JP2007255308A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2007255308A
JP2007255308A JP2006080744A JP2006080744A JP2007255308A JP 2007255308 A JP2007255308 A JP 2007255308A JP 2006080744 A JP2006080744 A JP 2006080744A JP 2006080744 A JP2006080744 A JP 2006080744A JP 2007255308 A JP2007255308 A JP 2007255308A
Authority
JP
Japan
Prior art keywords
catalyst
supply amount
nox
temperature
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006080744A
Other languages
Japanese (ja)
Inventor
Minehiro Murata
峰啓 村田
Yoshihisa Takeda
好央 武田
Satoshi Hiranuma
智 平沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2006080744A priority Critical patent/JP2007255308A/en
Publication of JP2007255308A publication Critical patent/JP2007255308A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device which achieves excellent NOx purifying performance by supplying a suitable amount of HC to a NOx occlusion catalyst during steady operation or the like, and surely suppresses an HC slip even when a rear stage catalyst is inactivated in the case of transient operation or the like at the time of rich spike for a NOx occlusion catalyst. <P>SOLUTION: An HC supply quantity correction part 103 in an ECU 10 sets a correction coefficient K to a smaller value further from 1.0 as exhaust temperature on an inlet side of a rear stage catalyst 43 falls. The correction coefficient K is multiplied to a basic HC supply quantity set in a basic HC supply quantity setting part so as to reduce and correct a target HC supply quantity. On the basis of the calculated value, a light oil adding injector 50 supplies light oil (HC) into the exhaust. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、NOx吸蔵触媒と後段触媒とを有する内燃機関の排気浄化装置に関し、特にNOx吸蔵触媒からNOxを放出還元させるリッチスパイク時に後段触媒で生じるHCスリップを抑制するようにした排気浄化装置に関する。   The present invention relates to an exhaust gas purification device for an internal combustion engine having a NOx storage catalyst and a rear catalyst, and more particularly to an exhaust gas purification device that suppresses HC slip that occurs in the rear catalyst during a rich spike that releases and reduces NOx from the NOx storage catalyst. .

ディーゼルエンジンやリーンバーンエンジンなどの酸素過剰雰囲気で燃焼を行う内燃機関では、その特性上、従来型の三元触媒では排ガス中のNOx(窒素酸化物)を十分に浄化できないことから、酸素過剰雰囲気でもNOxを浄化可能なNOx吸蔵触媒が備えられている。当該NOx吸蔵触媒は、還元成分濃度が低い酸化雰囲気において排ガス中のNOxを硝酸塩X−NO3として吸蔵し、この吸蔵したNOxをHC(炭化水素)やCO(一酸化炭素)が多量に存在する還元雰囲気でN2(窒素)に還元させる特性を有した触媒として構成されている。 In an internal combustion engine that burns in an oxygen-excess atmosphere such as a diesel engine or lean burn engine, NOx (nitrogen oxides) in exhaust gas cannot be sufficiently purified by the conventional three-way catalyst due to its characteristics. However, a NOx storage catalyst capable of purifying NOx is provided. The NOx occlusion catalyst occludes NOx in exhaust gas as nitrate X-NO 3 in an oxidizing atmosphere having a low reducing component concentration, and the occluded NOx is present in a large amount of HC (hydrocarbon) and CO (carbon monoxide). It is configured as a catalyst having the characteristic of reducing to N 2 (nitrogen) in a reducing atmosphere.

この種のNOx吸蔵触媒では、通常の運転時にNOxを吸蔵して大気中への排出を防止すると共に、NOx吸蔵触媒が吸蔵限界に至る以前に排気通路に還元剤としてHCやCO(以下、代表してHCと表現する)を供給するリッチスパイクを定期的に行い、これによりNOx吸蔵触媒上に吸蔵されているNOxを放出還元している(NOxパージ)。なお、リッチスパイクとしては、例えばディーゼルエンジンでは排気通路に設けたインジェクタからの燃料供給、或いは膨張行程や排気行程でのポスト噴射が行われ、リーンバーンエンジンでは空燃比のリッチ化などが行われる。これらのリッチスパイク時において、NOxパージに対して全運転領域で全く過不足なくHCを供給することは困難なため、エンジンの運転状態(例えば、燃料噴射量及び回転速度)に基づきNOxパージの必要量より若干多めにHCを供給し、余剰HCをNOx吸蔵触媒の下流側に設けた後段触媒により処理している。   In this type of NOx storage catalyst, NOx is stored during normal operation to prevent discharge into the atmosphere, and before the NOx storage catalyst reaches the storage limit, HC and CO (hereinafter, representative) Rich spikes for supplying HC) are periodically performed, whereby NOx stored on the NOx storage catalyst is released and reduced (NOx purge). As the rich spike, for example, in a diesel engine, fuel is supplied from an injector provided in an exhaust passage, or post-injection is performed in an expansion stroke or an exhaust stroke, and in a lean burn engine, an air-fuel ratio is enriched. During these rich spikes, it is difficult to supply HC without excess or deficiency over the entire operating range for NOx purge. Therefore, NOx purge is necessary based on the operating state of the engine (for example, fuel injection amount and rotational speed). HC is supplied slightly larger than the amount, and surplus HC is treated by a subsequent catalyst provided downstream of the NOx storage catalyst.

ところで、上記NOx吸蔵触媒及び後段触媒の車両床下での設置レイアウトはスペース上の点から制約を受け、NOx吸蔵触媒に対して後段触媒を離間せざるを得ない場合が多いが、この設置レイアウトに起因し、HCが後段触媒を素通りして排出される所謂HCスリップが発生するという問題があった。即ち、後段触媒は酸化反応により余剰HCを処理することから、その機能を果たすには後段触媒がライトオフ温度に達して活性化している必要がある。エンジンが定常運転のときにはエンジン側の排ガス温度の制御などにより後段触媒を昇温促進することも可能であり、また、仮に後段触媒の昇温が不足気味であってもHC供給量の減少によりHCスリップを防止できる。しかしながら、例えば図4に示すように加速に伴って低負荷域から高負荷域に移行する過渡運転では、低負荷の継続により後段触媒の温度がライトオフ温度未満に低下しているにも拘わらず、細い実線で示すように高負荷域に対応するHC供給量に制御される。結果として加速開始から後段触媒がライトオフ温度に達するまでの遅れ時間Aの期間中には、太い実線で示すように後段触媒に処理能力を上回る余剰HCが供給されて処理しきれずにHCスリップを発生してしまうという問題があった。   By the way, the installation layout of the NOx occlusion catalyst and the rear catalyst under the vehicle floor is limited in terms of space, and the rear catalyst is often separated from the NOx occlusion catalyst. As a result, there has been a problem that a so-called HC slip is generated in which HC passes through the downstream catalyst and is discharged. That is, since the post-catalyst treats surplus HC by an oxidation reaction, the post-catalyst needs to reach the light-off temperature and be activated in order to perform its function. When the engine is in steady operation, it is possible to accelerate the temperature increase of the rear catalyst by controlling the exhaust gas temperature on the engine side. Slip can be prevented. However, for example, as shown in FIG. 4, in the transient operation that shifts from the low load region to the high load region with acceleration, the temperature of the rear catalyst is lowered below the light-off temperature due to the continuation of the low load. As indicated by the thin solid line, the HC supply amount corresponding to the high load range is controlled. As a result, during the period of delay time A from the start of acceleration until the post-catalyst reaches the light-off temperature, as shown by the thick solid line, surplus HC exceeding the processing capacity is supplied to the post-catalyst and the HC slip is not fully processed. There was a problem that it occurred.

一方、触媒温度に着目して排気通路へのHC供給量を制御する種々の手法が提案されている(例えば、特許文献1参照)。当該特許文献1の技術は、エンジンの燃料カット中に触媒が酸素過多になって浄化能力を低下させる不具合に着目し、触媒の酸素吸蔵能力と相関する触媒温度に応じてエンジンの空燃比をリッチ化し、これにより触媒を適正な状態に回復させると共に余剰HCの排出を防止している。
特開2005−140011号公報
On the other hand, various methods for controlling the amount of HC supplied to the exhaust passage by paying attention to the catalyst temperature have been proposed (see, for example, Patent Document 1). The technology of Patent Document 1 focuses on the problem that the catalyst becomes excessively oxygen during the fuel cut of the engine and lowers the purification capacity, and the engine air-fuel ratio is made rich according to the catalyst temperature correlated with the oxygen storage capacity of the catalyst. As a result, the catalyst is restored to an appropriate state and the discharge of surplus HC is prevented.
JP-A-2005-140011

しかしながら、上記HCスリップの問題を解消すべく特許文献1の技術を適用し、NOx吸蔵触媒の温度に応じてリッチスパイク時のHC供給量を制御してもHCスリップを抑制することはできなかった。NOx吸蔵触媒の温度はエンジンの排ガス温度や排気流量などに応じた遅れをもって後段触媒の温度に反映されるものの、NOx吸蔵触媒から後段触媒までの排気通路が長いことからNOx触媒の温度に基づいて適切なHC供給量、ひいては確実なHCスリップの抑制は現実的に不可能であった。   However, even if the technique of Patent Document 1 is applied to solve the above HC slip problem and the HC supply amount at the time of rich spike is controlled according to the temperature of the NOx storage catalyst, the HC slip cannot be suppressed. . Although the temperature of the NOx storage catalyst is reflected in the temperature of the rear catalyst with a delay corresponding to the exhaust gas temperature of the engine, the exhaust gas flow rate, etc., the exhaust passage from the NOx storage catalyst to the rear catalyst is long, so the temperature of the NOx storage catalyst is An appropriate amount of HC supply, and hence reliable suppression of HC slip, was practically impossible.

従って、特許文献1の技術では、上記過渡運転時などのごく一部の運転領域でのHCスリップを回避するために、リッチスパイク時のHC供給量を全運転領域で制限する必要が生じる。結果として定常運転時などの後段触媒のHC浄化能力に余裕があるときでもHC供給量が制限されてしまい、HCスリップ抑制と引き換えにNOx浄化性能が低下してしまうという問題があった。   Therefore, in the technique of Patent Document 1, it is necessary to limit the HC supply amount during the rich spike in the entire operation region in order to avoid the HC slip in a very small operation region such as the transient operation. As a result, there is a problem that the HC supply amount is limited even when there is a margin in the HC purification capability of the subsequent catalyst such as during steady operation, and the NOx purification performance is reduced in exchange for HC slip suppression.

本発明の目的は、NOx吸蔵触媒に対するリッチスパイク時において過渡運転時などで後段触媒が活性化していないときでもHCスリップを確実に抑制できると共に、定常運転などではNOx吸蔵触媒に対して適性量のHCを供給して良好なNOx浄化性能を実現することができる内燃機関の排気浄化装置を提供することにある。   The object of the present invention is to reliably suppress HC slip even when the post-stage catalyst is not activated, such as during transient operation during a rich spike with respect to the NOx storage catalyst. An object of the present invention is to provide an exhaust gas purification apparatus for an internal combustion engine which can supply HC and realize a good NOx purification performance.

上記目的を達成するため、請求項1の発明は、内燃機関の排気通路に設けられたNOx吸蔵触媒とNOx吸蔵触媒の下流側に配設された後段触媒とを有する内燃機関の排気浄化装置において、排気通路のNOx吸蔵触媒の上流側に還元剤を供給する還元剤供給手段と、後段触媒の温度を検出する後段触媒温度検出手段と、NOx吸蔵触媒に吸蔵されたNOxの放出還元を要するときに、内燃機関の運転状態に応じて還元剤の目標供給量を設定する目標供給量設定手段と、後段触媒温度検出手段により検出された後段触媒の温度に基づき、目標供給量設定手段により設定された目標供給量を補正する供給量補正手段と、供給量補正手段により補正後の目標供給量に基づき還元剤供給手段を制御して排気通路に還元剤を供給するNOx放出還元制御手段とを備えたものである。   In order to achieve the above object, an invention according to claim 1 is an exhaust purification device for an internal combustion engine having a NOx storage catalyst provided in an exhaust passage of the internal combustion engine and a rear stage catalyst disposed downstream of the NOx storage catalyst. When reducing agent supply means for supplying a reducing agent to the upstream side of the NOx storage catalyst in the exhaust passage, downstream catalyst temperature detection means for detecting the temperature of the downstream catalyst, and release reduction of NOx stored in the NOx storage catalyst is required The target supply amount setting means for setting the target supply amount of the reducing agent according to the operating state of the internal combustion engine, and the target supply amount setting means based on the temperature of the rear catalyst detected by the rear catalyst temperature detection means. Supply amount correction means for correcting the target supply amount, NOx release reduction control means for controlling the reducing agent supply means based on the target supply amount corrected by the supply amount correction means and supplying the reducing agent to the exhaust passage, It includes those were.

従って、内燃機関の排ガス中に含まれるNOxはNOx吸蔵触媒に吸蔵され、NOx吸蔵触媒が吸蔵限界に達する以前にNOxの放出還元が行われる。NOxの放出還元に際しては、目標供給量設定手段により内燃機関の運転状態に応じて還元剤の目標供給量が設定され、この目標供給量が後段触媒温度検出手段により検出された温度に基づき供給量補正手段により補正され、補正後の目標供給量に基づきNOx放出還元制御手段に制御された還元剤供給手段により内燃機関の排気通路に還元剤が供給される。還元剤供給手段としては、例えば排気通路に設けたインジェクタからの燃料供給、或いは膨張行程や排気行程でのポスト噴射、空燃比のリッチ化などが適用され、還元剤供給手段から供給された還元剤によりNOx吸蔵触媒に吸蔵されているNOxが放出還元され、放出還元に消費されなかった還元剤による余剰HCは後段触媒で酸化反応により処理される。   Therefore, NOx contained in the exhaust gas of the internal combustion engine is stored in the NOx storage catalyst, and NOx is released and reduced before the NOx storage catalyst reaches the storage limit. When releasing and reducing NOx, the target supply amount setting means sets the target supply amount of the reducing agent according to the operating state of the internal combustion engine, and this target supply amount is supplied based on the temperature detected by the post-catalyst temperature detection means. The reducing agent is supplied to the exhaust passage of the internal combustion engine by the reducing agent supply means which is corrected by the correction means and controlled by the NOx release reduction control means based on the corrected target supply amount. As the reducing agent supply means, for example, fuel supply from an injector provided in the exhaust passage, or post injection in an expansion stroke or an exhaust stroke, enrichment of the air-fuel ratio, etc. are applied, and the reducing agent supplied from the reducing agent supply means As a result, NOx occluded in the NOx occlusion catalyst is released and reduced, and surplus HC due to the reducing agent that has not been consumed in the emission reduction is treated by an oxidation reaction in the subsequent catalyst.

例えば低負荷域から高負荷域に移行する過渡運転では、低負荷の継続により後段触媒の温度がライトオフ温度未満に低下しているにも拘わらず、目標供給量設定手段で内燃機関の運転状態に応じて高負荷域に対応する目標供給量が設定されるため、この目標供給量に基づいて還元剤の供給量が制御されると、後段触媒に処理能力を上回る余剰HCが供給されて処理し切れずに余剰HCが素通りする所謂HCスリップが発生することになる。   For example, in a transient operation that shifts from a low load range to a high load range, the operating state of the internal combustion engine is controlled by the target supply amount setting means even though the temperature of the rear catalyst has decreased below the light-off temperature due to continued low load. Therefore, when the supply amount of the reducing agent is controlled based on the target supply amount, surplus HC exceeding the processing capacity is supplied to the post-stage catalyst and processed. A so-called HC slip in which surplus HC passes through without being completely generated occurs.

本発明では、後段触媒の温度に基づき目標供給量が補正されるため、後段触媒の温度が低くて余剰HCの処理能力が低下しているときには目標供給量が減少側に補正されることで後段触媒に流入する還元剤が減少し、上記後段触媒でのHCスリップが抑制される。また、後段触媒が温度低下していないときには還元剤の目標供給量は減少補正されず、NOx吸蔵触媒に対して適性量の還元剤が供給されるため良好なNOx浄化性能が実現される。   In the present invention, since the target supply amount is corrected based on the temperature of the post-catalyst, when the temperature of the post-catalyst catalyst is low and the processing capacity of surplus HC is reduced, the target supply amount is corrected to the decreasing side, so that the post-stage catalyst is corrected. The reducing agent flowing into the catalyst is reduced, and HC slip in the latter catalyst is suppressed. Further, when the temperature of the rear catalyst is not lowered, the target supply amount of the reducing agent is not corrected for reduction, and an appropriate amount of the reducing agent is supplied to the NOx storage catalyst, so that a good NOx purification performance is realized.

以上説明したように請求項1の発明の内燃機関の排気浄化装置によれば、NOx吸蔵触媒に対するリッチスパイク時において過渡運転時などで後段触媒が活性化していないときでもHCスリップを確実に抑制できると共に、定常運転などではNOx吸蔵触媒に対して適性量のHCを供給して良好なNOx浄化性能を実現することができる。   As described above, according to the exhaust gas purification apparatus for an internal combustion engine of the first aspect of the present invention, it is possible to reliably suppress HC slip even when the post-stage catalyst is not activated, such as during transient operation, during a rich spike with respect to the NOx storage catalyst. At the same time, in steady operation, an appropriate amount of HC can be supplied to the NOx storage catalyst to achieve good NOx purification performance.

以下、本発明をディーゼルエンジン用の排気浄化装置に具体化した一実施形態を説明する。
図1は本実施形態のディーゼルエンジン用の排気浄化装置を示す全体構成図である。この図において、参照符号1は、エンジンたとえばコモンレール式ディーゼルエンジンを示し、参照符号10は、エンジン制御装置および排気浄化装置の制御系の主要部をなす電子制御ユニット(以下、ECUという)を示す。
Hereinafter, an embodiment in which the present invention is embodied in an exhaust emission control device for a diesel engine will be described.
FIG. 1 is an overall configuration diagram showing an exhaust emission control device for a diesel engine according to the present embodiment. In this figure, reference numeral 1 indicates an engine, for example, a common rail type diesel engine, and reference numeral 10 indicates an electronic control unit (hereinafter referred to as ECU) that constitutes a main part of the control system of the engine control device and the exhaust purification device.

詳細な図示を省略するが、コモンレール式ディーゼルエンジン1は、ニードル弁ならびにこのニードル弁の先端側および基端側に設けられた燃料室および制御室を有した燃料インジェクタを気筒毎に備え、燃料室および制御室は燃料通路を介して蓄圧室に接続され、制御室は燃料戻し通路を介して燃料タンクに接続されている。そして、ECU10の制御下で、燃料インジェクタに設けられた電磁弁が開くと、蓄圧室内から供給された高圧燃料が燃料インジェクタを通じてエンジン1の燃焼室に噴射され、電磁弁が閉じると燃料噴射が終了するものとなっており、このように電磁弁の開閉弁時期を制御することで燃料噴射開始・終了時期(燃料噴射量)が調節される。   Although not shown in detail, the common rail diesel engine 1 is provided with a fuel injector having a needle valve and a fuel chamber and a control chamber provided on the distal end side and the proximal end side of the needle valve for each cylinder. The control chamber is connected to the pressure accumulation chamber via a fuel passage, and the control chamber is connected to the fuel tank via a fuel return passage. Under the control of the ECU 10, when the solenoid valve provided in the fuel injector is opened, the high-pressure fuel supplied from the pressure accumulating chamber is injected into the combustion chamber of the engine 1 through the fuel injector, and when the solenoid valve is closed, the fuel injection is finished. Thus, the fuel injection start / end timing (fuel injection amount) is adjusted by controlling the opening / closing timing of the solenoid valve.

エンジン1は、吸気マニホールド11に接続された吸気管12と、排気マニホールド13に接続された排気管14(排気通路)とを有している。吸気管12の途中には、過給機20のコンプレッサ21とインタークーラ31と吸気スロットル弁32が配されている。吸気スロットル弁32の開度は、吸気スロットル弁駆動部33を介してECU10により可変調整される。吸気スロットル弁32の開度を絞ることにより排気温度を上昇させることができる。一方、排気管14の途中には、過給機20のタービン22、排気ブレーキ15、軽油添加インジェクタ50、後処理装置40および図示しないマフラが設けられている。   The engine 1 has an intake pipe 12 connected to the intake manifold 11 and an exhaust pipe 14 (exhaust passage) connected to the exhaust manifold 13. In the middle of the intake pipe 12, a compressor 21, an intercooler 31, and an intake throttle valve 32 of the supercharger 20 are arranged. The opening degree of the intake throttle valve 32 is variably adjusted by the ECU 10 via the intake throttle valve drive unit 33. The exhaust temperature can be raised by reducing the opening of the intake throttle valve 32. On the other hand, a turbine 22 of the supercharger 20, an exhaust brake 15, a light oil addition injector 50, an aftertreatment device 40 and a muffler (not shown) are provided in the middle of the exhaust pipe 14.

過給機20のコンプレッサ21とタービン22は同期回転可能に連結され、エンジン1から排出される排気ガスの流れにより発生したタービン22の回転力によりコンプレッサ21を回転させ、コンプレッサ21により加圧された吸気をエンジン1に供給するようになっている。この際、加圧されて高温になった空気はインタークーラ31で冷却され、これにより吸入空気の密度を高めて充填効率を向上させてエンジン出力を増大するようにしている。   The compressor 21 and the turbine 22 of the supercharger 20 are connected so as to be able to rotate synchronously, and the compressor 21 is rotated by the rotational force of the turbine 22 generated by the flow of exhaust gas discharged from the engine 1 and is pressurized by the compressor 21. Intake air is supplied to the engine 1. At this time, the pressurized and heated air is cooled by the intercooler 31, thereby increasing the density of the intake air and improving the charging efficiency to increase the engine output.

過給機20にはタービン22をバイパスする排気バイパス通路(図示略)が設けられ、このバイパス通路の途中に設けられた過給機20のウエイストゲート23を過度の過給の際に開いて過給圧を調節する動作の他に、ウエイストゲート駆動部24を介してECU10により強制的に開閉制御して、タービン(コンプレッサ)回転を増減させて吸気管12に供給される吸気の圧力を増減するようになっている。過給機ウエイストゲート23を開くことにより排気温度を上昇させることができる。同様に、排気ブレーキ駆動部16を介してECU10により排気ブレーキ15を開閉可能になっており、排気ブレーキ15を閉じることにより排気昇温可能である。   The supercharger 20 is provided with an exhaust bypass passage (not shown) that bypasses the turbine 22, and the wastegate 23 of the supercharger 20 provided in the middle of the bypass passage is opened during excessive supercharging. In addition to the operation of adjusting the supply pressure, the ECU 10 is forcibly controlled by the ECU 10 via the waste gate drive unit 24 to increase or decrease the pressure of the intake air supplied to the intake pipe 12 by increasing or decreasing the turbine (compressor) rotation. It is like that. The exhaust gas temperature can be raised by opening the supercharger wastegate 23. Similarly, the exhaust brake 15 can be opened and closed by the ECU 10 via the exhaust brake drive unit 16, and the exhaust gas temperature can be raised by closing the exhaust brake 15.

図1中、参照符号36は、排気マニホールド13から吸気管12に延びるEGR通路を示し、このEGR通路36を介して排ガスの一部を再還流ガスとしてエンジン1に供給するようになっている。EGR通路36の途中には、再還流ガスを冷却してエンジン1へのガス充填密度を高めるEGRクーラ37と、再還流ガスのエンジン1への供給および供給遮断のためのEGR弁38が設けられている。EGR弁38は、EGR弁駆動部39を介してECU10により開閉制御または開度調整される。   In FIG. 1, reference numeral 36 indicates an EGR passage extending from the exhaust manifold 13 to the intake pipe 12, and a part of the exhaust gas is supplied to the engine 1 as a recirculation gas via the EGR passage 36. In the middle of the EGR passage 36, an EGR cooler 37 that cools the recirculation gas to increase the gas filling density of the engine 1 and an EGR valve 38 for supplying and shutting off the recirculation gas to the engine 1 are provided. ing. The EGR valve 38 is controlled to be opened or closed or adjusted by the ECU 10 via the EGR valve drive unit 39.

後処理装置40は、これに流入した排ガスに含まれるNOxおよびPMを低減するものである。本実施形態の後処理装置40は、PMを捕集して燃焼除去するディーゼルパティキュレートフィルタ(DPF)41と、DPF41の前段に配され軽油添加インジェクタ50(還元剤供給手段)から供給された軽油(HC)を還元剤として用いて排ガス中のNOxを浄化するNOx吸蔵触媒(排気浄化触媒)42と、DPF41の後段に配され例えば余剰HCを酸化反応により処理する後段触媒43とを有している。   The aftertreatment device 40 reduces NOx and PM contained in the exhaust gas flowing into the aftertreatment device 40. The post-processing device 40 according to the present embodiment includes a diesel particulate filter (DPF) 41 that collects PM and burns and removes it, and light oil that is disposed in front of the DPF 41 and supplied from a light oil addition injector 50 (reducing agent supply means). A NOx storage catalyst (exhaust gas purification catalyst) 42 that purifies NOx in exhaust gas using (HC) as a reducing agent, and a rear catalyst 43 that is disposed downstream of the DPF 41 and that treats excess HC by an oxidation reaction, for example. Yes.

そして、本実施形態では車両床下のスペース上の点から、NO吸蔵触媒42およびDPF41に対して後段触媒43が後方側に離間配置されている。その結果、およびDPF41と後段触媒43とを接続する排気管14はかなりの長さを有し、NO吸蔵触媒42を通過した排ガスはかなりの時間的な遅れをもって後段触媒43に流入することになる。
軽油添加インジェクタ50は、NOx吸蔵触媒42に軽油(HC)を噴射するものであり、軽油添加インジェクタ駆動部51を介してECU10により開閉制御され、軽油添加インジェクタ50の開弁期間中に軽油が噴射される。
In this embodiment, the rear catalyst 43 is spaced apart from the NO storage catalyst 42 and the DPF 41 on the rear side from the point on the space under the vehicle floor. As a result, the exhaust pipe 14 connecting the DPF 41 and the rear catalyst 43 has a considerable length, and the exhaust gas that has passed through the NO storage catalyst 42 flows into the rear catalyst 43 with a considerable time delay. .
The light oil addition injector 50 injects light oil (HC) to the NOx storage catalyst 42 and is controlled to be opened and closed by the ECU 10 via the light oil addition injector drive unit 51, and light oil is injected during the valve opening period of the light oil addition injector 50. Is done.

図1中、参照符号61は、NOx吸蔵触媒42の下流側(DPF41との間)に設けられたNOx触媒温度センサであり、NOx吸蔵触媒42の出口側の排気温度T1(NOx吸蔵触媒42の温度と相関する)を検出するようになっている。また、参照符号62は、後段触媒43の上流側に設けられた後段触媒温度センサ(後段触媒温度検出手段)であり、後段触媒43の入口側の排気温度T2(後段触媒43の温度と相関する)を検出するようになっている。これらのセンサ61,62により検出された温度データはNOx吸蔵触媒42のリッチスパイクのためのHC供給制御に供される。   In FIG. 1, reference numeral 61 is a NOx catalyst temperature sensor provided on the downstream side of the NOx storage catalyst 42 (between the DPF 41), and the exhaust temperature T 1 (the NOx storage catalyst 42 of the NOx storage catalyst 42) on the outlet side of the NOx storage catalyst 42. It correlates with temperature). Reference numeral 62 denotes a rear catalyst temperature sensor (rear catalyst temperature detecting means) provided on the upstream side of the rear catalyst 43, and correlates with the exhaust temperature T2 on the inlet side of the rear catalyst 43 (the temperature of the rear catalyst 43). ) Is detected. The temperature data detected by these sensors 61 and 62 is used for HC supply control for the rich spike of the NOx storage catalyst 42.

更に、ECU10には負荷センサ71、クランク角センサ72などの各種センサが接続されている。負荷センサ71は、図示しないアクセルペダルの踏込量、即ちアクセル開度をエンジン負荷として検出し、クランク角センサ72は、エンジン1のクランクシャフト(図示略)の回転をエンジン回転速度として検出するものである。
ECU10は、負荷センサ71により検出されたエンジン負荷とクランク角センサ72により検出されたエンジン回転速度とに基づいてエンジン1の運転領域を判別し、エンジン運転域に応じてエンジン1の各インジェクタ(図示略)の電磁弁をオンオフして燃料噴射時期および燃料噴射量を制御するものになっている。
Further, various sensors such as a load sensor 71 and a crank angle sensor 72 are connected to the ECU 10. The load sensor 71 detects the amount of depression of an accelerator pedal (not shown), that is, the accelerator opening, as an engine load, and the crank angle sensor 72 detects the rotation of the crankshaft (not shown) of the engine 1 as the engine rotation speed. is there.
The ECU 10 determines the operating region of the engine 1 based on the engine load detected by the load sensor 71 and the engine rotation speed detected by the crank angle sensor 72, and each injector (illustrated) of the engine 1 according to the engine operating region. The fuel injection timing and the fuel injection amount are controlled by turning on and off the abbreviated solenoid valve.

上記構成のディーゼルエンジン1は、公知のようにリーン空燃比で運転され、このリーン空燃比運転中、エンジン1から排出される排ガス中に含まれるNOx(窒素酸化物)がNOx吸蔵触媒42に吸蔵される。そして、NOx吸蔵量が一定以上まで増大すると、エンジン1のリッチスパイク運転が行われ、NOx吸蔵触媒42に吸蔵されていたNOxが放出され、還元除去される。本実施形態では、軽油添加インジェクタ50により排気中に軽油(HC)が噴射されることによりリッチスパイク運転が実行され、ECU10の制御下で軽油添加インジェクタ50が例えば所定のデューティ比で周期的に開弁され、これにより排ガス中に噴射された軽油が上記NOx吸蔵触媒42上でNOxの放出還元作用を奏する(NOx放出還元制御手段)。また、NOx吸蔵触媒42上でNOxの放出還元のために消費されなかった軽油による余剰HCは後段触媒43で酸化反応により処理されて大気中への排出を防止される。   The diesel engine 1 configured as described above is operated at a lean air-fuel ratio as is well known, and during this lean air-fuel ratio operation, NOx (nitrogen oxide) contained in the exhaust gas discharged from the engine 1 is stored in the NOx storage catalyst 42. Is done. When the NOx occlusion amount increases to a certain level or more, the rich spike operation of the engine 1 is performed, and the NOx occluded in the NOx occlusion catalyst 42 is released and reduced and removed. In the present embodiment, a light spike (HC) is injected into the exhaust gas by the light oil addition injector 50 to execute a rich spike operation. Under the control of the ECU 10, the light oil addition injector 50 is periodically opened at a predetermined duty ratio, for example. Thus, the light oil injected into the exhaust gas has a NOx release / reduction action on the NOx storage catalyst 42 (NOx release / reduction control means). In addition, surplus HC due to light oil that has not been consumed for NOx release reduction on the NOx storage catalyst 42 is treated by an oxidation reaction in the post-stage catalyst 43 to be prevented from being discharged into the atmosphere.

上記リッチスパイク時のHC供給制御の基本的な部分は従来の制御と相違しないが、本発明は、後段触媒43の温度に応じてHC供給量を補正する点に特徴があり、以下、当該HC供給制御について説明する。
HC供給制御に関連して、図1に示すようにECU10は目標HC供給量を設定するHC供給量設定部101を備えている。このHC供給量設定部101は、NOx触媒温度センサ61に接続された基本HC供給量設定部102(目標供給量設定手段)と、後段触媒温度センサ62に接続されたHC供給量補正部103(供給量補正手段)とを有している。
Although the basic part of the HC supply control at the time of the rich spike is not different from the conventional control, the present invention is characterized in that the HC supply amount is corrected according to the temperature of the post-catalyst 43. Hereinafter, the HC supply control will be described. Supply control will be described.
In relation to the HC supply control, as shown in FIG. 1, the ECU 10 includes an HC supply amount setting unit 101 that sets a target HC supply amount. The HC supply amount setting unit 101 includes a basic HC supply amount setting unit 102 (target supply amount setting means) connected to the NOx catalyst temperature sensor 61 and an HC supply amount correction unit 103 (connected to the rear catalyst temperature sensor 62. Supply amount correction means).

本実施形態において、基本HC供給量設定部102は、例えば、エンジン回転速度、燃料噴射量、および、NOx触媒温度センサ61により検出されたNOx吸蔵触媒42の出口側の排気温度T1に基づいて基本HC供給量を求めるものになっており、また、HC供給量補正部103は、後段触媒温度センサ62により検出された後段触媒43の入口側の排気温度T2に応じた補正係数Kにより基本HC供給量を補正して目標HC供給量(ここでは軽油添加インジェクタ50からの軽油の目標噴射量)を求めるようになっている。   In the present embodiment, the basic HC supply amount setting unit 102 is based on, for example, the engine speed, the fuel injection amount, and the exhaust temperature T1 on the outlet side of the NOx storage catalyst 42 detected by the NOx catalyst temperature sensor 61. The HC supply amount correction unit 103 calculates the basic HC supply amount by a correction coefficient K corresponding to the exhaust gas temperature T2 on the inlet side of the rear catalyst 43 detected by the rear catalyst temperature sensor 62. The target HC supply amount (here, the target injection amount of light oil from the light oil addition injector 50) is obtained by correcting the amount.

HC供給量補正部103の処理をさらに詳述すると、ECU10は図2に示す補正係数設定用のマップを記憶しており、当該マップは、後段触媒43のライトオフ温度T0を境界として、後段触媒43の入口側の排気温度T2がライトオフ温度T0以上のときには補正係数Kが1.0に設定される一方、排気温度T2がライトオフ温度T0より低下するほど補正係数Kが所定のゲインに従って1.0から減少側に設定される特性となっている。   The processing of the HC supply amount correction unit 103 will be described in more detail. The ECU 10 stores a correction coefficient setting map shown in FIG. 2, and the map is a rear catalyst having the light-off temperature T 0 of the rear catalyst 43 as a boundary. When the exhaust gas temperature T2 on the inlet side of 43 is equal to or higher than the light-off temperature T0, the correction coefficient K is set to 1.0. On the other hand, as the exhaust gas temperature T2 falls below the light-off temperature T0, the correction coefficient K becomes 1 according to a predetermined gain. The characteristic is set from 0.0 to the decreasing side.

HC供給量補正部103は、このような特性のマップに基づき後段触媒43の入口側の排気温度T2から補正係数Kを算出し、基本HC供給量設定部102で算出された基本HC供給量に補正係数Kを乗算して目標HC供給量を求める。なお、補正係数Kを設定するためのマップ特性は図2のものに限定されることはなく、例えばライトオフ温度T0未満の温度域で単一のゲインを適用することなく、温度低下に従って次第に大きなゲインを適用して補正係数Kを急減させるようにしてもよい。   The HC supply amount correction unit 103 calculates a correction coefficient K from the exhaust temperature T2 on the inlet side of the rear catalyst 43 based on such a characteristic map, and sets the basic HC supply amount calculated by the basic HC supply amount setting unit 102. The target HC supply amount is obtained by multiplying the correction coefficient K. Note that the map characteristic for setting the correction coefficient K is not limited to that shown in FIG. 2, and gradually increases as the temperature decreases without applying a single gain in the temperature range below the light-off temperature T0, for example. The correction coefficient K may be decreased rapidly by applying a gain.

そして、目標軽油噴射量(目標HC供給量)に従って軽油添加インジェクタ駆動部51が動作し、これにより、軽油添加インジェクタ50から目標量の軽油(HC)が排気中に噴射される。本実施形態では、軽油添加インジェクタ50の噴射流量(即ち、排気空燃比のリッチ深さ)を略一定として噴射期間(即ち、排気空燃比のリッチ期間)を変更することで目標軽油噴射量を達成しているが、これに限ることはなく、例えば噴射期間に代えて噴射流量を変更したり、或いは噴射期間と噴射流量との双方を変更したりしてもよい。そして、上記のHC供給量補正部103による目標HC供給量の補正に基づき、軽油添加インジェクタ50の噴射期間は後段触媒43がライトオフ温度T0を下回るほど減少側に制御され、それに伴って排気中に噴射される軽油量が減少する。   Then, the light oil addition injector drive unit 51 operates in accordance with the target light oil injection amount (target HC supply amount), whereby a target amount of light oil (HC) is injected from the light oil addition injector 50 into the exhaust gas. In the present embodiment, the target light oil injection amount is achieved by changing the injection period (that is, the rich period of the exhaust air / fuel ratio) while making the injection flow rate (that is, the rich depth of the exhaust air / fuel ratio) of the light oil addition injector 50 substantially constant. However, the present invention is not limited to this. For example, the injection flow rate may be changed instead of the injection period, or both the injection period and the injection flow rate may be changed. Based on the correction of the target HC supply amount by the HC supply amount correction unit 103, the injection period of the light oil addition injector 50 is controlled to decrease as the rear catalyst 43 falls below the light-off temperature T0. The amount of light oil injected into the engine is reduced.

以上のようにリッチスパイク時にはHC供給制御が行われており、このとき後段触媒43では以下に述べるように酸化反応による余剰HCの処理が行われる。
NOx吸蔵触媒42へのNOx吸蔵量が一定以上まで増大すると、ECU10はリッチスパイクとして軽油添加インジェクタ50による排ガス中への軽油噴射を実行する。図3はリッチスパイク時のHC供給状況を示すタイムチャートであり、軽油添加インジェクタ50の周期的な開弁毎に排気中に軽油が噴射され、図中の細い実線はNOx吸蔵触媒42の出口側のHC量を示し、太い実線は後段触媒43の出口側のHC量、即ちHCスリップ量を示している。
As described above, the HC supply control is performed at the time of the rich spike, and at this time, the post-stage catalyst 43 performs the process of surplus HC by the oxidation reaction as described below.
When the NOx occlusion amount in the NOx occlusion catalyst 42 increases to a certain level or more, the ECU 10 executes light oil injection into the exhaust gas by the light oil addition injector 50 as a rich spike. FIG. 3 is a time chart showing the HC supply status at the time of rich spike. Light oil is injected into the exhaust every time the gas oil addition injector 50 is periodically opened, and the thin solid line in the figure is the outlet side of the NOx storage catalyst 42. The thick solid line indicates the HC amount on the outlet side of the rear catalyst 43, that is, the HC slip amount.

図の加速開始以前では、低負荷運転の継続によりNOx吸蔵触媒42の温度(上記のように排気温度T1と相関する)及び後段触媒43の温度(上記のように排気温度T2と相関する)は低下している。このときには、エンジン回転速度、燃料噴射量、およびNOx吸蔵触媒42の出口側の排気温度T1に基づき、基本HC供給量設定部102では基本HC供給量として比較的小さな値が設定されると共に、後段触媒43の入口側の排気温度T2がライトオフ温度T0未満であることを受けて、HC供給量補正部では基本HC供給量に対する1.0未満の補正係数Kの乗算により目標HC供給量が減少することから、結果として軽油添加インジェクタ50の軽油噴射量は減少側に制御される。低負荷運転ではNOx吸蔵触媒42上でのNOxの放出還元反応がそれほど促進されないが、それに応じて軽油噴射量が減少されるため細い実線で示すNOx吸蔵触媒42の出口側のHC量が抑制され、且つ、後段触媒43はライトオフ温度T0未満でHC処理能力を十分に有しないが、元々後段触媒43への流入HC量が少ないことから、太い実線で示すようにHCスリップ量は低い値に抑制される。   Before the start of acceleration in the figure, the temperature of the NOx storage catalyst 42 (correlated with the exhaust gas temperature T1 as described above) and the temperature of the rear catalyst 43 (correlated with the exhaust gas temperature T2 as described above) are maintained by continuing the low load operation. It is falling. At this time, the basic HC supply amount setting unit 102 sets a relatively small value as the basic HC supply amount based on the engine speed, the fuel injection amount, and the exhaust temperature T1 on the outlet side of the NOx storage catalyst 42, and the subsequent stage. In response to the exhaust gas temperature T2 on the inlet side of the catalyst 43 being lower than the light-off temperature T0, the HC supply amount correction unit reduces the target HC supply amount by multiplying the basic HC supply amount by a correction coefficient K less than 1.0. Therefore, as a result, the light oil injection amount of the light oil addition injector 50 is controlled to the decreasing side. In the low load operation, the NOx release reduction reaction on the NOx storage catalyst 42 is not promoted so much, but the amount of HC on the outlet side of the NOx storage catalyst 42 indicated by the thin solid line is suppressed because the light oil injection amount is reduced accordingly. In addition, the rear catalyst 43 is less than the light-off temperature T0 and does not have sufficient HC treatment capacity. However, since the amount of HC flowing into the rear catalyst 43 is originally small, the HC slip amount is low as shown by the thick solid line. It is suppressed.

運転者のアクセル操作により加速が開始されると、エンジン負荷の増加に伴ってNOx吸蔵触媒42は比較的速やかに温度上昇するが、NOx吸蔵触媒42に対して後方側に離間配置された後段触媒43の温度上昇には遅れが生じ、後段触媒43がライトオフ温度T0に達するには加速開始から遅れ時間Aを要する。この過渡運転において基本HC供給量設定部102では、加速開始後のエンジン回転速度、燃料噴射量と、後段触媒43に先行して昇温するNOx吸蔵触媒42の出口側の排気温度T1とに基づき基本HC供給量が設定されるため、この基本HC供給量をそのまま軽油添加インジェクタ50の軽油噴射量に適用した場合には、[背景技術]で述べたように後段触媒43が余剰HCを処理しきれずにHCスリップを発生してしまうことになる。   When acceleration is started by the driver's accelerator operation, the temperature of the NOx occlusion catalyst 42 rises relatively quickly as the engine load increases. However, the rear catalyst separated from the NOx occlusion catalyst 42 on the rear side. There is a delay in the temperature rise of 43, and a delay time A is required from the start of acceleration for the post-catalyst 43 to reach the light-off temperature T0. In this transient operation, the basic HC supply amount setting unit 102 is based on the engine speed and fuel injection amount after the start of acceleration, and the exhaust temperature T1 on the outlet side of the NOx storage catalyst 42 that is heated prior to the post-stage catalyst 43. Since the basic HC supply amount is set, when this basic HC supply amount is applied as it is to the light oil injection amount of the light oil addition injector 50, as described in [Background Art], the post-stage catalyst 43 can process the surplus HC. An HC slip will occur without this.

本発明では、このような過渡運転では後段触媒43の入口側の排気温度T2がライトオフ温度T0を下回っていることを受け、HC供給量補正部103で図2のマップから1.0未満の補正係数Kが設定され、この補正係数Kの乗算により結果的に減少補正された目標HC供給量に基づき軽油添加インジェクタ50の軽油噴射量が減少側に制御される。従って、図中の遅れ時間Aの期間中には、細い実線で示すようにNOx吸蔵触媒42の出口側のHC量、即ち後段触媒43に流入する余剰HC量が低下し、後段触媒43のHC処理能力が低くても太い実線で示すようにHCスリップ量は低い値に抑制される。   In the present invention, in such a transient operation, the exhaust gas temperature T2 on the inlet side of the rear catalyst 43 is lower than the light-off temperature T0, and the HC supply amount correction unit 103 is less than 1.0 from the map of FIG. A correction coefficient K is set, and the light oil injection amount of the light oil addition injector 50 is controlled to the decrease side based on the target HC supply amount corrected to decrease as a result of multiplication of the correction coefficient K. Therefore, during the period of the delay time A in the figure, as shown by a thin solid line, the amount of HC on the outlet side of the NOx storage catalyst 42, that is, the amount of surplus HC flowing into the rear catalyst 43 decreases, and the HC of the rear catalyst 43 Even if the processing capacity is low, the HC slip amount is suppressed to a low value as shown by a thick solid line.

なお、その後に後段触媒43がライトオフ温度T0に達するとHC供給量補正部103では補正係数Kが1.0に設定され、目標HC供給量の増加に伴って軽油添加インジェクタ50による軽油噴射量が増加し、それに伴って細い実線で示すように後段触媒43に流入するHC量も増加するが、このときには後段触媒43が十分なHC処理能力を発揮するため、太い実線で示すようにHCスリップ量は低い値を保持する。   After that, when the post-catalyst 43 reaches the light-off temperature T0, the HC supply amount correction unit 103 sets the correction coefficient K to 1.0, and the light oil injection amount by the light oil addition injector 50 as the target HC supply amount increases. Accordingly, the amount of HC flowing into the rear catalyst 43 also increases as shown by a thin solid line. At this time, since the rear catalyst 43 exhibits sufficient HC treatment capacity, an HC slip as shown by a thick solid line is obtained. The quantity keeps the low value.

従って、リッチスパイク時に車両が加速などの過渡運転に移行して後段触媒43が活性化していないときでもHCスリップを確実に抑制することができる。また、過渡運転時に限った補正係数Kの減少設定により目標HC供給量、ひいては軽油添加インジェクタ50の軽油噴射量を抑制しているだけであり、定常運転中には目標HC供給量を何ら制限することなく、基本HC供給量設定部102で設定した基本HC供給量に基づきNOx吸蔵触媒42に対して適性量のHCを供給しているため良好なNOx浄化性能を実現することができる。   Therefore, it is possible to reliably suppress HC slip even when the vehicle shifts to a transient operation such as acceleration during a rich spike and the rear catalyst 43 is not activated. Further, the target HC supply amount, and hence the light oil injection amount of the light oil addition injector 50, is only suppressed by setting the reduction of the correction coefficient K only during transient operation, and the target HC supply amount is limited at all during steady operation. Instead, since an appropriate amount of HC is supplied to the NOx storage catalyst 42 based on the basic HC supply amount set by the basic HC supply amount setting unit 102, good NOx purification performance can be realized.

以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば、上記実施形態ではディーゼルエンジン用の排気浄化装置に具体化したが、リーン空燃比で運転を行うリーンバーンエンジンや筒内噴射型エンジンでNOx吸蔵触媒42及び後段触媒43を備えたものであれば適用可能であり、上記実施形態のHC供給制御を実行することで同様の作用効果を得ることができる。   This is the end of the description of the embodiment, but the aspect of the present invention is not limited to this embodiment. For example, in the above embodiment, the exhaust gas purification device for a diesel engine is embodied. However, a lean burn engine or an in-cylinder injection engine that operates at a lean air-fuel ratio is provided with a NOx storage catalyst 42 and a post-stage catalyst 43. The same operation and effect can be obtained by executing the HC supply control of the above embodiment.

また、上記実施形態では、排気中に軽油を噴射する軽油添加インジェクタ50により還元剤供給手段を構成したが、これに代えてエンジン1の排気行程や膨張行程でポスト噴射を実行して未燃燃料をNOx吸蔵触媒42に供給してもよいし、ガソリンエンジンであれば空燃比のリッチ化により排ガスのHC濃度やCO濃度を上昇させるようにしてもよい。   Further, in the above embodiment, the reducing agent supply means is constituted by the light oil addition injector 50 that injects light oil into the exhaust gas. Instead of this, post-injection is executed in the exhaust stroke or expansion stroke of the engine 1 to perform unburned fuel. May be supplied to the NOx storage catalyst 42, or in the case of a gasoline engine, the HC concentration or CO concentration of the exhaust gas may be increased by enriching the air-fuel ratio.

本実施形態のディーゼルエンジン用の排気浄化装置を示す全体構成図である。It is a whole lineblock diagram showing the exhaust gas purification device for diesel engines of this embodiment. HC供給量の補正係数を設定するためのマップを示す図である。It is a figure which shows the map for setting the correction coefficient of HC supply amount. 実施形態のリッチスパイク時のHC供給状況を示すタイムチャートである。It is a time chart which shows the HC supply condition at the time of rich spike of embodiment. 先行技術のリッチスパイク時のHC供給状況を示すタイムチャートである。It is a time chart which shows the HC supply condition at the time of the rich spike of a prior art.

符号の説明Explanation of symbols

1 エンジン
10 ECU(目標供給量設定手段、供給量補正手段、NOx放出還元制御手段)
14 排気管(排気通路)
42 NOx吸蔵触媒
43 後段触媒
50 軽油添加インジェクタ(還元剤供給手段)
62 後段触媒温度センサ(後段触媒温度検出手段)
1 engine 10 ECU (target supply amount setting means, supply amount correction means, NOx release reduction control means)
14 Exhaust pipe (exhaust passage)
42 NOx storage catalyst 43 Rear catalyst 50 Light oil addition injector (reducing agent supply means)
62 Second-stage catalyst temperature sensor (second-stage catalyst temperature detection means)

Claims (1)

内燃機関の排気通路に設けられたNOx吸蔵触媒と該NOx吸蔵触媒の下流側に配設された後段触媒とを有する内燃機関の排気浄化装置において、
上記排気通路の上記NOx吸蔵触媒の上流側に還元剤を供給する還元剤供給手段と、
上記後段触媒の温度を検出する後段触媒温度検出手段と、
上記NOx吸蔵触媒に吸蔵されたNOxの放出還元を要するときに、上記内燃機関の運転状態に応じて上記還元剤の目標供給量を設定する目標供給量設定手段と、
上記後段触媒温度検出手段により検出された後段触媒の温度に基づき、上記目標供給量設定手段により設定された目標供給量を補正する供給量補正手段と、
上記供給量補正手段により補正後の目標供給量に基づき上記還元剤供給手段を制御して上記排気通路に還元剤を供給するNOx放出還元制御手段と
を備えることを特徴とする内燃機関の排気浄化装置。
In an exhaust gas purification apparatus for an internal combustion engine having a NOx storage catalyst provided in an exhaust passage of the internal combustion engine and a rear-stage catalyst disposed downstream of the NOx storage catalyst,
Reducing agent supply means for supplying a reducing agent to the upstream side of the NOx storage catalyst in the exhaust passage;
A post-catalyst temperature detecting means for detecting the temperature of the post-catalyst;
A target supply amount setting means for setting a target supply amount of the reducing agent in accordance with an operating state of the internal combustion engine when it is necessary to release and reduce NOx stored in the NOx storage catalyst;
A supply amount correction means for correcting the target supply amount set by the target supply amount setting means based on the temperature of the rear catalyst detected by the latter catalyst temperature detection means;
Exhaust gas purification of an internal combustion engine, comprising: NOx release reduction control means for controlling the reducing agent supply means based on the target supply amount corrected by the supply amount correction means to supply the reducing agent to the exhaust passage apparatus.
JP2006080744A 2006-03-23 2006-03-23 Exhaust emission control device of internal combustion engine Pending JP2007255308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006080744A JP2007255308A (en) 2006-03-23 2006-03-23 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006080744A JP2007255308A (en) 2006-03-23 2006-03-23 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007255308A true JP2007255308A (en) 2007-10-04

Family

ID=38629795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006080744A Pending JP2007255308A (en) 2006-03-23 2006-03-23 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007255308A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031776A (en) * 2008-07-30 2010-02-12 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2011196311A (en) * 2010-03-23 2011-10-06 Mazda Motor Corp Exhaust emission purifying method and exhaust emission purifying apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11324653A (en) * 1998-05-20 1999-11-26 Denso Corp Exhaust emission control device for internal combustion engine
JP2001263130A (en) * 2000-03-22 2001-09-26 Mazda Motor Corp Exhaust emission control device for engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11324653A (en) * 1998-05-20 1999-11-26 Denso Corp Exhaust emission control device for internal combustion engine
JP2001263130A (en) * 2000-03-22 2001-09-26 Mazda Motor Corp Exhaust emission control device for engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031776A (en) * 2008-07-30 2010-02-12 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2011196311A (en) * 2010-03-23 2011-10-06 Mazda Motor Corp Exhaust emission purifying method and exhaust emission purifying apparatus

Similar Documents

Publication Publication Date Title
US7937207B2 (en) Exhaust gas purification system for internal combustion engine
US8371108B2 (en) Twin turbo diesel aftertreatment system
JP3945526B2 (en) Fuel addition device
US7340884B2 (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
US20060213188A1 (en) Regeneration controller for exhaust purification apparatus of internal combustion engine
JP2007023888A (en) Control device of internal combustion engine
US7841169B2 (en) Regeneration controller for exhaust purification apparatus of internal combustion engine
US7963101B2 (en) Exhaust gas purifying device for an internal combustion engine
US20110219750A1 (en) Exhaust gas purifying apparatus for internal combustion engine
CN1930380B (en) Exhaust purifying apparatus for internal combustion engine
JP2008008241A (en) Control device for engine
US7594390B2 (en) Combustion control apparatus and method for internal combustion engine
JP2004340137A (en) Exhaust emission control device for internal combustion engine
JP6278344B2 (en) Engine exhaust purification system
JP5370252B2 (en) Exhaust gas purification device for internal combustion engine
JP2008144726A (en) Exhaust emission control device for internal combustion engine
JP2007107474A (en) Exhaust emission control device for internal combustion engine
JP2006266221A (en) Rising temperature controller of aftertreatment device
JP2007255308A (en) Exhaust emission control device of internal combustion engine
JP2006266220A (en) Rising temperature controller of aftertreatment device
JP4727472B2 (en) Exhaust purification device
JP2007255304A (en) Exhaust emission control device
JP2004245046A (en) Exhaust emission control device of internal combustion engine
JP2006274985A (en) Exhaust gas aftertreatment device
JP4500765B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110302