and the output voltage of the load sensor 52 is input to the input port via a corresponding AD converter.
  • a crank angle sensor 53 that generates an output pulse every time the crankshaft of the engine body 1 rotates, for example, 15 ° is connected to the input port.
  • an intake air temperature sensor 54 installed near the throttle valve 10 and a vehicle speed sensor 55 installed near the drive wheel are connected to the input port.
  • the output port of the ECU 50 is connected to each step motor for driving the throttle valve 10, the EGR control valve 19, and the bypass valve 33 through corresponding drive circuits.
  • the output port is also connected to the fuel injection valve 3 and the fuel pump 43 via corresponding drive circuits.
  • the operation of these actuators is controlled by the ECU 50.
  • Various programs and reference values / initial values are stored in the ROM of the ECU 50. Such reference values and initial values include a reference vehicle speed Va used in a bypass valve control process described later.
  • the ECU 50 calculates the fuel supply instruction amount based on parameters indicating the vehicle state, particularly the engine operating state, including the detected values of the air flow meter 8, the load sensor 52, and the crank angle sensor 53, and a time corresponding to the instruction amount. Only a control signal is output to open the fuel injection valves 3 and 15. In accordance with this control signal, an amount of fuel corresponding to the fuel supply instruction amount is supplied from the fuel injection valves 3 and 15.
  • the ECU 50 controls the exhaust temperature raising device 40 to supply and ignite fuel, thereby selectively raising the temperature of the small oxidation catalyst 14. Part or all of the fuel supplied from the fuel supply valve 15 is ignited by the glow plug 16, thereby raising the temperature of the exhaust.
  • a predetermined regeneration execution flag is provided in the RAM of the ECU 50, and the flag is turned on (1) while the regeneration operation is being performed, and is turned off (0) when the regeneration operation is not being performed.
  • the ECU 50 supplies fuel to the PM collection device 13 by injecting more fuel than necessary for the small oxidation catalyst 14 as necessary, and thereby burns the accumulated particulate matter (PM). It is also possible to perform oxidation (regeneration operation) and NOx reduction processing and SOx poisoning recovery processing for the NOx catalyst 21.
  • the temperature of the exhaust discharged from the PM collection device 13 is, for example, about 650 ° C. at the maximum.
  • This value is an external reference value for the exhaust temperature, and is provided to suppress the risk of fire and burns (for example, “300 ° C or less at the outermost end of the vehicle (haystack fire standard)” and “outermost of the vehicle” It is higher than 180 ° C. or less (burn standard) at a point of 300 mm from the end.
  • the exhaust temperature in the exhaust manifold 5 of the engine body 1 is about 200 ° C. to about 300 ° C. during steady operation. While the exhaust gas flows through the exhaust gas turbocharger 7 and the exhaust pipe 12, the exhaust gas temperature is lowered by work and outside air cooling.
  • the exhaust gas temperature is within a predetermined range including the end of the exhaust gas passage.
  • the temperature of the above (for example, in a geometric region where it is considered that there is a low probability of fire or burns due to contact or thermal radiation outside the range, such as a point at the outermost end of the vehicle and 300 mm from the outermost end) It is considered to be sufficiently lower than the external standard value. If the bypass valve 33 is opened and the pressurized intake air is supplied to the exhaust pipe 12 during the regeneration operation, the temperature within a predetermined range including the end of the exhaust passage (tail pipe 23) is set to the external reference value. Will be lower.
  • the ECU 50 further executes the following bypass valve control process in parallel with the above-described controls.
  • This bypass valve control process will be described with reference to FIG.
  • the processing routine of FIG. 2 is repeatedly executed every predetermined time ⁇ t on condition that an ignition switch (not shown) is turned on and the engine body 1 is operating.
  • the ECU 50 reads the value of the regeneration execution flag described above and the vehicle speed detected by the vehicle speed sensor 55 (S10).
  • the ECU 50 determines whether the regeneration operation is being executed based on the read regeneration execution flag value (S20). If NO, that is, if the regeneration operation is not being executed, the ECU 50 outputs a control to the step motor that drives the bypass valve 33 so as to close the bypass valve 33 (S50).
  • step S20 determines whether the vehicle speed is lower than a predetermined reference vehicle speed Va based on the previously detected value of the vehicle speed sensor 55. Judgment is made (S30).
  • the value of the reference vehicle speed Va is, for example, 10 km / h, a value obtained by adding a certain margin value to a speed that is considered to be unlikely to cause a fire or burn due to contact or thermal radiation at a higher speed. If negative, that is, if the vehicle speed is equal to or higher than the reference vehicle speed Va, the bypass valve 33 is closed (S50).
  • step S30 When the determination in step S30 is affirmative, that is, when the regenerating operation is being performed and the vehicle speed is smaller than the reference vehicle speed Va, the ECU 50 outputs a control to the step motor that drives the bypass valve 33 so as to open the bypass valve 33 ( S40). As a result, the air compressed by the pressure of the turbine 7 a is supplied into the exhaust pipe 12 through the bypass passage 30. With the above processing, the temperature within the predetermined range including the tail pipe 23 is lowered so as to be lower than the predetermined external reference value.
  • the bypass passage 30 connecting the intake pipe 6 on the downstream side of the compressor 7a of the exhaust injector 7 and the exhaust pipe 12 on the downstream side of the PM trap 13 and the bypass passage 30 are provided. Since the bypass valve 33 that opens and closes is provided, when the bypass valve 33 is opened, the pressurized air is supplied from the intake pipe 6 on the downstream side of the exhaust injector 7 to the exhaust pipe 12 on the downstream side of the PM collection device 13. To be supplied.
  • the ECU 50 controls the bypass valve 33 so that the temperature within a predetermined range including the tail pipe 23 falls below a predetermined external reference value. Therefore, the influence of the exhaust temperature outside the exhaust passage on the outside can be suppressed.
  • the apparatus of the present embodiment further includes a fuel supply valve 15 that supplies fuel into the exhaust pipe 12 to perform a regeneration operation, and a glow plug 16 that ignites the fuel supplied from the fuel supply valve 15. Since it is provided, the influence of the exhaust temperature outside the exhaust passage on the outside can be suitably suppressed even when the regeneration operation by fuel supply and ignition is performed.
  • the ECU 50 opens the bypass valve 33 when the traveling speed of the vehicle is smaller than a predetermined value. Therefore, a situation in which an external object is easily affected by the exhaust temperature is avoided as much as possible, and the influence of the exhaust temperature outside the exhaust passage on the outside can be particularly preferably suppressed.
  • the second embodiment is characterized in that the bypass valve 33 is opened when the temperature at a predetermined position in the exhaust passage exceeds a predetermined internal reference value.
  • an intake air temperature / internal reference value map as shown in FIG. 3 is created in advance and stored in the ROM of the ECU 50.
  • the intake air temperature / internal reference value map stores the intake air temperature and the internal reference value Ta in association with each other, and the internal reference value Ta is set to be lower as the intake air temperature is higher. Since the remaining mechanical configuration of the second embodiment is the same as that of the first embodiment, a detailed description thereof will be omitted.
  • the ECU 50 executes the bypass valve control process shown in FIG.
  • the processing routine of FIG. 4 is repeatedly executed every predetermined time on condition that an ignition switch (not shown) is turned on and the engine body 1 is operating. 4, the ECU 50 first reads the intake air temperature detected by the intake air temperature sensor 54, the catalyst outlet temperature detected by the catalyst outlet temperature sensor 38, and the vehicle speed detected by the vehicle speed sensor 55 (S110).
  • the ECU 50 calculates the internal reference value Ta by referring to the intake air temperature / internal reference value map described above based on the read intake air temperature (S120).
  • the value of the internal reference value Ta is, for example, 400 ° C. If the temperature is lower than that, a margin value from a temperature at which it is considered that there is a low probability of fire or burns due to contact or thermal radiation near the tail pipe 23. The value obtained by subtracting.
  • the ECU 50 determines whether the catalyst outlet temperature is larger than the internal reference value Ta (S130). If negative, that is, if the catalyst outlet temperature is equal to or lower than the internal reference value Ta, the ECU 50 outputs a control to the step motor that drives the bypass valve 33 so as to close the bypass valve 33 (S160).
  • step S130 determines whether the catalyst outlet temperature is greater than the internal reference value Ta. If the determination in step S130 is affirmative, that is, if the catalyst outlet temperature is greater than the internal reference value Ta, the ECU 50 next determines the reference vehicle speed at which the vehicle speed is determined in advance based on the detection value of the vehicle speed sensor 55 previously read. It is determined whether it is smaller than Va (S140). If negative, that is, if the vehicle speed is equal to or higher than the reference vehicle speed Va, the bypass valve 33 is closed (S160).
  • step S140 If the determination in step S140 is affirmative, that is, if the catalyst outlet temperature is higher than the internal reference value Ta and the vehicle speed is lower than the reference vehicle speed Va, the ECU 50 drives the bypass valve 33 so as to open the bypass valve 33. A control output is made to the motor (S150). As a result, the air compressed by the pressure of the turbine 7 a is supplied into the exhaust pipe 12 through the bypass passage 30. With the above processing, the temperature within the predetermined range including the tail pipe 23 is lowered so as to be lower than the predetermined external reference value.
  • the ECU 50 has a predetermined temperature (that is, a catalyst outlet temperature) at a predetermined position in the exhaust passage downstream of the PM collection device 13 and upstream of the tail pipe 23.
  • a predetermined temperature that is, a catalyst outlet temperature
  • the bypass valve 33 is opened. Therefore, the exhaust temperature outside the exhaust passage affects the outside not only in the catalyst regeneration operation but also in other operating states where the exhaust temperature outside the exhaust passage can be high, such as during high load driving or immediately after that. The influence can be suitably suppressed.
  • the internal reference value Ta is dynamically set based on the intake air temperature, so that the bypass valve 33 is opened at a lower temperature as the outside air temperature is higher, and the influence of the exhaust temperature outside the exhaust passage on the outside. Can be suitably suppressed.
  • the bypass passage 130 is connected to the downstream side of the intercooler 11 provided in the intake pipe 6.
  • the effect of the present invention can be realized particularly suitably.
  • the opening degree of the bypass valve 33 is set to the two states of full opening or full closing, but the opening degree of the bypass valve 33 is changed in a multistage or continuous manner between full opening and full closing. Also good.
  • a bypass valve opening degree map in which, for example, the load and the EGR amount and the opening degree of the bypass valve 33 are defined is created in advance and stored in the ROM of the ECU 50.
  • the opening degree of the bypass valve 33 may be changed by referring to the map. In this case, it is preferable to increase the opening degree of the bypass valve 33 as the load is increased and the EGR amount is decreased.
  • the larger the load and the smaller the EGR amount the larger the amount of intake air supplied from the bypass passage 30 and the better the exhaust gas is cooled. Therefore, the influence of the exhaust temperature outside the exhaust passage on the outside is preferable. Can be suppressed.
  • the position where the bypass passage 30 is connected to the exhaust pipe 12 may be between the NOx catalyst 21 and the silencer 22 or may be downstream of the silencer 22.
  • the position in the exhaust passage where the temperature is acquired for comparison with the internal reference value may be between the blades downstream of the bypass passage 30 connected to the exhaust pipe, between the NOx catalyst 21 and the silencer 22. Further, it may be downstream of the silencer 22.
  • the bypass valve 33 is opened only when the vehicle speed is lower than the reference vehicle speed Va (S30, S140), but such a condition may not be provided.
  • the internal reference value Ta is dynamically set.
  • the internal reference value Ta may be a fixed value.
  • the pm collection device may not carry a catalyst substance.
  • a certain margin time or delay time may be provided between the end of the regeneration operation or when the catalyst outlet temperature falls below the internal reference value Ta until the bypass valve is closed.
  • the fuel is supplied to the catalyst by the fuel injection valve 15 disposed in the exhaust passage.
  • the fuel is supplied to the exhaust passage by so-called post injection (injection at a timing not accompanied by combustion, such as during an exhaust stroke).
  • the fuel injection valve 3 provided in the combustion chamber 2 may be used.

Abstract

An exhaust gas evacuation device for an internal combustion engine, provided with: a bypass path (30) for connecting the air intake path (6), which is located on the downstream side of the supercharging device (7) of the internal combustion engine (1) of the vehicle, and the exhaust gas evacuation path (12) of the internal combustion engine (1); a bypass valve (33) for opening and closing the bypass path (30); and a controller (50) for controlling the bypass valve (33). The controller (50) causes intake air, which has been pressurized by the supercharging device (7), to be supplied to the exhaust gas evacuation path (12) by controlling the bypass valve (33) so that the temperature within a predetermined area including the end (23) of the exhaust gas evacuation path (12) is below a predetermined external reference value.

Description

内燃機関の排気装置Exhaust device for internal combustion engine
 本発明は、内燃機関の排気温度を低下させる機能を有する排気装置に関する。 The present invention relates to an exhaust device having a function of reducing the exhaust temperature of an internal combustion engine.
 内燃機関の排気通路外における排気温度は、所定の外部基準値を下回ることが望ましい。そのような外部基準値としては、例えば「車両最外端で300°C以下(枯草火災基準)」および「車両最外端から300mmの点で180°C以下(火傷基準)」が用いられる場合がある。 It is desirable that the exhaust temperature outside the exhaust passage of the internal combustion engine is lower than a predetermined external reference value. As such an external reference value, for example, “300 ° C. or less at the outermost end of the vehicle (haystack fire standard)” and “180 ° C. or less at a point 300 mm from the outermost end of the vehicle (burn standard)” are used. There is.
 特許文献1が開示する排気装置では、三元触媒とNOx触媒とを直列に接続した構成において、NOx触媒を浄化に適した温度に冷却するために、エアポンプにより外気を排気通路のNOx触媒の直前に導入している。 In the exhaust system disclosed in Patent Document 1, in a configuration in which a three-way catalyst and a NOx catalyst are connected in series, in order to cool the NOx catalyst to a temperature suitable for purification, outside air is discharged immediately before the NOx catalyst in the exhaust passage by an air pump. Has been introduced.
 特許文献2が開示する排気装置では、ターボチャージャを有する吸排気系において、低圧EGR通路の内部の未燃燃料や凝縮水を吹き飛ばすために、バイパス通路を用いている。低圧EGR通路は、排気通路におけるタービンの下流側と、吸気通路におけるコンプレッサの上流側とを連結している。バイパス通路は、低圧EGR通路の中途部分と、吸気通路のコンプレッサの下流側とを連結している。タービンの圧力により圧縮された空気が、バイパス通路を通じて低圧EGR通路に供給され、排気通路に排出される。 In the exhaust system disclosed in Patent Document 2, a bypass passage is used to blow off unburned fuel and condensed water inside the low-pressure EGR passage in an intake and exhaust system having a turbocharger. The low-pressure EGR passage connects the downstream side of the turbine in the exhaust passage and the upstream side of the compressor in the intake passage. The bypass passage connects a midway portion of the low pressure EGR passage and a downstream side of the compressor in the intake passage. Air compressed by the pressure of the turbine is supplied to the low-pressure EGR passage through the bypass passage and discharged to the exhaust passage.
特開平3‐74513号公報Japanese Patent Laid-Open No. 3-74513 特開平11‐125151号公報Japanese Patent Laid-Open No. 11-125151
 しかし、特許文献1および特許文献2のいずれの排気装置においても、排気通路外における排気温度が外部に及ぼす影響については考慮されていない。 However, neither of the exhaust devices of Patent Document 1 and Patent Document 2 considers the influence of the exhaust temperature outside the exhaust passage on the outside.
 本発明は、排気通路外における排気温度が外部に及ぼす影響を抑制できる新規な手段を提供することを目的とする。 An object of the present invention is to provide a novel means capable of suppressing the influence of the exhaust temperature outside the exhaust passage on the outside.
 本発明の一態様は、
 車両の内燃機関の過給装置の下流側の吸気通路と、前記内燃機関の排気通路とを接続するバイパス通路と、
 前記バイパス通路を開閉するバイパス弁と、
 当該バイパス弁を制御するコントローラと、を備えた内燃機関の排気装置であって、
 前記コントローラは、前記排気通路の末端を含む所定範囲内の温度が所定の外部基準値を下回るように、前記バイパス弁を制御して、前記過給装置で加圧された吸気を前記排気通路に供給させる内燃機関の排気装置である。
One embodiment of the present invention provides:
A bypass passage connecting an intake passage downstream of a supercharging device of an internal combustion engine of a vehicle and an exhaust passage of the internal combustion engine;
A bypass valve for opening and closing the bypass passage;
An exhaust system for an internal combustion engine comprising a controller for controlling the bypass valve,
The controller controls the bypass valve so that the temperature within a predetermined range including the end of the exhaust passage falls below a predetermined external reference value, and intake air pressurized by the supercharger is supplied to the exhaust passage. An exhaust device for an internal combustion engine to be supplied.
 この態様では、バイパス弁を開くことにより、過給装置の下流側の吸気通路から、加圧された空気が排気通路に供給される。コントローラは、排気通路の末端を含む所定範囲内の温度が所定の外部基準値を下回るように、バイパス弁を制御する。したがって、排気通路外における排気温度が外部に及ぼす影響を抑制することができる。 In this aspect, by opening the bypass valve, pressurized air is supplied from the intake passage on the downstream side of the supercharging device to the exhaust passage. The controller controls the bypass valve so that the temperature within a predetermined range including the end of the exhaust passage is lower than a predetermined external reference value. Therefore, the influence of the exhaust temperature outside the exhaust passage on the outside can be suppressed.
 好適には、前記排気通路に設けられ排気中のPMを捕集するPM捕集装置を更に備え、前記バイパス弁は前記排気通路に前記PM捕集装置の下流側で接続され、前記コントローラは、前記PM捕集装置に捕集されたPMを燃焼または酸化させるための再生動作中に、前記バイパス弁を開かせる。この態様では、PM捕集装置が特に高温になる可能性がある再生動作中であっても、排気通路外における排気温度が外部に及ぼす影響を好適に抑制することができる。 Preferably, the exhaust passage further includes a PM collection device that collects PM in the exhaust, the bypass valve is connected to the exhaust passage on the downstream side of the PM collection device, and the controller includes: The bypass valve is opened during the regeneration operation for burning or oxidizing the PM collected by the PM collection device. In this aspect, the influence of the exhaust temperature outside the exhaust passage on the outside can be suitably suppressed even during the regeneration operation in which the PM trapping device may be particularly hot.
 この場合において、好適には、装置は前記再生動作を実行するために燃料を前記排気通路内に供給する燃料供給装置と、前記燃料供給装置から供給された燃料に着火させるための着火装置と、を更に備える。この態様では、燃料供給および着火による再生動作が行われた場合であっても、排気通路外における排気温度が外部に及ぼす影響を好適に抑制することができる。 In this case, preferably, the apparatus supplies a fuel supply device for supplying fuel into the exhaust passage to perform the regeneration operation, an ignition device for igniting the fuel supplied from the fuel supply device, Is further provided. In this aspect, even when the regeneration operation by fuel supply and ignition is performed, it is possible to suitably suppress the influence of the exhaust temperature outside the exhaust passage on the outside.
 好適には、前記コントローラは、前記PM捕集装置よりも下流側の前記排気通路中であって前記バイパス通路が接続する位置よりも下流側の所定位置の温度が所定の内部基準値を上回った場合に、前記バイパス弁を開かせる。この態様では、高負荷走行時やその直後など、排気通路外における排気温度が高温になりうる運転状態のときであっても、排気通路外における排気温度が外部に及ぼす影響を好適に抑制することができる。 Preferably, the controller has a temperature at a predetermined position in the exhaust passage downstream of the PM collection device and downstream of the position where the bypass passage is connected exceeds a predetermined internal reference value. In some cases, the bypass valve is opened. In this aspect, the influence of the exhaust temperature outside the exhaust passage on the outside can be suitably suppressed even when the exhaust temperature outside the exhaust passage can be high, such as during or immediately after a high load. Can do.
 好適には、前記コントローラは、前記車両の走行速度が所定値より小さい場合に、前記バイパス弁を開かせる。この態様では、外部の物体が排気温度の影響を受けやすい状況が可及的に回避されるため、排気通路外における排気温度が外部に及ぼす影響を特に好適に抑制することができる。 Preferably, the controller opens the bypass valve when the traveling speed of the vehicle is smaller than a predetermined value. In this aspect, a situation in which an external object is easily affected by the exhaust temperature is avoided as much as possible. Therefore, the influence of the exhaust temperature outside the exhaust passage on the outside can be particularly preferably suppressed.
 好適には、前記バイパス通路の上流側の端部は、前記吸気通路に設けられたインタークーラよりも下流側に接続されている。この場合には、吸気通路からの吸気がインタークーラにより冷却されるため、本発明の効果を特に好適に実現することができる。 Preferably, the upstream end of the bypass passage is connected to the downstream side of the intercooler provided in the intake passage. In this case, since the intake air from the intake passage is cooled by the intercooler, the effect of the present invention can be realized particularly suitably.
 なお、本発明における課題を解決するための手段は、可能な限り組み合わせて使用することができる。 In addition, the means for solving the problems in the present invention can be used in combination as much as possible.
 本発明によれば、排気通路外における排気温度が外部に及ぼす影響を好適に抑制することができる。 According to the present invention, the influence of the exhaust temperature outside the exhaust passage on the outside can be suitably suppressed.
図1は本発明の第1実施形態の概念図である。FIG. 1 is a conceptual diagram of a first embodiment of the present invention. 図2は第1実施形態におけるバイパス弁制御処理を示すフローチャートである。FIG. 2 is a flowchart showing a bypass valve control process in the first embodiment. 図3は第2実施形態における吸気温度/内部基準値マップ設定例を示すグラフである。FIG. 3 is a graph showing an example of intake air temperature / internal reference value map setting in the second embodiment. 図4は第2実施形態におけるバイパス弁制御処理を示すフローチャートである。FIG. 4 is a flowchart showing a bypass valve control process in the second embodiment. 図5は第3実施形態の概念図である。FIG. 5 is a conceptual diagram of the third embodiment. 図6は変形例におけるバイパス弁開度マップの設定例を示すグラフである。FIG. 6 is a graph showing a setting example of the bypass valve opening map in the modification.
<第1実施形態>
 本発明の好適な実施形態について、以下に詳細に説明する。図1は本発明の第1実施形態を示す。図1において、エンジン本体1は、軽油を燃料とする圧縮点火式内燃機関(ディーゼルエンジン)であるが、他の形式の内燃機関であってもよい。エンジン本体1は、4つの気筒のそれぞれに燃焼室2を有するが、本発明は4気筒エンジンに限定されない。各燃焼室2には、燃料を噴射するための電子制御式の燃料噴射弁3が配置されている。燃焼室2には、吸気マニホールド4および排気マニホールド5が接続されている。吸気マニホールド4は、吸気管6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結されている。コンプレッサ7aの入口は、エアフローメータ8を介してエアクリーナ9に連結されている。エアクリーナ9の上流側は大気に開放されている。
<First Embodiment>
Preferred embodiments of the present invention will be described in detail below. FIG. 1 shows a first embodiment of the present invention. In FIG. 1, the engine body 1 is a compression ignition internal combustion engine (diesel engine) using light oil as fuel, but may be another type of internal combustion engine. Although the engine body 1 has the combustion chamber 2 in each of the four cylinders, the present invention is not limited to a four-cylinder engine. Each combustion chamber 2 is provided with an electronically controlled fuel injection valve 3 for injecting fuel. An intake manifold 4 and an exhaust manifold 5 are connected to the combustion chamber 2. The intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 via the intake pipe 6. An inlet of the compressor 7 a is connected to an air cleaner 9 via an air flow meter 8. The upstream side of the air cleaner 9 is open to the atmosphere.
 吸気管6内には、ステップモータにより駆動されるスロットル弁10が配置されている。スロットル弁10を駆動するアクチュエータはステップモータに限らず、DCモータなど、他の構成を採用してもよい。吸気管6の周りには、吸気管6内を流れる吸入空気を冷却するためのインタークーラ11が配置されている。インタークーラ11内に機関冷却水が導かれ、機関冷却水によって吸入空気が冷却される。 In the intake pipe 6, a throttle valve 10 driven by a step motor is disposed. The actuator that drives the throttle valve 10 is not limited to a step motor, and other configurations such as a DC motor may be employed. An intercooler 11 for cooling the intake air flowing through the intake pipe 6 is disposed around the intake pipe 6. Engine cooling water is guided into the intercooler 11 and the intake air is cooled by the engine cooling water.
 排気マニホールド5は、排気ターボチャージャ7の排気タービン7bの入口に連結されている。排気タービン7bの出口は、排気管12を介して、PM捕集装置13に連結されている。このPM捕集装置13上流の機関排気通路内、即ち排気管12内には、小型酸化触媒14が配置されている。小型酸化触媒14は、PM捕集装置13よりも体積が小さく、かつPM捕集装置13に流入する排気ガスの一部が流通する。ただし、本発明は小型酸化触媒14を備えた排気装置に限定されない。 The exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7. The outlet of the exhaust turbine 7 b is connected to the PM collection device 13 via the exhaust pipe 12. A small oxidation catalyst 14 is disposed in the engine exhaust passage upstream of the PM collection device 13, that is, in the exhaust pipe 12. The small oxidation catalyst 14 has a smaller volume than the PM collection device 13 and a part of the exhaust gas flowing into the PM collection device 13 flows. However, the present invention is not limited to the exhaust device provided with the small oxidation catalyst 14.
 PM捕集装置13および小型酸化触媒14は、基材に酸化触媒を担持させたものである。基材は例えば、多孔質セラミックからなるハニカム構造体であり、ハニカム構造体は、コージェライト、シリカ、アルミナ等のセラミックス材料で形成される。基材は、多数の隔壁によって画成されたいずれも排気ガスの流れ方向に平行な多数の気体通路を備えている。PM捕集装置13の基材は、上流側に詰栓が施された第1通路と、下流側に詰栓が施された第2通路とが交互に区画形成された所謂ウォールフロー型である。排気ガスは、下流側が栓詰された第2通路から、多孔質セラミックの流路壁面を通過して、上流側が栓詰された第1通路に流入し、下流側に流れる。このとき、排気ガス中のPMは多孔質のセラミックスによって捕集され、PMの大気への放出が防止される。これに対し、小型酸化触媒14の基材は、そのような栓詰を有せず、気体流路の上流側および下流側の端面が開口している所謂フロースルー型である。なお、基材は格子状などこの例と異なる構造を採用してもよい。酸化触媒としては、例えばPt/CeO、Mn/CeO、Fe/CeO、Ni/CeO、Cu/CeO等を用いることができる。 The PM collection device 13 and the small oxidation catalyst 14 are obtained by supporting an oxidation catalyst on a base material. The base material is, for example, a honeycomb structure made of porous ceramic, and the honeycomb structure is formed of a ceramic material such as cordierite, silica, or alumina. The base material includes a large number of gas passages each defined by a large number of partition walls and parallel to the flow direction of the exhaust gas. The base material of the PM collecting device 13 is a so-called wall flow type in which a first passage having a plug on the upstream side and a second passage having a plug on the downstream side are alternately formed. . The exhaust gas passes through the wall surface of the porous ceramic channel from the second passage clogged on the downstream side, flows into the first passage capped on the upstream side, and flows downstream. At this time, PM in the exhaust gas is collected by the porous ceramics, and release of PM into the atmosphere is prevented. On the other hand, the base material of the small oxidation catalyst 14 is a so-called flow-through type that does not have such plugging and has open end faces on the upstream side and the downstream side of the gas flow path. In addition, you may employ | adopt a structure different from this example, such as a grid | lattice form, as a base material. As the oxidation catalyst, for example, Pt / CeO 2 , Mn / CeO 2 , Fe / CeO 2 , Ni / CeO 2 , Cu / CeO 2 or the like can be used.
 小型酸化触媒14上流の排気管12内には、小型酸化触媒14に燃料を供給するための燃料供給弁15が、その噴射口を排気管12内部に臨ませて配置される。燃料供給弁15には、燃料タンク44内の燃料が燃料ポンプ43を介して供給される。燃焼を促進させるために、外部から排気管12の内部に燃焼用空気を供給するための管路、制御弁およびコンプレッサを設けても良い。 In the exhaust pipe 12 upstream of the small oxidation catalyst 14, a fuel supply valve 15 for supplying fuel to the small oxidation catalyst 14 is arranged with its injection port facing the inside of the exhaust pipe 12. The fuel in the fuel tank 44 is supplied to the fuel supply valve 15 via the fuel pump 43. In order to promote combustion, a pipe line, a control valve, and a compressor for supplying combustion air into the exhaust pipe 12 from the outside may be provided.
 燃料供給弁15よりも下流側の排気管12内には、グロープラグ16が設けられている。グロープラグ16は、その発熱部である先端部に、燃料供給弁15から添加される燃料が接触するように配置されている。グロープラグ16には、これに給電するための直流電源および昇圧回路(いずれも不図示)が接続されている。着火するための手段としては、グロープラグに代えてセラミックヒータを用いてもよい。燃料の微粒化を促進するために、燃料供給弁15から噴射された燃料を衝突させるための衝突板を排気管12内に配置してもよい。小型酸化触媒14、燃料供給弁15およびグロープラグ16は、排気昇温装置40を構成し、この排気昇温装置40は、後述するECU50によって制御される。 A glow plug 16 is provided in the exhaust pipe 12 on the downstream side of the fuel supply valve 15. The glow plug 16 is arranged so that the fuel added from the fuel supply valve 15 is in contact with the tip portion which is the heat generating portion. The glow plug 16 is connected to a DC power source and a booster circuit (both not shown) for supplying power thereto. As a means for ignition, a ceramic heater may be used instead of the glow plug. In order to promote atomization of the fuel, a collision plate for colliding the fuel injected from the fuel supply valve 15 may be disposed in the exhaust pipe 12. The small oxidation catalyst 14, the fuel supply valve 15, and the glow plug 16 constitute an exhaust temperature raising device 40, which is controlled by an ECU 50 described later.
 排気マニホールド5と吸気マニホールド4とは、EGR通路18を介して互いに接続されている。EGR通路18内には、電子制御式のEGR制御弁19が配置される。EGR通路18の周りには、EGR通路18内を流れるEGRガスを冷却するためのEGRクーラ20が配置される。機関冷却水がEGRクーラ20内に導かれ、機関冷却水によってEGRガスが冷却される。 The exhaust manifold 5 and the intake manifold 4 are connected to each other via an EGR passage 18. An electronically controlled EGR control valve 19 is disposed in the EGR passage 18. Around the EGR passage 18, an EGR cooler 20 for cooling the EGR gas flowing in the EGR passage 18 is disposed. The engine cooling water is guided into the EGR cooler 20, and the EGR gas is cooled by the engine cooling water.
 PM捕集装置13の下流側の排気管12には、NOx触媒21および消音器22が直列に接続されている。NOx触媒は、例えば吸蔵還元型NOx触媒(NSR: NOx Storage Reduction)であり、アルミナAl等の酸化物からなる基材表面に、触媒成分としての白金Ptのような貴金属と、NOx吸収成分とが担持されて構成されている。NOx吸収成分は、例えばカリウムK、ナトリウムNa,リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つから成る。 A NOx catalyst 21 and a silencer 22 are connected in series to the exhaust pipe 12 on the downstream side of the PM collection device 13. The NOx catalyst is, for example, an NOx storage reduction (NSR) catalyst, and a NOx absorption, such as platinum Pt as a catalyst component, on the surface of a base material made of an oxide such as alumina Al 2 O 3 and the like. Components are supported. The NOx absorbing component is at least one selected from, for example, an alkali metal such as potassium K, sodium Na, lithium Li, and cesium Cs, an alkaline earth such as barium Ba and calcium Ca, and a rare earth such as lanthanum La and yttrium Y. It consists of one.
 NOx触媒21は、これに流入される排気ガスの空燃比が所定値(典型的には理論空燃比)よりリーンのときにはNOx(窒素酸化物)を吸収し、これに流入される排気ガス中の酸素濃度が低下すると吸収したNOx を放出するという、NOx の吸放出作用を行う。本実施形態ではディーゼルエンジンが使用されているため、通常時の排気空燃比はリーンであり、NOx触媒21は排気中のNOxの吸収を行う。また、NOx触媒21の上流側にて還元剤としての燃料が供給され、流入排気ガスの空燃比がリッチになると、NOx触媒21は吸収したNOxの放出を行う。そしてこの放出されたNOxは還元剤と反応して還元浄化される。 The NOx catalyst 21 absorbs NOx (nitrogen oxide) when the air-fuel ratio of the exhaust gas flowing into the exhaust gas is leaner than a predetermined value (typically the theoretical air-fuel ratio), and the NOx catalyst 21 in the exhaust gas flowing into the NOx catalyst 21 When the oxygen concentration decreases, the absorbed and released NOx soot is released. In this embodiment, since a diesel engine is used, the exhaust air-fuel ratio at normal times is lean, and the NOx catalyst 21 absorbs NOx in the exhaust. Further, when fuel as a reducing agent is supplied upstream of the NOx catalyst 21 and the air-fuel ratio of the inflowing exhaust gas becomes rich, the NOx catalyst 21 releases the absorbed NOx. The released NOx reacts with the reducing agent and is reduced and purified.
 消音器22の下流側には、排気通路の末端を構成するテールパイプ23が接続されている。テールパイプ23の下流側は大気に開放されている。 A tail pipe 23 constituting the end of the exhaust passage is connected to the downstream side of the silencer 22. The downstream side of the tail pipe 23 is open to the atmosphere.
 吸気管6と排気管12とは、バイパス通路30を介して接続されている。バイパス通路30は、排気ターボチャージャ7のコンプレッサ7aの下流側の吸気管6と、タービン7bおよびPM捕集装置13の下流側であってNOx触媒21の上流側の排気管12とを接続している。バイパス通路30には、当該バイパス通路30を開閉するバイパス弁33が設けられている。バイパス弁33としては、周知のバタフライ弁またはポペット弁を用いることができる。バイパス弁33はステップモータによって駆動されるが、DCモータや負圧アクチュエータなど他の手段によって駆動してもよい。バイパス弁33がオープンされると、排気ターボチャージャ7のコンプレッサ7aで加圧された吸気が、PM捕集装置13の下流側に供給される。 The intake pipe 6 and the exhaust pipe 12 are connected via a bypass passage 30. The bypass passage 30 connects the intake pipe 6 downstream of the compressor 7 a of the exhaust turbocharger 7 and the exhaust pipe 12 downstream of the turbine 7 b and the PM collection device 13 and upstream of the NOx catalyst 21. Yes. The bypass passage 30 is provided with a bypass valve 33 that opens and closes the bypass passage 30. A known butterfly valve or poppet valve can be used as the bypass valve 33. The bypass valve 33 is driven by a step motor, but may be driven by other means such as a DC motor or a negative pressure actuator. When the bypass valve 33 is opened, the intake air pressurized by the compressor 7 a of the exhaust turbocharger 7 is supplied to the downstream side of the PM collection device 13.
 バイパス通路30との接続点よりも下流側であってNOx触媒21よりも上流側の吸気管12内には、触媒出口温度センサ38が設置されている。触媒出口温度センサ38は、温度により抵抗値が変化するサーミスタを有し、排気温の変化をサーミスタの抵抗値変化で検出することができる。 A catalyst outlet temperature sensor 38 is installed in the intake pipe 12 downstream of the connection point with the bypass passage 30 and upstream of the NOx catalyst 21. The catalyst outlet temperature sensor 38 has a thermistor whose resistance value changes depending on the temperature, and can detect a change in the exhaust temperature based on a change in the resistance value of the thermistor.
 各燃料噴射弁3は、燃料供給管41を介してコモンレール42に連結され、このコモンレール42は電子制御式の吐出量可変な燃料ポンプ43を介して燃料タンク44に連結される。燃料タンク44内に貯蔵されている燃料は燃料ポンプ43によってコモンレール42内に供給され、コモンレール42内に供給された燃料は各燃料供給管41を介して燃料噴射弁3に供給される。 Each fuel injection valve 3 is connected to a common rail 42 via a fuel supply pipe 41, and this common rail 42 is connected to a fuel tank 44 via an electronically controlled fuel pump 43 with variable discharge amount. The fuel stored in the fuel tank 44 is supplied into the common rail 42 by the fuel pump 43, and the fuel supplied into the common rail 42 is supplied to the fuel injection valve 3 through each fuel supply pipe 41.
 コントローラである電子制御ユニット(ECU)50は、周知のデジタルコンピュータからなり、双方向性バスによって互いに接続されたROM(リードオンリメモリ)、RAM(ランダムアクセスメモリ)、CPU(マイクロプロセッサ)、入力ポートおよび出力ポートを具備する。 An electronic control unit (ECU) 50, which is a controller, is composed of a well-known digital computer, and is connected to each other by a bidirectional bus, a ROM (read only memory), a RAM (random access memory), a CPU (microprocessor), an input port. And an output port.
 触媒出口温度センサ38の出力信号は、対応するAD変換器を介してECU50の入力ポートに入力される。アクセルペダル51には、アクセルペダル51の踏込み量に比例した出力電圧を発生する負荷センサ52が接続され、負荷センサ52の出力電圧は、対応するAD変換器を介して入力ポートに入力される。更に入力ポートには、エンジン本体1のクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ53が接続される。更に入力ポートには、スロットル弁10の近傍に設置された吸気温度センサ54、および駆動輪の近傍に設置された車速センサ55が接続される。 The output signal of the catalyst outlet temperature sensor 38 is input to the input port of the ECU 50 via the corresponding AD converter. A load sensor 52 that generates an output voltage proportional to the amount of depression of the accelerator pedal 51 is connected to the accelerator pedal 51, and the output voltage of the load sensor 52 is input to the input port via a corresponding AD converter. Further, a crank angle sensor 53 that generates an output pulse every time the crankshaft of the engine body 1 rotates, for example, 15 ° is connected to the input port. Further, an intake air temperature sensor 54 installed near the throttle valve 10 and a vehicle speed sensor 55 installed near the drive wheel are connected to the input port.
 他方、ECU50の出力ポートは、対応する各駆動回路を介して、スロットル弁10、EGR制御弁19およびバイパス弁33の駆動のための各ステップモータに接続される。出力ポートはまた、対応する各駆動回路を介して燃料噴射弁3および燃料ポンプ43に接続される。これらアクチュエータ類の動作は、ECU50によって制御される。ECU50のROMには、各種プログラムおよび基準値・初期値が格納されている。このような基準値および初期値は、後述するバイパス弁制御処理に使用される基準車速Vaを含む。 On the other hand, the output port of the ECU 50 is connected to each step motor for driving the throttle valve 10, the EGR control valve 19, and the bypass valve 33 through corresponding drive circuits. The output port is also connected to the fuel injection valve 3 and the fuel pump 43 via corresponding drive circuits. The operation of these actuators is controlled by the ECU 50. Various programs and reference values / initial values are stored in the ROM of the ECU 50. Such reference values and initial values include a reference vehicle speed Va used in a bypass valve control process described later.
 ECU50は、エアフローメータ8、負荷センサ52およびクランク角センサ53の各検出値を含む車両の状態とくにエンジンの動作状態を示すパラメータに基づいて、燃料供給指示量を算出し、指示量に応じた時間だけ燃料噴射弁3,15を開くべく制御信号を出力する。この制御信号に従って、燃料供給指示量に応じた量の燃料が燃料噴射弁3,15から供給される。 The ECU 50 calculates the fuel supply instruction amount based on parameters indicating the vehicle state, particularly the engine operating state, including the detected values of the air flow meter 8, the load sensor 52, and the crank angle sensor 53, and a time corresponding to the instruction amount. Only a control signal is output to open the fuel injection valves 3 and 15. In accordance with this control signal, an amount of fuel corresponding to the fuel supply instruction amount is supplied from the fuel injection valves 3 and 15.
 また、ECU50は、排気昇温装置40を制御して、燃料の供給および着火を行い、これにより小型酸化触媒14を選択的に昇温させる。燃料供給弁15から供給された燃料の一部または全部は、グロープラグ16により着火され、これによって排気が昇温される。ECU50のRAMには、所定の再生実行フラグが設けられており、当該フラグは再生動作の実行中にはオン(1)され、実行中でないときにはオフ(0)される。ECU50は必要に応じて、小型酸化触媒14の必要量よりも多くの燃料を噴射することで、PM捕集装置13に対する燃料の供給を行い、これにより、堆積した粒子状物質(PM)の燃焼および酸化(再生動作)、並びにNOx触媒21に対するNOx還元処理およびSOx被毒回復処理を実施することも可能である。 Further, the ECU 50 controls the exhaust temperature raising device 40 to supply and ignite fuel, thereby selectively raising the temperature of the small oxidation catalyst 14. Part or all of the fuel supplied from the fuel supply valve 15 is ignited by the glow plug 16, thereby raising the temperature of the exhaust. A predetermined regeneration execution flag is provided in the RAM of the ECU 50, and the flag is turned on (1) while the regeneration operation is being performed, and is turned off (0) when the regeneration operation is not being performed. The ECU 50 supplies fuel to the PM collection device 13 by injecting more fuel than necessary for the small oxidation catalyst 14 as necessary, and thereby burns the accumulated particulate matter (PM). It is also possible to perform oxidation (regeneration operation) and NOx reduction processing and SOx poisoning recovery processing for the NOx catalyst 21.
 再生動作の実行中には、PM捕集装置13から排出される排気の温度は、最高で例えば約650°Cになる。この値は、排気温度の外部基準値であって火災および火傷のおそれを抑制するために設けられたもの(例えば「車両最外端で300°C以下(枯草火災基準)」および「車両最外端から300mmの点で180°C以下(火傷基準)」)よりも高い。これに対し、エンジン本体1の排気マニホールド5における排気温度は、定常運転時で約200°Cから約300°Cである。排気が排気ターボチャージャ7および排気管12を通って流れる間に、排気温度が仕事および外気冷却によって低下するため、再生動作の実行中でない通常の運転においては、排気通路の末端を含む所定範囲内(例えば,車両最外端および最外端から300mmの点のように、その範囲外では接触または熱輻射による火災または火傷の生じる蓋然性が低いと考えられる幾何学的領域内)の温度は、上記の外部基準値よりも十分低いものと考えられる。再生動作の実行中にバイパス弁33を開いて、加圧された吸気を排気管12に供給すれば、排気通路の末端(テールパイプ23)を含む所定範囲内の温度は、上記外部基準値を下回ることになる。 During the regeneration operation, the temperature of the exhaust discharged from the PM collection device 13 is, for example, about 650 ° C. at the maximum. This value is an external reference value for the exhaust temperature, and is provided to suppress the risk of fire and burns (for example, “300 ° C or less at the outermost end of the vehicle (haystack fire standard)” and “outermost of the vehicle” It is higher than 180 ° C. or less (burn standard) at a point of 300 mm from the end. In contrast, the exhaust temperature in the exhaust manifold 5 of the engine body 1 is about 200 ° C. to about 300 ° C. during steady operation. While the exhaust gas flows through the exhaust gas turbocharger 7 and the exhaust pipe 12, the exhaust gas temperature is lowered by work and outside air cooling. Therefore, in a normal operation that is not being performed during the regeneration operation, the exhaust gas temperature is within a predetermined range including the end of the exhaust gas passage. The temperature of the above (for example, in a geometric region where it is considered that there is a low probability of fire or burns due to contact or thermal radiation outside the range, such as a point at the outermost end of the vehicle and 300 mm from the outermost end) It is considered to be sufficiently lower than the external standard value. If the bypass valve 33 is opened and the pressurized intake air is supplied to the exhaust pipe 12 during the regeneration operation, the temperature within a predetermined range including the end of the exhaust passage (tail pipe 23) is set to the external reference value. Will be lower.
 ECU50はさらに、上記各制御と並行して、以下のバイパス弁制御処理を実行する。このバイパス弁制御処理について、図2に従って説明する。図2の処理ルーチンは、不図示のイグニッションスイッチがオンされ且つエンジン本体1が動作していることを条件に、所定時間Δtごとに繰返し実行される。図2において、まずECU50は、上述した再生実行フラグの値と、車速センサ55によって検出される車速とを読み込む(S10)。 The ECU 50 further executes the following bypass valve control process in parallel with the above-described controls. This bypass valve control process will be described with reference to FIG. The processing routine of FIG. 2 is repeatedly executed every predetermined time Δt on condition that an ignition switch (not shown) is turned on and the engine body 1 is operating. In FIG. 2, first, the ECU 50 reads the value of the regeneration execution flag described above and the vehicle speed detected by the vehicle speed sensor 55 (S10).
 次にECU50は、読み込まれた再生実行フラグ値に基づき、再生動作が実行中であるかを判断する(S20)。否定、すなわち再生動作が実行中でない場合には、ECU50はバイパス弁33をクローズさせるように、バイパス弁33を駆動するステップモータに対して制御出力を行う(S50)。 Next, the ECU 50 determines whether the regeneration operation is being executed based on the read regeneration execution flag value (S20). If NO, that is, if the regeneration operation is not being executed, the ECU 50 outputs a control to the step motor that drives the bypass valve 33 so as to close the bypass valve 33 (S50).
 ステップS20で肯定、すなわち再生動作が実行中である場合には、次にECU50は、先に読み込まれた車速センサ55の検出値に基づいて、車速があらかじめ定められた基準車速Vaより小さいかを判断する(S30)。基準車速Vaの値は、例えば10km/hのように、それより高い速度では接触または熱輻射による火災または火傷の生じる蓋然性が低いと考えられる速度にある程度の余裕値を加えた値とする。否定すなわち車速が基準車速Va以上の場合には、バイパス弁33がクローズされる(S50)。 If the determination in step S20 is affirmative, that is, if the regenerating operation is being executed, then the ECU 50 determines whether the vehicle speed is lower than a predetermined reference vehicle speed Va based on the previously detected value of the vehicle speed sensor 55. Judgment is made (S30). The value of the reference vehicle speed Va is, for example, 10 km / h, a value obtained by adding a certain margin value to a speed that is considered to be unlikely to cause a fire or burn due to contact or thermal radiation at a higher speed. If negative, that is, if the vehicle speed is equal to or higher than the reference vehicle speed Va, the bypass valve 33 is closed (S50).
 ステップS30で肯定、すなわち再生動作中かつ車速が基準車速Vaよりも小さい場合には、ECU50は、バイパス弁33をオープンさせるように、バイパス弁33を駆動するステップモータに対して制御出力を行う(S40)。その結果、タービン7aの圧力により圧縮された空気が、バイパス通路30を通じて排気管12内に供給される。以上の処理により、テールパイプ23を含む所定範囲内の温度は、所定の外部基準値を下回るように低下させられることになる。 When the determination in step S30 is affirmative, that is, when the regenerating operation is being performed and the vehicle speed is smaller than the reference vehicle speed Va, the ECU 50 outputs a control to the step motor that drives the bypass valve 33 so as to open the bypass valve 33 ( S40). As a result, the air compressed by the pressure of the turbine 7 a is supplied into the exhaust pipe 12 through the bypass passage 30. With the above processing, the temperature within the predetermined range including the tail pipe 23 is lowered so as to be lower than the predetermined external reference value.
 以上のとおり、本実施形態では、排気インジェクタ7のコンプレッサ7aの下流側の吸気管6と、PM捕集装置13の下流側の排気管12とを接続するバイパス通路30と、当該バイパス通路30を開閉するバイパス弁33とを備えたので、バイパス弁33を開くことにより、排気インジェクタ7の下流側の吸気管6から、加圧された空気が、PM捕集装置13の下流側の排気管12に供給される。ECU50は、テールパイプ23を含む所定範囲内の温度が所定の外部基準値を下回るように、バイパス弁33を制御する。したがって、排気通路外における排気温度が外部に及ぼす影響を抑制することができる。 As described above, in the present embodiment, the bypass passage 30 connecting the intake pipe 6 on the downstream side of the compressor 7a of the exhaust injector 7 and the exhaust pipe 12 on the downstream side of the PM trap 13 and the bypass passage 30 are provided. Since the bypass valve 33 that opens and closes is provided, when the bypass valve 33 is opened, the pressurized air is supplied from the intake pipe 6 on the downstream side of the exhaust injector 7 to the exhaust pipe 12 on the downstream side of the PM collection device 13. To be supplied. The ECU 50 controls the bypass valve 33 so that the temperature within a predetermined range including the tail pipe 23 falls below a predetermined external reference value. Therefore, the influence of the exhaust temperature outside the exhaust passage on the outside can be suppressed.
 本実施形態の装置は、再生動作を実行するために燃料を排気管12内に供給する燃料供給弁15と、燃料供給弁15から供給された燃料に着火させるためのグロープラグ16と、を更に備えたので、燃料供給および着火による再生動作が行われた場合であっても、排気通路外における排気温度が外部に及ぼす影響を好適に抑制することができる。 The apparatus of the present embodiment further includes a fuel supply valve 15 that supplies fuel into the exhaust pipe 12 to perform a regeneration operation, and a glow plug 16 that ignites the fuel supplied from the fuel supply valve 15. Since it is provided, the influence of the exhaust temperature outside the exhaust passage on the outside can be suitably suppressed even when the regeneration operation by fuel supply and ignition is performed.
 ECU50は、車両の走行速度が所定値より小さい場合に、バイパス弁33を開かせる。したがって、外部の物体が排気温度の影響を受けやすい状況が可及的に回避され、排気通路外における排気温度が外部に及ぼす影響を特に好適に抑制することができる。 The ECU 50 opens the bypass valve 33 when the traveling speed of the vehicle is smaller than a predetermined value. Therefore, a situation in which an external object is easily affected by the exhaust temperature is avoided as much as possible, and the influence of the exhaust temperature outside the exhaust passage on the outside can be particularly preferably suppressed.
<第2実施形態>
 次に、本発明の第2実施形態について説明する。第2実施形態は、排気通路中の所定位置の温度が所定の内部基準値を上回った場合に、バイパス弁33を開かせることを特徴とする。第2実施形態では、図3に示されるような吸気温度/内部基準値マップが予め作成され、ECU50のROMに格納されている。吸気温度/内部基準値マップは、吸気温度と内部基準値Taとを互いに関連付けて記憶させたものであり、吸気温度が高いほど、内部基準値Taは低くなるように設定されている。第2実施形態の残余の機械的構成は、上記第1実施形態と同様であるため、その詳細の説明は省略する。
Second Embodiment
Next, a second embodiment of the present invention will be described. The second embodiment is characterized in that the bypass valve 33 is opened when the temperature at a predetermined position in the exhaust passage exceeds a predetermined internal reference value. In the second embodiment, an intake air temperature / internal reference value map as shown in FIG. 3 is created in advance and stored in the ROM of the ECU 50. The intake air temperature / internal reference value map stores the intake air temperature and the internal reference value Ta in association with each other, and the internal reference value Ta is set to be lower as the intake air temperature is higher. Since the remaining mechanical configuration of the second embodiment is the same as that of the first embodiment, a detailed description thereof will be omitted.
 第2実施形態では、ECU50は、図4に示されるバイパス弁制御処理を実行する。図4の処理ルーチンは、不図示のイグニッションスイッチがオンされ且つエンジン本体1が動作していることを条件に、所定時間ごとに繰返し実行される。図4において、まずECU50は、吸気温度センサ54の検出した吸気温度、触媒出口温度センサ38の検出した触媒出口温度、および車速センサ55の検出した車速を読み込む(S110)。 In the second embodiment, the ECU 50 executes the bypass valve control process shown in FIG. The processing routine of FIG. 4 is repeatedly executed every predetermined time on condition that an ignition switch (not shown) is turned on and the engine body 1 is operating. 4, the ECU 50 first reads the intake air temperature detected by the intake air temperature sensor 54, the catalyst outlet temperature detected by the catalyst outlet temperature sensor 38, and the vehicle speed detected by the vehicle speed sensor 55 (S110).
 次にECU50は、読み込まれた吸気温度に基づき、上述した吸気温度/内部基準値マップを参照して、内部基準値Taを算出する(S120)。内部基準値Taの値は、例えば400°Cのように、それより低い場合にはテールパイプ23の近傍で接触または熱輻射による火災または火傷の生じる蓋然性が低いと考えられる温度からある程度の余裕値を減じた値とする。 Next, the ECU 50 calculates the internal reference value Ta by referring to the intake air temperature / internal reference value map described above based on the read intake air temperature (S120). The value of the internal reference value Ta is, for example, 400 ° C. If the temperature is lower than that, a margin value from a temperature at which it is considered that there is a low probability of fire or burns due to contact or thermal radiation near the tail pipe 23. The value obtained by subtracting.
 次にECU50は、触媒出口温度が内部基準値Taより大であるかを判断する(S130)。否定、すなわち触媒出口温度が内部基準値Ta以下である場合には、ECU50はバイパス弁33をクローズさせるように、バイパス弁33を駆動するステップモータに対して制御出力を行う(S160)。 Next, the ECU 50 determines whether the catalyst outlet temperature is larger than the internal reference value Ta (S130). If negative, that is, if the catalyst outlet temperature is equal to or lower than the internal reference value Ta, the ECU 50 outputs a control to the step motor that drives the bypass valve 33 so as to close the bypass valve 33 (S160).
 ステップS130で肯定、すなわち触媒出口温度が内部基準値Taより大である場合には、次にECU50は、先に読み込まれた車速センサ55の検出値に基づいて、車速があらかじめ定められた基準車速Vaより小さいかを判断する(S140)。否定すなわち車速が基準車速Va以上の場合には、バイパス弁33がクローズされる(S160)。 If the determination in step S130 is affirmative, that is, if the catalyst outlet temperature is greater than the internal reference value Ta, the ECU 50 next determines the reference vehicle speed at which the vehicle speed is determined in advance based on the detection value of the vehicle speed sensor 55 previously read. It is determined whether it is smaller than Va (S140). If negative, that is, if the vehicle speed is equal to or higher than the reference vehicle speed Va, the bypass valve 33 is closed (S160).
 ステップS140で肯定、すなわち触媒出口温度が内部基準値Taより大であり且つ車速が基準車速Vaよりも小さい場合には、ECU50は、バイパス弁33をオープンさせるように、バイパス弁33を駆動するステップモータに対して制御出力を行う(S150)。その結果、タービン7aの圧力により圧縮された空気が、バイパス通路30を通じて排気管12内に供給される。以上の処理により、テールパイプ23を含む所定範囲内の温度は、所定の外部基準値を下回るように低下させられることになる。 If the determination in step S140 is affirmative, that is, if the catalyst outlet temperature is higher than the internal reference value Ta and the vehicle speed is lower than the reference vehicle speed Va, the ECU 50 drives the bypass valve 33 so as to open the bypass valve 33. A control output is made to the motor (S150). As a result, the air compressed by the pressure of the turbine 7 a is supplied into the exhaust pipe 12 through the bypass passage 30. With the above processing, the temperature within the predetermined range including the tail pipe 23 is lowered so as to be lower than the predetermined external reference value.
 以上のとおり、本実施形態では、ECU50は、PM捕集装置13よりも下流側であってテールパイプ23よりも上流側の排気通路中の所定位置の温度(すなわち、触媒出口温度)が所定の内部基準値Taを上回った場合に、バイパス弁33を開かせる。したがって、触媒再生動作だけでなく、高負荷走行時やその直後など、排気通路外における排気温度が高温になりうる他の運転状態のときであっても、排気通路外における排気温度が外部に及ぼす影響を好適に抑制することができる。 As described above, in the present embodiment, the ECU 50 has a predetermined temperature (that is, a catalyst outlet temperature) at a predetermined position in the exhaust passage downstream of the PM collection device 13 and upstream of the tail pipe 23. When the internal reference value Ta is exceeded, the bypass valve 33 is opened. Therefore, the exhaust temperature outside the exhaust passage affects the outside not only in the catalyst regeneration operation but also in other operating states where the exhaust temperature outside the exhaust passage can be high, such as during high load driving or immediately after that. The influence can be suitably suppressed.
 また、本実施形態では、内部基準値Taを吸気温度に基づいて動的に設定するので、外気温が高いときほどバイパス弁33が低温で開かれ、排気通路外における排気温度が外部に及ぼす影響を好適に抑制することができる。 Further, in the present embodiment, the internal reference value Ta is dynamically set based on the intake air temperature, so that the bypass valve 33 is opened at a lower temperature as the outside air temperature is higher, and the influence of the exhaust temperature outside the exhaust passage on the outside. Can be suitably suppressed.
<第3実施形態>
 次に、本発明の第3実施形態について説明する。図5に示されるように、第3実施形態の排気装置では、バイパス通路130は、吸気管6に設けられたインタークーラ11よりも下流側に接続されている。
<Third Embodiment>
Next, a third embodiment of the present invention will be described. As shown in FIG. 5, in the exhaust device of the third embodiment, the bypass passage 130 is connected to the downstream side of the intercooler 11 provided in the intake pipe 6.
 この第3実施形態では、吸気管6からの吸気がインタークーラ11により冷却されるため、本発明の効果を特に好適に実現することができる。 In the third embodiment, since the intake air from the intake pipe 6 is cooled by the intercooler 11, the effect of the present invention can be realized particularly suitably.
 本発明をある程度の具体性をもって説明したが、クレームされた発明の精神や範囲から離れることなしに、さまざまな改変や変更が可能であることは理解されなければならない。本発明の実施態様は上述の各態様のみに限らず、本発明は、特許請求の範囲によって規定される本発明の思想に包含されるあらゆる変形例や応用例を含む。したがって本発明は、限定的に解釈されるべきではなく、本発明の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。本発明における課題を解決するための手段は、可能な限り組み合わせて使用することができる。 Although the present invention has been described with a certain degree of specificity, it should be understood that various modifications and changes can be made without departing from the spirit and scope of the claimed invention. Embodiments of the present invention are not limited to the above-described embodiments, and the present invention includes all modifications and applications included in the concept of the present invention defined by the claims. Therefore, the present invention should not be construed as being limited, and can be applied to any other technique belonging to the scope of the idea of the present invention. The means for solving the problems in the present invention can be used in combination as much as possible.
 例えば、上記各実施形態ではバイパス弁33の開度を全開または全閉の二状態としたが、バイパス弁33の開度は全開と全閉との間で多段階的または連続的に変更してもよい。この場合には更に、図6に示されるように、例えば負荷およびEGR量とバイパス弁33の開度とを定めたバイパス弁開度マップを予め作成してECU50のROMに記憶させておき、このマップの参照によってバイパス弁33の開度を変更してもよい。この場合には、負荷が大きいほど、またEGR量が小さいほど、バイパス弁33の開度を大きくするのが好適である。この場合には、負荷が大きいほど、またEGR量が小さいほど、バイパス通路30からの吸気の供給量が大きくなり排気がよく冷却されるため、排気通路外における排気温度が外部に及ぼす影響を好適に抑制することができる。 For example, in each of the above embodiments, the opening degree of the bypass valve 33 is set to the two states of full opening or full closing, but the opening degree of the bypass valve 33 is changed in a multistage or continuous manner between full opening and full closing. Also good. In this case, as shown in FIG. 6, for example, a bypass valve opening degree map in which, for example, the load and the EGR amount and the opening degree of the bypass valve 33 are defined is created in advance and stored in the ROM of the ECU 50. The opening degree of the bypass valve 33 may be changed by referring to the map. In this case, it is preferable to increase the opening degree of the bypass valve 33 as the load is increased and the EGR amount is decreased. In this case, the larger the load and the smaller the EGR amount, the larger the amount of intake air supplied from the bypass passage 30 and the better the exhaust gas is cooled. Therefore, the influence of the exhaust temperature outside the exhaust passage on the outside is preferable. Can be suppressed.
 バイパス通路30が排気管12に接続する位置は、NOx触媒21と消音器22との間であってもよく、また消音器22の下流側であってもよい。内部基準値と比較するために温度を取得する排気通路中の位置は、バイパス通路30が排気管に接続するよりも下流側誰刃、NOx触媒21と消音器22との間であってもよく、また消音器22の下流側であってもよい。 The position where the bypass passage 30 is connected to the exhaust pipe 12 may be between the NOx catalyst 21 and the silencer 22 or may be downstream of the silencer 22. The position in the exhaust passage where the temperature is acquired for comparison with the internal reference value may be between the blades downstream of the bypass passage 30 connected to the exhaust pipe, between the NOx catalyst 21 and the silencer 22. Further, it may be downstream of the silencer 22.
 また、上記各実施形態では、車速が基準車速Vaより小さい場合にのみバイパス弁33をオープンさせたが(S30,S140)、このような条件は設けなくてもよい。また第2実施形態では、内部基準値Taを動的に設定したが、内部基準値Taは固定値でもよい。pm捕集装置は触媒物質を担持していなくてもよい。再生動作の終了時または触媒出口温度が内部基準値Taを下回ったときから、バイパス弁をクローズさせるまでの間に、ある程度の余裕時間または遅延時間を設けてもよい。上記各実施形態では排気通路に配置された燃料噴射弁15によって触媒に燃料を供給したが、排気通路への燃料の供給は、いわゆるポスト噴射(排気行程中など燃焼を伴わないタイミングでの噴射)など、燃焼室2に備えられた燃料噴射弁3によって行ってもよい。 In each of the above embodiments, the bypass valve 33 is opened only when the vehicle speed is lower than the reference vehicle speed Va (S30, S140), but such a condition may not be provided. In the second embodiment, the internal reference value Ta is dynamically set. However, the internal reference value Ta may be a fixed value. The pm collection device may not carry a catalyst substance. A certain margin time or delay time may be provided between the end of the regeneration operation or when the catalyst outlet temperature falls below the internal reference value Ta until the bypass valve is closed. In each of the above embodiments, the fuel is supplied to the catalyst by the fuel injection valve 15 disposed in the exhaust passage. However, the fuel is supplied to the exhaust passage by so-called post injection (injection at a timing not accompanied by combustion, such as during an exhaust stroke). For example, the fuel injection valve 3 provided in the combustion chamber 2 may be used.
 1 エンジン本体
 4 吸気マニホールド
 5 排気マニホールド
 6 吸気管
 7 ターボチャージャ
 12 排気管
 13 PM捕集装置
 14 小型酸化触媒
 18 EGR通路
 30 バイパス通路
 33 バイパス弁
 40 排気昇温装置
 50 ECU
1 Engine Body 4 Intake Manifold 5 Exhaust Manifold 6 Intake Pipe 7 Turbocharger 12 Exhaust Pipe 13 PM Collection Device 14 Small Oxidation Catalyst 18 EGR Passage 30 Bypass Passage 33 Bypass Valve 40 Exhaust Temperature Raising Device 50 ECU

Claims (6)

  1.  車両の内燃機関の過給装置の下流側の吸気通路と、前記内燃機関の排気通路とを接続するバイパス通路と、
     前記バイパス通路を開閉するバイパス弁と、
     当該バイパス弁を制御するコントローラと、を備えた内燃機関の排気装置であって、
     前記コントローラは、前記排気通路の末端を含む所定範囲内の温度が所定の外部基準値を下回るように、前記バイパス弁を制御して、前記過給装置で加圧された吸気を前記排気通路に供給させる内燃機関の排気装置。
    A bypass passage connecting an intake passage downstream of a supercharging device of an internal combustion engine of a vehicle and an exhaust passage of the internal combustion engine;
    A bypass valve for opening and closing the bypass passage;
    An exhaust system for an internal combustion engine comprising a controller for controlling the bypass valve,
    The controller controls the bypass valve so that the temperature within a predetermined range including the end of the exhaust passage falls below a predetermined external reference value, and intake air pressurized by the supercharger is supplied to the exhaust passage. An exhaust system for an internal combustion engine to be supplied.
  2.  請求項1に記載の内燃機関の排気装置であって、
     前記排気通路に設けられ排気中のPMを捕集するPM捕集装置を更に備え、
     前記バイパス弁は前記排気通路に前記PM捕集装置の下流側で接続され、
     前記コントローラは、前記PM捕集装置に捕集されたPMを燃焼または酸化させるための再生動作中に、前記バイパス弁を開かせることを特徴とする内燃機関の排気装置。
    An exhaust system for an internal combustion engine according to claim 1,
    A PM collecting device provided in the exhaust passage for collecting PM in the exhaust;
    The bypass valve is connected to the exhaust passage on the downstream side of the PM collection device,
    The exhaust device for an internal combustion engine, wherein the controller opens the bypass valve during a regeneration operation for burning or oxidizing the PM collected by the PM collection device.
  3.  請求項2に記載の内燃機関の排気装置であって、
     前記再生動作を実行するために燃料を前記排気通路内に供給する燃料供給装置と、
     前記燃料供給装置から供給された燃料に着火させるための着火装置と、
     を更に備えたことを特徴とする内燃機関の排気装置。
    An exhaust system for an internal combustion engine according to claim 2,
    A fuel supply device for supplying fuel into the exhaust passage to perform the regeneration operation;
    An ignition device for igniting the fuel supplied from the fuel supply device;
    An exhaust system for an internal combustion engine, further comprising:
  4.  請求項1に記載の内燃機関の排気装置であって、
     前記コントローラは、前記排気通路中であって前記バイパス通路が接続する位置よりも下流側の所定位置の温度が所定の内部基準値を上回った場合に、前記バイパス弁を開かせることを特徴とする内燃機関の排気装置。
    An exhaust system for an internal combustion engine according to claim 1,
    The controller opens the bypass valve when a temperature at a predetermined position in the exhaust passage and downstream of the position where the bypass passage is connected exceeds a predetermined internal reference value. An exhaust system for an internal combustion engine.
  5.  請求項1に記載の内燃機関の排気装置であって、
     前記コントローラは、前記車両の速度が所定値より小さい場合に、前記バイパス弁を開かせることを特徴とする内燃機関の排気装置。
    An exhaust system for an internal combustion engine according to claim 1,
    The exhaust system for an internal combustion engine, wherein the controller opens the bypass valve when the speed of the vehicle is smaller than a predetermined value.
  6.  請求項1に記載の内燃機関の排気装置であって、
     前記バイパス通路の上流側の端部は、前記吸気通路に設けられたインタークーラよりも下流側に接続されていることを特徴とする内燃機関の排気装置。
    An exhaust system for an internal combustion engine according to claim 1,
    An exhaust system for an internal combustion engine, wherein an upstream end portion of the bypass passage is connected to a downstream side of an intercooler provided in the intake passage.
PCT/JP2010/001970 2010-03-18 2010-03-18 Exhaust gas evacuation device for internal combustion engine WO2011114381A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/001970 WO2011114381A1 (en) 2010-03-18 2010-03-18 Exhaust gas evacuation device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/001970 WO2011114381A1 (en) 2010-03-18 2010-03-18 Exhaust gas evacuation device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2011114381A1 true WO2011114381A1 (en) 2011-09-22

Family

ID=44648519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001970 WO2011114381A1 (en) 2010-03-18 2010-03-18 Exhaust gas evacuation device for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2011114381A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017046379A (en) * 2015-08-24 2017-03-02 九州旅客鉄道株式会社 Estimation device for mean consumption power of auxiliary machine, crewman support device and method
CN109339919A (en) * 2018-09-30 2019-02-15 潍柴动力股份有限公司 A kind of DPF carrier protective device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054228A (en) * 1996-08-08 1998-02-24 Mitsubishi Motors Corp Exhaust emission control device of diesel engine
US20060096281A1 (en) * 2004-11-08 2006-05-11 Southwest Research Institute Exhaust system and method for controlling exhaust gas flow and temperature through regenerable exhaust gas treatment devices
WO2008069780A1 (en) * 2006-12-05 2008-06-12 Mack Trucks, Inc. Engine with exhaust cooling and method
WO2008082492A2 (en) * 2006-12-22 2008-07-10 Volvo Group North America, Inc. Method and apparatus for controlling exhaust temperature of a diesel engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054228A (en) * 1996-08-08 1998-02-24 Mitsubishi Motors Corp Exhaust emission control device of diesel engine
US20060096281A1 (en) * 2004-11-08 2006-05-11 Southwest Research Institute Exhaust system and method for controlling exhaust gas flow and temperature through regenerable exhaust gas treatment devices
WO2008069780A1 (en) * 2006-12-05 2008-06-12 Mack Trucks, Inc. Engine with exhaust cooling and method
WO2008082492A2 (en) * 2006-12-22 2008-07-10 Volvo Group North America, Inc. Method and apparatus for controlling exhaust temperature of a diesel engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017046379A (en) * 2015-08-24 2017-03-02 九州旅客鉄道株式会社 Estimation device for mean consumption power of auxiliary machine, crewman support device and method
CN109339919A (en) * 2018-09-30 2019-02-15 潍柴动力股份有限公司 A kind of DPF carrier protective device and method

Similar Documents

Publication Publication Date Title
KR102150583B1 (en) Exhaust gas after-treatment system and method for the exhaust gas after-treatment of an internal combustion engine
EP1444430B1 (en) Exhaust gas purifying device and method for internal combustion engine
JP4681650B2 (en) Method for operating an internal combustion engine
JP4158697B2 (en) Exhaust gas purification device and exhaust gas purification method for internal combustion engine
JP5299572B2 (en) Internal combustion engine
US7908844B2 (en) Exhaust purification device of internal combustion engine
JP3558017B2 (en) Exhaust gas purification device for internal combustion engine
WO2010116541A1 (en) Control device for internal combustion engine
JP2008106658A (en) Exhaust gas recirculation device for internal combustion engine
JP2003193824A (en) Exhaust emission control device
JP4720647B2 (en) Exhaust gas recirculation device for internal combustion engine
JP4042388B2 (en) Exhaust gas purification device for internal combustion engine
US10933374B2 (en) Exhaust emission control device, method and computer program product for an engine
WO2011114381A1 (en) Exhaust gas evacuation device for internal combustion engine
JP4311169B2 (en) Exhaust gas purification device for internal combustion engine
JP3551789B2 (en) Internal combustion engine
JP2012167562A (en) Diesel engine
JP2004176636A (en) Exhaust emission control device for internal combustion engine
JP4106913B2 (en) Exhaust gas purification device for internal combustion engine
JP2006274985A (en) Exhaust gas aftertreatment device
JP2005344678A (en) Control device for engine
JP3598905B2 (en) Exhaust gas purification device for internal combustion engine
JP3736416B2 (en) Catalyst temperature controller
JP3624820B2 (en) Exhaust gas purification device for internal combustion engine
JP4500765B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP