JP2007138768A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2007138768A
JP2007138768A JP2005331277A JP2005331277A JP2007138768A JP 2007138768 A JP2007138768 A JP 2007138768A JP 2005331277 A JP2005331277 A JP 2005331277A JP 2005331277 A JP2005331277 A JP 2005331277A JP 2007138768 A JP2007138768 A JP 2007138768A
Authority
JP
Japan
Prior art keywords
temperature
catalyst
twc
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005331277A
Other languages
Japanese (ja)
Other versions
JP4500765B2 (en
Inventor
Katsuji Wada
勝治 和田
Norio Suzuki
典男 鈴木
Tomoko Morita
智子 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005331277A priority Critical patent/JP4500765B2/en
Publication of JP2007138768A publication Critical patent/JP2007138768A/en
Application granted granted Critical
Publication of JP4500765B2 publication Critical patent/JP4500765B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine so improved that the purification performance during cold idling can be further enhanced. <P>SOLUTION: This exhaust emission control device of the internal combustion engine having a TWC 7 and a LNC 9 installed on the downstream side comprises an intake control valve 5 capable of changing the amount of a fresh flow fed into an intake passage 2, an EGR control valve 13 capable of changing the flow of a recirculating exhaust gases from a combustion chamber to the intake passage, a TWC temperature sensor 28 outputting the values on the temperature of a TWC, and an LNC temperature sensor 29 outputting the values on the temperature of an LNC. The control device changes an operation mode between a catalyst temperature increasing mode in which the flow can be relatively increased while increasing the temperature of the exhaust gases to the TWC by controlling the intake control valve and the EGR control valve according to the output values of both temperature output means and a catalyst heating mode in which the supplied amount of the reducer to the TWC can be relatively increased. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関の排気浄化装置に関し、特に、冷間始動時におけるリーンNO浄化触媒の早期活性化を実現し得る内燃機関の排気浄化装置に関するものである。 The present invention relates to an exhaust purifying apparatus for an internal combustion engine, and particularly relates to an exhaust purification system of an internal combustion engine capable of realizing quick activation of the lean NO X purification catalyst during cold start.

ディーゼル内燃機関の排気通路には、排出ガス中の窒素酸化物(以下、NOと略称する)を還元浄化するためのリーンNO浄化触媒(以下、LNCと略称する)が設けられることがある。このLNCにおいては、排出ガスの空燃比(以下、排気A/Fと略称する)が所定値よりも高い(以下、リーンと呼称する)時、換言すると酸素濃度が高い時に取り込んだNOを、排気A/Fが所定値よりも低い(以下、リッチと呼称する)時、換言すると酸素濃度が低下した時に放出し且つ還元して無害化する処理を行っている。またLNCは、NO吸収量が増大するとその吸収性能が低下するので、適時、排出ガス中に未燃燃料を供給してHC濃度を高めると共に酸素濃度を低下させ、それによってLNCからのNO放出を促進させ且つ十分に還元浄化させるようにしている。 The exhaust passage of a diesel internal combustion engine may be provided with a lean NO X purification catalyst (hereinafter abbreviated as LNC) for reducing and purifying nitrogen oxide (hereinafter abbreviated as NO X ) in exhaust gas. . In this LNC, when the air-fuel ratio of exhaust gas (hereinafter referred to as exhaust A / F) is higher than a predetermined value (hereinafter referred to as lean), in other words, NO X taken in when the oxygen concentration is high, When the exhaust A / F is lower than a predetermined value (hereinafter referred to as rich), in other words, when the oxygen concentration is reduced, the exhaust A / F is released and reduced to be harmless. In addition, since the absorption performance of LNC decreases as the NO X absorption amount increases, the unburned fuel is supplied into the exhaust gas at an appropriate time to increase the HC concentration and reduce the oxygen concentration, thereby reducing the NO X from the LNC. Release is promoted and reduced and purified sufficiently.

一方、ディーゼル内燃機関のように冷間始動時に希薄燃焼を行う内燃機関においては、冷間アイドリング時の排気A/Fが過度にリーンであることから、冷間始動後にLNCを早期に活性化させることは困難である。そのため、LNCが活性温度に達するまでの間に一時的にNOが大気中に放出されることを抑えることは困難であった。 On the other hand, in an internal combustion engine that performs lean combustion at the time of cold start, such as a diesel internal combustion engine, the exhaust A / F at the time of cold idling is excessively lean, so that the LNC is activated early after the cold start. It is difficult. For this reason, it has been difficult to prevent NO X from being temporarily released into the atmosphere until the LNC reaches the activation temperature.

このような不都合に対処すべく、冷間アイドリング時におけるLNCの早期活性化を図るために、排気通路におけるLNCの上流側に三元触媒(以下、TWCと略称する)を配設すると共に、冷間アイドリング時に限定的に排気A/Fをリッチ化することにより、NO濃度の低減並びにTWCの酸化反応の促進を図り、TWCの自己発熱をLNCの昇温に利用しようとする技術が提案されている(特許文献1を参照されたい)。
特開2004−285832号公報
In order to cope with such inconvenience, a three-way catalyst (hereinafter abbreviated as TWC) is disposed upstream of the LNC in the exhaust passage in order to achieve early activation of the LNC during cold idling. by enriching limiting the exhaust a / F at the time during idling, achieving reduction and promoting the oxidation reaction of TWC of the NO X concentration, techniques that try to exploit the self-heating of the TWC to increase the temperature of the LNC it is proposed (See Patent Document 1).
JP 2004-285832 A

しかるに、文献1に記載の技術によると、冷間アイドリング時に排気A/Fをリッチ化してLNCのための還元剤濃度を高めても、昇温する以前の領域でのTWCでは十分な酸化反応が得られないため、排出ガスのエミッション(未燃HC、COなど)を却って悪化させる可能性があった。   However, according to the technique described in Document 1, even if the exhaust A / F is enriched during cold idling to increase the concentration of the reducing agent for LNC, a sufficient oxidation reaction is not achieved with TWC in the region before the temperature rise. Since it was not obtained, there was a possibility of exacerbating exhaust gas emissions (unburned HC, CO, etc.).

本発明は、このような従来技術の不都合を改善すべく案出されたものであり、その主な目的は、冷間アイドリング時の浄化性能をより一層高めることができるように改良された内燃機関の排気浄化装置を提供することにある。   The present invention has been devised to improve such disadvantages of the prior art, and its main object is to improve the internal combustion engine so that the purification performance during cold idling can be further enhanced. An object of the present invention is to provide an exhaust purification device.

このような課題を解決するため、本発明は、TWC7およびこの下流に設けられたLNC9を有する内燃機関の排気浄化装置10において、吸気通路2へ供給する新気流量の可変手段(吸気制御弁5)と、燃焼室から吸気通路への環流排気流量の可変手段(EGR制御弁13)と、TWCの温度に関わる値を出力するTWC温度センサ28と、LNCの温度に関わる値を出力するLNC温度センサ29とを備え、両温度センサの出力値に応じて吸気制御弁およびEGR制御弁を制御することにより、TWCへの排出ガス温度を高めつつ排出ガス流量を相対的に大きくする触媒昇温モードと、TWCへの還元剤供給量を相対的に大きくする触媒発熱モードとを切り替えることを特徴とするものとした。特に、燃焼室に噴射する燃料の量および噴射時期を制御する燃料噴射制御手段をも有し、触媒発熱モードが、燃料噴射時期の遅角制御及び/又は噴射圧力の低下制御を含むことを特徴とするものとした。   In order to solve such problems, the present invention provides a variable means (intake control valve 5) for the flow rate of fresh air supplied to the intake passage 2 in the exhaust gas purification apparatus 10 for an internal combustion engine having the TWC 7 and the LNC 9 provided downstream thereof. ), A means for varying the recirculation exhaust flow rate from the combustion chamber to the intake passage (EGR control valve 13), a TWC temperature sensor 28 that outputs a value related to the temperature of the TWC, and an LNC temperature that outputs a value related to the temperature of the LNC And a catalyst temperature increase mode in which the exhaust gas flow rate is relatively increased while the exhaust gas temperature to the TWC is increased by controlling the intake control valve and the EGR control valve in accordance with the output values of both temperature sensors. And a catalyst heat generation mode in which the reducing agent supply amount to the TWC is relatively increased. In particular, it also has fuel injection control means for controlling the amount of fuel injected into the combustion chamber and the injection timing, and the catalyst heat generation mode includes retard control of fuel injection timing and / or control of lowering injection pressure. It was supposed to be.

このような本発明によれば、排出ガスの温度を上昇させ、且つ流量を増大させる触媒昇温モードと、排出ガス中の還元剤量を増大させる触媒発熱モードとを選択し、TWCが低温のときは、高温の排出ガスを大量に流れ込ませることにより、TWC温度を早期に活性温度にまで上昇させることができる。これにより、冷間時に排出される未燃HCやCOを低減させることができる。そしてTWCが活性温度に達した後は、TWCに還元剤としての未燃HCやCOを積極的に送り込むことによってTWCの発熱反応を促進させ、この熱を利用して下流側のLNCを早期に昇温させることができる。
即ち本発明により、冷間始動後のLNCが活性化するまでの時間が短縮され、冷間アイドリング時におけるNOのより一層の低減および燃料消費量の低減に大きく貢献することができる。
According to the present invention as described above, the catalyst temperature rising mode for increasing the temperature of the exhaust gas and increasing the flow rate and the catalyst heat generation mode for increasing the amount of the reducing agent in the exhaust gas are selected, and the TWC is low in temperature. Sometimes, the TWC temperature can be raised to the activation temperature early by flowing a large amount of high temperature exhaust gas. Thereby, unburned HC and CO discharged at the time of cold can be reduced. After the TWC reaches the activation temperature, the unburned HC or CO as a reducing agent is actively fed into the TWC to promote the exothermic reaction of the TWC. The temperature can be raised.
That the present invention, LNC after cold start is shortened the time to activation, it is possible to greatly contribute to the reduction of further reduction and fuel consumption of the NO X when cold idling.

以下に添付の図面を参照して本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明が適用される内燃機関Eの基本的な構成図である。この内燃機関(ディーゼルエンジン)Eは、その機械的な構成自体は周知のものと何ら変わるところはなく、過給圧可変機構付きターボチャージャ1を備えるものであり、ターボチャージャ1のコンプレッサ側に吸気通路2が連結され、ターボチャージャ1のタービン側に排気通路3が連結されている。そして吸気通路2の上流端にエアクリーナ4が接続され、吸気通路2の適所に燃焼室に流入する新気の流量を調節するための吸気制御弁5と、低回転速度・低負荷運転域で流路断面積を絞って吸気流速を高めるためのスワールコントロール弁6とが設けられている。また排気通路3の下流端には、TWC7と、煤などの粒子状物質を除去するフィルタ(以下、DPFと略称する)8と、LNC9とを、排気の流れに沿ってこの順に連設してなる排気浄化装置10が接続されている。   FIG. 1 is a basic configuration diagram of an internal combustion engine E to which the present invention is applied. The internal combustion engine (diesel engine) E has a mechanical configuration that is not different from that of a known one, and includes a turbocharger 1 with a supercharging pressure variable mechanism. A passage 2 is connected, and an exhaust passage 3 is connected to the turbine side of the turbocharger 1. An air cleaner 4 is connected to the upstream end of the intake passage 2, and an intake control valve 5 for adjusting the flow rate of fresh air flowing into the combustion chamber at an appropriate position of the intake passage 2, and flows in a low rotation speed / low load operation region. A swirl control valve 6 is provided for reducing the cross-sectional area of the road and increasing the intake air flow velocity. Further, at the downstream end of the exhaust passage 3, a TWC 7, a filter (hereinafter abbreviated as DPF) 8 for removing particulate matter such as soot, and an LNC 9 are arranged in this order along the exhaust flow. An exhaust purification device 10 is connected.

スワールコントロール弁6と排気通路3における燃焼室の直後との間は、排出ガス再循環(以下、EGRと略称す)通路11を介して互いに連結されている。このEGR通路11は、切換弁12を介して分岐されたクーラー通路11aとバイパス通路11bとからなり、その合流部に、燃焼室に流入するEGR流量を調節するEGR制御弁13が設けられている。   The swirl control valve 6 and the exhaust passage 3 immediately after the combustion chamber are connected to each other via an exhaust gas recirculation (hereinafter abbreviated as EGR) passage 11. The EGR passage 11 includes a cooler passage 11a and a bypass passage 11b branched via a switching valve 12, and an EGR control valve 13 for adjusting the EGR flow rate flowing into the combustion chamber is provided at the junction. .

内燃機関Eのシリンダヘッドには、その先端を燃焼室に臨ませた燃料噴射弁14が設けられている。この燃料噴射弁14は、燃料を所定の高圧状態で蓄えるコモンレール15に連結され、コモンレール15には、クランク軸にて駆動されて燃料タンク16から燃料を汲み上げる燃料ポンプ17が接続されている。   The cylinder head of the internal combustion engine E is provided with a fuel injection valve 14 with its tip facing the combustion chamber. The fuel injection valve 14 is connected to a common rail 15 that stores fuel in a predetermined high pressure state, and a fuel pump 17 that is driven by a crankshaft and pumps fuel from the fuel tank 16 is connected to the common rail 15.

これらのターボチャージャ1の過給圧可変機構19、吸気制御弁5、EGR通路切換弁12およびEGR制御弁13、燃料噴射弁14、燃料ポンプ17・・・等は、電子制御装置(以下、ECUと略称する)18からの制御信号によって作動するように構成されている(図2参照)。   These turbocharger 1 supercharging pressure variable mechanism 19, intake control valve 5, EGR passage switching valve 12 and EGR control valve 13, fuel injection valve 14, fuel pump 17... (Referred to as “abbreviated”) 18 (see FIG. 2).

一方、ECU18には、図2に示すように、内燃機関Eの所定箇所に配置された吸気弁開度センサ20、クランク軸回転速度センサ21、吸気流量センサ22、過給圧センサ23、EGR弁開度センサ24、コモンレール圧センサ25、アクセルペダル操作量センサ26、Oセンサ27、TWC温度センサ28、LNC温度センサ29・・・等からの出力信号が入力されている。 On the other hand, as shown in FIG. 2, the ECU 18 includes an intake valve opening sensor 20, a crankshaft rotation speed sensor 21, an intake flow rate sensor 22, a supercharging pressure sensor 23, and an EGR valve disposed at predetermined locations of the internal combustion engine E. Output signals from the opening sensor 24, the common rail pressure sensor 25, the accelerator pedal operation amount sensor 26, the O 2 sensor 27, the TWC temperature sensor 28, the LNC temperature sensor 29, etc. are input.

ECU18のメモリには、クランク軸回転速度および要求トルク(アクセルペダル操作量)に応じて実験等によって予め求めた最適燃料噴射量をはじめとする各制御対象の制御目標値を設定したマップが格納されており、内燃機関Eの負荷状況に応じて最適な燃焼状態が得られるように、各部の制御が行われる。   The memory of the ECU 18 stores a map in which control target values for each control object including the optimum fuel injection amount obtained in advance by experiments or the like according to the crankshaft rotation speed and the required torque (accelerator pedal operation amount) are set. Therefore, each part is controlled so that an optimal combustion state is obtained according to the load state of the internal combustion engine E.

次に本発明の制御要領について図3〜図7を参照して説明する。なお、以下の実施例は三元触媒を用いたもののみについて説明するが、本発明は、酸化触媒にも適用可能である。   Next, the control procedure of the present invention will be described with reference to FIGS. In the following examples, only those using a three-way catalyst will be described, but the present invention is also applicable to an oxidation catalyst.

冷間始動後、TWC温度センサ28の検出値(あるいはTWC温度の推定値)と所定の切替判定値(触媒が酸化反応可能な活性温度)とを比較器31で比較し、TWC温度が切替判定値以下であるか否かを判断する(ステップ1)。その結果、現状が切替判定値以下の領域であったならば、モード選択器32で昇温モードを選択し(ステップ2)、且つ機関回転速度および要求トルクをアドレスとする昇温制御用マップ33を検索する(ステップ3)。   After the cold start, the detected value of the TWC temperature sensor 28 (or the estimated value of the TWC temperature) is compared with a predetermined switching determination value (the active temperature at which the catalyst can oxidize) by the comparator 31, and the TWC temperature is determined to be switched. It is determined whether or not the value is equal to or less than the value (step 1). As a result, if the current state is the region below the switching determination value, the temperature increase mode is selected by the mode selector 32 (step 2), and the temperature increase control map 33 having the engine speed and the required torque as addresses. Is searched (step 3).

ここで初回の始動時はTWC温度が必ず切替判定値以下なので、始動直後は昇温モードが選択される。これにより、吸気流量、吸気制御弁開度、コモンレール圧、および過給圧の各昇温モード用目標値が昇温制御用マップ33から得られるので、この目標値によって制御対象機器をそれぞれ制御する(ステップ4)。   Here, since the TWC temperature is always equal to or lower than the switching determination value at the first start, the temperature raising mode is selected immediately after the start. As a result, the target values for the temperature increase mode of the intake air flow rate, the intake control valve opening, the common rail pressure, and the supercharging pressure are obtained from the temperature increase control map 33, and the control target devices are controlled by the target values. (Step 4).

この昇温モードにおいては、吸気流量の総和を暖機後の通常モードよりも増大させるが、吸気制御弁5の開度を通常モードよりも絞った中開度とすると共に、過給圧を通常モードよりも低く設定する。これにより、新気の流入量が通常モードよりも増大し、且つEGR流量が相対的に減少するので、結果としてTWC7に流入する排出ガスの温度が上昇し、且つ流量が増大する。   In this temperature raising mode, the sum of the intake flow rates is increased as compared to the normal mode after warming up, but the opening degree of the intake control valve 5 is set to an intermediate opening degree that is smaller than that in the normal mode, and the boost pressure is set to normal. Set lower than the mode. As a result, the inflow amount of fresh air increases from that in the normal mode, and the EGR flow rate relatively decreases. As a result, the temperature of the exhaust gas flowing into the TWC 7 rises and the flow rate increases.

これと同時に、コモンレール圧を通常モードよりも低下させて燃料噴射期間を延長させる。これにより、排気温度の上昇を更に促進させ、これらによってTWC7の早期昇温が達成される。   At the same time, the common rail pressure is lowered from the normal mode to extend the fuel injection period. Thereby, the rise in the exhaust temperature is further promoted, and thereby an early temperature rise of the TWC 7 is achieved.

ステップ1における比較器31による判断でTWC温度が切替判定値を超えたことが判断されたならば、LNC温度センサ29の検出値(あるいはLNC温度の推定値)と所定の切替判定値(排気中のNOを吸収できる温度)とを比較器34で比較し、LNC温度が切替判定値以下であるか否かを判断する(ステップ5)。その結果、現状が切替判定値以下の領域であったならば、モード選択器32・35で発熱モードを選択し(ステップ6)、且つ機関回転速度および要求トルクをアドレスとする発熱制御用マップ36を検索する。これにより、吸気量、吸気制御弁開度、コモンレール圧、および過給圧の各発熱モード用目標値が発熱制御用マップ36から得られるので、この目標値によって制御対象機器をそれぞれ制御する(ステップ4)。 If it is determined by the comparator 31 in step 1 that the TWC temperature has exceeded the switching determination value, the detection value of the LNC temperature sensor 29 (or the estimated value of the LNC temperature) and a predetermined switching determination value (during exhaust) temperature) and which can absorb NO X in comparison by the comparator 34, LNC temperature is equal to or less than the switching determination value (step 5). As a result, if the current state is the region below the switching determination value, the heat generation mode is selected by the mode selectors 32 and 35 (step 6), and the heat generation control map 36 having the engine rotational speed and the required torque as addresses. Search for. As a result, the target values for the heat generation modes of the intake air amount, the intake control valve opening degree, the common rail pressure, and the supercharging pressure are obtained from the heat generation control map 36, and the devices to be controlled are controlled by the target values (steps). 4).

この発熱モードでは、吸気流量の総和を暖機後の通常モードより減少させるが、吸気制御弁5の開度を昇温モードよりも更に絞った低開度とすると共に、過給圧を昇温モードよりも更に低くする。また、コモンレール圧を昇温モードよりも更に低下させて燃料噴射期間を更に延長させる。これらの処理により、新気の流入量が通常モードよりも減少し、且つEGR流量が相対的に増大するので、結果としてTWC7に流入する排気A/Fがリッチ化し、TWCに7供給される還元剤が増大してTWC7の自己発熱が促進される。   In this heat generation mode, the sum of the intake air flow is reduced compared to the normal mode after warming up, but the opening of the intake control valve 5 is set to a lower opening that is further reduced than in the temperature raising mode, and the boost pressure is raised. Lower than the mode. In addition, the fuel injection period is further extended by lowering the common rail pressure further than the temperature raising mode. By these processes, the inflow amount of fresh air is reduced compared to the normal mode, and the EGR flow rate is relatively increased. As a result, the exhaust A / F flowing into the TWC 7 becomes rich, and the reduction supplied to the TWC 7 The agent is increased and the self-heating of TWC7 is promoted.

他方、TWC温度が切替判定値以下であるか否かを比較器31で判断し(ステップ11)、TWC温度が切替判定値以下であると判断された時は、通常制御用マップ38を参照し(ステップ12)、これから得られる目標値によって燃料噴射時期を制御し(ステップ13)、TWC温度が切替判定値を超えたならば、LNC温度が切替判定値以下であるか否かを比較器34で判断し(ステップ14)、LNC温度が切替判定値以下であることが比較器34で判断された時は、燃料噴射時期の制御用マップを、モード選択器40・41によって通常制御用マップ38から遅角制御用マップ39に切り替えて(ステップ15)この目標値によって燃料噴射時期を遅角制御し(ステップ13)、TWC7に供給される還元剤のより一層の増大を図り、排気温度の上昇を促進させる(図5、6参照)。   On the other hand, the comparator 31 determines whether or not the TWC temperature is equal to or lower than the switching determination value (step 11). When it is determined that the TWC temperature is equal to or lower than the switching determination value, the normal control map 38 is referred to. (Step 12) The fuel injection timing is controlled by the target value obtained from this (Step 13), and if the TWC temperature exceeds the switching determination value, the comparator 34 determines whether the LNC temperature is equal to or lower than the switching determination value. (Step 14), and when the comparator 34 determines that the LNC temperature is equal to or lower than the switching determination value, the fuel injection timing control map is displayed by the mode selectors 40 and 41 for the normal control map 38. Is switched to the retard angle control map 39 (step 15), and the fuel injection timing is retarded by this target value (step 13) to further increase the reducing agent supplied to the TWC 7. The increase in the exhaust temperature to accelerate (see FIG. 5,6).

このようにしてTWC7が自己発熱すると、TWC7から排出される高温のガスによってTWC7の下流側に配置されたLNC9が昇温するので、LNC9の温度が十分な活性温度に達したことが検出されたならば、モード選択器35を通常モードに切り替えて(ステップ8)、機関回転速度および要求トルクをアドレスとする通常制御用マップ37を参照し(ステップ9)、暖気後に適した目標値に従って各部の制御を行う(ステップ4)。   When the TWC 7 self-heats in this way, the temperature of the LNC 9 disposed downstream of the TWC 7 is raised by the high-temperature gas discharged from the TWC 7, so that it is detected that the temperature of the LNC 9 has reached a sufficient activation temperature. If so, the mode selector 35 is switched to the normal mode (step 8), and the normal control map 37 with the engine speed and the required torque as addresses is referred to (step 9). Control is performed (step 4).

各運転モードにおける各制御パラメータの傾向をまとめると、以下のようになる(図7参照)。
A.昇温モード
1.吸気流量を通常モードよりも増大させる。
2.吸気制御弁を通常モードよりも低開度とする。
3.過給圧を通常モードよりも低下させる。
これらにより、新気流量が増大し、EGR流量が相対的に減少するので、排気流量が増大する。
4.コモンレール圧を通常モードよりも低下させる。
これにより、燃料噴射期間が延長され、排気温度が上昇する。
5.EGRクーラーをバイパスさせ、EGR温度を高いままとする。
これにより、排気温度が上昇する。
B.発熱モード
1.吸気流量を通常モードよりも減少させる。
2.吸気制御弁を昇温モードよりも更に閉じる。
3.過給圧を昇温モードよりも更に下げる
これらにより、新気流量が減少し、EGR流量が相対的に増量するので、排気温度が上昇する。
4.コモンレール圧を昇温モードよりも更に低下させる。
これにより、燃料噴射時期が更に延長されるので、排気温度が上昇する。
5.EGRクーラーをバイパスさせ、EGR温度を高いままとする。
これにより、排気温度が上昇する。
6.燃料噴射タイミングを昇温モードよりも遅らせる。
これにより、排気中の還元剤が増加する。
The trend of each control parameter in each operation mode is summarized as follows (see FIG. 7).
A. Temperature rising mode Increase the intake flow rate more than the normal mode.
2. Set the intake control valve to a lower opening than in the normal mode.
3. Reduce the supercharging pressure from the normal mode.
As a result, the fresh air flow rate increases and the EGR flow rate relatively decreases, so that the exhaust flow rate increases.
4). Reduce the common rail pressure below the normal mode.
As a result, the fuel injection period is extended and the exhaust temperature rises.
5. Bypass the EGR cooler and keep the EGR temperature high.
As a result, the exhaust temperature rises.
B. Heat generation mode Reduce the intake air flow rate from the normal mode.
2. The intake control valve is further closed than in the temperature raising mode.
3. As a result of further lowering the supercharging pressure than in the temperature raising mode, the fresh air flow rate decreases and the EGR flow rate increases relatively, so that the exhaust temperature rises.
4). The common rail pressure is further lowered than in the temperature raising mode.
As a result, the fuel injection timing is further extended, so that the exhaust temperature rises.
5. Bypass the EGR cooler and keep the EGR temperature high.
As a result, the exhaust temperature rises.
6). The fuel injection timing is delayed from the temperature raising mode.
Thereby, the reducing agent in exhaust gas increases.

本発明が適用される内燃機関の全体構成図である。1 is an overall configuration diagram of an internal combustion engine to which the present invention is applied. 本発明が適用される制御装置のブロック図である。It is a block diagram of a control device to which the present invention is applied. モード切替制御に関わるブロック図である。It is a block diagram in connection with mode switching control. モード切替制御に関わるフロー図である。It is a flowchart in connection with mode switching control. 燃料噴射タイミングの切替制御に関わるブロック図である。It is a block diagram in connection with switching control of fuel injection timing. 燃料噴射タイミングの切替制御に関わるフロー図である。It is a flowchart in connection with switching control of fuel injection timing. 各制御パラメータと各モードとの関係を示すチャートである。It is a chart which shows the relationship between each control parameter and each mode.

符号の説明Explanation of symbols

2 吸気通路
5 吸気制御弁
7 TWC
9 LNC
10 排気浄化装置
13 EGR制御弁
28 TWC温度センサ
29 LNC温度センサ
2 Intake passage 5 Intake control valve 7 TWC
9 LNC
10 Exhaust Purification Device 13 EGR Control Valve 28 TWC Temperature Sensor 29 LNC Temperature Sensor

Claims (2)

三元触媒または酸化触媒、およびこの下流に設けられたリーンNO浄化触媒とを有する内燃機関の排気浄化装置であって、
吸気通路へ供給する新気流量の可変手段と、燃焼室から吸気通路への環流排気流量の可変手段と、前記三元触媒または酸化触媒の温度に関わる値を出力する三元触媒または酸化触媒温度出力手段と、前記リーンNO浄化触媒の温度に関わる値を出力するリーンNO浄化触媒温度出力手段とを備え、
前記両温度出力手段の出力値に応じて前記新気流量の可変手段および前記環流排気流量の可変手段を制御することにより、前記三元触媒または酸化触媒への排出ガス流量を相対的に大きくする第1の触媒温度制御モードと、前記三元触媒または酸化触媒への還元剤供給量を相対的に大きくする第2の触媒温度制御モードとを切り替えることを特徴とする内燃機関の排気浄化装置。
Three-way catalyst or oxidation catalyst, and an exhaust gas purification device for an internal combustion engine having a lean NO X purification catalyst provided in the downstream,
A three-way catalyst or oxidation catalyst temperature that outputs a value related to the temperature of the three-way catalyst or the oxidation catalyst, and a variable means for the fresh air flow rate supplied to the intake passage, a variable means for the circulating exhaust flow rate from the combustion chamber to the intake passage. and output means, and a lean NO X purification catalyst temperature output means for outputting the value related to the temperature of the lean NO X purification catalyst,
The exhaust gas flow rate to the three-way catalyst or the oxidation catalyst is relatively increased by controlling the fresh air flow rate variable means and the circulating exhaust flow rate variable means in accordance with the output values of the temperature output means. An exhaust gas purification apparatus for an internal combustion engine, wherein a first catalyst temperature control mode and a second catalyst temperature control mode for relatively increasing a reducing agent supply amount to the three-way catalyst or the oxidation catalyst are switched.
燃焼室に噴射する燃料の量および噴射時期を制御する燃料噴射制御手段を有し、前記第2の触媒温度制御モードが、燃料噴射時期の遅角制御と燃料噴射圧力の低下制御の少なくとも1つを含むことを特徴とする請求項1に記載の内燃機関の排気浄化装置。   Fuel injection control means for controlling the amount of fuel injected into the combustion chamber and the injection timing is provided, and the second catalyst temperature control mode is at least one of delay control of fuel injection timing and control of lowering fuel injection pressure. The exhaust emission control device for an internal combustion engine according to claim 1, comprising:
JP2005331277A 2005-11-16 2005-11-16 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4500765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005331277A JP4500765B2 (en) 2005-11-16 2005-11-16 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005331277A JP4500765B2 (en) 2005-11-16 2005-11-16 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007138768A true JP2007138768A (en) 2007-06-07
JP4500765B2 JP4500765B2 (en) 2010-07-14

Family

ID=38201965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005331277A Expired - Fee Related JP4500765B2 (en) 2005-11-16 2005-11-16 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4500765B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070125A1 (en) * 2016-10-13 2018-04-19 川崎重工業株式会社 Gas engine system
CN113686588A (en) * 2021-07-16 2021-11-23 东风汽车集团股份有限公司 Test method and device for EGR system in cold environment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097078A (en) * 1998-09-24 2000-04-04 Toyota Motor Corp Internal-combustion engine
JP2001050086A (en) * 1999-08-09 2001-02-23 Denso Corp Air-fuel ratio control unit for internal combustion engine
JP2002106388A (en) * 2000-09-29 2002-04-10 Mazda Motor Corp Fuel control device for engine
JP2004225599A (en) * 2003-01-22 2004-08-12 Nissan Motor Co Ltd Exhaust emission control device
JP2005002975A (en) * 2003-06-16 2005-01-06 Nissan Diesel Motor Co Ltd Exhaust purification device for engine
JP2005113703A (en) * 2003-10-03 2005-04-28 Toyota Motor Corp Internal combustion engine
JP2005299555A (en) * 2004-04-14 2005-10-27 Nissan Diesel Motor Co Ltd Exhaust emission control device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097078A (en) * 1998-09-24 2000-04-04 Toyota Motor Corp Internal-combustion engine
JP2001050086A (en) * 1999-08-09 2001-02-23 Denso Corp Air-fuel ratio control unit for internal combustion engine
JP2002106388A (en) * 2000-09-29 2002-04-10 Mazda Motor Corp Fuel control device for engine
JP2004225599A (en) * 2003-01-22 2004-08-12 Nissan Motor Co Ltd Exhaust emission control device
JP2005002975A (en) * 2003-06-16 2005-01-06 Nissan Diesel Motor Co Ltd Exhaust purification device for engine
JP2005113703A (en) * 2003-10-03 2005-04-28 Toyota Motor Corp Internal combustion engine
JP2005299555A (en) * 2004-04-14 2005-10-27 Nissan Diesel Motor Co Ltd Exhaust emission control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070125A1 (en) * 2016-10-13 2018-04-19 川崎重工業株式会社 Gas engine system
JP2018062898A (en) * 2016-10-13 2018-04-19 川崎重工業株式会社 Gas engine system
CN113686588A (en) * 2021-07-16 2021-11-23 东风汽车集团股份有限公司 Test method and device for EGR system in cold environment

Also Published As

Publication number Publication date
JP4500765B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP4924229B2 (en) EGR system for internal combustion engine
JP2008038812A (en) Control device for internal combustion engine
KR101713709B1 (en) Method for controlling exhaust gas flow in engine system
JP4309908B2 (en) Exhaust gas purification device for internal combustion engine
JP2008138638A (en) Exhaust recirculating device of internal combustion engine
JP4435300B2 (en) Control device for internal combustion engine
JP4905327B2 (en) Exhaust gas purification system for internal combustion engine
JP4995154B2 (en) Control device for internal combustion engine
JP4500765B2 (en) Exhaust gas purification device for internal combustion engine
JP2007332799A (en) Exhaust emission control device for internal combustion engine
JP2007255304A (en) Exhaust emission control device
JP2010007634A (en) Exhaust emission control device for an internal combustion engine
JP2006266220A (en) Rising temperature controller of aftertreatment device
JP4893493B2 (en) Exhaust gas purification device for internal combustion engine
JP4727472B2 (en) Exhaust purification device
JP2006274985A (en) Exhaust gas aftertreatment device
JP4063743B2 (en) Fuel injection timing control device for internal combustion engine
JP2005048701A (en) Exhaust emission control device for engine
JP2007255308A (en) Exhaust emission control device of internal combustion engine
JP4950943B2 (en) Control device for internal combustion engine
JP4300985B2 (en) Diesel engine control device
JP2009150271A (en) Exhaust emission control device of internal combustion engine
JP2008232093A (en) Control device for internal combustion engine
JP2006274911A (en) Temperature rise controller of aftertreatment device
JP2007077857A (en) Operation mode control device for internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20100210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees