JP2001263130A - Exhaust emission control device for engine - Google Patents

Exhaust emission control device for engine

Info

Publication number
JP2001263130A
JP2001263130A JP2000080076A JP2000080076A JP2001263130A JP 2001263130 A JP2001263130 A JP 2001263130A JP 2000080076 A JP2000080076 A JP 2000080076A JP 2000080076 A JP2000080076 A JP 2000080076A JP 2001263130 A JP2001263130 A JP 2001263130A
Authority
JP
Japan
Prior art keywords
injection
catalyst
post
exhaust gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000080076A
Other languages
Japanese (ja)
Other versions
JP4423731B2 (en
Inventor
Ichiji Kataoka
一司 片岡
Tomomi Watanabe
友巳 渡辺
Hiroshi Hayashibara
寛 林原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2000080076A priority Critical patent/JP4423731B2/en
Publication of JP2001263130A publication Critical patent/JP2001263130A/en
Application granted granted Critical
Publication of JP4423731B2 publication Critical patent/JP4423731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To prevent HC in exhaust gas from passing through a catalyst without being oxidized thereby. SOLUTION: An NOx purifying catalyst 22a and an oxidizing catalyst 22b are arranged in an exhaust passage 20 so that the former is on the upstream side, and the latter is on the downstream side. When the HC quantity in exhaust gas supplied to the catalyst 22a by injection is increased after a main fuel injection performed near the top dead center of compression stroke, the injection timing is retarded more when the temperature of the downstream oxidizing catalyst 22a is low than when it is high.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はエンジンの排気浄化
装置に関する。
The present invention relates to an exhaust gas purifying apparatus for an engine.

【0002】[0002]

【従来の技術】従来より、内燃機関の排気を浄化するた
めの触媒としては、略理論空燃比付近で排気中のHC
(炭化水素)、CO及びNOx(窒素酸化物)を同時に
かつ極めて有効に浄化できる三元触媒が知られており、
ガソリンエンジンにおいては、この三元触媒を用いると
ともに、全負荷域等を除く大部分の運転領域において空
燃比を略理論空燃比付近に制御することが一般に行われ
ている。
2. Description of the Related Art Heretofore, as a catalyst for purifying the exhaust gas of an internal combustion engine, HC in the exhaust gas near the stoichiometric air-fuel ratio has been used.
There are known three-way catalysts that can simultaneously and extremely effectively purify (hydrocarbons), CO and NOx (nitrogen oxides),
In a gasoline engine, it is common practice to use the three-way catalyst and to control the air-fuel ratio to approximately the stoichiometric air-fuel ratio in most of the operating region except the full load region and the like.

【0003】しかしながら、ディーゼルエンジンは通常
のあらゆる運転領域において空燃比がかなりリーンな状
態(例えばA/F≧18)とされるので、前記三元触媒
を用いることはできず、しかも、空燃比がリーンな状態
では排気中の酸素濃度がかなり高くなるので、そのよう
な雰囲気でNOxを十分に還元浄化すること自体が困難
である。
However, a diesel engine is in a state where the air-fuel ratio is quite lean (for example, A / F ≧ 18) in all normal operating ranges, so that the three-way catalyst cannot be used. In a lean state, the oxygen concentration in the exhaust gas becomes considerably high, and it is difficult to sufficiently reduce and purify NOx in such an atmosphere.

【0004】これに対して、特開平9−317524号
公報には、ディーゼルエンジンにおいて、その排気通路
の上流側に低温域でNOxを還元浄化するに適した第1
触媒装置を配置し、その下流側に高温域でNOxを還元
浄化するに適した第2触媒装置を配置し、圧縮行程上死
点付近で機関出力発生のための主燃料噴射を行なうとと
もに、膨張行程又は排気行程において触媒に対する炭化
水素供給量を増大させるための後燃料噴射を行なうよう
にし、その後燃料噴射量を触媒温度に応じて制御するこ
とにより、排気ガス中のHCを還元剤としてNOx浄化
を効果的に行なうことが記載されている。
On the other hand, Japanese Patent Application Laid-Open No. 9-317524 discloses a first diesel engine suitable for reducing and purifying NOx upstream of an exhaust passage in a low temperature region.
A catalyst device is arranged, a second catalyst device suitable for reducing and purifying NOx in a high temperature region is arranged downstream of the catalyst device, and a main fuel injection for generating engine output is performed near a top dead center of a compression stroke, and expansion is performed. In the exhaust stroke or the exhaust stroke, post-fuel injection is performed to increase the amount of hydrocarbon supplied to the catalyst, and then the amount of fuel injection is controlled in accordance with the catalyst temperature, thereby purifying NOx using HC in the exhaust gas as a reducing agent. Is described as being performed effectively.

【0005】すなわち、後燃料噴射によって排気ガス中
のHC量が増大すると触媒でのHC酸化反応熱によって
触媒温度が上昇することに鑑み、第1及び第2の各触媒
装置に対してNOx浄化活性がピークとなる温度より低
温時には後燃料噴射量を多くしてピーク温度付近でNO
x浄化が行なわれるようにし、ピーク温度より高温時に
は後燃料噴射量を少なくして触媒の温度上昇を抑え、で
きるだけピーク温度付近でNOxの浄化を行なおうとす
るものである。
That is, in view of the fact that when the amount of HC in the exhaust gas increases due to the post-fuel injection, the catalyst temperature rises due to the heat of the HC oxidation reaction in the catalyst, the NOx purification activity is increased for the first and second catalytic devices. When the temperature is lower than the peak temperature, the post-fuel injection amount is increased and the NO
x purification is performed, and when the temperature is higher than the peak temperature, the amount of post-fuel injection is reduced to suppress a rise in the temperature of the catalyst, and to purify NOx as close to the peak temperature as possible.

【0006】また、特開平8−261052号公報に
は、エンジンの圧縮行程上死点近傍で燃料の主噴射を行
ない、膨張行程又は排気行程で燃料の後噴射を行なうよ
うにしたものにおいて、NOx還元用触媒の温度が高い
ときには低いときに比べて後噴射時期を遅らせることが
記載されている。すなわち、後噴射時期の制御によっ
て、触媒温度が低いときに排気ガス中に炭素数が小さい
HCが多くなるようにし、触媒温度が高いときには排気
ガス中の炭素数が大きいHCが多くなるようにするとい
うものである。これは、炭素数が小さいHCは低温側で
のNOxの浄化に還元剤として有効に働き、炭素数が大
きいHCは高温側でのNOxの浄化に還元剤として有効
に働くという知見に基づく。
Japanese Patent Application Laid-Open No. Hei 8-261502 discloses a fuel injection system in which main injection of fuel is performed near a top dead center of a compression stroke of an engine, and post injection of fuel is performed in an expansion stroke or an exhaust stroke. It describes that when the temperature of the reducing catalyst is high, the post-injection timing is delayed as compared with when the temperature is low. That is, by controlling the post-injection timing, the HC having a small carbon number in the exhaust gas is increased when the catalyst temperature is low, and the HC having a large carbon number in the exhaust gas is increased when the catalyst temperature is high. That is. This is based on the finding that HC having a small carbon number effectively works as a reducing agent in purifying NOx on the low temperature side, and HC having a large carbon number works effectively as a reducing agent in purifying NOx on the high temperature side.

【0007】[0007]

【発明が解決しようとする課題】上述のNOx還元用の
第1及び第2の各触媒は、例えばゼオライトにPtやC
uを担持してなるものであるが、NOxの還元のために
排気ガス中のHCを酸化させることから酸化触媒機能を
有するということができる。しかし、上流側触媒でNO
xの還元に使用されずにこれを吹き抜けるHC量が多い
場合には、下流側触媒が活性を呈する状態に至っていな
いとき、その吹き抜けたHCが下流側触媒でも酸化浄化
されずに大気中に排出されてしまうことになる。このこ
とは、排気通路に酸化触媒機能を有する触媒が単独で配
置されている場合でも同様であって、その触媒で酸化さ
れずに吹き抜けるHC量が多くなることを避ける必要が
ある。
The first and second catalysts for NOx reduction described above include, for example, Pt or C
Although it carries u, it can be said that it has an oxidation catalyst function because it oxidizes HC in the exhaust gas to reduce NOx. However, NO
If the amount of HC that is not used for reducing x and blows through it is large, when the downstream catalyst has not reached an active state, the blown HC is discharged to the atmosphere without being oxidized and purified by the downstream catalyst. Will be done. This is the same even when a catalyst having an oxidation catalyst function is disposed alone in the exhaust passage, and it is necessary to avoid an increase in the amount of HC that flows through without being oxidized by the catalyst.

【0008】[0008]

【課題を解決するための手段】本発明は、このような課
題に対して、後噴射時期を制御することによって、上記
HC等の還元剤の吹き抜けを抑制するようにしたもので
ある。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention suppresses blow-by of the reducing agent such as HC by controlling the post-injection timing.

【0009】すなわち、本発明は、エンジンの燃焼室内
を臨み該燃焼室内に燃料を噴射する噴射弁と、前記燃焼
室から延びる排気通路に配置され排気ガスを浄化するた
めの酸化触媒機能を有する上流側触媒と、前記噴射弁に
よって前記エンジンの圧縮行程上死点付近で燃料が噴射
された後の膨張行程又は排気行程の所定時期に該噴射弁
から燃料を噴射する後噴射により排気ガス中の還元剤量
を増大させる還元剤増量手段と、前記上流側触媒よりも
下流側の前記排気通路に配置され排気ガスを浄化するた
めの酸化触媒機能を有する下流側触媒と、前記下流側触
媒の温度を検出する触媒温度検出手段とを備えたエンジ
ンの排気浄化装置であって、前記還元剤増量手段は、前
記触媒温度検出手段によって検出される前記下流側触媒
の温度に基づき、その温度が所定値よりも低いときは所
定値以上のときよりも前記後噴射時期が遅くなるように
することを特徴とする。
That is, the present invention provides an injection valve which faces a combustion chamber of an engine and injects fuel into the combustion chamber, and an upstream valve which is disposed in an exhaust passage extending from the combustion chamber and has an oxidation catalyst function for purifying exhaust gas. Reduction of exhaust gas by post-injection of fuel injected from the injection valve at a predetermined time during an expansion stroke or an exhaust stroke after fuel is injected near the top dead center of the compression stroke of the engine by the side catalyst and the injection valve. Reducing agent increasing means for increasing the amount of agent, a downstream catalyst arranged in the exhaust passage downstream of the upstream catalyst and having an oxidation catalyst function for purifying exhaust gas, and a temperature of the downstream catalyst. An exhaust gas purifying apparatus for an engine, comprising: a catalyst temperature detecting unit that detects the temperature of the downstream catalyst detected by the catalyst temperature detecting unit. When the temperature of lower than a predetermined value, characterized in that as the post injection timing is slower than when the predetermined value or more.

【0010】このようなエンジンの排気浄化装置であれ
ば、下流側触媒が低温で不活性であるときには、上流側
触媒の酸化触媒機能が十分に発揮するように還元剤量を
増大させるための後噴射時期が遅角されるから、そのこ
とによって上流側触媒を吹き抜ける還元剤量が少なくな
る。その理由は定かでないが、本発明者の研究によれ
ば、上流側触媒で酸化される還元剤の割合が多くなって
おり、還元剤が酸化されずに大気中に排出される量が少
なくなっている。また、後噴射時期の遅角によって上流
側触媒で酸化される還元剤の割合が多くなるということ
は、触媒の反応熱で排気ガス温度が高まり、この温度が
高くなった排気ガスが温度の低い下流側触媒に供給され
るということであり、この下流側触媒の温度上昇、すな
わち早期活性に有利になる。
In such an exhaust gas purifying apparatus for an engine, when the downstream catalyst is inactive at a low temperature, it is necessary to increase the amount of the reducing agent so that the oxidation catalyst function of the upstream catalyst is sufficiently exhibited. Since the injection timing is retarded, the amount of the reducing agent flowing through the upstream side catalyst is reduced. Although the reason is not clear, according to the study of the present inventors, the proportion of the reducing agent oxidized by the upstream catalyst is large, and the amount of the reducing agent discharged to the atmosphere without being oxidized is reduced. ing. In addition, the fact that the ratio of the reducing agent oxidized by the upstream catalyst due to the delay of the post-injection timing increases means that the exhaust gas temperature increases due to the reaction heat of the catalyst, and the exhaust gas having the increased temperature has a lower temperature. This means that the catalyst is supplied to the downstream catalyst, which is advantageous for increasing the temperature of the downstream catalyst, that is, early activation.

【0011】下流側触媒の温度が高いときには前記後噴
射時期が進角されることになり、そのことによって上流
側触媒で酸化される還元剤の割合は減るが、還元剤が上
流側触媒を吹き抜けても下流側触媒の活性が高くなって
いるから、当該還元剤が酸化されずに大気中に排出され
る量は少なくなる。
When the temperature of the downstream catalyst is high, the post-injection timing is advanced, thereby reducing the proportion of the reducing agent oxidized by the upstream catalyst. However, since the activity of the downstream catalyst is high, the amount of the reducing agent discharged to the atmosphere without being oxidized is reduced.

【0012】酸化触媒機能を有する触媒としては、主に
貴金属やCu等を担持した触媒であって、酸化触媒や三
元触媒だけでなく、HC等を部分酸化させた状態でNO
xと反応させることでNOxを還元するNOx浄化用触
媒であってもよく、また、排気ガス中の酸素濃度が高い
とき(例えば4%以上のとき)NOxを吸収し、その酸
素濃度の低下によって、例えば2〜3%になると、ある
いは0.5%以下になるとそのNOxを放出するNOx
トラップ材を含むものであってもよい。また、下流側触
媒については酸化触媒を担持したディーゼルパティキュ
レートフィルターを採用してもよい。
The catalyst having an oxidation catalyst function is a catalyst mainly supporting a noble metal or Cu, and is not only an oxidation catalyst and a three-way catalyst, but also a catalyst in which HC and the like are partially oxidized.
The catalyst may be a NOx purifying catalyst that reduces NOx by reacting with x, or absorbs NOx when the oxygen concentration in the exhaust gas is high (for example, 4% or more), and reduces the oxygen concentration by reducing the oxygen concentration. NOx that releases its NOx when it becomes 2-3% or 0.5% or less, for example.
It may include a trapping material. In addition, a diesel particulate filter supporting an oxidation catalyst may be employed for the downstream catalyst.

【0013】前記下流側触媒の温度が所定値よりも低い
ときの後噴射時期は圧縮行程上死点後の70゜CA以降
にすることが上記吹き抜けを防止する上で好ましい。
When the temperature of the downstream side catalyst is lower than a predetermined value, it is preferable to set the post-injection timing to 70 ° CA or more after the top dead center of the compression stroke in order to prevent the blow-by.

【0014】また、前記下流側触媒の温度が所定値より
も低いときの後噴射は、その時期を圧縮行程上死点後の
50゜CA以降に設定し、0.2秒〜2秒に1回の間隔
で実行することが好ましい。すなわち、エンジン負荷が
所定値未満である低負荷運転時(この時は触媒の温度も
低い。)には圧縮行程上死点付近で燃料を噴射する主噴
射量は負荷が高いときに比べて少なく、後噴射量もエン
ジン出力の余分な上昇、燃費の悪化を避けるために少な
くしなければならない。その場合、例えば後噴射を主噴
射の都度行なうようにすると、1回の後噴射量が非常に
少ないものになり、噴射量の制御が難しくなる。これに
対して、後噴射を0.2秒〜2秒に1回の間隔で実行す
るというように、後噴射間隔が長くなれば、1回の後噴
射量を多くすることができ、後噴射量の制御が容易にな
る。また、本発明者の研究によれば、後噴射間隔を長く
すると、それが短い場合よりも上流側触媒の温度上昇度
合が大きくなる、従ってこの上流側触媒を出る排気ガス
の温度が高くなるがことがわかっており、下流側触媒の
昇温に有利になる。なお、後噴射間隔が2秒よりも長く
なると、1回の後噴射量が多くなり過ぎ、エンジン出力
の好ましくない変動を招く。
Further, the post-injection when the temperature of the downstream side catalyst is lower than a predetermined value is set at 50 ° CA or more after the top dead center of the compression stroke, and the timing is set to 0.2 to 2 seconds. It is preferable to execute it at intervals. That is, during low load operation in which the engine load is less than the predetermined value (the catalyst temperature is also low at this time), the main injection amount for injecting fuel near the top dead center of the compression stroke is smaller than when the load is high. Also, the amount of post-injection must be reduced to avoid an excessive increase in engine output and deterioration of fuel efficiency. In this case, for example, if the post-injection is performed every time the main injection is performed, the amount of one post-injection becomes very small, and it becomes difficult to control the injection amount. On the other hand, if the post-injection interval is long, for example, the post-injection is executed once every 0.2 to 2 seconds, the amount of one post-injection can be increased, and the post-injection can be performed. Control of the volume becomes easier. Further, according to the study of the present inventor, when the post-injection interval is made longer, the temperature rise of the upstream catalyst becomes larger than when the post-injection interval is shorter, and therefore the temperature of the exhaust gas exiting this upstream catalyst becomes higher. This is advantageous for raising the temperature of the downstream catalyst. If the post-injection interval is longer than 2 seconds, the amount of one post-injection becomes too large, which causes an undesirable fluctuation in the engine output.

【0015】ここに、後噴射を0.2秒に1回の間隔で
行なうということは、例えばエンジン回転数が1500
rpmであれば、主噴射10回につき1回の間隔で行な
うことになり、後噴射を2秒に1回の間隔で行なうとい
うことは、主噴射100回につき1回の間隔で行なうこ
とになる。
Here, performing post-injection at intervals of 0.2 seconds means that, for example, when the engine speed is 1500
In the case of rpm, the main injection is performed once every 10 main injections, and the post-injection performed once every two seconds is performed once every 100 main injections. .

【0016】前記エンジン負荷が所定値以上のときは、
前記下流側触媒の温度が所定値よりも低いときの後噴射
を0.2秒よりも短い間隔で実行することが好ましい。
本発明者の研究によれば、このように後噴射間隔が短い
ときは後噴射時期を遅らせる方が上流側触媒を出る排気
ガスの温度が高くなるがことがわかっており、下流側触
媒の昇温に有利になるからである。また、主噴射量の増
大を受けて、同様に増量される後噴射が長い間隔で実行
されることにより、トルクの増減や煤の増大を招くこと
を防止することができる。この場合、後噴射時期を遅ら
せると、トルクの増減をより抑制することができる。
When the engine load is equal to or more than a predetermined value,
The post-injection when the temperature of the downstream side catalyst is lower than a predetermined value is preferably executed at intervals shorter than 0.2 seconds.
According to the study of the present inventor, when the post-injection interval is short in this way, it is known that delaying the post-injection timing results in a higher temperature of the exhaust gas exiting the upstream side catalyst. This is because it is advantageous for temperature. Further, in response to the increase in the main injection amount, the post-injection, which is similarly increased, is executed at a long interval, so that it is possible to prevent an increase or decrease in torque or an increase in soot. In this case, if the post-injection timing is delayed, the increase and decrease of the torque can be further suppressed.

【0017】また、本発明は、エンジンの燃焼室内を臨
み該燃焼室内に燃料を噴射する噴射弁と、前記燃焼室か
ら延びる排気通路に配置され排気ガスを浄化するための
酸化触媒機能を有する触媒と、前記噴射弁によって前記
エンジンの圧縮行程上死点付近で燃料が噴射された後の
膨張行程又は排気行程の所定時期に該噴射弁から燃料を
噴射する後噴射により排気ガス中の還元剤量を増大させ
る還元剤増量手段とを備えたエンジンの排気浄化装置で
あって、前記還元剤増量手段は、前記後噴射時期を圧縮
行程上死点後の50゜CA以降に設定し、0.2秒〜2
秒に1回の間隔で後噴射を実行することを特徴とする。
Further, the present invention provides an injection valve which faces a combustion chamber of an engine and injects fuel into the combustion chamber, and a catalyst which is disposed in an exhaust passage extending from the combustion chamber and has an oxidation catalyst function for purifying exhaust gas. And the amount of reducing agent in the exhaust gas by the post-injection of injecting fuel from the injection valve at a predetermined time during an expansion stroke or an exhaust stroke after fuel is injected near the top dead center of the compression stroke of the engine by the injection valve. An exhaust gas purifying apparatus for an engine, comprising: a reducing agent increasing unit that increases the post-injection timing of 50 ° CA after the top dead center of the compression stroke; Seconds to 2
It is characterized in that the post-injection is executed once every second.

【0018】従って、前記触媒で酸化されずにこれを吹
き抜ける還元剤量が少なくなる、すなわち、大気中に未
浄化還元剤が排出されることを抑制することができる。
Therefore, the amount of the reducing agent flowing through the catalyst without being oxidized by the catalyst is reduced, that is, it is possible to suppress the discharge of the unpurified reducing agent into the atmosphere.

【0019】このようなエンジンの排気浄化装置におい
ては、前記触媒よりも下流側の前記排気通路に温度の上
昇に伴って活性が高くなる排気ガス浄化材を配置するこ
とが好ましい。後噴射を0.2秒〜2秒に1回の間隔で
実行するというように、後噴射間隔が長いから、上流側
の触媒を出る排気ガスの温度が高くなり、下流側の排気
ガス浄化材の昇温・活性に有利になるからである。
In such an exhaust gas purifying apparatus for an engine, it is preferable to dispose an exhaust gas purifying material whose activity increases with an increase in temperature in the exhaust passage downstream of the catalyst. Since the post-injection interval is long, such as performing the post-injection once every 0.2 to 2 seconds, the temperature of the exhaust gas exiting the upstream catalyst increases, and the downstream exhaust gas purifying material This is because it is advantageous for raising the temperature and the activity.

【0020】なお、前記排気ガス浄化材としては、例え
ば上述のNOxトラップ材があり、あるいは上述の酸化
触媒機能を有する触媒であってもよい。
The exhaust gas purifying material may be, for example, the NOx trap material described above, or may be a catalyst having the above-described oxidation catalytic function.

【0021】[0021]

【発明の効果】以上のように本発明によれば、エンジン
の排気通路に酸化触媒機能を有する上流側触媒と酸化触
媒機能を有する下流側触媒とを配置し、後噴射によって
排気ガス中の還元剤量を増大させるようにしたエンジン
の排気浄化装置において、下流側触媒の温度に基づき、
その温度が所定値よりも低いときは所定値以上のときよ
りも前記後噴射時期が遅くなるようにしたから、下流側
触媒が不活性のときに上流側触媒を吹き抜ける還元剤量
が少なくなり、還元剤が酸化されずに大気中に排出され
る量が少なくなるとともに、下流側触媒の昇温・早期活
性が図れる。
As described above, according to the present invention, an upstream catalyst having an oxidation catalyst function and a downstream catalyst having an oxidation catalyst function are arranged in an exhaust passage of an engine, and reduction in exhaust gas is performed by post-injection. In an exhaust gas purification device for an engine that increases the amount of the agent, based on the temperature of the downstream catalyst,
When the temperature is lower than the predetermined value, the post-injection timing is later than when the temperature is higher than the predetermined value, so that the amount of the reducing agent that blows through the upstream catalyst when the downstream catalyst is inactive is reduced, The amount of the reducing agent discharged into the atmosphere without being oxidized is reduced, and the temperature of the downstream-side catalyst can be raised and the activity can be early.

【0022】また、前記下流側触媒の温度が所定値より
も低いときの後噴射時期を圧縮行程上死点後の50゜C
A以降に設定し、後噴射を0.2秒〜2秒に1回の間隔
で実行するようにしたものによれば、後噴射量を多くす
ることができないエンジン低負荷運転時においても、1
回の後噴射量を多くすることができ、後噴射量の制御が
容易になるとともに、下流側触媒の昇温・早期活性に有
利になる。
When the temperature of the downstream side catalyst is lower than a predetermined value, the post-injection timing is set to 50 ° C. after the compression stroke top dead center.
A, the post-injection is performed at intervals of 0.2 to 2 seconds, and the post-injection amount is set to 1 even during low engine load operation where the post-injection amount cannot be increased.
The post-injection amount can be increased, and the post-injection amount can be easily controlled, which is advantageous for the temperature rise and early activation of the downstream catalyst.

【0023】また、本発明によれば、エンジンの排気通
路に酸化触媒機能を有する触媒を配置し、排気ガス中の
還元剤量を増大させるために、後噴射時期を圧縮行程上
死点後の50゜CA以降に設定し、0.2秒〜2秒に1
回の間隔で後噴射を実行するようにしたから、前記触媒
で酸化されずにこれを吹き抜ける還元剤量が少なくな
り、大気中に未浄化還元剤が排出されることを抑制する
上で有利になる。
Further, according to the present invention, a catalyst having an oxidation catalyst function is disposed in the exhaust passage of the engine, and the post-injection timing is set after the top dead center of the compression stroke in order to increase the amount of reducing agent in the exhaust gas. Set to 50 ゜ CA or later, 1 in 0.2 to 2 seconds
Since the post-injection is performed at intervals of the number of times, the amount of the reducing agent flowing through the catalyst without being oxidized by the catalyst is reduced, which is advantageous in suppressing the discharge of the unpurified reducing agent into the atmosphere. Become.

【0024】また、前記触媒よりも下流側の前記排気通
路に温度の上昇に伴って活性が高くなる排気ガス浄化材
を配置したものによれば、この排気ガス浄化材の昇温・
活性に有利になる。
Further, according to the exhaust gas purifying material whose activity increases with an increase in temperature in the exhaust passage downstream of the catalyst, the temperature of the exhaust gas purifying material can be increased.
Becomes active.

【0025】[0025]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0026】図1は本発明の実施形態に係るディーゼル
エンジンの排気浄化装置Aの全体構成を示し、1は車両
に搭載された多気筒ディーゼルエンジンのエンジン本体
である。このエンジン本体1は複数の気筒2(1つのみ
図示する)を有し、その各気筒2内にピストン3が往復
動可能に嵌挿されていて、この気筒2とピストン3によ
って各気筒2内に燃焼室4が形成されている。また、燃
焼室4の上面の略中央部には、インジェクタ(燃料噴射
弁)5が先端部の噴孔を燃焼室4に臨ませて配設され、
各気筒毎に所定の噴射タイミングで噴孔が開閉作動され
て、燃焼室4に燃料を直接噴射するようになっている。
FIG. 1 shows an overall configuration of an exhaust gas purifying apparatus A for a diesel engine according to an embodiment of the present invention. Reference numeral 1 denotes an engine body of a multi-cylinder diesel engine mounted on a vehicle. The engine body 1 has a plurality of cylinders 2 (only one is shown), and a piston 3 is reciprocally fitted into each of the cylinders 2. The combustion chamber 4 is formed. In addition, an injector (fuel injection valve) 5 is disposed substantially at the center of the upper surface of the combustion chamber 4 with the injection hole at the tip end facing the combustion chamber 4.
The injection holes are opened and closed at a predetermined injection timing for each cylinder so that fuel is directly injected into the combustion chamber 4.

【0027】前記各インジェクタ5は高圧の燃料を蓄え
る共通のコモンレール(蓄圧室)6に接続されていて、
そのコモンレール6にはクランク軸7により駆動される
高圧供給ポンプ8が接続されている。この高圧供給ポン
プ8は、圧力センサ6aによって検出されるコモンレー
ル6内の燃圧が所定値以上に保持されるように作動す
る。また、クランク軸7の回転角度を検出するクランク
角センサ9が設けられており、このクランク角センサ9
は、クランク軸7の端部に設けた被検出用プレート(図
示省略)と、その外周に相対向するように配置され電磁
ピックアップとからなり、その電磁ピックアップが被検
出用プレートの外周部全周に所定角度おきに形成された
突起部の通過に対応してパルス信号を出力するようにな
っている。
Each of the injectors 5 is connected to a common common rail (accumulator) 6 for storing high-pressure fuel.
A high-pressure supply pump 8 driven by a crankshaft 7 is connected to the common rail 6. The high-pressure supply pump 8 operates so that the fuel pressure in the common rail 6 detected by the pressure sensor 6a is maintained at a predetermined value or more. A crank angle sensor 9 for detecting a rotation angle of the crank shaft 7 is provided.
Is composed of a plate to be detected (not shown) provided at the end of the crankshaft 7 and an electromagnetic pickup arranged to face the outer periphery of the plate, and the electromagnetic pickup is provided around the entire periphery of the plate to be detected. A pulse signal is output in response to the passage of the projections formed at predetermined angles.

【0028】10はエンジン本体1の燃焼室4に対しエ
アクリーナ(図示省略)で濾過した吸気(空気)を供給
する吸気通路であり、この吸気通路10の下流端部に
は、図示しないがサージタンクが設けられ、このサージ
タンクから分岐した各通路が吸気ポートにより各気筒2
の燃焼室4に接続されている。また、サージタンクには
各気筒2に供給される過給圧力を検出する吸気圧センサ
10aが設けられている。前記吸気通路10には上流側
から下流側に向かって順に、エンジン本体1に吸入され
る吸気流量を検出するホットフィルム式エアフローセン
サ11と、後述のタービン21により駆動されて吸気を
圧縮するブロワ12と、このブロワ12により圧縮した
吸気を冷却するインタークーラ13と、吸気通路10の
断面積を絞る吸気絞り弁(吸気量調節手段)14とがそ
れぞれ設けられている。この吸気絞り弁14は、全閉状
態でも吸気が流通可能なように切り欠きが設けられたバ
タフライバルブからなり、後述のEGR弁24と同様、
ダイヤフラム15に作用する負圧の大きさが負圧制御用
の電磁弁16により調節されることで、弁の開度が制御
されるようになっている。また、前記吸気絞り弁14に
はその開度を検出するセンサ(図示省略)が設けられて
いる。
Reference numeral 10 denotes an intake passage for supplying intake air (air) filtered by an air cleaner (not shown) to the combustion chamber 4 of the engine body 1. A surge tank (not shown) is provided at a downstream end of the intake passage 10. Each passage branched from the surge tank is connected to each cylinder 2 by an intake port.
Are connected to the combustion chamber 4. The surge tank is provided with an intake pressure sensor 10a for detecting a supercharging pressure supplied to each cylinder 2. The intake passage 10 includes, in order from the upstream side to the downstream side, a hot film type air flow sensor 11 for detecting a flow rate of intake air taken into the engine body 1, and a blower 12 driven by a turbine 21 to compress intake air. And an intercooler 13 for cooling intake air compressed by the blower 12 and an intake throttle valve (intake air amount adjusting means) 14 for reducing the cross-sectional area of the intake passage 10. The intake throttle valve 14 is a butterfly valve provided with a notch so that intake air can flow even in a fully closed state, and is similar to an EGR valve 24 described later.
The magnitude of the negative pressure acting on the diaphragm 15 is adjusted by an electromagnetic valve 16 for negative pressure control, whereby the opening of the valve is controlled. Further, the intake throttle valve 14 is provided with a sensor (not shown) for detecting its opening.

【0029】20は各気筒2の燃焼室4から排気ガスを
排出する排気通路で、排気マニホールドを介して各気筒
2の燃焼室4に接続されている。この排気通路20に
は、上流側から下流側に向かって順に、排気ガス中の酸
素濃度を検出するO2センサ17と、排気流により回転
されるタービン21と、排気ガス中のHC、CO及びN
Oxを浄化可能な触媒コンバータ22とが配設されてい
る。また、触媒コンバータ22には触媒の温度を検出す
るための温度センサ18が設けられている。
An exhaust passage 20 for exhausting exhaust gas from the combustion chamber 4 of each cylinder 2 is connected to the combustion chamber 4 of each cylinder 2 via an exhaust manifold. The exhaust passage 20 includes, in order from the upstream side to the downstream side, an O2 sensor 17 for detecting the oxygen concentration in the exhaust gas, a turbine 21 rotated by the exhaust gas, HC, CO, and N in the exhaust gas.
A catalytic converter 22 capable of purifying Ox is provided. Further, the catalytic converter 22 is provided with a temperature sensor 18 for detecting the temperature of the catalyst.

【0030】前記触媒コンバータ22は、図2に示すよ
うにNOx浄化用触媒22aと酸化触媒22bとを排気
ガス流れ方向における上流側と下流側に直列的に並べた
ものであり、両触媒22a,22bの間に温度センサ1
8が配設されている。
As shown in FIG. 2, the catalytic converter 22 has a NOx purification catalyst 22a and an oxidation catalyst 22b arranged in series on the upstream and downstream sides in the exhaust gas flow direction. Temperature sensor 1 during 22b
8 are provided.

【0031】触媒22a,22bはいずれも、軸方向に
平行に延びる多数の貫通孔を有するハニカム構造のコー
ジェライト製担体の各貫通孔壁面に触媒層を形成したも
のである。NOx浄化用触媒22aの触媒層はゼオライ
トにPtを担持させてなる触媒粉をバインダによって前
記担体に担持させることによって形成されていて、空燃
比A/Fが理論空燃比よりもリーンのとき(例えばA/
F≧18)で燃焼した排気ガスのNOxを還元浄化する
NOx還元触媒としての機能を有するとともに、排気ガ
ス中の還元剤たるHCを酸化させる酸化触媒機能を有
し、理論空燃比付近では三元触媒としても働く。酸化触
媒22bの触媒層は、アルミナ及びセリアにPtを担持
させてなる触媒粉をバインダによって前記担体に担持さ
せることによって形成されている。
Each of the catalysts 22a and 22b is formed by forming a catalyst layer on the wall surface of each through-hole of a cordierite carrier having a honeycomb structure having a large number of through-holes extending parallel to the axial direction. The catalyst layer of the NOx purifying catalyst 22a is formed by supporting catalyst powder obtained by supporting Pt on zeolite on the carrier with a binder, and when the air-fuel ratio A / F is leaner than the stoichiometric air-fuel ratio (for example, A /
F ≧ 18), it has a function as a NOx reduction catalyst for reducing and purifying NOx of exhaust gas combusted, and has an oxidation catalyst function for oxidizing HC as a reducing agent in exhaust gas. Also works as a catalyst. The catalyst layer of the oxidation catalyst 22b is formed by supporting a catalyst powder obtained by supporting Pt on alumina and ceria on the carrier with a binder.

【0032】前記排気通路20のタービン21よりも上
流側の部位からは、排気ガスの一部を吸気側に還流させ
る排気還流通路(以下EGR通路という)23が分岐
し、このEGR通路23の下流端は吸気絞り弁14より
も下流側の吸気通路10に接続されている。EGR通路
23の途中の下流端寄りには、開度調節可能な排気還流
量調節弁(排気還流量調節手段:以下EGR弁という)
24が配置されていて、排気通路20の排気ガスの一部
をEGR弁24により流量調節しながら吸気通路10に
還流させるようになっている。
An exhaust gas recirculation passage (hereinafter referred to as an EGR passage) 23 for recirculating a part of the exhaust gas to the intake side branches from a portion of the exhaust passage 20 upstream of the turbine 21. The end is connected to the intake passage 10 downstream of the intake throttle valve 14. Near the downstream end of the EGR passage 23, an exhaust gas recirculation amount control valve (exhaust gas recirculation amount adjusting means: hereinafter referred to as an EGR valve) whose opening degree can be adjusted.
A part of the exhaust gas is recirculated to the intake passage 10 while adjusting the flow rate of the exhaust gas in the exhaust passage 20 by the EGR valve 24.

【0033】前記EGR弁24は、負圧応動式のもので
あって、その弁箱の負圧室に負圧通路27が接続されて
いる。この負圧通路27は、負圧制御用の電磁弁28を
介してバキュームポンプ(負圧源)29に接続されてお
り、電磁弁28が後述のECU35からの制御信号(電
流)によって負圧通路27を連通・遮断することによっ
て、負圧室のEGR弁駆動負圧が調節され、それによっ
て、EGR通路23の開度がリニアに調節されるように
なっている。
The EGR valve 24 is of a negative pressure responsive type, and a negative pressure passage 27 is connected to a negative pressure chamber of the valve box. The negative pressure passage 27 is connected to a vacuum pump (negative pressure source) 29 via a negative pressure control electromagnetic valve 28. The negative pressure passage 27 is controlled by a control signal (current) from an ECU 35 described later. By opening and closing 27, the negative pressure for driving the EGR valve in the negative pressure chamber is adjusted, whereby the opening of the EGR passage 23 is linearly adjusted.

【0034】前記ターボ過給機25は、VGT(バリア
ブルジオメトリーターボ)であって、これにはダイヤフ
ラム30が取り付けられていて、負圧制御用の電磁弁3
1によりダイヤフラム30に作用する負圧が調節される
ことで、排気ガス流路の断面積が調節されるようになっ
ている。
The turbocharger 25 is a VGT (Variable Geometry Turbo), to which a diaphragm 30 is attached, and a solenoid valve 3 for negative pressure control.
By adjusting the negative pressure acting on the diaphragm 30 by 1, the cross-sectional area of the exhaust gas passage is adjusted.

【0035】前記各インジェクタ5、高圧供給ポンプ
8、吸気絞り弁14、EGR弁24、ターボ過給機25
等はコントロールユニット(Engine Contorol Unit:以
下ECUという)35からの制御信号によって作動する
ように構成されている。一方、このECU35には、前
記圧力センサ6aからの出力信号と、クランク角センサ
9からの出力信号と、圧力センサ10aからの出力信号
と、エアフローセンサ11からの出力信号と、O2セン
サ17からの出力信号と、温度センサ18からの出力信
号と、EGR弁24のリフトセンサ26からの出力信号
と、車両の運転者による図示しないアクセルペダルの操
作量(アクセル開度)を検出するアクセル開度センサ3
2からの出力信号とが少なくとも入力されている。
Each injector 5, high-pressure supply pump 8, intake throttle valve 14, EGR valve 24, turbocharger 25
And the like are configured to be operated by a control signal from a control unit (Engine Control Unit: hereinafter referred to as ECU) 35. On the other hand, the ECU 35 receives an output signal from the pressure sensor 6a, an output signal from the crank angle sensor 9, an output signal from the pressure sensor 10a, an output signal from the air flow sensor 11, and an output signal from the O2 sensor 17. An output signal, an output signal from the temperature sensor 18, an output signal from the lift sensor 26 of the EGR valve 24, and an accelerator opening sensor for detecting an operation amount (accelerator opening) of an accelerator pedal (not shown) by a driver of the vehicle. 3
2 are input at least.

【0036】そして、インジェクタ5による燃料噴射量
及び燃料噴射時期がエンジン本体1の運転状態及び触媒
22a,22bの状態に応じて制御されるとともに、高
圧供給ポンプ8の作動によるコモンレール圧力、即ち燃
量噴射圧の制御が行なわれ、これに加えて、吸気絞り弁
14の作動による吸入空気量の制御と、EGR弁24の
作動による排気還流量の制御と、ターボ過給機25の作
動制御(VGT制御)とが行なわれるようになってい
る。
The fuel injection amount and the fuel injection timing by the injector 5 are controlled in accordance with the operating state of the engine body 1 and the states of the catalysts 22a and 22b. The injection pressure is controlled. In addition to this, the intake air amount is controlled by operating the intake throttle valve 14, the exhaust gas recirculation amount is controlled by operating the EGR valve 24, and the operation control of the turbocharger 25 (VGT Control) is performed.

【0037】(燃料噴射制御)前記ECU35には、エ
ンジン本体1の目標トルク及び回転数の変化に応じて実
験的に決定した最適な燃料噴射量Qbを記録した燃料噴
射量マップが、メモリ上に電子的に格納して備えられて
いる。そして、アクセル開度センサ32からの出力信号
に基づいて求めた目標トルクとクランク角センサ9から
の出力信号に基づいて求めたエンジン回転数とに基づい
て、前記燃料噴射量マップから主噴射量Qbが読み込ま
れ、この主噴射量Qbと圧力センサ6aにより検出され
たコモンレール圧力とに基づいて、各インジェクタ5の
励磁時間(開弁時間)が決定されるようになっている。
この主燃料噴射制御によって、エンジン本体1の目標ト
ルクに対応する分量の燃料が供給され、エンジン本体1
は燃焼室4における平均的空燃比がかなりリーンな状態
(A/F≧18)で運転される。
(Fuel Injection Control) The ECU 35 stores a fuel injection amount map in which an optimum fuel injection amount Qb experimentally determined according to changes in the target torque and the rotation speed of the engine body 1 is recorded in a memory. Electronically stored and provided. Then, based on the target torque obtained based on the output signal from the accelerator opening sensor 32 and the engine speed obtained based on the output signal from the crank angle sensor 9, the main injection amount Qb is obtained from the fuel injection amount map. Is read, and the excitation time (valve opening time) of each injector 5 is determined based on the main injection amount Qb and the common rail pressure detected by the pressure sensor 6a.
By this main fuel injection control, an amount of fuel corresponding to the target torque of the engine body 1 is supplied, and the engine body 1
Is operated in a state where the average air-fuel ratio in the combustion chamber 4 is considerably lean (A / F ≧ 18).

【0038】また、定常運転時(アクセル開度の変化が
小さい時)には、触媒コンバータ22の触媒22aにN
Oxの還元浄化を促進するための還元剤成分を供給すべ
く、主噴射時期のリタード、並びに主噴射(主燃料噴
射)後の膨張行程又は排気行程において燃料を少量噴射
する後噴射がNOx触媒22aの温度に応じて適宜行な
われる。
During normal operation (when the change in the accelerator opening is small), the catalyst 22a of the catalytic converter 22
In order to supply a reducing agent component for promoting reduction purification of Ox, the NOx catalyst 22a is used to retard the main injection timing and to inject a small amount of fuel in an expansion stroke or an exhaust stroke after the main injection (main fuel injection). The temperature is appropriately adjusted according to the temperature.

【0039】また、エンジンを始動してから停止するま
でには上流側触媒22aの劣化等の異常を検査するモニ
タ(診断)が1回又は2回行なわれる。このモニタは定
常運転時に行なわれ、前記後噴射によって上流側触媒2
2aに還元剤を多めに供給し、そのときの酸化触媒の温
度変化をみることによって、還元剤を多めに供給し始め
てから所定時間における、あるいは還元剤の増量の積算
値が所定値以上となるまでの期間における、温度変化や
温度変化速度等の温度上昇度合が所定値以上であれば、
正常(劣化していない)、所定値未満であれば異常(劣
化している)と判定する。
From start to stop of the engine, monitoring (diagnosis) for checking an abnormality such as deterioration of the upstream side catalyst 22a is performed once or twice. This monitoring is performed during a steady operation, and the upstream side catalyst 2
By supplying a large amount of the reducing agent to 2a and observing the temperature change of the oxidation catalyst at that time, the integrated value of the increased amount of the reducing agent in a predetermined time after starting to supply the large amount of the reducing agent is equal to or more than a predetermined value. In the period up to, if the degree of temperature rise such as temperature change or temperature change speed is a predetermined value or more,
Normal (not deteriorated), if less than a predetermined value, it is determined to be abnormal (deteriorated).

【0040】本発明の特徴は非モニタ時の後噴射制御に
あり、下流側触媒22bの温度に応じて後噴射時期及び
後噴射間隔を制御するようにしている。
A feature of the present invention resides in post-injection control during non-monitoring, in which the post-injection timing and the post-injection interval are controlled in accordance with the temperature of the downstream catalyst 22b.

【0041】以下、図3に示す制御フローに基づいて制
御内容を具体的に説明する。尚、この制御は所定クラン
ク角毎に実行される。
Hereinafter, the contents of the control will be specifically described based on the control flow shown in FIG. This control is executed at every predetermined crank angle.

【0042】まず、スタート後のステップS1におい
て、クランク角信号、エアフローセンサ出力、アクセル
開度、温度センサ出力等を読み込む。続くステップS2
において主噴射量Qb及びその噴射時期Ibを設定す
る。主噴射量Qbはアクセル開度とエンジン回転数とに
基づいて燃料噴射量マップから読み込む。燃料噴射量マ
ップは、アクセル開度及びエンジン回転数の変化に応じ
て実験的に決定した最適な噴射量Qbを記録したもので
あり、主噴射量Qbは、アクセル開度が大きいほど、ま
たエンジン回転数が高いほど、多くなるように設定され
ている。主噴射時期Ibは圧縮行程上死点付近に設定さ
れ、例えばBTDC5°CA(クランク角度)を基準と
して、噴射量Qbが多いほど進角され、反対に噴射量Q
bが少ないほど遅角される。また、エンジン水温に基づ
いて、該水温が低いときには主噴射時期Ibが所定量リ
タードされて暖機運転される。
First, in step S1 after the start, a crank angle signal, an air flow sensor output, an accelerator opening, a temperature sensor output, and the like are read. Subsequent step S2
Sets the main injection amount Qb and its injection timing Ib. The main injection amount Qb is read from the fuel injection amount map based on the accelerator opening and the engine speed. The fuel injection amount map records the optimum injection amount Qb experimentally determined according to changes in the accelerator opening and the engine speed. The main injection amount Qb is determined as the accelerator opening increases and the engine It is set to increase as the rotation speed increases. The main injection timing Ib is set near the top dead center of the compression stroke. For example, with reference to BTDC5 ° CA (crank angle), the injection amount Qb is advanced as the injection amount Qb increases, and conversely, the injection amount Q
The smaller b is, the more the retard is. Further, based on the engine water temperature, when the water temperature is low, the main injection timing Ib is retarded by a predetermined amount and the warm-up operation is performed.

【0043】続くステップS3では上流側に配置された
酸化触媒22aの温度Tcu及び下流側に配置されたNO
x浄化用触媒22bの温度Tcdを両触媒間に配置された
温度センサ18の出力に基づいて推定する。すなわち、
この温度センサ18で検出される排気ガス温度を上流側
触媒22aの温度Tcuと推定し、この排気ガス温度に所
定の修正(例えば1以下の係数を与え、又は所定値を減
算する修正)を加えたものを下流側触媒22bの温度T
cdと推定する。なお、下流側触媒22bの温度Tcdは該
触媒22bよりも下流側に温度センサを配置して排気ガ
ス温度を検出し、この排気ガス温度を下流側触媒22b
の温度Tcdと推定してもよい。
In the following step S3, the temperature Tcu of the oxidation catalyst 22a disposed on the upstream side and the NO
The temperature Tcd of the x-purifying catalyst 22b is estimated based on the output of the temperature sensor 18 disposed between the two catalysts. That is,
The temperature of the exhaust gas detected by the temperature sensor 18 is estimated as the temperature Tcu of the upstream catalyst 22a, and a predetermined correction (for example, a correction of giving a coefficient of 1 or less or subtracting a predetermined value) is added to the exhaust gas temperature. The temperature T of the downstream catalyst 22b.
Estimate cd. The temperature Tcd of the downstream side catalyst 22b is detected by detecting a temperature of the exhaust gas by arranging a temperature sensor downstream of the catalyst 22b.
May be estimated as the temperature Tcd.

【0044】続くステップS4ではアクセル開度の変化
に基づいてエンジンが所定の定常運転状態にある(アク
セル開度の変化が所定値以下)か否かを判別する。加速
運転時は燃料噴射量の増大によって空燃比が理論空燃比
近傍の値になり、NOx浄化のための還元剤(HC)不
足を生じないために後噴射を行なわないものであり、減
速運転時及びアイドル運転時は燃料噴射量が絞られ、後
噴射を実行することは相応しくないものである。
In the following step S4, it is determined whether or not the engine is in a predetermined steady-state operating state (the change in the accelerator opening is equal to or less than a predetermined value) based on the change in the accelerator opening. During acceleration operation, the air-fuel ratio becomes a value near the stoichiometric air-fuel ratio due to an increase in the fuel injection amount, and no post-injection is performed to prevent a shortage of reducing agent (HC) for NOx purification. During idle operation, the fuel injection amount is reduced, and it is not appropriate to execute post-injection.

【0045】定常運転状態であれば、ステップS5に進
んで下流側触媒温度Tcdが所定温度Tcdo (下流側触媒
22aが排気ガス中の還元剤たるHCを浄化する触媒活
性を示すようになる温度であり、例えば150℃)より
も低い低温状態か否か、つまり下流側触媒22aが不活
性状態か否かを判別する。触媒温度Tcdが低く下流側触
媒22aが不活性状態にあれば、ステップS6に進んで
低温時に後噴射をすべき気筒を決定する。
If the engine is in a steady operation state, the process proceeds to step S5, in which the downstream catalyst temperature Tcd reaches a predetermined temperature Tcdo (the temperature at which the downstream catalyst 22a shows the catalytic activity for purifying HC as the reducing agent in the exhaust gas). Yes, for example, 150 ° C.), that is, whether the downstream side catalyst 22a is in an inactive state. If the catalyst temperature Tcd is low and the downstream side catalyst 22a is in an inactive state, the process proceeds to step S6 to determine a cylinder to be post-injected at a low temperature.

【0046】これは、エンジンの複数の気筒に対して所
定の順番で主噴射を例えば100回行なうまでにどの気
筒に対してその主噴射に続けて後噴射を行なうかをエン
ジン運転状態に応じて決定するものである。主噴射10
0回行なわれた後は、そのときのエンジン運転状態に基
づいてさらに次の主噴射100回の間に行なうべき後噴
射気筒を決定することになる。ここでは、エンジン負荷
が所定値未満(アクセル開度が所定値未満)の低負荷時
は、0.2〜2秒に1回の間隔で後噴射が行なわれるよ
うに、例えば後噴射が主噴射25回に1回行なわれるよ
うに、つまり主噴射25回毎に行なわれるように後噴射
気筒を決定する。エンジン負荷が所定値以上のときは、
0.2秒よりも短い間隔で後噴射が行なわれるように、
例えば、後噴射が毎回行なわれるように後噴射気筒を決
定する。後噴射を毎回行なうとは各気筒に対する主噴射
のたびに後噴射を行なうという意味であり、その場合は
全ての気筒を後噴射すべき気筒として決定する。
This means that, until the main injection is performed, for example, 100 times in a predetermined order on a plurality of cylinders of the engine, which cylinder is to be subjected to the post-injection following the main injection in accordance with the operating state of the engine. To decide. Main injection 10
After the zero injection is performed, a post-injection cylinder to be performed during the next 100 main injections is determined based on the engine operating state at that time. Here, when the engine load is low, that is, when the engine load is less than a predetermined value (the accelerator opening is less than a predetermined value), for example, the post-injection is performed so that the post-injection is performed once every 0.2 to 2 seconds. The post-injection cylinder is determined so that it is performed once every 25 times, that is, every 25 main injections. When the engine load is above the specified value,
So that the post-injection is performed at intervals shorter than 0.2 seconds,
For example, the post-injection cylinder is determined so that the post-injection is performed every time. Performing the post-injection every time means performing the post-injection each time the main injection for each cylinder is performed. In this case, all the cylinders are determined as the cylinders to be post-injected.

【0047】続くステップS7ではステップS6で決定
された気筒に対する後噴射量Qp及び後噴射時期Ipを
設定する。すなわち、後噴射量Qpは、後噴射を毎回行
なうと仮定した場合の量に換算して1回の主噴射量Qb
の0.3〜5%となるようにする。従って、後噴射量を
毎回行なう場合には1回の後噴射量Qpは1回の主噴射
量Qbの0.3〜5%になるが、例えば主噴射5回に1
回の間隔で後噴射を行なう場合は1回の後噴射量Qpが
1回の主噴射量Qbの1.5〜25%となる。エンジン
低負荷時には主噴射量Qbが少なく、後噴射を毎回行な
うとした場合には1回の後噴射量Qpが非常に少ないも
のになるが、上述の如くこの低負荷時には後噴射間隔が
長く例えば主噴射25回毎に後噴射が行なわれるから、
1回の後噴射量Qpは多くなり、後噴射制御が容易にな
る。
In the following step S7, the post-injection amount Qp and the post-injection timing Ip for the cylinder determined in step S6 are set. In other words, the post-injection amount Qp is converted into an amount when it is assumed that the post-injection is performed every time, and the one-time main injection amount Qb
0.3 to 5%. Therefore, when the post-injection amount is performed every time, the post-injection amount Qp for one time is 0.3 to 5% of the main injection amount Qb for one time.
When post-injection is performed at intervals of one time, one post-injection amount Qp is 1.5 to 25% of one main injection amount Qb. When the engine is under low load, the main injection amount Qb is small, and when the post-injection is performed every time, the single post-injection amount Qp is very small. Since the post-injection is performed every 25 main injections,
One post-injection amount Qp increases, and post-injection control becomes easy.

【0048】後噴射時期Ipは、ATDC(圧縮行程上
死点後のこと。以下、同じ。)の50゜CA以降240
゜CA以前もしくは210゜CA以前とするものであ
り、これにより、上流側触媒22aで酸化されずにこれ
を吹き抜ける還元剤量を少なくするとともに、下流側触
媒22bの温度上昇を図る。また、前記エンジン低負荷
時にはATDC90゜〜240゜CA(好ましくは90
゜〜150゜CA)として、前記還元剤の吹き抜け抑制
及び下流側触媒22bの温度上昇を図る。
The post-injection timing Ip is equal to or greater than 50 ° CA of ATDC (after the top dead center of the compression stroke; hereinafter the same) 240
This is before ゜ CA or before ゜ CA, thereby reducing the amount of reducing agent that flows through the upstream catalyst 22a without being oxidized by the upstream catalyst 22a and increases the temperature of the downstream catalyst 22b. When the engine is under a low load, the ATDC is 90 ° to 240 ° CA (preferably 90 ° CA).
(゜ 150 ° CA), the blow-through of the reducing agent is suppressed and the temperature of the downstream catalyst 22b is increased.

【0049】そうして、主噴射時期Ibになると主噴射
を実行し(ステップS8,S9)、その主噴射を行なっ
た気筒について後噴射を行なうべきときは(ステップS
10)、後噴射時期Ipになった時点で後噴射を実行す
る(ステップS11,S12)。
When the main injection timing Ib is reached, the main injection is executed (steps S8 and S9), and when the post-injection should be performed for the cylinder that has performed the main injection (step S8).
10) When the post-injection timing Ip is reached, post-injection is executed (steps S11, S12).

【0050】一方、ステップS5で下流側触媒温度Tcd
が所定温度Tcdo に達している、つまり下流側触媒22
aが排気ガス中の還元剤たるHCを浄化する触媒活性を
示す温度になっていると判別したときは、ステップS1
3に進んで後噴射をすべき気筒を決定し、さらにステッ
プS14に進んで上流側触媒22aの温度Tcuに応じて
後噴射量Qp及び後噴射時期Ipを設定してステップS
8に進む。後噴射時期IpはATDC50゜CAよりも
前に(進角側に)設定し、上流側触媒22aにおける還
元剤の吹き抜けを許容する。ステップS13,S14の
決定・設定内容については後述する。また、ステップS
4で定常運転でないと判別されたときはステップS8に
進む。
On the other hand, in step S5, the downstream catalyst temperature Tcd
Has reached the predetermined temperature Tcdo, that is, the downstream side catalyst 22
If it is determined that a has reached the temperature indicating the catalytic activity for purifying HC as the reducing agent in the exhaust gas, step S1
3 to determine the cylinder to be subjected to post-injection, and further proceed to step S14 to set the post-injection amount Qp and the post-injection timing Ip according to the temperature Tcu of the upstream side catalyst 22a, and then to step S14.
Proceed to 8. The post-injection timing Ip is set before the ATDC 50 CA (to the advanced side) to allow the reducing agent to flow through the upstream catalyst 22a. The determination and setting contents of steps S13 and S14 will be described later. Step S
If it is determined in step 4 that the operation is not the steady operation, the process proceeds to step S8.

【0051】前記後噴射制御中はEGRのフィードバッ
ク制御を行なう。すなわち、NOx発生量及び煤発生量
の各々が所定値以下となる空燃比を目標として、エアフ
ローセンサ11の出力に基づいてEGR弁24の作動を
制御する。
During the post-injection control, EGR feedback control is performed. That is, the operation of the EGR valve 24 is controlled based on the output of the air flow sensor 11 with the target of the air-fuel ratio at which each of the NOx generation amount and the soot generation amount becomes equal to or less than the predetermined value.

【0052】図4はエンジン回転数1500rpm、中
負荷運転において、後噴射を毎回行なったとき、5回毎
に(主噴射5回に1回の間隔で)後噴射を行なったと
き、並びに25回毎に(主噴射25回に1回の間隔で)
後噴射を行なったときの各々の場合について、後噴射時
期と、後噴射開始10秒後の上流側触媒22aに流入す
る排気ガスのHC濃度(触媒前HC)及び該触媒22a
から流出した排気ガスのHC濃度(触媒後HC)との関
係を示す。図5は後噴射開始30秒後の同関係を示し、
図6は後噴射開始90秒後の同関係を示す。なお、上流
側触媒22aの入口での排気ガス温度は270℃程度で
ある。
FIG. 4 shows the case where the post-injection is performed every time in the engine speed of 1500 rpm and the medium load operation, when the post-injection is performed every five times (at an interval of once every five main injections), and 25 times. Every (at intervals of 25 main injections)
In each case when the post-injection is performed, the post-injection timing, the HC concentration (HC before the catalyst) of the exhaust gas flowing into the upstream side catalyst 22a 10 seconds after the start of the post-injection, and the catalyst 22a
The relationship with the HC concentration (HC after the catalyst) of the exhaust gas flowing out of the engine. FIG. 5 shows the same relationship 30 seconds after the start of the post injection.
FIG. 6 shows the same relationship 90 seconds after the start of post-injection. The exhaust gas temperature at the inlet of the upstream side catalyst 22a is about 270 ° C.

【0053】図4乃至図6から、後噴射時期がATDC
50゜CA未満になると、上流側触媒22aで浄化され
ることなくこれを通り抜ける吹き抜けHC量(還元剤
量)が多くなることがわかる。従って、この場合は、後
噴射時期をATDC50゜CA以降にすること、さらに
はATDC70゜CA以降にすることがHC吹き抜け量
を低減する上で有利であることがわかる。
4 to 6 that the post-injection timing is ATDC
It is understood that when the temperature is lower than 50 ° CA, the amount of blow-through HC (amount of reducing agent) passing through the upstream catalyst 22a without being purified by the upstream catalyst 22a increases. Accordingly, in this case, it is understood that setting the post-injection timing to be at or after ATDC 50 CA, and further to be at or after ATDC 70 CA is advantageous in reducing the amount of HC blow-through.

【0054】図7はエンジン回転数1500rpm、中
負荷運転において、後噴射を毎回行なったとき、5回毎
に後噴射を行なったとき、並びに25回毎に後噴射を行
なったときの各々の場合について、後噴射時期と、後噴
射開始10秒後、30秒後及び90秒後の上流側触媒2
2aのHC浄化率との関係を示す。
FIG. 7 shows the case where the post-injection is performed every time, the case where the post-injection is performed every 5 times, and the case where the post-injection is performed every 25 times in the engine speed of 1500 rpm and the medium load operation. , The post-injection timing and the upstream catalyst 2 at 10 seconds, 30 seconds and 90 seconds after the start of post-injection
2 shows the relationship between 2a and the HC purification rate.

【0055】図7から後噴射時期IpをATDC70゜
〜210゜CA、特にATDC70゜〜150゜CAに
すると上流側触媒22aでのHC浄化率が高くなること
がわかる。なお、ATDC180゜CAにおいてHC浄
化率が低くなっている。
FIG. 7 shows that when the post-injection timing Ip is set at ATDC 70 ° -210 ° CA, particularly at ATDC 70 ° -150 ° CA, the HC purification rate in the upstream side catalyst 22a increases. Note that the HC purification rate is low at ATDC180 CA.

【0056】図8はエンジン回転数1500rpm、中
負荷運転において、後噴射を毎回行なったとき、5回毎
に後噴射を行なったとき、並びに25回毎に後噴射を行
なったときの各々の場合について、後噴射時期と、後噴
射開始10秒後の上流側触媒22aの入口温度及び出口
温度との関係を示す。図9は後噴射開始30秒後の同関
係を示し、図10は後噴射開始90秒後の同関係を示
す。
FIG. 8 shows the case where the post-injection is performed every time, the case where the post-injection is performed every 5 times, and the case where the post-injection is performed every 25 times in the engine speed of 1500 rpm and the medium load operation. 5 shows the relationship between the post-injection timing and the inlet temperature and the outlet temperature of the upstream side catalyst 22a 10 seconds after the start of the post-injection. FIG. 9 shows the same relationship 30 seconds after the start of the post-injection, and FIG. 10 shows the same relationship 90 seconds after the start of the post-injection.

【0057】図8乃至図10から、後噴射時期IpをA
TDC50〜210゜CA、特にATDC70〜210
゜CAに設定すると、毎回噴射、5回毎噴射、25回毎
噴射のいずれにおいても、上流側触媒22を出る排気ガ
スの温度がかなり上昇すること、従って、下流側触媒2
2bの昇温に有利になることがわかる。特に25回毎に
後噴射を行なうと、上流側触媒22aを出る排気ガスの
温度上昇に有利であることがわかる。
8 to 10, the post-injection timing Ip is set to A
TDC50-210 CA, especially ATDC70-210
When set to ゜ CA, the temperature of the exhaust gas exiting the upstream catalyst 22 significantly increases in every injection, every 5 injections, and every 25 injections.
It turns out that it becomes advantageous to temperature rise of 2b. In particular, it is understood that performing the post-injection every 25 times is advantageous in increasing the temperature of the exhaust gas exiting the upstream catalyst 22a.

【0058】次に下流側触媒22bの温度Tcdが所定温
度Tcdo 以上になった後の後噴射制御(ステップS1
3,S14)について説明する。
Next, the post-injection control after the temperature Tcd of the downstream side catalyst 22b becomes equal to or higher than the predetermined temperature Tcdo (step S1).
3, S14) will be described.

【0059】ステップS13における後噴射気筒の決定
は、主噴射量Qbに基づいてそれが多いときは毎回の後
噴射となり、少ないときは5回毎又は25回毎の後噴射
となるように行なう。ステップS14での後噴射量Qp
は、上流側触媒Tcuの温度に基づき、NOx浄化率がピ
ークになる温度よりも低いときは主噴射量の0.3〜5
%の範囲の高い値とし、ピークとなる温度を越えて高く
なった場合には、該温度Tcuが高くなるに従って後噴射
量Qpが減少するように、そして、NOx浄化率が所定
値以下になるまで温度Tcuが上昇したときは後噴射量Q
pが零になるように設定する。後噴射時期Ipは、上述
の如くATDC50゜CAよりも前に(進角側に)、す
なわち、ATDC20゜CA以降で50゜CAよりも前
に設定する。
The determination of the post-injection cylinder in step S13 is made based on the main injection amount Qb such that when the amount is large, post-injection is performed every time, and when it is small, post-injection is performed every 5 or 25 times. Post injection quantity Qp in step S14
Is based on the temperature of the upstream catalyst Tcu, and when the NOx purification rate is lower than the temperature at which the NOx purification rate reaches a peak, the main injection amount is 0.3 to 5
%, And when the temperature exceeds the peak temperature, the post-injection amount Qp decreases as the temperature Tcu increases, and the NOx purification rate falls below a predetermined value. When the temperature Tcu rises, the post injection quantity Q
Set so that p becomes zero. As described above, the post-injection timing Ip is set before the ATDC 50 CA (advancing side), that is, after the ATDC 20 CA and before the 50 CA.

【0060】図11はエンジン回転数1500rpm、
中負荷運転において、後噴射を毎回行なったとき、5回
毎に行なったとき、並びに25回毎に後噴射を行なった
ときの各々の場合について、後噴射時期と、後噴射開始
10秒後及び30秒後の上流側触媒22aに流入する排
気ガスのNOx濃度との関係を示す。後噴射量の総量は
いずれの場合も主噴射量の総量の4%程度になるように
した。
FIG. 11 shows an engine speed of 1500 rpm,
In the medium load operation, when the post-injection was performed every time, when the post-injection was performed every five times, and when the post-injection was performed every 25 times, the post-injection timing, 10 seconds after the start of the post-injection, and The relationship with the NOx concentration of the exhaust gas flowing into the upstream side catalyst 22a after 30 seconds is shown. The total amount of the post-injection amount was set to be about 4% of the total amount of the main injection amount in each case.

【0061】後噴射時期を進角させると、毎回、5回毎
及び25回毎のいずれの場合もNOx濃度が低くなって
いるが、25回毎では後噴射時期をATDC30゜CA
又は45゜CA付近にするとNOx濃度の低下が顕著で
あり、NOxの低減に有効であることがわかる。
When the post-injection timing is advanced, the NOx concentration is low every time every 5 times and every 25 times.
Or, when the temperature is around 45 ° CA, the decrease in NOx concentration is remarkable, and it can be seen that this is effective in reducing NOx.

【0062】図12はエンジン回転数2000rpm、
Pe=0.57MPaの運転(EGRなし)において、
毎回後噴射(後噴射量は主噴射量の5%)を行なった場
合の後噴射時期とスモーク(煤)量との関係を示す。図
14によれば、後噴射時期を進角させるとスモーク低減
に有利であることがわかる。
FIG. 12 shows an engine speed of 2000 rpm,
In the operation of Pe = 0.57 MPa (without EGR),
The relationship between the post-injection timing and the amount of smoke (soot) when the post-injection is performed every time (the post-injection amount is 5% of the main injection amount) is shown. According to FIG. 14, it can be seen that advancing the post-injection timing is advantageous for reducing smoke.

【0063】上記実施形態は上流側にNOx浄化用触
媒、下流側に酸化触媒を配置した場合であるが、本発明
は、排気通路20に酸化触媒を単独で配置した場合にも
適用することができ、また、上流側に酸化触媒、下流側
にNOxトラップ触媒を配置した場合にも適用すること
ができる。NOxトラップ触媒はゼオライトにPt及び
NOxトラップ材としてのBaを担持させてなる触媒粉
をバインダによって担体に担持させることによって形成
することができ、排気ガスの酸素濃度が高いとき(例え
ば理論空燃比よりもリーンな空燃比(例えばA/F≧1
8)で燃焼し酸素濃度4%以上になっているときの)該
排気ガス中のNOxをBaによって吸収し、酸素濃度が
低下して例えば酸素過剰率λ=1付近になると、吸収し
ていたNOxを放出するとともに、そのNOxをHCの
存在下にPtによって還元浄化する機能を有するもので
ある。
In the above embodiment, the catalyst for purifying NOx is arranged on the upstream side and the oxidation catalyst is arranged on the downstream side. However, the present invention can be applied to the case where the oxidation catalyst is arranged alone in the exhaust passage 20. Further, the present invention can be applied to a case where an oxidation catalyst is arranged on the upstream side and a NOx trap catalyst is arranged on the downstream side. The NOx trap catalyst can be formed by supporting a catalyst powder comprising Pt and Ba as a NOx trapping material on zeolite on a carrier with a binder. When the oxygen concentration of the exhaust gas is high (for example, the stoichiometric air-fuel ratio Also has a lean air-fuel ratio (for example, A / F ≧ 1
NOx in the exhaust gas was absorbed by Ba (when the oxygen concentration was increased to 4% or more by burning in 8), and when the oxygen concentration was reduced and, for example, the oxygen excess ratio was about λ = 1, it was absorbed. It has a function of releasing NOx and reducing and purifying the NOx with Pt in the presence of HC.

【0064】従って、下流側のNOxトラップ触媒がH
C及びNOxを還元浄化する活性温度に達していないと
きは図3のフローのステップS6,S7の後噴射制御を
行なうことにより、還元剤たるHCの吹き抜けを防止す
るとともに、NOxトラップ触媒の昇温を図り、排気ガ
ス中の酸素濃度を低下させて(λ=1として)NOxを
放出させるときに、NOxトラップ触媒で放出されるN
Ox及びHCが効率よく浄化されるようにすることがで
きる。
Accordingly, the downstream NOx trap catalyst is H
When the activation temperature for reducing and purifying C and NOx has not been reached, the post-injection control of steps S6 and S7 in the flow of FIG. 3 is performed to prevent blow-through of HC as a reducing agent and increase the temperature of the NOx trap catalyst. To release NOx by lowering the oxygen concentration in the exhaust gas (assuming λ = 1), the N2 released by the NOx trap catalyst
Ox and HC can be efficiently purified.

【0065】なお、上記実施形態は直噴式ディーゼルエ
ンジンに関するが、本発明は直噴式のガソリンエンジン
にも適用することができる。
Although the above embodiment relates to a direct injection diesel engine, the present invention can be applied to a direct injection gasoline engine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係るディーゼルエンジンの
排気浄化装置の全体構成を示す図。
FIG. 1 is a diagram showing an overall configuration of an exhaust gas purification device for a diesel engine according to an embodiment of the present invention.

【図2】触媒コンバータの構成を示す図。FIG. 2 is a diagram showing a configuration of a catalytic converter.

【図3】燃料噴射制御のフロー図。FIG. 3 is a flowchart of fuel injection control.

【図4】後噴射時期と、後噴射開始10秒後の上流側触
媒に流入する排気ガスのHC濃度及び該触媒から流出し
た排気ガスのHC濃度との関係を示すグラフ図。
FIG. 4 is a graph showing a relationship between a post-injection timing, an HC concentration of exhaust gas flowing into an upstream side catalyst 10 seconds after the start of post-injection, and an HC concentration of exhaust gas flowing out of the catalyst.

【図5】後噴射時期と、後噴射開始30秒後の上流側触
媒に流入する排気ガスのHC濃度及び該触媒から流出し
た排気ガスのHC濃度との関係を示すグラフ図。
FIG. 5 is a graph showing the relationship between the post-injection timing, the HC concentration of exhaust gas flowing into the upstream catalyst 30 seconds after the start of post-injection, and the HC concentration of exhaust gas flowing out of the catalyst.

【図6】後噴射時期と、後噴射開始90秒後の上流側触
媒に流入する排気ガスのHC濃度及び該触媒から流出し
た排気ガスのHC濃度との関係を示すグラフ図。
FIG. 6 is a graph showing the relationship between the post-injection timing, the HC concentration of exhaust gas flowing into the upstream catalyst 90 seconds after the start of post-injection, and the HC concentration of exhaust gas flowing out of the catalyst.

【図7】後噴射時期と、後噴射開始10秒後、30秒後
及び90秒後の上流側触媒のHC浄化率との関係を示す
グラフ図。
FIG. 7 is a graph showing the relationship between the post-injection timing and the HC purification rates of the upstream catalyst at 10 seconds, 30 seconds, and 90 seconds after the start of post-injection.

【図8】後噴射時期と、後噴射開始10秒後の上流側触
媒の入口温度及び出口温度との関係を示すグラフ図。
FIG. 8 is a graph showing a relationship between a post-injection timing and an inlet temperature and an outlet temperature of the upstream side catalyst 10 seconds after the start of the post-injection.

【図9】後噴射時期と、後噴射開始30秒後の上流側触
媒の入口温度及び出口温度との関係を示すグラフ図。
FIG. 9 is a graph showing a relationship between a post-injection timing and an inlet temperature and an outlet temperature of the upstream side catalyst 30 seconds after the start of the post-injection.

【図10】後噴射時期と、後噴射開始90秒後の上流側
触媒の入口温度及び出口温度との関係を示すグラフ図。
FIG. 10 is a graph showing a relationship between a post-injection timing and an inlet temperature and an outlet temperature of the upstream side catalyst 90 seconds after the start of the post-injection.

【図11】後噴射時期と、後噴射開始10秒後及び30
秒後の上流側触媒に流入する排気ガスのNOx濃度との
関係を示すグラフ図。
FIG. 11 shows post-injection timing, 10 seconds after the start of post-injection, and 30 seconds after the start.
FIG. 8 is a graph showing a relationship between the exhaust gas flowing into the upstream side catalyst after a second and the NOx concentration of the exhaust gas.

【図12】後噴射を毎回行なったときの後噴射時期とス
モーク量との関係を示すグラフ図。
FIG. 12 is a graph showing a relationship between a post-injection timing and a smoke amount each time post-injection is performed.

【符号の説明】[Explanation of symbols]

A 排気浄化装置 1 ディーゼルエンジン 2 気筒 4 燃焼室 5 インジェクタ(燃料噴射弁) 18 温度センサ 20 排気通路 22 触媒コンバータ 22a 上流側触媒 22b 下流側触媒 35 ECU(コントロールユニット) A Exhaust gas purification device 1 Diesel engine 2 Cylinder 4 Combustion chamber 5 Injector (fuel injection valve) 18 Temperature sensor 20 Exhaust passage 22 Catalytic converter 22a Upstream catalyst 22b Downstream catalyst 35 ECU (control unit)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/24 F01N 3/24 R 3/28 301 3/28 301D 301E (72)発明者 林原 寛 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 Fターム(参考) 3G091 AA02 AA10 AA11 AA17 AA18 AA24 AA28 AB02 AB03 AB05 AB06 BA03 BA14 BA15 BA19 BA32 BA33 CB02 CB03 CB07 CB08 DA01 DA02 DA03 DA05 DB10 DC01 EA00 EA01 EA03 EA05 EA06 EA07 EA16 EA18 EA30 EA31 EA34 FA02 FA04 FA07 FA11 FB10 FC04 FC07 GA06 GB01X GB03Y GB04X GB06W GB09X GB10X GB17X HA09 HA10 HA36 HA38 HA47 HB05 HB06 3G301 HA02 HA04 HA11 HA13 JA21 JA25 JA26 KA06 KA08 KA21 MA19 MA26 NA08 NC02 ND01 PA04Z PA07Z PB08Z PD12Z PE01Z PE03Z PF03Z PF04Z──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme court ゛ (Reference) F01N 3/24 F01N 3/24 R 3/28 301 3/28 301D 301E (72) Inventor Hiroshi Hayashibara Hiroshima 3-1, Fuchu-cho, Shinchi, Aki-gun F-term in Mazda Motor Corporation (reference) 3G091 AA02 AA10 AA11 AA17 AA18 AA24 AA28 AB02 AB03 AB05 AB06 BA03 BA14 BA15 BA19 BA32 BA33 CB02 CB03 CB07 CB08 DA01 DA02 DA03 DA05 DB10 DC01 EA00 EA06 EA07 EA16 EA18 EA30 EA31 EA34 FA02 FA04 FA07 FA11 FB10 FC04 FC07 GA06 GB01X GB03Y GB04X GB06W GB09X GB10X GB17X HA09 HA10 HA36 HA38 HA47 HB05 HB06 3G301 HA02 HA04 HA11 HA13 JA21 JA25 JA26 KA06 MA08 JA26 KA04 MA08 PE03Z PF03Z PF04Z

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 エンジンの燃焼室内を臨み該燃焼室内に
燃料を噴射する噴射弁と、 前記燃焼室から延びる排気通路に配置され排気ガスを浄
化するための酸化触媒機能を有する上流側触媒と、 前記噴射弁によって前記エンジンの圧縮行程上死点付近
で燃料が噴射された後の膨張行程又は排気行程の所定時
期に該噴射弁から燃料を噴射する後噴射により排気ガス
中の還元剤量を増大させる還元剤増量手段と、 前記上流側触媒よりも下流側の前記排気通路に配置され
排気ガスを浄化するための酸化触媒機能を有する下流側
触媒と、 前記下流側触媒の温度を検出する触媒温度検出手段とを
備え、 前記還元剤増量手段は、前記触媒温度検出手段によって
検出される前記下流側触媒の温度に基づき、その温度が
所定値よりも低いときは所定値以上のときよりも前記後
噴射時期が遅くなるようにすることを特徴とするエンジ
ンの排気浄化装置。
An injection valve that faces a combustion chamber of an engine and injects fuel into the combustion chamber; an upstream catalyst that is disposed in an exhaust passage extending from the combustion chamber and has an oxidation catalyst function for purifying exhaust gas; After injection of fuel near the top dead center of the compression stroke of the engine by the injection valve, the amount of reducing agent in the exhaust gas is increased by post-injection of fuel injected from the injection valve at a predetermined time during an expansion stroke or an exhaust stroke. Reducing agent increasing means for reducing, a downstream catalyst disposed in the exhaust passage downstream of the upstream catalyst and having an oxidation catalyst function for purifying exhaust gas, and a catalyst temperature for detecting a temperature of the downstream catalyst Detecting means, the reducing agent increasing means based on the temperature of the downstream catalyst detected by the catalyst temperature detecting means, when the temperature is lower than a predetermined value, when the temperature is higher than a predetermined value Exhaust gas purification apparatus for an engine, characterized in that remote the post injection timing is set to be slow.
【請求項2】 請求項1に記載のエンジンの排気浄化装
置において、 前記還元剤増量手段は、前記下流側触媒の温度が所定値
よりも低いときの後噴射時期を圧縮行程上死点後の70
゜CA以降にすることを特徴とするエンジンの排気浄化
装置。
2. The exhaust gas purifying apparatus for an engine according to claim 1, wherein the reducing agent increasing means sets a post-injection timing when the temperature of the downstream side catalyst is lower than a predetermined value after a compression stroke top dead center. 70
エ ン ジ ン An exhaust gas purification device for an engine, which is set to CA or later.
【請求項3】 請求項1に記載のエンジンの排気浄化装
置において、 前記還元剤増量手段は、前記下流側触媒の温度が所定値
よりも低いときの後噴射時期を圧縮行程上死点後の50
゜CA以降に設定し、0.2秒〜2秒に1回の間隔で後
噴射を実行することを特徴とするエンジンの排気浄化装
置。
3. The exhaust gas purifying apparatus for an engine according to claim 1, wherein the reducing agent increasing means sets a post-injection timing when the temperature of the downstream side catalyst is lower than a predetermined value after a top dead center of a compression stroke. 50
エ ン ジ ン An exhaust gas purification device for an engine, which is set to be CA or later, and executes post-injection at intervals of 0.2 seconds to 2 seconds.
【請求項4】 請求項1に記載のエンジンの排気浄化装
置において、 エンジン負荷を検出する手段を備え、 前記還元剤増量手段は、前記下流側触媒の温度が所定値
よりも低いときの後噴射を、前記エンジン負荷が所定値
以上のときは、0.2秒よりも短い間隔で実行すること
を特徴とするエンジンの排気浄化装置。
4. The exhaust gas purifying apparatus for an engine according to claim 1, further comprising: means for detecting an engine load, wherein the reducing agent increasing means includes a post injection when a temperature of the downstream catalyst is lower than a predetermined value. Is executed at intervals shorter than 0.2 seconds when the engine load is equal to or greater than a predetermined value.
【請求項5】 エンジンの燃焼室内を臨み該燃焼室内に
燃料を噴射する噴射弁と、 前記燃焼室から延びる排気通路に配置され排気ガスを浄
化するための酸化触媒機能を有する触媒と、 前記噴射弁によって前記エンジンの圧縮行程上死点付近
で燃料が噴射された後の膨張行程又は排気行程の所定時
期に該噴射弁から燃料を噴射する後噴射により排気ガス
中の還元剤量を増大させる還元剤増量手段とを備え、 前記還元剤増量手段は、前記後噴射時期を圧縮行程上死
点後の50゜CA以降に設定し、0.2秒〜2秒に1回
の間隔で後噴射を実行することを特徴とするエンジンの
排気浄化装置。
5. An injection valve which faces a combustion chamber of an engine and injects fuel into the combustion chamber, a catalyst disposed in an exhaust passage extending from the combustion chamber and having an oxidation catalyst function for purifying exhaust gas, and the injection A reduction in which the amount of the reducing agent in the exhaust gas is increased by post-injection in which fuel is injected from the injection valve at a predetermined time during an expansion stroke or an exhaust stroke after fuel is injected near the top dead center of the compression stroke of the engine by the valve. The reducing agent increasing means sets the post-injection timing to 50 ° CA or more after the top dead center of the compression stroke, and performs post-injection at intervals of 0.2 seconds to 2 seconds. An exhaust gas purification device for an engine, which is executed.
【請求項6】 請求項5に記載のエンジンの排気浄化装
置において、 前記触媒よりも下流側の前記排気通路に温度の上昇に伴
って活性が高くなる排気ガス浄化材が配置されているこ
とを特徴とするエンジンの排気浄化装置。
6. The exhaust gas purifying apparatus for an engine according to claim 5, wherein an exhaust gas purifying material whose activity increases with a rise in temperature is arranged in the exhaust passage downstream of the catalyst. Characteristic engine exhaust purification device.
JP2000080076A 2000-03-22 2000-03-22 Engine exhaust purification system Expired - Fee Related JP4423731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000080076A JP4423731B2 (en) 2000-03-22 2000-03-22 Engine exhaust purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000080076A JP4423731B2 (en) 2000-03-22 2000-03-22 Engine exhaust purification system

Publications (2)

Publication Number Publication Date
JP2001263130A true JP2001263130A (en) 2001-09-26
JP4423731B2 JP4423731B2 (en) 2010-03-03

Family

ID=18597234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000080076A Expired - Fee Related JP4423731B2 (en) 2000-03-22 2000-03-22 Engine exhaust purification system

Country Status (1)

Country Link
JP (1) JP4423731B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040221A (en) * 2005-08-04 2007-02-15 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2007255308A (en) * 2006-03-23 2007-10-04 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device of internal combustion engine
US8136505B2 (en) 2009-09-29 2012-03-20 Ford Global Technologies, Llc Method for controlling spark for particulate filter regenerating
US8336300B2 (en) 2009-09-29 2012-12-25 Ford Global Technologies, Llc System and method for regenerating a particulate filter accompanied by a catalyst
US8341947B2 (en) 2009-09-29 2013-01-01 Ford Global Technologies, Llc System and method for regenerating a particulate filter
US8347613B2 (en) 2009-09-29 2013-01-08 Ford Global Technologies, Llc Controlling operation of exhaust of an engine including a particulate filter
US8359840B2 (en) 2009-09-29 2013-01-29 Ford Global Technologies, Llc Method for adjusting boost pressure while regenerating a particulate filter for a direct injection engine
US8359839B2 (en) 2009-09-29 2013-01-29 Ford Global Technologies, Llc System and method for regenerating a particulate filter for a direct injection engine
US8387370B2 (en) 2009-09-29 2013-03-05 Ford Global Technologies, Llc System for regenerating a particulate filter and controlling EGR
US8464514B2 (en) 2009-09-29 2013-06-18 Ford Global Technologies, Llc Method for regenerating a particulate filter for a boosted direct injection engine
US8516797B2 (en) 2009-09-29 2013-08-27 Ford Global Technologies, Llc Control of exhaust flow in an engine including a particulate filter
US8875494B2 (en) 2009-09-29 2014-11-04 Ford Global Technologies, Llc Fuel control for spark ignited engine having a particulate filter system
US9103247B2 (en) 2010-10-13 2015-08-11 Ford Global Technologies, Llc Exhaust system and method for mitigating degradation of components of a turbocharged engine with exhaust gas recirculation
US9151206B2 (en) 2011-02-28 2015-10-06 Ford Global Technologies, Llc Method for determining soot mass stored with a particulate filter
WO2015181922A1 (en) * 2014-05-28 2015-12-03 本田技研工業株式会社 Exhaust purification system for internal combustion engine
US9863348B2 (en) 2009-09-29 2018-01-09 Ford Global Technologies, Llc Method for controlling fuel of a spark ignited engine while regenerating a particulate filter

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040221A (en) * 2005-08-04 2007-02-15 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2007255308A (en) * 2006-03-23 2007-10-04 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device of internal combustion engine
US8464514B2 (en) 2009-09-29 2013-06-18 Ford Global Technologies, Llc Method for regenerating a particulate filter for a boosted direct injection engine
US8516797B2 (en) 2009-09-29 2013-08-27 Ford Global Technologies, Llc Control of exhaust flow in an engine including a particulate filter
US8341947B2 (en) 2009-09-29 2013-01-01 Ford Global Technologies, Llc System and method for regenerating a particulate filter
US8347613B2 (en) 2009-09-29 2013-01-08 Ford Global Technologies, Llc Controlling operation of exhaust of an engine including a particulate filter
US8359840B2 (en) 2009-09-29 2013-01-29 Ford Global Technologies, Llc Method for adjusting boost pressure while regenerating a particulate filter for a direct injection engine
US8359839B2 (en) 2009-09-29 2013-01-29 Ford Global Technologies, Llc System and method for regenerating a particulate filter for a direct injection engine
US8387370B2 (en) 2009-09-29 2013-03-05 Ford Global Technologies, Llc System for regenerating a particulate filter and controlling EGR
US8402943B2 (en) 2009-09-29 2013-03-26 Ford Global Technologies, Llc Method for controlling spark for particulate filter regenerating
US8136505B2 (en) 2009-09-29 2012-03-20 Ford Global Technologies, Llc Method for controlling spark for particulate filter regenerating
US8336300B2 (en) 2009-09-29 2012-12-25 Ford Global Technologies, Llc System and method for regenerating a particulate filter accompanied by a catalyst
US8739518B2 (en) 2009-09-29 2014-06-03 Ford Global Technologies, Llc Controlling operation of exhaust of an engine including a particulate filter
US8875494B2 (en) 2009-09-29 2014-11-04 Ford Global Technologies, Llc Fuel control for spark ignited engine having a particulate filter system
US9080482B2 (en) 2009-09-29 2015-07-14 Ford Global Technologies, Llc Control of exhaust flow in an engine including a particulate filter
US9863348B2 (en) 2009-09-29 2018-01-09 Ford Global Technologies, Llc Method for controlling fuel of a spark ignited engine while regenerating a particulate filter
US9394844B2 (en) 2009-09-29 2016-07-19 Ford Global Technologies, Llc Fuel control for spark ignited engine having a particulate filter system
US9103247B2 (en) 2010-10-13 2015-08-11 Ford Global Technologies, Llc Exhaust system and method for mitigating degradation of components of a turbocharged engine with exhaust gas recirculation
US9151206B2 (en) 2011-02-28 2015-10-06 Ford Global Technologies, Llc Method for determining soot mass stored with a particulate filter
WO2015181922A1 (en) * 2014-05-28 2015-12-03 本田技研工業株式会社 Exhaust purification system for internal combustion engine
JPWO2015181922A1 (en) * 2014-05-28 2017-04-20 本田技研工業株式会社 Exhaust gas purification system for internal combustion engine

Also Published As

Publication number Publication date
JP4423731B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
US7062907B2 (en) Regeneration control system
JP2001065332A (en) Exhaust emission control device for internal combustion engine
JP4423731B2 (en) Engine exhaust purification system
JP4631123B2 (en) Engine exhaust purification system
JP4441973B2 (en) Engine exhaust purification system
JP2001090594A (en) Control device for engine
JP2004232544A (en) Engine fuel injection control device
JP2004251230A (en) Activity determining device for oxidation catalyst for engine and exhaust emission control device of engine
JP2004052611A (en) Exhaust emission control device for internal combustion engine
JP4482848B2 (en) Exhaust gas purification device for turbocharged engine
JP2004340137A (en) Exhaust emission control device for internal combustion engine
US10933374B2 (en) Exhaust emission control device, method and computer program product for an engine
JP4995154B2 (en) Control device for internal combustion engine
JP4253984B2 (en) Diesel engine control device
JP2004028030A (en) Exhaust emission control device for internal combustion engine
JP2003106137A (en) Exhaust emission control device of internal combustion engine
JP4491932B2 (en) Engine exhaust purification system
JP2003065117A (en) Diesel engine and computer program thereof
JP2001159311A (en) Exhaust emission control device for engine
JP4524947B2 (en) Diesel engine exhaust purification device and exhaust purification method
JP4543473B2 (en) Engine exhaust purification system
JP3536739B2 (en) Exhaust gas purification device for internal combustion engine
EP1245816A2 (en) Fuel injection apparatus of diesel engine
JP4362916B2 (en) Engine exhaust purification system
JP4296585B2 (en) Fuel injection control device for diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091130

R150 Certificate of patent or registration of utility model

Ref document number: 4423731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees