JP4311169B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4311169B2
JP4311169B2 JP2003385314A JP2003385314A JP4311169B2 JP 4311169 B2 JP4311169 B2 JP 4311169B2 JP 2003385314 A JP2003385314 A JP 2003385314A JP 2003385314 A JP2003385314 A JP 2003385314A JP 4311169 B2 JP4311169 B2 JP 4311169B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
reducing agent
exhaust gas
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003385314A
Other languages
Japanese (ja)
Other versions
JP2005146979A (en
Inventor
光一朗 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003385314A priority Critical patent/JP4311169B2/en
Publication of JP2005146979A publication Critical patent/JP2005146979A/en
Application granted granted Critical
Publication of JP4311169B2 publication Critical patent/JP4311169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、排気通路にNOx吸蔵還元型触媒、還元剤供給手段を備えた内燃機関の排気浄化装置に関するものである。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine provided with an NOx storage reduction catalyst and a reducing agent supply means in an exhaust passage.

ディーゼル機関の排気通路にNOx吸蔵還元型触媒(以下、「NOx触媒」という。)を配置し、排気ガスを浄化する技術が知られているが、このようなNOx触媒は排気ガス中の硫黄酸化物(SOx)を徐々に保持していくので、SOxの保持量が増加した場合には排気ガス中のNOxを保持しきれなくなる、いわゆるSOx被毒を生じる。   A technology for purifying exhaust gas by arranging a NOx occlusion reduction catalyst (hereinafter referred to as “NOx catalyst”) in the exhaust passage of a diesel engine is known, but such NOx catalyst is capable of oxidizing sulfur in exhaust gas. Since the object (SOx) is gradually held, so-called SOx poisoning occurs in which NOx in the exhaust gas cannot be held when the amount of SOx held increases.

そのため、NOx触媒の床温を600℃以上にさせた上で、排気系におけるNOx触媒上流に配置された還元剤添加弁を通じて燃料を添加し、NOx触媒に保持されたSOxを還元除去させてSOx被毒を解消する、いわゆるSOx被毒解消処理を実行する。ところが、排気系に添加された燃料は、高温条件下においてNOx触媒に保持されたSOxを分解する機能を発揮する一方、NOx触媒の温度をさらに上昇させる特性を有することから、NOx触媒が過熱してしまうおそれがある。   Therefore, after raising the bed temperature of the NOx catalyst to 600 ° C. or higher, the fuel is added through the reducing agent addition valve arranged upstream of the NOx catalyst in the exhaust system, and the SOx held in the NOx catalyst is reduced and removed to reduce the SOx. A so-called SOx poisoning elimination process for eliminating the poisoning is executed. However, the fuel added to the exhaust system exhibits the function of decomposing SOx held in the NOx catalyst under high temperature conditions, and has the property of further increasing the temperature of the NOx catalyst, so that the NOx catalyst is overheated. There is a risk that.

これに対して、NOx触媒の過熱を防止しつつ、SOx被毒を防止あるいは抑制するための方策として、特許文献1には、NOx触媒上流の排気通路に備えられた還元剤添加弁を通じて燃料の添加及び停止を適宜のタイミングで繰り返すことによりNOx触媒に流入する排気ガスの空燃比を間欠的にリッチ及びリーンに繰り返すことが記載されている。   On the other hand, as a measure for preventing or suppressing SOx poisoning while preventing overheating of the NOx catalyst, Patent Document 1 discloses that a fuel is supplied through a reducing agent addition valve provided in an exhaust passage upstream of the NOx catalyst. It is described that the air-fuel ratio of the exhaust gas flowing into the NOx catalyst is intermittently rich and lean by repeating addition and stop at appropriate timing.

また、特許文献2には、NOx触媒に流入する排気ガスの空燃比をリッチにする際に、還元剤添加弁による燃料の添加に加えて、気筒内の空燃比を通常の運転時に比べてリッチに切り替えることが記載されている。
特開2003−166415号公報 特開2002−38943号公報 特開2002−38939号公報
Further, in Patent Document 2, when the air-fuel ratio of the exhaust gas flowing into the NOx catalyst is made rich, in addition to the addition of fuel by the reducing agent addition valve, the air-fuel ratio in the cylinder is made rich compared to that during normal operation. It is described to switch to.
JP 2003-166415 A JP 2002-38943 A JP 2002-38939 A

しかしながら、還元剤添加弁により添加された燃料は、排気通路に付着したり、排気ガスの熱によりその一部が気化したとしても十分に気化しなかった燃料は粒子径が大きく質量も重いため排気ガスの流れと共に触媒に到達し難かったりするから、添加後直ちにその全てが蒸発し、その全てが直ちにNOx触媒に到達するわけではない。   However, the fuel added by the reducing agent addition valve adheres to the exhaust passage, or even if a part of the fuel is vaporized by the heat of the exhaust gas, the fuel that has not been sufficiently vaporized has a large particle diameter and a heavy mass. Since it is difficult to reach the catalyst along with the gas flow, not all of it evaporates immediately after the addition, and not all of it reaches the NOx catalyst immediately.

そのため、還元剤添加弁により燃料を添加開始するのと同時に気筒内の空燃比を通常の運転時に比べてリッチに切り替えると、気筒内の空燃比を低下して気筒内から排出される排気ガスの空燃比を低下させたにもかかわらず、還元剤添加弁により添加された燃料が十分にNOx触媒に到達しないために、NOx触媒に流入する排気ガスの空燃比が目標のリッチな空燃比にならないおそれがある。その結果、気筒内の空燃比を低下させている間に用いた燃料が無駄となり燃費が悪化してしまう。   For this reason, if the air-fuel ratio in the cylinder is switched to richer than in normal operation at the same time as fuel addition is started by the reducing agent addition valve, the air-fuel ratio in the cylinder is lowered and the exhaust gas discharged from the cylinder is reduced. Even though the air-fuel ratio is lowered, the fuel added by the reducing agent addition valve does not sufficiently reach the NOx catalyst, so the air-fuel ratio of the exhaust gas flowing into the NOx catalyst does not become the target rich air-fuel ratio. There is a fear. As a result, the fuel used while lowering the air-fuel ratio in the cylinder is wasted, and the fuel efficiency is deteriorated.

一方、SOx被毒解消処理を実行終了する際に、還元剤添加弁による燃料添加を停止させるのと同時に気筒内の空燃比を通常の運転時の空燃比に切り替えると、気筒内から排出される排気ガスの空燃比が高くなったにもかかわらず、これまでに添加され排気通路に付着していた燃料及び蒸発が遅れた燃料が遅れてNOx触媒に到達することから、添加され
た燃料が無駄となり燃費が悪化してしまう。
On the other hand, when the SOx poisoning elimination process is finished, if the air-fuel ratio in the cylinder is switched to the air-fuel ratio during normal operation at the same time as stopping the fuel addition by the reducing agent addition valve, it is discharged from the cylinder. Despite the fact that the air-fuel ratio of the exhaust gas has increased, the fuel that has been added so far and adhered to the exhaust passage and the fuel that has delayed evaporation reach the NOx catalyst with a delay, so the added fuel is wasted. The fuel consumption will worsen.

本発明は、上記した問題点に鑑みてなされたものであり、その目的とするところは、燃費よくNOx触媒に保持されたSOxを還元除去できる内燃機関の排気浄化装置を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an exhaust gas purification apparatus for an internal combustion engine that can reduce and remove SOx held in a NOx catalyst with high fuel efficiency.

本発明に係る内燃機関の制御浄化装置は、上記した課題を解決するために以下のような手段を採用した。すなわち、排気通路に設けられたNOx吸蔵還元型触媒と、当該NOx吸蔵還元型触媒の上流の排気通路に設けられた還元剤供給手段と、気筒内の空燃比を制御する空燃比制御手段と、を有し、前記空燃比制御手段が気筒内の空燃比を通常運転時の空燃比に比べて低下させ気筒内から排出される排気ガスの空燃比を低下させると共に前記還元剤供給手段が還元剤を供給することにより、前記NOx吸蔵還元型触媒に流入する排気ガスの空燃比を理論空燃比以下にして前記NOx吸蔵還元型触媒に保持された硫黄酸化物を放出還元させる内燃機関の排気浄化装置において、前記還元剤供給手段から供給された還元剤の内、前記NOx吸蔵還元型触媒に実際に到達している還元剤量を算出する触媒到達還元剤量算出手段を有し、前記空燃比制御手段は、前記触媒到達還元剤量算出手段にて算出された還元剤量に基づいて気筒内の空燃比を低下させることを特徴とする。
The control and purification device for an internal combustion engine according to the present invention employs the following means in order to solve the above-described problems. That is, a NOx storage reduction catalyst provided in the exhaust passage, a reducing agent supply means provided in an exhaust passage upstream of the NOx storage reduction catalyst, an air fuel ratio control means for controlling the air fuel ratio in the cylinder, The air-fuel ratio control means lowers the air-fuel ratio in the cylinder as compared with the air-fuel ratio in normal operation , lowers the air-fuel ratio of the exhaust gas discharged from the cylinder, and the reducing agent supply means The exhaust gas purifying apparatus for an internal combustion engine that releases and reduces the sulfur oxide held in the NOx occlusion reduction type catalyst by reducing the air-fuel ratio of the exhaust gas flowing into the NOx occlusion reduction type catalyst to a theoretical air fuel ratio or less by supplying A reducing agent amount calculating means for calculating a reducing agent amount that has actually reached the NOx occlusion reduction type catalyst among the reducing agents supplied from the reducing agent supply means; hand Is characterized by reducing the air-fuel ratio in the cylinder based on the calculated amount of reducing agent in the catalyst reaches the reducing agent amount calculating means.

NOx触媒に保持された硫黄酸化物(SOx)を放出還元させるためには、NOx触媒に流入する排気ガスの空燃比を理論空燃比以下にする必要があるが、空燃比制御手段が気筒内の空燃比を低下させて気筒内から排出される排気ガスの空燃比を低下させるタイミングと還元剤供給手段が還元剤を供給するタイミングが同時であるとすると、排気通路に供給された還元剤が排気通路に付着したり、排気ガスの熱によりその一部が気化したとしても十分に気化しなかった燃料は粒子径が大きく質量も重いため排気ガスの流れと共に触媒に到達し難かったりするから、低下された気筒内の空燃比での燃焼による排気ガスがNOx触媒に到達しているにもかかわらず、NOx触媒に流入する排気ガスの空燃比を理論空燃比以下にしてNOx触媒に保持されたSOxを放出還元するのに必要な量の還元剤がNOx触媒に到達しない場合がある。その結果、気筒内の空燃比を低下させた間に用いた燃料が無駄となり燃費が悪化する。   In order to release and reduce sulfur oxide (SOx) held in the NOx catalyst, the air-fuel ratio of the exhaust gas flowing into the NOx catalyst needs to be less than the stoichiometric air-fuel ratio. Assuming that the timing for lowering the air-fuel ratio of the exhaust gas discharged from the cylinder by lowering the air-fuel ratio and the timing for supplying the reducing agent by the reducing agent supply means are the same, the reducing agent supplied to the exhaust passage is exhausted. Even if the fuel adhering to the passage or part of it is vaporized due to the heat of the exhaust gas, the fuel that has not been sufficiently vaporized has a large particle size and heavy mass, so it is difficult to reach the catalyst along with the flow of exhaust gas. Despite the fact that the exhaust gas resulting from combustion at the air-fuel ratio in the cylinder has reached the NOx catalyst, the air-fuel ratio of the exhaust gas flowing into the NOx catalyst is kept below the stoichiometric air-fuel ratio and maintained in the NOx catalyst. Amount of reducing agent needed to release reducing SOx may not reach the NOx catalyst. As a result, the fuel used while the air-fuel ratio in the cylinder is lowered is wasted and fuel consumption is deteriorated.

また、空燃比制御手段が気筒内の空燃比を低下させて気筒内から排出される排気ガスの空燃比を低下させるのを終了するタイミングと還元剤供給手段が還元剤を供給するのを終了するタイミングが同時であるとすると、NOx触媒に保持されたSOxを放出還元するのに必要な量の還元剤がNOx触媒に到達しているにもかかわらず、気筒内から排出された排気ガスの空燃比が低下していないため、NOx触媒に流入する排気ガスが理論空燃比以下とはならない場合がある。その結果、供給された還元剤が無駄となり燃費が悪化する。   Also, the timing at which the air-fuel ratio control means lowers the air-fuel ratio in the cylinder to lower the air-fuel ratio of the exhaust gas discharged from the cylinder and the reducing agent supply means finishes supplying the reducing agent. Assuming that the timing is the same, the amount of reducing agent necessary for releasing and reducing the SOx retained in the NOx catalyst has reached the NOx catalyst, but the exhaust gas exhausted from the cylinder is empty. Since the fuel ratio is not lowered, the exhaust gas flowing into the NOx catalyst may not be less than the stoichiometric air fuel ratio. As a result, the supplied reducing agent is wasted and fuel consumption is deteriorated.

本発明に係る内燃機関の排気浄化装置によれば、触媒到達還元剤量算出手段が還元剤供給手段から供給された還元剤の内、NOx触媒に到達する還元剤量を算出し、当該算出された還元剤量に基づいて、空燃比制御手段が気筒内の空燃比を低下させるので、低下させた気筒内の空燃比での燃焼による排気ガスがNOx触媒に到達しているにもかかわらず十分な量の還元剤が到達せずにNOx触媒に流入する排気ガスの空燃比が理論空燃比以下にならないことや、十分な量の還元剤がNOx触媒に到達しているにもかかわらず低下させた気筒内の空燃比での燃焼による排気ガスが到達せずにNOx触媒に流入する排気ガスの空燃比が理論空燃比以下にならないことを抑制することができる。その結果、気筒内の空燃比を無駄に低下させることや、還元剤を無駄に供給することを抑制することができ、燃費よくNOx触媒に保持されたSOxを放出還元できる。   According to the exhaust gas purification apparatus for an internal combustion engine according to the present invention, the catalyst reaching reducing agent amount calculating means calculates the reducing agent amount reaching the NOx catalyst among the reducing agents supplied from the reducing agent supplying means, and the calculation is performed. Since the air-fuel ratio control means lowers the air-fuel ratio in the cylinder based on the reduced amount of reducing agent, the exhaust gas resulting from combustion at the reduced air-fuel ratio in the cylinder has sufficiently reached the NOx catalyst. The air-fuel ratio of the exhaust gas flowing into the NOx catalyst without reaching a sufficient amount of the reducing agent does not fall below the stoichiometric air-fuel ratio, or even though a sufficient amount of the reducing agent has reached the NOx catalyst. Therefore, it is possible to prevent the exhaust gas that has flown into the NOx catalyst from reaching the exhaust gas due to combustion at the air-fuel ratio in the cylinder and not to be less than the stoichiometric air-fuel ratio. As a result, it is possible to suppress the wasteful reduction of the air-fuel ratio in the cylinder and the wasteful supply of the reducing agent, and to release and reduce SOx held in the NOx catalyst with high fuel efficiency.

また、前記触媒到達還元剤量算出手段にて算出された還元剤量が前記NOx吸蔵還元型触媒に保持された硫黄酸化物を放出還元させるのに必要な還元剤量以上である場合に、前記空燃比制御手段は、気筒内の空燃比を通常運転時の空燃比に比べて低下させた状態に維持することが好適である。これにより、気筒内の空燃比を無駄に低下させることや、還元剤を無駄に供給することを抑制することができ、燃費よくNOx触媒に保持されたSOxを放出還元できる。
When the amount of reducing agent calculated by the catalyst reaching reducing agent amount calculating means is equal to or greater than the amount of reducing agent necessary for releasing and reducing the sulfur oxide held in the NOx occlusion reduction type catalyst, air-fuel ratio control means, Rukoto to maintain the air-fuel ratio in the cylinder while being lower than the air-fuel ratio during normal operation is suitable. Thereby, it is possible to suppress the wasteful reduction of the air-fuel ratio in the cylinder and the wasteful supply of the reducing agent, and it is possible to release and reduce the SOx held in the NOx catalyst with high fuel efficiency.

ただし、空燃比制御手段が気筒内の空燃比を低下させるように作動し、実際に低下された空燃比での燃焼による排気ガスが排気通路を流通してNOx触媒に到達するまでにはそれ相応の時間を要する。そのため、この時間の間にNOx触媒に到達した還元剤が無駄となる場合もある。   However, the air-fuel ratio control means operates so as to lower the air-fuel ratio in the cylinder, and the exhaust gas due to combustion at the actually lowered air-fuel ratio flows through the exhaust passage and reaches the NOx catalyst accordingly. Takes time. Therefore, the reducing agent that has reached the NOx catalyst during this time may be wasted.

そこで、前記空燃比制御手段は、当該空燃比制御手段により通常運転時の空燃比に比べて低下させられた気筒内の空燃比での燃焼による排気ガスが前記NOx吸蔵還元型触媒に到達するまでの時間である排気ガス到達時間にも基づいて、気筒内の空燃比を低下させることが好適である。例えば、前記触媒到達還元剤量算出手段にて算出された還元剤量が、前記NOx吸蔵還元型触媒に保持された硫黄酸化物を放出還元するのに必要な還元剤量よりも前記排気ガス到達時間内に到達する還元剤量の分少ない量以上である場合に、前記空燃比制御手段は、気筒内の空燃比を通常運転時の空燃比に比べて低下させた状態に維持することで、気筒内の空燃比を無駄に低下させることや、還元剤を無駄に供給することをより
精度よく抑制することができ、燃費よくNOx触媒に保持されたSOxを放出還元できる。
Therefore, the air-fuel ratio control means until the exhaust gas resulting from combustion at the air-fuel ratio in the cylinder lowered by the air-fuel ratio control means compared to the air-fuel ratio during normal operation reaches the NOx storage reduction catalyst. It is preferable to reduce the air-fuel ratio in the cylinder on the basis of the exhaust gas arrival time which is the above-mentioned time. For example, the amount of reducing agent calculated by the catalyst reducing agent amount calculating means reaches the exhaust gas more than the amount of reducing agent necessary for releasing and reducing sulfur oxide held in the NOx storage reduction type catalyst. If it is more partial small amount of reducing agent amount to reach in time, the air-fuel ratio control means, in Rukoto to maintain the air-fuel ratio in the cylinder while being lower than the air-fuel ratio during normal operation Further, it is possible to more accurately suppress the wasteful reduction of the air-fuel ratio in the cylinder and the wasteful supply of the reducing agent, and it is possible to release and reduce SOx held in the NOx catalyst with high fuel efficiency.

また、前記空燃比制御手段は、少なくとも気筒内に吸入される空気量を制限することにより気筒内の空燃比を制御することが好適である。気筒内に吸入される空気量を制限する手法としては、吸気通路に設けられた吸気絞り弁の開度を調整すること、NOx触媒の下流の排気通路に設けられた排気絞り弁の開度を調整すること、あるいは吸気絞り弁及び排気絞り弁両方の開度を調整することを例示することができる。   The air-fuel ratio control means preferably controls the air-fuel ratio in the cylinder by limiting at least the amount of air taken into the cylinder. As a method of limiting the amount of air sucked into the cylinder, the opening degree of the intake throttle valve provided in the intake passage is adjusted, and the opening degree of the exhaust throttle valve provided in the exhaust passage downstream of the NOx catalyst is adjusted. Examples of the adjustment include adjusting the opening degree of both the intake throttle valve and the exhaust throttle valve.

以上説明したように、本発明に係る内燃機関の排気浄化装置によれば、燃費よくNOx触媒に保持されたSOxを還元除去できる。   As described above, the exhaust gas purification apparatus for an internal combustion engine according to the present invention can reduce and remove SOx held in the NOx catalyst with good fuel efficiency.

以下に図面を参照して、この発明の好適な実施の形態を例示的に詳しく説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。   Exemplary embodiments of the present invention will be described in detail below with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to those unless otherwise specified. Absent.

図1は、本発明に係る排気浄化装置を備えた内燃機関の概略構成を示す図である。図1に示す内燃機関1は、4つの気筒2を有する水冷式の4気筒ディーゼルエンジンである。   FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine provided with an exhaust purification device according to the present invention. An internal combustion engine 1 shown in FIG. 1 is a water-cooled four-cylinder diesel engine having four cylinders 2.

内燃機関1は、各気筒2の燃焼室に直接燃料を噴射する燃料噴射弁3を備えている。各燃料噴射弁3は、蓄圧室(コモンレール)4と接続され、このコモンレール4は、燃料供給管5を介して燃料ポンプ6と連通している。   The internal combustion engine 1 includes a fuel injection valve 3 that injects fuel directly into the combustion chamber of each cylinder 2. Each fuel injection valve 3 is connected to a pressure accumulating chamber (common rail) 4, and the common rail 4 communicates with a fuel pump 6 through a fuel supply pipe 5.

内燃機関1には、吸気通路7が接続されており、この吸気通路7は、エアクリーナボックス8に接続されている。そして、エアクリーナボックス8より下流の吸気通路7には、当該吸気通路7内を流通する吸気の質量に対応した電気信号を出力するエアフローメータ9が取り付けられている。   An intake passage 7 is connected to the internal combustion engine 1, and the intake passage 7 is connected to an air cleaner box 8. An air flow meter 9 that outputs an electrical signal corresponding to the mass of the intake air flowing through the intake passage 7 is attached to the intake passage 7 downstream of the air cleaner box 8.

また、吸気通路7の途中には、過給機(ターボチャージャー)10のコンプレッサハウ
ジング10aが設けられている。コンプレッサハウジング10aより下流の吸気通路7にはインタークーラ11が取り付けられている。更にインタークーラ11より下流の吸気通路7には、当該吸気通路7内を流通する吸気の流量を調整する吸気絞り弁12が設けられている。この吸気絞り弁12には、当該吸気絞り弁12を開閉駆動する吸気絞り用アクチュエータ13が取り付けられている。
A compressor housing 10 a of a supercharger (turbocharger) 10 is provided in the middle of the intake passage 7. An intercooler 11 is attached to the intake passage 7 downstream of the compressor housing 10a. Further, an intake throttle valve 12 for adjusting the flow rate of intake air flowing through the intake passage 7 is provided in the intake passage 7 downstream of the intercooler 11. An intake throttle actuator 13 that opens and closes the intake throttle valve 12 is attached to the intake throttle valve 12.

そして、コンプレッサハウジング10aに流入し、当該コンプレッサハウジング10a内で圧縮されて高温となった吸気は、インタークーラ11にて冷却された後、必要に応じて吸気絞り弁12によって流量を調整されて吸気通路7を介して各気筒2の燃焼室へ分配され、各気筒2の燃料噴射弁3から噴射された燃料を着火源として燃焼される。   The intake air that has flowed into the compressor housing 10a and is compressed in the compressor housing 10a to a high temperature is cooled by the intercooler 11, and then the flow rate is adjusted by the intake throttle valve 12 as necessary. The fuel is distributed to the combustion chambers of the respective cylinders 2 through the passages 7 and burned by using the fuel injected from the fuel injection valves 3 of the respective cylinders 2 as an ignition source.

また、内燃機関1には排気通路14が接続され、この排気通路14は下流にて図示しないマフラーと接続されている。さらに、排気通路14の途中には、過給機10のタービンハウジング10bが配置されており、排気通路14のタービンハウジング10bより下流の部位には、吸蔵還元型NOx触媒(以下、特に断らない限り「NOx触媒」という。)15が備えられている。そして、タービンハウジング10bから排出された排気ガスは、排気通路14を介してNOx触媒15へ流入し、排気ガス中の物質が浄化される。また、NOx触媒15の上流の排気通路14には排気通路14内を流通する排気ガスの空燃比に対応した電気信号を出力する空燃比センサ16と、排気通路14内を流通する排気ガスの温度に対応した電気信号を出力する排気温度センサ17とが取り付けられている。   Further, an exhaust passage 14 is connected to the internal combustion engine 1, and this exhaust passage 14 is connected downstream with a muffler (not shown). Further, a turbine housing 10b of the supercharger 10 is disposed in the middle of the exhaust passage 14, and an NOx storage reduction catalyst (hereinafter, unless otherwise specified) is provided in a portion of the exhaust passage 14 downstream from the turbine housing 10b. "NOx catalyst") 15 is provided. The exhaust gas discharged from the turbine housing 10b flows into the NOx catalyst 15 through the exhaust passage 14, and the substance in the exhaust gas is purified. In addition, an air-fuel ratio sensor 16 that outputs an electric signal corresponding to the air-fuel ratio of the exhaust gas flowing in the exhaust passage 14 and the temperature of the exhaust gas flowing in the exhaust passage 14 are disposed in the exhaust passage 14 upstream of the NOx catalyst 15. And an exhaust gas temperature sensor 17 for outputting an electrical signal corresponding to the above.

また、NOx触媒15より上流の排気通路14を流通する排気ガス中に還元剤たる燃料(軽油)を供給(添加)する還元剤供給手段を備えている。この還元剤供給手段は、図1に示されるようにその噴孔が排気通路14内に臨むよう内燃機関1のシリンダヘッドに取り付けられ、所定の開弁圧以上の燃料が印加されたときに開弁して燃料を噴射する還元剤添加弁18と、前述した燃料ポンプ6から吐出された燃料を還元剤添加弁18へ導く還元剤供給路19とを備えている。   Further, there is provided a reducing agent supply means for supplying (adding) fuel (light oil) as a reducing agent into the exhaust gas flowing through the exhaust passage 14 upstream from the NOx catalyst 15. As shown in FIG. 1, this reducing agent supply means is attached to the cylinder head of the internal combustion engine 1 so that its nozzle hole faces the exhaust passage 14, and opens when fuel of a predetermined valve opening pressure or higher is applied. There are provided a reducing agent addition valve 18 that injects fuel by valve and a reducing agent supply passage 19 that guides the fuel discharged from the fuel pump 6 to the reducing agent addition valve 18.

このように構成された還元剤供給手段において、還元剤添加弁18から排気通路14内へ添加された還元剤は、排気通路14の上流から流れてきた排気ガスとともにタービンハウジング10bへ流入する。タービンハウジング10b内に流入した排気ガスと還元剤とは、タービンホイールの回転によって撹拌されて均質に混合された排気ガスを形成する。   In the reducing agent supply means configured as described above, the reducing agent added from the reducing agent addition valve 18 into the exhaust passage 14 flows into the turbine housing 10 b together with the exhaust gas flowing from the upstream of the exhaust passage 14. The exhaust gas and the reducing agent flowing into the turbine housing 10b are agitated by the rotation of the turbine wheel to form a homogeneously mixed exhaust gas.

以上述べたように構成された内燃機関1には、当該内燃機関1を制御するための電子制御ユニット(ECU:Electronic Control Unit)20が併設されている。このECU20は、CPU、ROM、RAM、バックアップRAM等からなる算術論理演算回路である。   The internal combustion engine 1 configured as described above is provided with an electronic control unit (ECU) 20 for controlling the internal combustion engine 1. The ECU 20 is an arithmetic logic operation circuit including a CPU, a ROM, a RAM, a backup RAM, and the like.

ECU20には、前述したエアフローメータ9、空燃比センサ16、排気温度センサ17に加え、内燃機関1に取り付けられたクランクポジションセンサ(図示省略)及び水温センサ(図示省略)等の各種センサが電気配線を介して接続され、上記した各種センサの出力信号がECU20に入力されるようになっている。   The ECU 20 includes various sensors such as a crank position sensor (not shown) and a water temperature sensor (not shown) attached to the internal combustion engine 1 in addition to the air flow meter 9, the air-fuel ratio sensor 16, and the exhaust temperature sensor 17 described above. And the output signals of the various sensors described above are input to the ECU 20.

一方、ECU20には、燃料噴射弁3、吸気絞り用アクチュエータ13、還元剤添加弁18等が電気配線を介して接続され、ECU20が、燃料噴射弁3、吸気絞り用アクチュエータ13及び還元剤添加弁18等を制御することが可能になっている。   On the other hand, the fuel injection valve 3, the intake throttle actuator 13, the reducing agent addition valve 18 and the like are connected to the ECU 20 via electric wiring, and the ECU 20 is connected to the fuel injection valve 3, the intake throttle actuator 13 and the reducing agent addition valve. 18 etc. can be controlled.

次に、本実施の形態に係る吸蔵還元型NOx触媒15について説明する。
NOx触媒15は、当該触媒に流入する排気ガスの空燃比がリーン空燃比であるときには、排気ガス中のNOxを保持(吸蔵)して大気中に放出しないようにし、当該触媒に流入
する排気ガスの空燃比が理論空燃比あるいはリッチ空燃比(理論空燃比以下)となったときには、保持していたNOxを放出及び還元して除去するものである。
Next, the NOx storage reduction catalyst 15 according to the present embodiment will be described.
When the air-fuel ratio of the exhaust gas flowing into the catalyst is a lean air-fuel ratio, the NOx catalyst 15 retains (occludes) NOx in the exhaust gas so as not to be released into the atmosphere, and the exhaust gas flowing into the catalyst When the air-fuel ratio becomes the stoichiometric air-fuel ratio or the rich air-fuel ratio (below the stoichiometric air-fuel ratio), the retained NOx is released and reduced.

また、NOx触媒15は、NOxと同様のメカニズムによって排気ガス中のSOxを保持するため、SOxの保持量が増加すると、それに応じてNOx触媒15のNOx保持能力が低減する、いわゆるSOx被毒が発生する。   Further, since the NOx catalyst 15 holds SOx in the exhaust gas by the same mechanism as NOx, when the amount of SOx held increases, the NOx holding capacity of the NOx catalyst 15 decreases accordingly, so-called SOx poisoning occurs. appear.

そして、このようにNOx触媒15にSOx被毒が生じると、NOx保持能力が飽和し、排気ガス中のNOxがNOx触媒15にて浄化されずに大気中へ放出されてしまう。したがって、本実施の形態においては、NOx触媒15に保持されたSOxを放出及び還元させる、SOx被毒解消制御を実行することとしている。   When SOx poisoning occurs in the NOx catalyst 15 in this manner, the NOx retention capacity is saturated, and NOx in the exhaust gas is released into the atmosphere without being purified by the NOx catalyst 15. Therefore, in the present embodiment, the SOx poisoning elimination control for releasing and reducing SOx held in the NOx catalyst 15 is executed.

このSOx被毒解消制御では、ECU20は、先ずNOx触媒15の床温を約600℃に高める触媒昇温処理を実行した上で、NOx触媒15に流入する排気ガスの空燃比を理論空燃比以下とするようにする。   In this SOx poisoning elimination control, the ECU 20 first executes a catalyst temperature raising process for raising the bed temperature of the NOx catalyst 15 to about 600 ° C., and then sets the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 15 to be less than the stoichiometric air-fuel ratio. And so on.

具体的に、本実施の形態の触媒昇温処理では、NOx触媒15の温度を早期に上昇させる手段として、内燃機関1の圧縮行程上死点近傍での通常の主燃料噴射に加えて、排気行程中もしくは膨張行程中に気筒内に燃料を副次的に噴射するポスト噴射又は吸気行程もしくは排気行程の上死点近傍で気筒内に燃料を噴射するビゴム噴射等の副噴射を行うことが有効である。ポスト噴射においては、排気行程中又は膨張行程中に噴射された燃料が未燃燃料としてNOx触媒に流入し、当該触媒との反応熱により当該触媒の温度が上昇する。一方、ビゴム噴射においては、吸気行程又は排気行程の上死点近傍で噴射された燃料がその後の行程で蒸発して着火し易いものとなり燃焼を安定させるので、主燃料噴射時期を遅延させることによりピストン運動に消費されるエネルギ量が減少し、それに伴い温度上昇した排気ガスがNOx触媒15に到達することにより当該触媒の温度が上昇する。更に噴射された燃料の未燃分がNOx触媒15に供給され、それが当該触媒上で酸化反応を起こし、以って当該触媒の温度が上昇する。   Specifically, in the catalyst temperature raising process of the present embodiment, as a means for increasing the temperature of the NOx catalyst 15 at an early stage, in addition to normal main fuel injection near the top dead center of the compression stroke of the internal combustion engine 1, exhaust gas It is effective to perform sub-injection such as post-injection, which injects fuel into the cylinder during the stroke or expansion stroke, or bi-rubber injection, which injects fuel into the cylinder near the top dead center of the intake or exhaust stroke. It is. In post-injection, fuel injected during the exhaust stroke or expansion stroke flows into the NOx catalyst as unburned fuel, and the temperature of the catalyst rises due to heat of reaction with the catalyst. On the other hand, in the rubber injection, the fuel injected near the top dead center of the intake stroke or the exhaust stroke evaporates in the subsequent stroke and easily ignites and stabilizes the combustion. The amount of energy consumed for the piston motion is reduced, and the exhaust gas whose temperature has increased accordingly reaches the NOx catalyst 15, whereby the temperature of the catalyst rises. Further, the unburned portion of the injected fuel is supplied to the NOx catalyst 15, which causes an oxidation reaction on the catalyst, thereby increasing the temperature of the catalyst.

また、上述の副噴射の代わりにあるいは副噴射とともに、還元剤添加弁18から排気ガス中へ還元剤たる燃料を添加させることにより、それらの未燃燃料成分をNOx触媒15において酸化させ、酸化の際に発生する熱によってNOx触媒の床温を高めるようにしてもよい。   Further, by adding fuel as a reducing agent from the reducing agent addition valve 18 into the exhaust gas instead of the above-mentioned auxiliary injection or together with the auxiliary injection, these unburned fuel components are oxidized in the NOx catalyst 15 and oxidized. You may make it raise the bed temperature of a NOx catalyst with the heat | fever generate | occur | produced in the case.

そして、上記したような触媒昇温処理によりNOx触媒15の床温が約600℃まで上昇したら、ECU20は、NOx触媒15に流入する排気ガスの空燃比を理論空燃比以下とすべく還元剤添加弁18から還元剤たる燃料を添加させる還元剤添加制御を実行する。   When the bed temperature of the NOx catalyst 15 rises to about 600 ° C. by the catalyst temperature raising process as described above, the ECU 20 adds the reducing agent so that the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 15 is less than the stoichiometric air-fuel ratio. Reducing agent addition control for adding fuel as a reducing agent from the valve 18 is executed.

ただし、排気ガス内に添加された還元剤は、高温条件下においてNOx触媒15に保持されたSOxを還元する機能を有する一方、NOx触媒15の温度をさらに上昇させる特性を有する。そのため、NOx触媒15の温度が約600℃になった状態から還元剤が添加され続けると、NOx触媒15の温度が上昇し続け、NOx触媒15の温度が過剰に高くなることに起因する熱劣化を生じさせてしまう。   However, the reducing agent added to the exhaust gas has a function of further reducing the temperature of the NOx catalyst 15 while having a function of reducing SOx held in the NOx catalyst 15 under a high temperature condition. For this reason, if the reducing agent is continuously added from the state where the temperature of the NOx catalyst 15 is about 600 ° C., the temperature of the NOx catalyst 15 continues to rise, and the thermal deterioration due to the temperature of the NOx catalyst 15 becoming excessively high. Will be caused.

そこで、本実施の形態の還元剤添加制御を実行するにあたっては、NOx触媒15に流入する排気ガスの空燃比を理論空燃比以下とすべく還元剤添加弁18を通じて還元剤を間欠的に添加し、所定のタイミングで還元剤の添加を停止し、これを繰り返すことにより、NOx触媒15に保持されたSOxを放出・還元させつつNOx触媒15の過熱を防止するようする。   Therefore, when executing the reducing agent addition control of the present embodiment, the reducing agent is intermittently added through the reducing agent addition valve 18 so that the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 15 is equal to or lower than the stoichiometric air-fuel ratio. By stopping the addition of the reducing agent at a predetermined timing and repeating this, the NOx catalyst 15 is prevented from overheating while releasing and reducing the SOx held in the NOx catalyst 15.

具体的には、NOx触媒15に保持され蓄積したSOxを放出すべきとの要求があり、且つ、NOx触媒15の床温が600℃以上に保持されているといった条件が満たされた場合に、ECU20は還元剤添加弁18を開弁させるための指令信号(以下、「開弁指令信号」という。)を、所定期間(以下、「還元剤添加期間」という。)の間断続的に出力することで、還元剤添加弁18から還元剤たる燃料を断続的に添加し、NOx触媒15に流入する排気ガスの空燃比を理論空燃比以下になるようにする(図2参照)。その後ECU20は、NOx触媒15の過熱を抑制すべく開弁指令信号の出力を、所定期間(以下、「添加休止期間」という。)の間休止し、所定のリーン空燃比になるようにする(図2参照)。その後添加休止期間を経た後、還元剤の添加を再開して、再度理論空燃比以下になるようにする(図2参照)。そして、再度還元剤添加期間の間還元剤を添加した後、添加休止期間の間還元剤添加を休止し、再度所定のリーン空燃比になるようにする(図2参照)。このように、還元剤添加制御が開始されると、基本的にはNOx触媒15に保持されたSOxが放出されて当該NOx触媒15の機能が十分に回復するまで、間欠的にNOx触媒15に流入する排気ガスの空燃比を理論空燃比以下とするように還元剤の添加及び休止が繰り返される。そして、このように還元剤添加制御として、間欠的に還元剤を添加して間欠的にNOx触媒15に流入する排気ガスの空燃比を理論空燃比以下にすることを間欠リッチ制御という。なお、図2においては、還元剤添加期間内において、開弁指令信号を断続的に複数回出力する場合を例示しているが、特にかかる場合に限定されるものではなく、還元剤添加弁18を1回だけ開弁させ、還元剤添加期間の間中還元剤を添加させるようにしてもよい。   Specifically, when there is a request that the SOx retained and accumulated in the NOx catalyst 15 should be released and the condition that the bed temperature of the NOx catalyst 15 is maintained at 600 ° C. or higher is satisfied, The ECU 20 intermittently outputs a command signal for opening the reducing agent addition valve 18 (hereinafter referred to as “valve opening command signal”) for a predetermined period (hereinafter referred to as “reducing agent addition period”). Thus, fuel as a reducing agent is intermittently added from the reducing agent addition valve 18 so that the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 15 becomes equal to or lower than the stoichiometric air-fuel ratio (see FIG. 2). Thereafter, the ECU 20 pauses the output of the valve opening command signal for a predetermined period (hereinafter referred to as “addition suspension period”) so as to suppress overheating of the NOx catalyst 15 so as to obtain a predetermined lean air-fuel ratio ( (See FIG. 2). Thereafter, after a suspension period of addition, the addition of the reducing agent is resumed so that it again becomes the stoichiometric air-fuel ratio or less (see FIG. 2). Then, after the reducing agent is added again during the reducing agent addition period, the reducing agent addition is stopped during the addition suspension period so that the predetermined lean air-fuel ratio is obtained again (see FIG. 2). Thus, when the reducing agent addition control is started, basically, the NOx catalyst 15 is intermittently supplied until the SOx retained in the NOx catalyst 15 is released and the function of the NOx catalyst 15 sufficiently recovers. The addition and pause of the reducing agent are repeated so that the air-fuel ratio of the inflowing exhaust gas is less than the stoichiometric air-fuel ratio. In this way, as reducing agent addition control, intermittently adding a reducing agent and making the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 15 intermittently lower than the stoichiometric air-fuel ratio is referred to as intermittent rich control. FIG. 2 illustrates the case where the valve opening command signal is intermittently output a plurality of times within the reducing agent addition period. However, the present invention is not particularly limited to this case, and the reducing agent addition valve 18 is not particularly limited. May be opened once and the reducing agent may be added during the reducing agent addition period.

そして、本実施の形態においては、NOx触媒15に流入する排気ガスの空燃比を理論空燃比以下にすべく還元剤添加弁18にて還元剤を添加するのに同期させて、気筒内の空燃比(以下、「筒内空燃比」という。)を通常運転時の空燃比(A/F=25〜30)よりもリッチな空燃比である弱リーン(例えばA/F=18〜23)にする。   In the present embodiment, in order to make the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 15 equal to or lower than the stoichiometric air-fuel ratio, the reductant is added in the reductant addition valve 18 in synchronism with the empty air in the cylinder. The fuel ratio (hereinafter referred to as “in-cylinder air / fuel ratio”) is made to be slightly lean (for example, A / F = 18 to 23), which is an air / fuel ratio richer than the air / fuel ratio (A / F = 25 to 30) during normal operation. To do.

筒内空燃比を弱リーンにする手法としては、吸気絞り弁12の開度を小さくして気筒内に吸入される空気の量を減少させることを例示することができる。また、NOx触媒15下流の排気通路14に大気に排出される排気ガスの流量を調整する排気絞り弁を備える場合には、当該排気絞り弁の開度を小さくして気筒内に吸入される空気の量を減少させ、筒内空燃比を弱リーンにしてもよい。さらには、吸気絞り弁12の開度を小さくするとともに排気絞り弁の開度を小さくしてもよい。そして、本実施の形態においては以下に述べる筒内空燃比低下制御に従って筒内空燃比を弱リーンに低下させるようにする。   As a technique for making the in-cylinder air-fuel ratio weakly lean, it is possible to exemplify reducing the amount of air sucked into the cylinder by reducing the opening of the intake throttle valve 12. Further, when the exhaust passage 14 downstream of the NOx catalyst 15 is provided with an exhaust throttle valve that adjusts the flow rate of exhaust gas discharged to the atmosphere, the air sucked into the cylinder with the opening of the exhaust throttle valve being reduced. The in-cylinder air-fuel ratio may be made slightly lean. Furthermore, the opening degree of the intake throttle valve 12 may be reduced and the opening degree of the exhaust throttle valve may be reduced. In the present embodiment, the in-cylinder air-fuel ratio is reduced to a weak lean according to the in-cylinder air-fuel ratio lowering control described below.

[筒内空燃比低下制御の第1の実施例]
還元剤添加弁18にて添加された還元剤たる燃料は、液状のまま排気通路14に添加されることから、排気通路14にそのまま付着したり、排気ガスの熱によりその一部が気化したとしても十分に気化しなかった燃料は粒子径が大きく質量も重いため排気ガスの流れと共に触媒に到達し難かったりする。そのため、還元剤添加弁18による還元剤の添加と同時に筒内空燃比を弱リーンにすると、還元剤添加弁18にて添加された還元剤がNOx触媒15に遅れて到達することから、筒内空燃比を弱リーンにしたにもかかわらず、NOx触媒15に流入する排気ガスの空燃比が、SOxを放出・還元させ得る理論空燃比以下の目標空燃比とならない場合がある。
[First embodiment of in-cylinder air-fuel ratio lowering control]
The fuel as the reducing agent added by the reducing agent addition valve 18 is added to the exhaust passage 14 in a liquid state, so that it is attached to the exhaust passage 14 as it is or partly vaporized by the heat of the exhaust gas. However, the fuel that is not sufficiently vaporized has a large particle size and a large mass, so that it may be difficult to reach the catalyst along with the flow of the exhaust gas. Therefore, if the in-cylinder air-fuel ratio is made lean simultaneously with the addition of the reducing agent by the reducing agent addition valve 18, the reducing agent added by the reducing agent addition valve 18 arrives at the NOx catalyst 15 with a delay. In some cases, the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 15 does not become a target air-fuel ratio equal to or lower than the stoichiometric air-fuel ratio at which SOx can be released / reduced, even though the air-fuel ratio is weakly lean.

具体的に、添加された還元剤の内、排気通路14に液状のまま付着する割合である添加還元剤付着率を示したのが図3である。図3に示すように、添加還元剤付着率は、排気ガス流量(流速)及び排気ガス温度と相関関係があり、排気ガス流量が減少するに従って排気通路に付着する還元剤の割合が高くなり、排気ガス温度が低くなるに従って排気通路14に付着する還元剤の割合が高くなる。   Specifically, FIG. 3 shows the added reducing agent adhesion rate, which is the ratio of the added reducing agent that adheres to the exhaust passage 14 in a liquid state. As shown in FIG. 3, the additive reducing agent adhesion rate is correlated with the exhaust gas flow rate (flow velocity) and the exhaust gas temperature, and as the exhaust gas flow rate decreases, the ratio of the reducing agent adhering to the exhaust passage increases. As the exhaust gas temperature decreases, the ratio of the reducing agent that adheres to the exhaust passage 14 increases.

一方、上述のようにして排気通路14に液状のまま付着した還元剤は、時間の経過とともに徐々に蒸発する。具体的に、付着した還元剤の内、所定時間(32ms)内に蒸発する還元剤の割合である付着還元剤蒸発率を示したのが図4である。図4に示すように、付着還元剤蒸発率は、排気ガス流量(流速)及び排気ガス温度と相関関係があり、排気ガス流量が増えるに従って蒸発する還元剤の割合が高くなり、排気ガス温度が高くなるに従って蒸発する還元剤の割合が高くなる。   On the other hand, the reducing agent adhering to the exhaust passage 14 in the liquid state as described above gradually evaporates over time. Specifically, FIG. 4 shows the attached reducing agent evaporation rate, which is the ratio of the reducing agent that evaporates within a predetermined time (32 ms) of the attached reducing agent. As shown in FIG. 4, the attached reducing agent evaporation rate has a correlation with the exhaust gas flow rate (flow velocity) and the exhaust gas temperature, and as the exhaust gas flow rate increases, the ratio of the reducing agent that evaporates increases. The ratio of the reducing agent that evaporates increases as the value increases.

このように、還元剤添加弁18にて添加された還元剤の内その一部が排気通路14に液状のまま付着することから、還元剤添加期間初期にNOx触媒15に到達する還元剤は、添加された還元剤量から排気通路14に付着する還元剤量を減算した量である。そして、当該排気通路14に付着した還元剤の一部が時間の経過とともに蒸発してNOx触媒15に到達するので、蒸発開始以降は、添加された還元剤量から排気通路14に付着する還元剤量を減算した量に、これまでに付着していた還元剤の一部が蒸発した量を加算した量が、NOx触媒15に到達する還元剤量となる。そのため、添加された還元剤が添加された位置からNOx触媒15まで排気ガスにより運ばれる時間をも考慮すると、図2(b)に示すように還元剤添加期間開始からΔT1遅れて、NOx触媒15に流入する排気ガスの空燃比を、SOxを放出・還元させ得る理論空燃比以下の目標空燃比にするのに必要な量の還元剤がNOx触媒15に到達することとなる。なお、この必要還元剤量は以下の計算式(1)に基づいて算出されるものである。
必要還元剤量=(筒内空燃比が弱リーンである場合に気筒内に吸入される空気量)/(NOx触媒15に流入する排気ガスの目標空燃比)−筒内空燃比が弱リーンである場合に筒内に噴射される燃料量 …(1)
Thus, since a part of the reducing agent added by the reducing agent addition valve 18 adheres to the exhaust passage 14 in a liquid state, the reducing agent that reaches the NOx catalyst 15 at the beginning of the reducing agent addition period is: This is the amount obtained by subtracting the amount of reducing agent adhering to the exhaust passage 14 from the amount of reducing agent added. Since a part of the reducing agent attached to the exhaust passage 14 evaporates with time and reaches the NOx catalyst 15, after the start of evaporation, the reducing agent attached to the exhaust passage 14 from the amount of the added reducing agent. An amount obtained by adding an amount obtained by subtracting the amount to which a part of the reducing agent that has adhered so far has evaporated is the amount of reducing agent that reaches the NOx catalyst 15. Therefore, considering the time taken by the exhaust gas from the position where the added reducing agent is added to the NOx catalyst 15, as shown in FIG. 2B, the NOx catalyst 15 is delayed by ΔT1 from the start of the reducing agent addition period. The amount of reducing agent necessary to bring the air-fuel ratio of the exhaust gas flowing into the target air-fuel ratio below the stoichiometric air-fuel ratio at which SOx can be released and reduced reaches the NOx catalyst 15. The amount of necessary reducing agent is calculated based on the following calculation formula (1).
Necessary reducing agent amount = (the amount of air sucked into the cylinder when the in-cylinder air-fuel ratio is weakly lean) / (target air-fuel ratio of exhaust gas flowing into the NOx catalyst 15) −the in-cylinder air-fuel ratio is weakly lean Amount of fuel injected into the cylinder in some cases (1)

そこで、本実施の形態においては、NOx触媒15に流入する排気ガスの空燃比を理論空燃比以下の目標空燃比にするのに必要な量の還元剤が、NOx触媒15に到達する場合に、筒内空燃比を低下させ弱リーンにするようにする。つまり、図2(c)に示すように、還元剤添加期間開始からΔT1遅れて筒内空燃比を弱リーンに切り替えるようにする。これにより、筒内空燃比を低下させている間に用いる燃料が無駄となることを防止することができる。その結果、燃費よくNOx触媒15に保持されたSOxを還元除去できる。   Therefore, in the present embodiment, when the amount of reducing agent necessary to bring the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 15 to the target air-fuel ratio equal to or lower than the stoichiometric air-fuel ratio reaches the NOx catalyst 15, Reduce the in-cylinder air-fuel ratio to make it lean. That is, as shown in FIG. 2 (c), the in-cylinder air-fuel ratio is switched to weak lean after a delay of ΔT1 from the start of the reducing agent addition period. Thereby, it is possible to prevent the fuel used while reducing the in-cylinder air-fuel ratio from being wasted. As a result, the SOx retained in the NOx catalyst 15 can be reduced and removed with good fuel efficiency.

他方、上述したように排気通路14に液状のまま付着した還元剤は、時間の経過とともに徐々に蒸発すること、添加された還元剤が排気ガスにより添加された位置からNOx触媒15まで運ばれるにはそれ相応の時間を要することから、還元剤添加の実行を終了してもしばらくはNOx触媒15に還元剤が到達する。そのため、図2(b)に示すように還元剤添加期間終了からΔT2の間は、排気ガスの空燃比を、SOxを放出・還元させ得る目標空燃比にするのに必要な量の還元剤がNOx触媒15に到達する。   On the other hand, as described above, the reducing agent adhering to the exhaust passage 14 in a liquid state gradually evaporates over time, and is transported from the position where the added reducing agent is added by the exhaust gas to the NOx catalyst 15. Since it takes a corresponding time, the reducing agent reaches the NOx catalyst 15 for a while even after the execution of the reducing agent addition is completed. Therefore, as shown in FIG. 2 (b), during the period ΔT2 from the end of the reducing agent addition period, the amount of reducing agent necessary to bring the air-fuel ratio of the exhaust gas to the target air-fuel ratio at which SOx can be released and reduced is increased. The NOx catalyst 15 is reached.

そこで、本実施の形態においては、還元剤添加弁18による還元剤添加を終了した後にも(還元剤添加期間が終了した後にも)、ΔT2間は筒内空燃比を弱リーンのままにしておく。これにより、添加された還元剤が無駄となり燃費が悪化することを防止することができる。   Therefore, in the present embodiment, the in-cylinder air-fuel ratio remains weakly lean for ΔT2 even after the reducing agent addition by the reducing agent addition valve 18 is finished (even after the reducing agent addition period is finished). . Thereby, it is possible to prevent the added reducing agent from being wasted and fuel consumption from being deteriorated.

以下、本実施の形態に係る筒内空燃比低下制御の制御ルーチンについて、図5のフローチャート図に沿って説明する。   Hereinafter, the control routine of in-cylinder air-fuel ratio lowering control according to the present embodiment will be described with reference to the flowchart of FIG.

この制御ルーチンは、予めECU20のROMに記憶されているルーチンであり、上記還元剤添加制御(間欠リッチ制御)実行中の一定時間の経過、あるいはクランクポジションセンサからのパルス信号の入力などをトリガとした割り込み処理としてECU20が実行するルーチンである。   This control routine is a routine stored in the ROM of the ECU 20 in advance, and is triggered by the passage of a fixed time during execution of the reducing agent addition control (intermittent rich control) or the input of a pulse signal from the crank position sensor. This routine is executed by the ECU 20 as the interrupt process.

本制御ルーチンでは、ECU20は、先ず、ステップ(以下、単に「S」という場合もある。)101において燃料噴射弁3、エアフローメータ9が共に正常であるか否かを判定する。これは、燃料噴射弁3、エアフローメータ9が異常である場合には筒内空燃比を制御することが困難となるので判定するものであり、燃料噴射弁3が噴射すべき燃料量の指令値、エアフローメータ9の検出値あるいは空燃比センサ16の検出値等により判定することができる。そして、肯定判定された場合は、S102へ進み、否定判定された場合は本ルーチンの実行を終了する。   In this control routine, the ECU 20 first determines whether or not both the fuel injection valve 3 and the air flow meter 9 are normal in step (hereinafter may be simply referred to as “S”) 101. This is determined because it is difficult to control the in-cylinder air-fuel ratio when the fuel injection valve 3 and the air flow meter 9 are abnormal. The command value for the amount of fuel to be injected by the fuel injection valve 3 is determined. The determination can be made based on the detection value of the air flow meter 9 or the detection value of the air-fuel ratio sensor 16. If an affirmative determination is made, the process proceeds to S102, and if a negative determination is made, execution of this routine is terminated.

S102においては、NOx触媒15に流入する排気ガス流量、当該排気ガスの温度等から触媒到達還元剤量を算出する。これは、図3に示すような排気ガス流量と排気ガス温度と添加還元剤付着率との関係、図4に示すような排気ガス流量と排気ガス温度と付着還元剤蒸発率との関係等に基づいて排気ガス流量と当該排気ガスの温度と触媒到達還元剤量との関係を予め実験等によりマップ化してROMに記憶させておき、当該マップと排気ガス流量と排気ガス温度に基づいて算出するものである。なお、排気ガス流量はエアフローメータ9の検出値を基に推定するものである。また、排気ガス温度は、排気温度センサ17の検出値を基に推定しても良いし、NOx触媒15上流の排気通路14に排気ガスの温度に対応した電気信号を出力するセンサを設けて直に検出しても良い。また、機関負荷、機関回転数のマップから推定しても良い。   In S102, the amount of catalyst reaching reducing agent is calculated from the flow rate of exhaust gas flowing into the NOx catalyst 15, the temperature of the exhaust gas, and the like. This is because of the relationship between the exhaust gas flow rate, the exhaust gas temperature, and the additive reducing agent deposition rate as shown in FIG. 3, the relationship between the exhaust gas flow rate, the exhaust gas temperature, and the deposition reducing agent evaporation rate as shown in FIG. Based on the map, the relationship between the exhaust gas flow rate, the temperature of the exhaust gas, and the amount of the catalyst reducing agent is mapped in advance by experiments and stored in the ROM, and is calculated based on the map, the exhaust gas flow rate, and the exhaust gas temperature. Is. The exhaust gas flow rate is estimated based on the detection value of the air flow meter 9. Further, the exhaust gas temperature may be estimated based on the detected value of the exhaust temperature sensor 17, or a sensor that outputs an electrical signal corresponding to the exhaust gas temperature is provided in the exhaust passage 14 upstream of the NOx catalyst 15. May be detected. Alternatively, it may be estimated from a map of engine load and engine speed.

その後S103へ進み、本ステップにおいては、S102にて算出した触媒到達還元剤量が、NOx触媒15に流入する排気ガスの空燃比を理論空燃比以下の目標空燃比にさせるのに必要な量である必要還元剤量以上であるか否かを判定する。なお、必要還元剤量は上述した計算式(1)にて算出されるものである。そして、肯定判定された場合は、S104へ進み、否定判定された場合はS105へ進む。   Thereafter, the process proceeds to S103, and in this step, the amount of catalyst reaching reducing agent calculated in S102 is an amount necessary to bring the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 15 to a target air-fuel ratio equal to or lower than the theoretical air-fuel ratio. It is determined whether or not the amount is greater than a certain necessary reducing agent amount. The amount of necessary reducing agent is calculated by the above-described calculation formula (1). If a positive determination is made, the process proceeds to S104, and if a negative determination is made, the process proceeds to S105.

S104においては、NOx触媒15のSOxを放出・還元させ得る目標空燃比にするのに十分な還元剤量がNOx触媒15に到達していることから、筒内空燃比を目標の弱リーンにする。これは、上述したように、吸気絞り弁12の開度を通常運転時の開度よりも相対的に小さくするように吸気絞り用アクチュエータ13に指令信号を出力するものである。   In S104, the in-cylinder air-fuel ratio is set to the target weak lean state because the amount of reducing agent sufficient to achieve the target air-fuel ratio at which SOx of the NOx catalyst 15 can be released and reduced has reached the NOx catalyst 15. . As described above, this is to output a command signal to the intake throttle actuator 13 so that the opening degree of the intake throttle valve 12 is relatively smaller than the opening degree during normal operation.

一方、S105においては、NOx触媒15のSOxを放出・還元させ得る目標空燃比にするのに必要な還元剤量がNOx触媒15に到達していないことから、筒内空燃比を弱リーンにしないようにする。つまり、還元剤添加期間が開始してもNOx触媒15のSOxを放出・還元させ得る目標空燃比にするのに必要な還元剤量がNOx触媒15にまだ到達していない間は、筒内空燃比は通常運転時のままとする。一方、還元剤添加期間終了後においては、NOx触媒15のSOxを放出・還元させ得る目標空燃比にするのに必要な還元剤量がNOx触媒15に到達しなくなってから、弱リーンに切り替えられている状態を解除する。すなわち、S104における吸気絞り弁12の開度よりも相対的に大きくなるように吸気絞り弁12の開度を調整すべく吸気絞り用アクチュエータ13に指令信号を出力する。   On the other hand, in S105, the in-cylinder air-fuel ratio is not made weakly lean because the amount of reducing agent necessary to achieve the target air-fuel ratio at which SOx of the NOx catalyst 15 can be released and reduced has not reached the NOx catalyst 15. Like that. In other words, as long as the amount of reducing agent necessary to reach the target air-fuel ratio at which the SOx of the NOx catalyst 15 can be released and reduced even when the reducing agent addition period starts, the in-cylinder emptying is not achieved. The fuel ratio is kept during normal operation. On the other hand, after the reducing agent addition period ends, the amount of reducing agent necessary to achieve the target air-fuel ratio at which the SOx of the NOx catalyst 15 can be released and reduced does not reach the NOx catalyst 15, and is switched to weak lean. Release the status. That is, a command signal is output to the intake throttle actuator 13 to adjust the opening of the intake throttle valve 12 so as to be relatively larger than the opening of the intake throttle valve 12 in S104.

こうすることにより、還元剤添加弁18にて還元剤が添加開始されても、NOx触媒15のSOxを放出・還元させ得る目標空燃比にするのに必要な還元剤量がNOx触媒15にまだ到達していない間(還元剤添加期間開始からΔT1間)は、筒内空燃比が弱リーンにされることがないので、筒内空燃比を低下させている間に用いる燃料が無駄となることを防止することができる。   By doing so, even if the reducing agent addition valve 18 starts to add the reducing agent, the amount of reducing agent necessary for achieving the target air-fuel ratio at which the SOx of the NOx catalyst 15 can be released and reduced is still in the NOx catalyst 15. Since the in-cylinder air-fuel ratio is not weakly lean while it has not reached (between ΔT1 from the start of the reducing agent addition period), the fuel used while the in-cylinder air-fuel ratio is lowered is wasted. Can be prevented.

一方、還元剤添加弁18による還元剤の添加が終了しても、NOx触媒15のSOxを還元・放出させ得る目標空燃比にするのに必要な還元剤量がNOx触媒15に到達してい
る間(還元剤添加期間終了からΔT2間)は、筒内空燃比が弱リーンにされたままなので、添加された還元剤が無駄となり燃費が悪化することを抑制することができる。
On the other hand, even when the addition of the reducing agent by the reducing agent addition valve 18 is completed, the amount of reducing agent necessary to achieve the target air-fuel ratio at which SOx of the NOx catalyst 15 can be reduced and released has reached the NOx catalyst 15. Since the in-cylinder air-fuel ratio remains weak during the interval (between the end of the reducing agent addition period and ΔT2), it is possible to suppress the added reducing agent from being wasted and deteriorating fuel consumption.

なお、上述した筒内空燃比低下制御においては、NOx触媒15に到達する還元剤量である触媒到達還元剤量を算出し、当該触媒到達還元剤量が上述した必要還元剤量以上である場合に筒内空燃比を弱リーンに低下させるようにしているが、特にこれに限定されるものではなく、NOx触媒15に前記必要還元剤量が到達開始する時間を算出し、当該時間が経過した時に筒内空燃比を通常運転時の空燃比から弱リーンに切り替え、NOx触媒15に前記必要還元剤量が到達しなくなる時間を算出し、当該時間が経過した時に筒内空燃比を弱リーンから通常運転時の空燃比に切り替えるようにしてもよい。   In the above-described in-cylinder air-fuel ratio lowering control, the amount of the catalyst reducing agent that is the amount of reducing agent that reaches the NOx catalyst 15 is calculated, and the amount of the catalyst reaching reducing agent is equal to or greater than the above-described necessary reducing agent amount. However, the present invention is not particularly limited to this, and the time when the required reducing agent amount starts to reach the NOx catalyst 15 is calculated, and the time has elapsed. Sometimes the in-cylinder air-fuel ratio is switched from the air-fuel ratio during normal operation to weak lean, and the time during which the required reducing agent amount does not reach the NOx catalyst 15 is calculated. You may make it switch to the air fuel ratio at the time of normal driving | operation.

[筒内空燃比低下制御の第2の実施例]
一般的に、所望の筒内空燃比での燃焼による排気ガスがNOx触媒15に到達するまでには、ECU20から燃料噴射弁3や各アクチュエータを制御するための指令信号が出力されて所望の筒内空燃比にした後、実際に燃焼・排気が行われて排気通路14や過給機10等の排気系を通過する必要があることから、それ相応の時間を要する。そのため、筒内空燃比が弱リーンにされ、この空燃比での燃焼による排気ガスがNOx触媒15に到達するまでにはそれ相応の時間である排気ガス到達時間を要する。
[Second embodiment of in-cylinder air-fuel ratio lowering control]
In general, until exhaust gas resulting from combustion at a desired in-cylinder air-fuel ratio reaches the NOx catalyst 15, a command signal for controlling the fuel injection valve 3 and each actuator is output from the ECU 20 and the desired cylinder is output. After the internal air-fuel ratio is set, combustion and exhaust are actually performed and it is necessary to pass through the exhaust system such as the exhaust passage 14 and the supercharger 10, and accordingly, a corresponding time is required. Therefore, the in-cylinder air-fuel ratio is made slightly lean, and an exhaust gas arrival time, which is a corresponding time, is required until the exhaust gas resulting from combustion at this air-fuel ratio reaches the NOx catalyst 15.

それゆえ、第1の実施例のように、還元剤添加弁18にて添加された還元剤の付着・蒸発量を考慮して、NOx触媒15に流入する排気ガスの空燃比を目標空燃比にするのに必要な量の還元剤がNOx触媒15に到達する時期と同時に筒内空燃比を通常運転時の空燃比から弱リーンに切り替えるのでは、上述した排気ガス到達時間分の遅れが生じるので、この排気ガス到達時間内に還元剤添加弁18にて添加された還元剤が到達しても無駄となる場合がある。なお、この排気ガス到達時間と排気ガス流量との相関関係を示したのが図6であり、本図に示すように、排気ガス到達時間は、排気ガス流量が増えるに従って短くなり、排気ガス流量が減るに従って長くなる。   Therefore, as in the first embodiment, the air / fuel ratio of the exhaust gas flowing into the NOx catalyst 15 is set to the target air / fuel ratio in consideration of the amount of adhesion and evaporation of the reducing agent added by the reducing agent addition valve 18. When the in-cylinder air-fuel ratio is switched from the air-fuel ratio in normal operation to weak lean simultaneously with the time when the amount of reducing agent necessary to do so reaches the NOx catalyst 15, a delay corresponding to the exhaust gas arrival time described above occurs. Even if the reducing agent added by the reducing agent addition valve 18 arrives within the exhaust gas arrival time, it may be wasted. FIG. 6 shows the correlation between the exhaust gas arrival time and the exhaust gas flow rate. As shown in FIG. 6, the exhaust gas arrival time becomes shorter as the exhaust gas flow rate increases. It becomes longer as it decreases.

そこで、本実施例においては、NOx触媒15のSOxを放出・還元させ得る目標空燃比にするのに必要な量の還元剤がNOx触媒15に到達するのと同時に、弱リーンな筒内空燃比での燃焼による排気ガスがNOx触媒15に到達するように、排気ガス到達時間をも考慮して、筒内空燃比を通常運転時の空燃比から弱リーンに切り替えるようにする。つまり、図2の還元剤添加期間開始からΔT1経過するよりも排気ガス到達時間だけ早く筒内空燃比を弱リーンに切り替えるようにする。これにより、排気ガス到達時間内に添加された還元剤が無駄となり燃費が悪化することを防止することができる。   Therefore, in this embodiment, the amount of reducing agent necessary to achieve the target air-fuel ratio that can release and reduce the SOx of the NOx catalyst 15 reaches the NOx catalyst 15, and at the same time, the weak lean in-cylinder air-fuel ratio. In consideration of the exhaust gas arrival time, the in-cylinder air-fuel ratio is switched from the air-fuel ratio during normal operation to weak lean so that the exhaust gas due to combustion at NOx reaches the NOx catalyst 15. That is, the in-cylinder air-fuel ratio is switched to weak lean earlier by the exhaust gas arrival time than ΔT1 elapses from the start of the reducing agent addition period in FIG. Thereby, it is possible to prevent the reducing agent added within the exhaust gas arrival time from being wasted and deteriorating fuel consumption.

他方、還元剤添加を終了する際には、第1の実施例のように、還元剤添加弁18にて添加された還元剤の付着・蒸発量を考慮して、NOx触媒15に流入する排気ガスの空燃比を目標空燃比にするのに必要な量の還元剤がNOx触媒15に到達しなくなる時期と同時に筒内空燃比を弱リーンから通常運転時の空燃比に切り替える(弱リーンを解除する)のでは、上述した排気ガス到達時間分の遅れが生じるので、この排気ガス到達時間内に筒内空燃比を低下させている間に用いる燃料が無駄となる場合がある。   On the other hand, when the addition of the reducing agent is terminated, the exhaust gas flowing into the NOx catalyst 15 is taken into consideration, as in the first embodiment, in consideration of the amount of adhesion and evaporation of the reducing agent added by the reducing agent addition valve 18. The in-cylinder air-fuel ratio is switched from weak lean to normal air-fuel ratio at the same time when the amount of reducing agent required to make the gas air-fuel ratio the target air-fuel ratio does not reach the NOx catalyst 15 (releasing weak lean) In this case, a delay corresponding to the exhaust gas arrival time described above occurs, so that the fuel used while the in-cylinder air-fuel ratio is reduced within the exhaust gas arrival time may be wasted.

そこで、本実施例においては、NOx触媒15のSOxを放出・還元させ得る目標空燃比にするのに必要な量の還元剤がNOx触媒15に到達しなくなるのと同時に、弱リーンな筒内空燃比での燃焼による排気ガスがNOx触媒15に到達しなくなるように、排気ガス到達時間をも考慮して、筒内空燃比を弱リーンから通常運転時の空燃比に切り替える(弱リーンを解除する)ようにする。つまり、図2の還元剤添加期間終了からΔT2経過するよりも排気ガス到達時間だけ早く筒内空燃比を弱リーンに切り替えるようにする。これにより、筒内空燃比を低下させている間に用いる燃料が無駄となることを防止することが
できる。
Therefore, in this embodiment, the amount of reducing agent necessary for achieving the target air-fuel ratio at which SOx of the NOx catalyst 15 can be released / reduced does not reach the NOx catalyst 15, and at the same time, the weak lean in-cylinder air In consideration of the exhaust gas arrival time, the in-cylinder air-fuel ratio is switched from weak lean to the air-fuel ratio during normal operation so that the exhaust gas due to combustion at the fuel ratio does not reach the NOx catalyst 15 (releasing the weak lean). ) That is, the in-cylinder air-fuel ratio is switched to a weak lean earlier by the exhaust gas arrival time than ΔT2 elapses from the end of the reducing agent addition period in FIG. Thereby, it is possible to prevent the fuel used while reducing the in-cylinder air-fuel ratio from being wasted.

以下、本実施の形態に係る筒内空燃比低下制御の制御ルーチンについて、図7のフローチャート図に沿って説明する。   Hereinafter, the control routine of the cylinder air-fuel ratio lowering control according to the present embodiment will be described with reference to the flowchart of FIG.

この制御ルーチンは、予めECU20のROMに記憶されているルーチンであり、上記還元剤添加制御実行中の一定時間の経過、あるいはクランクポジションセンサからのパルス信号の入力などをトリガとした割り込み処理としてECU20が実行するルーチンである。   This control routine is a routine stored in the ROM of the ECU 20 in advance, and the ECU 20 serves as an interrupt process triggered by elapse of a fixed time during execution of the reducing agent addition control or input of a pulse signal from the crank position sensor. Is a routine to be executed.

本制御ルーチンにおけるS201、S202の処理は各々図5におけるS101、S102の処理と同一であるのでその詳細な説明は省略する。   Since the processing of S201 and S202 in this control routine is the same as the processing of S101 and S102 in FIG. 5, detailed description thereof will be omitted.

S203においては、上記した排気ガス到達時間にNOx触媒15に到達する還元剤量を算出する。これは、図3に示すような排気ガス流量と排気ガス温度と添加還元剤付着率との関係、図4に示すような排気ガス流量と排気ガス温度と付着還元剤蒸発率との関係、図6に示すような排気ガス流量と排気ガス到達時間との関係等に基づいて排気ガス流量と当該排気ガスの温度と排気ガス到達時間内の触媒到達還元剤量との関係を予め実験等によりマップ化してROMに記憶させておき、当該マップと排気ガス流量と排気ガス温度に基づいて算出するものである。   In S203, the amount of reducing agent that reaches the NOx catalyst 15 during the exhaust gas arrival time is calculated. This is because of the relationship between the exhaust gas flow rate, the exhaust gas temperature, and the additive reducing agent deposition rate as shown in FIG. 3, the relationship between the exhaust gas flow rate, the exhaust gas temperature, and the deposition reducing agent evaporation rate, as shown in FIG. Based on the relationship between the exhaust gas flow rate and the exhaust gas arrival time as shown in FIG. 6, the relationship between the exhaust gas flow rate, the temperature of the exhaust gas, and the amount of catalyst reaching reducing agent within the exhaust gas arrival time is previously mapped by experiments or the like And is stored in the ROM and calculated based on the map, the exhaust gas flow rate, and the exhaust gas temperature.

その後S204へ進み、排気ガス到達時間内の触媒到達還元剤量を除いた触媒到達還元剤量を算出する。これは、S202にて算出した還元剤量からS203にて算出した還元剤量を減算するものである。   Thereafter, the process proceeds to S204, and the catalyst reaching reducing agent amount is calculated by excluding the catalyst reaching reducing agent amount within the exhaust gas arrival time. This subtracts the reducing agent amount calculated in S203 from the reducing agent amount calculated in S202.

その後S205へ進み、S204にて算出した排気ガス到達時間内の触媒到達還元剤量を除いた触媒到達還元剤量が必要還元剤量以上であるか否かを判定する。これは、基本的には図5におけるS103の処理と同一であるのでその詳細な説明は省略するが、本実施例における必要還元剤量は、上記計算式(1)にて算出された必要還元剤量からS203にて算出された排気ガス到達時間内の触媒到達還元剤量を減算して算出されるものである。   Thereafter, the process proceeds to S205, in which it is determined whether or not the amount of catalyst reaching reducing agent excluding the amount of catalyst reaching reducing agent within the exhaust gas arrival time calculated in S204 is equal to or greater than the necessary amount of reducing agent. This is basically the same as the process of S103 in FIG. 5 and will not be described in detail. However, the required reducing agent amount in this embodiment is the required reduction calculated by the above formula (1). This is calculated by subtracting the catalyst reaching reducing agent amount within the exhaust gas arrival time calculated in S203 from the agent amount.

S206、S20の処理は各々図5におけるS104、S105の処理と同一であるのでその詳細な説明は省略する。 S206, a detailed description thereof is omitted since processing in S20 7 is the same as the processing in S104, S105 in each Figure 5.

こうすることにより、還元剤添加弁18にて還元剤が添加開始されても、NOx触媒15のSOxを放出・還元させ得る目標空燃比にするのに必要な量の還元剤がNOx触媒15に到達するのと同時に、弱リーンな筒内空燃比での燃焼による排気ガスがNOx触媒15に到達するので、筒内空燃比を弱リーンにすることに起因して燃費が悪化することをより確実に抑制することができる。   In this way, even if the reducing agent addition valve 18 starts to add the reducing agent, the amount of reducing agent necessary to achieve the target air-fuel ratio that can release and reduce the SOx of the NOx catalyst 15 is supplied to the NOx catalyst 15. At the same time, the exhaust gas resulting from the combustion at the weak lean in-cylinder air / fuel ratio reaches the NOx catalyst 15, so that it is more certain that the fuel consumption will deteriorate due to the weak lean air / fuel ratio in the cylinder. Can be suppressed.

一方、還元剤添加弁18による還元剤の添加が終了しても、NOx触媒15のSOxを放出・還元させ得る目標空燃比にするのに必要な量の還元剤がNOx触媒15に到達しなくなるのと同時に、弱リーンな筒内空燃比での燃焼による排気ガスがNOx触媒15に到達しなくなるので、添加された還元剤が無駄となり燃費が悪化することをより確実に抑制することができる。   On the other hand, even when the addition of the reducing agent by the reducing agent addition valve 18 is completed, the amount of reducing agent necessary to achieve the target air-fuel ratio at which SOx of the NOx catalyst 15 can be released and reduced does not reach the NOx catalyst 15. At the same time, the exhaust gas generated by the combustion at the weak lean in-cylinder air / fuel ratio does not reach the NOx catalyst 15, so that it is possible to more reliably suppress the added reducing agent from being wasted and deteriorating the fuel consumption.

なお、上述した筒内空燃比低下制御においては、排気ガス到達時間内に到達する還元剤量を減算した触媒到達還元剤量を算出し、当該触媒到達還元剤量が必要還元剤量以上である場合に筒内空燃比を弱リーンに低下させるようにしているが、特にこれに限定されるも
のではなく、NOx触媒15のSOxを放出・還元させ得る目標空燃比にするのに必要な還元剤量が到達開始する時間を算出し、当該時間から排気ガス到達時間を減算し、当該減算した時間が経過した時に筒内空燃比を通常運転時の空燃比から弱リーンに切り替え、NOx触媒15のSOxを放出・還元させ得る目標空燃比にするのに必要な還元剤量が到達しなくなる時間を算出し、当該時間から排気ガス到達時間を減算し、当該減算した時間が経過した時に筒内空燃比を弱リーンから通常運転時の空燃比に切り替えるようにしてもよい。
In the above-described in-cylinder air-fuel ratio lowering control, the catalyst reaching reducing agent amount is calculated by subtracting the reducing agent amount reaching within the exhaust gas arrival time, and the catalyst reaching reducing agent amount is equal to or greater than the necessary reducing agent amount. In this case, the in-cylinder air-fuel ratio is reduced to a weak lean state. However, the present invention is not particularly limited to this, and the reducing agent necessary for achieving the target air-fuel ratio that can release and reduce the SOx of the NOx catalyst 15 is not limited thereto. The time when the amount starts to reach is calculated, the exhaust gas arrival time is subtracted from the time, and when the subtracted time has elapsed, the in-cylinder air-fuel ratio is switched from the air-fuel ratio during normal operation to weak lean, and the NOx catalyst 15 Calculate the time when the amount of reducing agent required to reach the target air-fuel ratio at which SOx can be released / reduced does not reach, subtract the exhaust gas arrival time from that time, and when the subtracted time has elapsed, Reduce the fuel ratio It may be switched to the air-fuel ratio during normal operation from the emissions.

本発明の実施の形態に係る内燃機関及びその吸排気系の概略構成を示す図である。1 is a diagram showing a schematic configuration of an internal combustion engine and an intake / exhaust system thereof according to an embodiment of the present invention. 還元剤添加パルス、触媒到達還元剤、筒内空燃比及び排気空燃比の変遷を時系列に示した図である。It is the figure which showed the transition of a reducing agent addition pulse, a catalyst arrival reducing agent, a cylinder air fuel ratio, and an exhaust air fuel ratio in time series. 排気ガス流量、排気ガス温度及び添加還元剤付着率の関係を示す図である。It is a figure which shows the relationship between an exhaust-gas flow volume, exhaust-gas temperature, and an addition reducing agent adhesion rate. 排気ガス流量、排気ガス温度及び付着還元剤蒸発率の関係を示す図である。It is a figure which shows the relationship between exhaust-gas flow volume, exhaust-gas temperature, and an adhesion reducing agent evaporation rate. 筒内空燃比低下制御の第1の実施例の制御ルーチンを示すフローチャート図である。It is a flowchart figure which shows the control routine of the 1st Example of in-cylinder air fuel ratio fall control. 排気ガス流量と排気ガス到達時間の関係を示す図である。It is a figure which shows the relationship between exhaust gas flow volume and exhaust gas arrival time. 筒内空燃比低下制御の第2の実施例の制御ルーチンを示すフローチャート図である。It is a flowchart figure which shows the control routine of the 2nd Example of in-cylinder air fuel ratio fall control.

符号の説明Explanation of symbols

1 内燃機関
2 気筒
3 燃料噴射弁
4 コモンレール
5 燃料供給管
6 燃料ポンプ
7 吸気通路
8 エアクリーナ
9 エアフローメータ
10 過給機
11 インタークーラ
12 吸気絞り弁
13 吸気絞り用アクチュエータ
14 排気通路
15 排気浄化装置(NOx触媒)
16 空燃比センサ
17 排気温度センサ
18 還元剤添加弁
19 還元剤供給路
20 ECU
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Cylinder 3 Fuel injection valve 4 Common rail 5 Fuel supply pipe 6 Fuel pump 7 Intake passage 8 Air cleaner 9 Air flow meter 10 Supercharger 11 Intercooler 12 Intake throttle valve 13 Intake throttle actuator 14 Exhaust passage 15 Exhaust purification device ( NOx catalyst)
16 Air-fuel ratio sensor 17 Exhaust temperature sensor 18 Reducing agent addition valve 19 Reducing agent supply path 20 ECU

Claims (5)

排気通路に設けられたNOx吸蔵還元型触媒と、
当該NOx吸蔵還元型触媒の上流の排気通路に設けられた還元剤供給手段と、
気筒内の空燃比を制御する空燃比制御手段と、
を有し、
前記空燃比制御手段が気筒内の空燃比を通常運転時の空燃比に比べて低下させ気筒内から排出される排気ガスの空燃比を低下させると共に前記還元剤供給手段が還元剤を供給することにより、前記NOx吸蔵還元型触媒に流入する排気ガスの空燃比を理論空燃比以下にして前記NOx吸蔵還元型触媒に保持された硫黄酸化物を放出還元させる内燃機関の排気浄化装置において、
前記還元剤供給手段から供給された還元剤の内、前記NOx吸蔵還元型触媒に実際に到達している還元剤量を算出する触媒到達還元剤量算出手段を有し、
前記空燃比制御手段は、前記触媒到達還元剤量算出手段にて算出された還元剤量に基づいて気筒内の空燃比を低下させることを特徴とする内燃機関の排気浄化装置。
A NOx occlusion reduction catalyst provided in the exhaust passage;
Reducing agent supply means provided in the exhaust passage upstream of the NOx storage reduction catalyst;
Air-fuel ratio control means for controlling the air-fuel ratio in the cylinder;
Have
The air-fuel ratio control means lowers the air-fuel ratio in the cylinder as compared with the air-fuel ratio in normal operation , lowers the air-fuel ratio of the exhaust gas discharged from the cylinder, and the reducing agent supply means supplies the reducing agent. In the exhaust gas purification apparatus for an internal combustion engine, the air-fuel ratio of the exhaust gas flowing into the NOx storage-reduction catalyst is made lower than the stoichiometric air-fuel ratio to release and reduce the sulfur oxide held in the NOx storage-reduction catalyst.
Among the reducing agents supplied from the reducing agent supply means, there is a catalyst reaching reducing agent amount calculating means for calculating the amount of reducing agent that has actually reached the NOx storage reduction type catalyst,
The exhaust gas purification apparatus for an internal combustion engine, wherein the air-fuel ratio control means lowers the air-fuel ratio in the cylinder based on the reducing agent amount calculated by the catalyst reaching reducing agent amount calculating means.
前記触媒到達還元剤量算出手段にて算出された還元剤量が前記NOx吸蔵還元型触媒に保持された硫黄酸化物を放出還元させるのに必要な還元剤量以上である場合に、前記空燃比制御手段は、気筒内の空燃比を通常運転時の空燃比に比べて低下させた状態に維持することを特徴とする請求項1に記載の内燃機関の排気浄化装置。 When the reducing agent amount calculated by the catalyst reaching reducing agent amount calculating means is equal to or greater than the reducing agent amount necessary for releasing and reducing the sulfur oxide held in the NOx storage reduction catalyst, the air-fuel ratio control means, exhaust gas control apparatus according to claim 1, characterized that you keep the air-fuel ratio in the cylinder in a state of being lower than the air-fuel ratio at the time of normal operation. 前記空燃比制御手段は、当該空燃比制御手段により通常運転時の空燃比に比べて低下させられた気筒内の空燃比での燃焼による排気ガスが前記NOx吸蔵還元型触媒に到達するまでの時間である排気ガス到達時間にも基づいて、気筒内の空燃比を低下させることを特徴とする請求項1に記載の内燃機関の排気浄化装置。 The air-fuel ratio control means is a time until the exhaust gas resulting from combustion at the air-fuel ratio in the cylinder , which has been lowered by the air-fuel ratio control means compared to the air-fuel ratio during normal operation , reaches the NOx storage reduction catalyst. 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the air-fuel ratio in the cylinder is lowered based on the exhaust gas arrival time. 前記触媒到達還元剤量算出手段にて算出された還元剤量が、前記NOx吸蔵還元型触媒に保持された硫黄酸化物を放出還元するのに必要な還元剤量よりも前記排気ガス到達時間内に到達する還元剤量の分少ない量以上である場合に、前記空燃比制御手段は、気筒内の空燃比を通常運転時の空燃比に比べて低下させた状態に維持することを特徴とする請求項3に記載の内燃機関の排気浄化装置。 The reducing agent amount calculated by the catalyst reaching reducing agent amount calculating means is within the exhaust gas arrival time than the reducing agent amount required for releasing and reducing the sulfur oxide held in the NOx occlusion reduction type catalyst. If it is more partial small amount of reducing agent amount that reaches the said air-fuel ratio control means includes a feature that you keep the air-fuel ratio in the cylinder in a state of being lower than the air-fuel ratio during normal operation The exhaust emission control device for an internal combustion engine according to claim 3. 前記空燃比制御手段は、少なくとも気筒内に吸入される空気量を制限することにより気筒内の空燃比を制御することを特徴とする請求項1から4のいずれかに記載の内燃機関の排気浄化装置。
The exhaust purification of an internal combustion engine according to any one of claims 1 to 4, wherein the air-fuel ratio control means controls the air-fuel ratio in the cylinder by limiting at least the amount of air taken into the cylinder. apparatus.
JP2003385314A 2003-11-14 2003-11-14 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4311169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003385314A JP4311169B2 (en) 2003-11-14 2003-11-14 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003385314A JP4311169B2 (en) 2003-11-14 2003-11-14 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005146979A JP2005146979A (en) 2005-06-09
JP4311169B2 true JP4311169B2 (en) 2009-08-12

Family

ID=34693424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003385314A Expired - Fee Related JP4311169B2 (en) 2003-11-14 2003-11-14 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4311169B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4375311B2 (en) 2005-09-08 2009-12-02 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP4241784B2 (en) 2006-08-30 2009-03-18 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP2013044238A (en) * 2011-08-22 2013-03-04 Toyota Industries Corp Exhaust emission control device
JP2016133050A (en) 2015-01-19 2016-07-25 いすゞ自動車株式会社 Exhaust emission control system
JP2016169623A (en) * 2015-03-11 2016-09-23 いすゞ自動車株式会社 Exhaust emission control system
JP6468005B2 (en) * 2015-03-11 2019-02-13 いすゞ自動車株式会社 Exhaust purification system
WO2016143902A1 (en) * 2015-03-11 2016-09-15 いすゞ自動車株式会社 Exhaust purification system, and control method for exhaust purification system

Also Published As

Publication number Publication date
JP2005146979A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP3876874B2 (en) Catalyst regeneration method
JP3929296B2 (en) Internal combustion engine
US7146800B2 (en) Exhaust purification device and exhaust purification method of internal combustion engine
JP4577039B2 (en) Exhaust gas purification device for internal combustion engine
JP4572709B2 (en) Exhaust gas purification system for internal combustion engine
JP6024835B2 (en) Exhaust gas purification device for internal combustion engine
JP4406309B2 (en) Exhaust gas purification device for internal combustion engine
JP4311169B2 (en) Exhaust gas purification device for internal combustion engine
WO2013108387A1 (en) Exhaust-gas purifier for internal combustion engine
JP6268688B1 (en) Engine exhaust purification control system
JP2005155500A (en) Exhaust gas control apparatus for internal combustion engine
JP4357917B2 (en) Exhaust gas purification device for internal combustion engine
JP4357918B2 (en) Exhaust gas purification device for internal combustion engine
JP6230006B1 (en) Engine exhaust purification system
JP6270247B1 (en) Engine exhaust purification system
JP2004044515A (en) Exhaust emission control device
JP2010043596A (en) Exhaust emission purifier of internal combustion engine
JP6230008B1 (en) Engine exhaust purification system
JP6230007B1 (en) Engine exhaust purification system
JP2004132185A (en) Fuel cutting controller of internal combustion engine
JP2004076684A (en) Exhaust emission control device for internal combustion engine
JP2005030272A (en) Exhaust emission control device for internal combustion engine
JP4315121B2 (en) Exhaust purification catalyst deterioration judgment device
JP2018066321A (en) Exhaust emission control device for engine
JP2004218520A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090504

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees