JP2004340137A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2004340137A
JP2004340137A JP2004114485A JP2004114485A JP2004340137A JP 2004340137 A JP2004340137 A JP 2004340137A JP 2004114485 A JP2004114485 A JP 2004114485A JP 2004114485 A JP2004114485 A JP 2004114485A JP 2004340137 A JP2004340137 A JP 2004340137A
Authority
JP
Japan
Prior art keywords
temperature
exhaust gas
exhaust
fuel ratio
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004114485A
Other languages
Japanese (ja)
Other versions
JP4114077B2 (en
Inventor
Michihiro Hatake
道博 畠
Megumi Shigahara
恵 信ヶ原
Kazuo Kurata
和郎 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2004114485A priority Critical patent/JP4114077B2/en
Priority to DE102004019658A priority patent/DE102004019658B4/en
Publication of JP2004340137A publication Critical patent/JP2004340137A/en
Application granted granted Critical
Publication of JP4114077B2 publication Critical patent/JP4114077B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Supercharger (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine for eliminating harmful components stored in or collected by an exhaust emission control unit with high responsiveness and high precision. <P>SOLUTION: Temperature of exhaust to be discharged from a combustion chamber when storage type NOx catalyst (exhaust emission control unit) reaches prescribed high temperature T1 as target catalyst temperature is set as basic discharge temperature (B32). Difference between the prescribed high temperature T1 and temperature of storage type NOx catalyst detected by a second temperature sensor is added to the basic discharge temperature to set target discharge temperature of exhaust discharged from the combustion chamber (B34, B36, B38, and B40). Temperature control to the storage type NOx catalyst is conducted in such a way that the actual discharge temperature of exhaust discharged from the combustion chamber, and detected by a first temperature becomes the target discharge temperature (B42, B44, and B46). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内燃機関の排気浄化装置に係り、詳しくは、排気浄化ユニットに吸蔵或いは捕集された有害成分を除去する技術に関する。   The present invention relates to an exhaust gas purification device for an internal combustion engine, and more particularly to a technique for removing harmful components occluded or collected in an exhaust gas purification unit.

近年、排気浄化ユニットとして酸素過剰雰囲気においてもNOxを浄化可能な吸蔵型NOx触媒が開発され実用化されている。
この吸蔵型NOx触媒は、酸素過剰状態(酸化雰囲気)において排気中のNOxを硝酸塩X−NO3として吸蔵し、該吸蔵したNOxをCO(一酸化炭素)過剰状態(還元雰囲気)でN2(窒素)に還元させる特性(同時に炭酸塩X−CO3が生成される)を有した触媒として構成されている。例えば、内燃機関の排気通路に当該吸蔵型NOx触媒を設けた場合には、吸蔵型NOx触媒のNOx吸蔵量が飽和する前に空燃比を理論空燃比またはその近傍値に制御するようなリッチ空燃比運転に定期的に切換えてCOの多い還元雰囲気を生成し、これにより吸蔵したNOxを浄化還元(NOxパージ)して吸蔵型NOx触媒の再生を図るようにしている。
In recent years, a storage NOx catalyst capable of purifying NOx even in an oxygen-excess atmosphere has been developed and put into practical use as an exhaust purification unit.
The occlusion-type NOx catalyst, the oxygen excess state stores NOx in the exhaust gas in the (oxidative atmosphere), as the nitrate X-NO 3, N 2 a suction built the NOx with CO (carbon monoxide) over state (reduction atmosphere) ( It is configured as a catalyst having a property of reducing to nitrogen (carbonate X-CO 3 is generated at the same time). For example, when the storage NOx catalyst is provided in the exhaust passage of the internal combustion engine, a rich air-fuel ratio that controls the air-fuel ratio to a stoichiometric air-fuel ratio or a value close to the stoichiometric air-fuel ratio before the NOx storage amount of the storage NOx catalyst is saturated. The operation is periodically switched to the fuel ratio operation to generate a CO-rich reducing atmosphere, whereby the stored NOx is purified and reduced (NOx purge) to regenerate the storage-type NOx catalyst.

ところで、燃料中にはS(サルファ)成分(硫黄成分)が有害成分として含まれており、このS成分は酸素と反応してSOx(硫黄酸化物)となり、 該SOxは硫酸塩X−SO4としてNOxの代わりに吸蔵型NOx触媒に吸蔵される(S被毒)。
このように吸蔵されたSOxは、空燃比をリッチ状態にするとともに、吸蔵型NOx触媒を高温状態にすることで放出除去(Sパージ)されることが分かっており、例えばSOxの吸蔵量を推定し、該推定値が所定量に達したと判定すると、空燃比をリッチ化するとともに燃料を膨張行程或いは排気行程で追加噴射を実施して排気昇温させ、触媒を高温状態にする技術が公知である(例えば、特許文献1参照)。
Incidentally, the fuel contains a toxic component S (sulfur) components (sulfur component), the S component reacts with oxygen SOx (sulfur oxides), and the SOx is sulfate X-SO 4 Is stored in the storage type NOx catalyst instead of NOx (S poisoning).
It is known that the SOx thus occluded is released and removed (S purge) by setting the air-fuel ratio to a rich state and setting the storage NOx catalyst to a high temperature state. For example, the SOx occlusion amount is estimated. When it is determined that the estimated value has reached a predetermined amount, a technique for enriching the air-fuel ratio and performing additional injection of fuel in an expansion stroke or an exhaust stroke to raise the temperature of the exhaust gas to bring the catalyst to a high temperature state is known. (For example, see Patent Document 1).

また、内燃機関がディーゼルエンジンである場合には、運転状態によっては排気中にパティキュレート・マター(以下、略してPMともいう)を有害成分として含んでおり、排気浄化ユニットとして当該PMを捕集するディーゼル・パティキュレート・フィルタ(以下、略してDPFともいう)も開発され実用化されている。
このDPFは、PMの堆積によって徐々に排圧が上昇して排気抵抗が増大してしまい、ひいては燃費が悪化することから、定期的に堆積したPMを除去する強制再生を実施する必要がある。
When the internal combustion engine is a diesel engine, the exhaust gas contains particulate matter (hereinafter abbreviated as PM) as a harmful component depending on the operating condition, and the PM is collected as an exhaust gas purification unit. Diesel particulate filter (hereinafter abbreviated as DPF) has been developed and put into practical use.
Since the exhaust pressure of the DPF gradually increases due to the deposition of PM, the exhaust resistance increases, and the fuel efficiency deteriorates. Therefore, it is necessary to periodically perform forced regeneration for removing the deposited PM.

そこで、例えばPMの捕集量を推定し、該推定値が所定量に達したと判定すると、やはり追加噴射を実施して排気昇温させ、DPFを高温状態にしてPMを燃焼除去する技術が知られている。
特開2002−213229号公報
Therefore, for example, a technique of estimating the amount of trapped PM and determining that the estimated value has reached a predetermined amount, also performs additional injection to raise the temperature of the exhaust, set the DPF to a high temperature state, and burn and remove the PM. Are known.
JP 2002-213229 A

ところで、上記特許文献1に開示された技術においても、内燃機関としてディーゼルエンジンを用いるようにしているが、ディーゼルエンジンにおいては、吸入空気量が多く基本的にリーン空燃比で運転されるため、ガソリンエンジンに比べて全体的に排気温度が低く、Sパージを行う際或いはDPFの強制再生を行う際、吸蔵型NOx触媒或いはDPFを十分に昇温させるまでに時間が掛かるという問題がある。   By the way, in the technology disclosed in Patent Document 1, a diesel engine is used as an internal combustion engine. However, since a diesel engine has a large intake air amount and is basically operated at a lean air-fuel ratio, gasoline is not used. The exhaust temperature is lower than that of the engine as a whole, and there is a problem that it takes time to sufficiently raise the temperature of the storage NOx catalyst or the DPF when performing S purge or forcibly regenerating the DPF.

また、上記追加噴射を行う技術では、排気通路に供給される炭化水素(HC)成分を吸蔵型NOx触媒の酸化触媒機能やDPF上流に設けた酸化触媒または吸蔵型NOx触媒によって酸化させ、このとき発生する酸化熱を利用して吸蔵型NOx触媒やDPFの昇温を行うようにしており、このような酸化触媒の酸化熱を利用した昇温手法では、酸化反応にある程度時間を要し、やはり吸蔵型NOx触媒やDPFの昇温に時間が掛かるという問題がある。   Further, in the technique of performing the additional injection, the hydrocarbon (HC) component supplied to the exhaust passage is oxidized by an oxidation catalyst function of a storage NOx catalyst or an oxidation catalyst provided upstream of the DPF or a storage NOx catalyst. The temperature of the occluded NOx catalyst or DPF is raised by using the generated heat of oxidation. In such a temperature raising method using the heat of oxidation of the oxidation catalyst, the oxidation reaction requires a certain amount of time. There is a problem that it takes time to raise the temperature of the storage NOx catalyst and the DPF.

さらに、ディーゼルエンジンにおいて空燃比をリッチ化する場合には、スモーク(黒煙)を発生し易いという問題もある。
また、SパージやDPFの強制再生を行うに当たり、吸蔵型NOx触媒或いはDPFを高温状態に制御するため、例えば吸蔵型NOx触媒やDPF或いはそれらの近傍に温度センサを設け、吸蔵型NOx触媒やDPFの温度情報に基づいて排気昇温をフィードバック制御する技術がある。しかしながら、温度センサは応答が遅いため、排気通路にターボチャージャが設けられている場合、或いは排気通路が長い等、排気通路の熱容量が大きいまたは排気の熱エネルギ消費による温度低下があるような場合には、温度が大きくハンチングを引き起こして制御性が悪いという問題もある。言い換えれば、排気昇温を開始しても最初のうちはなかなか吸蔵型NOx触媒やDPFが昇温せず、排気通路の熱容量分が満たされると急激にこれら吸蔵型NOx触媒やDPFが昇温され始めるという問題がある。なお、この問題は、吸蔵型NOx触媒の上流に酸化触媒やDPFを配置した場合、DPFの上流に酸化触媒または吸蔵型NOx触媒を配置した場合においても同様である。さらに、このように急激に昇温が行われると、吸蔵型NOx触媒、DPFやターボチャージャが過熱状態になり破損するおそれもある。
Further, when enriching the air-fuel ratio in a diesel engine, there is a problem that smoke (black smoke) is easily generated.
In order to control the storage type NOx catalyst or DPF to a high temperature state when performing the S purge or the forced regeneration of the DPF, for example, a temperature sensor is provided in the storage type NOx catalyst or DPF or in the vicinity thereof, and the storage type NOx catalyst or DPF is provided. There is a technique for performing feedback control of the exhaust gas temperature rise based on the temperature information. However, since the temperature sensor has a slow response, when a turbocharger is provided in the exhaust passage, or when the heat capacity of the exhaust passage is large, such as when the exhaust passage is long, or when there is a temperature decrease due to heat energy consumption of the exhaust gas. However, there is also a problem that the temperature is large, causing hunting and poor controllability. In other words, even when the temperature rise of the exhaust gas is started, the temperature of the storage NOx catalyst or DPF does not readily rise at first at first, and when the heat capacity of the exhaust passage is satisfied, the temperature of the storage NOx catalyst or DPF rises rapidly. There is a problem of getting started. This problem is the same when an oxidation catalyst or a DPF is disposed upstream of the storage NOx catalyst, and when an oxidation catalyst or a storage NOx catalyst is disposed upstream of the DPF. Further, when the temperature is rapidly increased in such a manner, the storage NOx catalyst, the DPF, and the turbocharger may be overheated and damaged.

この場合、ハンチングを起こしたり吸蔵型NOx触媒、DPFやターボチャージャが過熱したりしないように排気昇温を行おうとすれば、制御が緩慢とならざるを得ず、やはり吸蔵型NOx触媒やDPFの昇温に時間が掛かることになり好ましいことではない。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、排気浄化ユニットに吸蔵或いは捕集された有害成分を応答性高く且つ高精度で除去可能な内燃機関の排気浄化装置を提供することにある。
In this case, if an attempt is made to raise the exhaust gas temperature so as not to cause hunting or overheat the occlusion type NOx catalyst, DPF or turbocharger, the control must be slow, and the occlusion type NOx catalyst or DPF is still required. It takes time to raise the temperature, which is not preferable.
The present invention has been made to solve such problems, and an object of the present invention is to provide an internal combustion engine capable of removing harmful components occluded or trapped in an exhaust gas purification unit with high responsiveness and high accuracy. It is an object of the present invention to provide an exhaust gas purifying apparatus.

上記した目的を達成するために、請求項1の内燃機関の排気浄化装置では、内燃機関の排気系に設けられ、排気の浄化を行う排気浄化ユニットと、前記排気系に前記内燃機関の排気ポート近傍に位置して設けられ、前記内燃機関の燃焼室から排出される排気の温度を検出する第1の温度センサと、前記排気系に前記排気浄化ユニット近傍に位置して設けられ、該排気浄化ユニットに流入する排気の温度を検出する第2の温度センサと、前記排気浄化ユニットに吸蔵または捕集された排気中の有害成分の堆積量を推定または検出する堆積量検出手段と、前記堆積量検出手段により推定または検出される有害成分の堆積量が所定量に達したとき、前記排気浄化ユニットを前記燃焼室から排出される排気の熱によって所定の高温に温度調整して該堆積した有害成分を放出し除去する放出制御手段とを備え、前記放出制御手段は、前記第1の温度センサからの温度情報と前記第2の温度センサからの温度情報とに基づいて前記排気浄化ユニットを所定の高温に温度調整することを特徴としている。   In order to achieve the above object, an exhaust gas purifying apparatus for an internal combustion engine according to claim 1 is provided in an exhaust system of the internal combustion engine and purifies exhaust gas, and an exhaust port of the internal combustion engine is provided in the exhaust system. A first temperature sensor for detecting the temperature of the exhaust gas discharged from the combustion chamber of the internal combustion engine, and a first temperature sensor for detecting the temperature of the exhaust gas discharged from the combustion chamber of the internal combustion engine; A second temperature sensor for detecting a temperature of exhaust gas flowing into the unit, a deposition amount detecting means for estimating or detecting a deposition amount of harmful components in exhaust gas occluded or collected by the exhaust gas purification unit, and the deposition amount When the accumulation amount of the harmful component estimated or detected by the detection means reaches a predetermined amount, the exhaust gas purification unit is adjusted to a predetermined high temperature by the heat of the exhaust gas discharged from the combustion chamber, and the temperature of the stack is reduced. Release control means for releasing and removing the harmful components, wherein the release control means is configured to control the exhaust gas purification unit based on temperature information from the first temperature sensor and temperature information from the second temperature sensor. Is adjusted to a predetermined high temperature.

また、請求項2の内燃機関の排気浄化装置では、請求項1において、前記放出制御手段は、前記排気浄化ユニットが前記所定の高温となったときに前記燃焼室から排出されるべき排気の温度を基本排出温度として設定する基本排出温度設定手段と、該基本排出温度設定手段により設定される基本排出温度及び前記所定の高温と前記第2の温度センサにより検出される温度との差に基づき前記燃焼室から排出される排気の目標排出温度を設定する目標排出温度設定手段とを含み、前記目標排出温度設定手段により設定される目標排出温度と前記第1の温度センサにより検出される温度との差に基づいて前記排気浄化ユニットの温度調整を行うことを特徴としている。   Also, in the exhaust gas purifying apparatus for an internal combustion engine according to claim 2, according to claim 1, the release control means is configured to control a temperature of exhaust gas to be discharged from the combustion chamber when the temperature of the exhaust gas purifying unit reaches the predetermined high temperature. A basic discharge temperature setting unit that sets the basic discharge temperature as a basic discharge temperature, and a basic discharge temperature set by the basic discharge temperature setting unit and a difference between the predetermined high temperature and a temperature detected by the second temperature sensor. Target discharge temperature setting means for setting a target discharge temperature of exhaust gas discharged from the combustion chamber, wherein a target discharge temperature set by the target discharge temperature setting means and a temperature detected by the first temperature sensor are determined. The temperature of the exhaust gas purification unit is adjusted based on the difference.

また、請求項3の内燃機関の排気浄化装置では、請求項1または2において、前記内燃機関は、吸気系に吸入空気量を調節するスロットル弁を有し、前記放出制御手段は、排気空燃比を理論空燃比または該理論空燃比近傍の空燃比に制御しながら前記スロットル弁を制御することにより前記排気浄化ユニットを所定の高温に温度調整することを特徴としている。   According to a third aspect of the present invention, in the exhaust gas purifying apparatus for an internal combustion engine according to the first or second aspect, the internal combustion engine has a throttle valve for adjusting an intake air amount in an intake system, and the emission control means includes an exhaust air-fuel ratio. Is controlled at a stoichiometric air-fuel ratio or an air-fuel ratio near the stoichiometric air-fuel ratio to control the temperature of the exhaust purification unit to a predetermined high temperature by controlling the throttle valve.

また、請求項4の内燃機関の排気浄化装置では、請求項3において、前記放出制御手段は、前記内燃機関の運転状態に応じて前記スロットル弁の基本スロットル位置を設定する基本スロットル位置設定手段を含み、前記目標排出温度設定手段により設定される目標排出温度と前記第1の温度センサにより検出される温度との差に基づき前記基本スロットル位置設定手段により設定される基本スロットル位置を補正することで前記排気浄化ユニットの温度調整を行うことを特徴としている。   In the exhaust gas purifying apparatus for an internal combustion engine according to a fourth aspect, in the third aspect, the release control means includes a basic throttle position setting means for setting a basic throttle position of the throttle valve in accordance with an operation state of the internal combustion engine. And correcting the basic throttle position set by the basic throttle position setting means based on a difference between a target discharge temperature set by the target discharge temperature setting means and a temperature detected by the first temperature sensor. The temperature of the exhaust gas purification unit is adjusted.

また、請求項5の内燃機関の排気浄化装置では、請求項3または4において、前記内燃機関はディーゼルエンジンであって、前記放出制御手段は、排気空燃比を理論空燃比または該理論空燃比近傍の空燃比に制御しながら燃料噴射時期を遅角させることを特徴としている。
また、請求項6の内燃機関の排気浄化装置では、請求項1において、前記排気浄化ユニットは、前記内燃機関の排気系に設けられ、前記内燃機関がリーン空燃比運転状態にあるとき排気中のNOxを吸蔵させ、理論空燃比運転またはリッチ空燃比運転状態にあるとき前記吸蔵させたNOxを還元する吸蔵型NOx触媒を含み、前記第2の温度センサは、前記吸蔵型NOx触媒近傍に位置して設けられ、該吸蔵型NOx触媒に流入する排気の温度を検出し、前記堆積量検出手段は、前記吸蔵型NOx触媒に吸蔵された排気中の硫黄成分の堆積量を推定または検出する硫黄成分堆積量検出手段から構成され、前記放出制御手段は、前記硫黄成分堆積量検出手段により推定または検出される硫黄成分の堆積量が所定量に達したとき、前記吸蔵型NOx触媒を前記燃焼室から排出される排気の熱によって所定の高温に温度調整し、その後、排気空燃比を理論空燃比またはリッチ空燃比に制御するとともに前記吸蔵型NOx触媒を前記所定の高温に維持して該堆積した硫黄成分を放出する硫黄成分放出手段から構成され、前記硫黄成分放出手段は、前記第1の温度センサからの温度情報と前記第2の温度センサからの温度情報とに基づいて前記吸蔵型NOx触媒を所定の高温に温度調整することを特徴としている。
According to a fifth aspect of the present invention, in the exhaust gas purifying apparatus for an internal combustion engine according to the third or fourth aspect, the internal combustion engine is a diesel engine, and the emission control means sets the exhaust air-fuel ratio at or near the stoichiometric air-fuel ratio. The fuel injection timing is retarded while controlling the air-fuel ratio.
Further, in the exhaust gas purifying apparatus for an internal combustion engine according to claim 6, in claim 1, the exhaust gas purifying unit is provided in an exhaust system of the internal combustion engine. A storage type NOx catalyst that stores NOx and reduces the stored NOx when in a stoichiometric air-fuel ratio operation or a rich air-fuel ratio operation state, and wherein the second temperature sensor is located near the storage-type NOx catalyst. The temperature of exhaust gas flowing into the storage NOx catalyst, and the accumulation amount detection means estimates or detects the amount of sulfur component in the exhaust gas occluded by the storage NOx catalyst. When the sulfur component accumulation amount estimated or detected by the sulfur component accumulation amount detection device reaches a predetermined amount, the release control unit causes the storage NOx catalyst to move forward. The temperature of the exhaust gas discharged from the combustion chamber is adjusted to a predetermined high temperature by heat, and then the exhaust air-fuel ratio is controlled to a stoichiometric air-fuel ratio or a rich air-fuel ratio, and the storage NOx catalyst is maintained at the predetermined high temperature. A sulfur component releasing unit configured to release the accumulated sulfur component, wherein the sulfur component releasing unit is configured to store the sulfur component based on temperature information from the first temperature sensor and temperature information from the second temperature sensor. The temperature of the type NOx catalyst is adjusted to a predetermined high temperature.

また、請求項7の内燃機関の排気浄化装置では、請求項6において、前記内燃機関は、吸気系に吸入空気量を調節するスロットル弁を有し、前記硫黄成分放出手段は、排気空燃比を理論空燃比またはリッチ空燃比に制御しながら前記スロットル弁を制御することにより前記吸蔵型NOx触媒を所定の高温に温度調整することを特徴としている。
また、請求項8の内燃機関の排気浄化装置では、請求項1において、前記排気浄化ユニットは、前記内燃機関の排気系に設けられ、排気中のパティキュレート・マターを捕集するフィルタを含み、前記第2の温度センサは、前記フィルタ近傍に位置して設けられ、該フィルタに流入する排気の温度を検出し、前記堆積量検出手段は、前記フィルタに捕集された排気中のパティキュレート・マターの堆積量を推定または検出するパティキュレート・マター堆積量検出手段から構成され、前記放出制御手段は、前記パティキュレート・マター堆積量検出手段により推定または検出されるパティキュレート・マターの堆積量が所定量に達したとき、前記フィルタを前記燃焼室から排出される排気の熱によって所定の高温に温度調整し、その後、排気空燃比を理論空燃比よりリーン空燃比側の空燃比に制御するとともに前記フィルタを前記所定の高温に維持して該堆積したパティキュレート・マターを燃焼させ前記フィルタの再生を行う強制再生手段から構成され、前記強制再生手段は、前記第1の温度センサからの温度情報と前記第2の温度センサからの温度情報とに基づいて前記フィルタを所定の高温に温度調整することを特徴としている。
According to a seventh aspect of the present invention, in the exhaust gas purifying apparatus for an internal combustion engine according to the sixth aspect, the internal combustion engine has a throttle valve for adjusting an intake air amount in an intake system. The temperature of the NOx storage catalyst is adjusted to a predetermined high temperature by controlling the throttle valve while controlling the stoichiometric air-fuel ratio or the rich air-fuel ratio.
Further, in the exhaust gas purifying apparatus for an internal combustion engine according to claim 8, in claim 1, the exhaust gas purifying unit includes a filter provided in an exhaust system of the internal combustion engine, for collecting particulate matter in exhaust gas, The second temperature sensor is provided near the filter, and detects the temperature of exhaust gas flowing into the filter. The deposition amount detecting means detects a particulate matter in the exhaust gas collected by the filter. The particulate matter deposition amount detecting means for estimating or detecting the amount of deposited matter is provided, and the release control means is configured to calculate the amount of particulate matter estimated or detected by the particulate matter deposited amount detecting means. When a predetermined amount is reached, the temperature of the filter is adjusted to a predetermined high temperature by the heat of exhaust gas discharged from the combustion chamber. And a forced regeneration means for controlling the fuel ratio to an air-fuel ratio on the lean air-fuel ratio side of the stoichiometric air-fuel ratio, maintaining the filter at the predetermined high temperature, burning the deposited particulate matter, and regenerating the filter. The forcible regeneration means adjusts the temperature of the filter to a predetermined high temperature based on temperature information from the first temperature sensor and temperature information from the second temperature sensor.

また、請求項9の内燃機関の排気浄化装置では、請求項8において、前記内燃機関は、吸気系に吸入空気量を調節するスロットル弁を有し、前記強制再生手段は、排気空燃比を理論空燃比または該理論空燃比近傍の空燃比に制御しながら前記スロットル弁を制御することにより前記フィルタを所定の高温に温度調整することを特徴としている。
また、請求項10の内燃機関の排気浄化装置では、請求項8において、前記リーン空燃比側の空燃比は、空気過剰率1.3〜1.5相当であることを特徴としている。
According to a ninth aspect of the present invention, in the exhaust gas purifying apparatus for an internal combustion engine according to the eighth aspect, the internal combustion engine has a throttle valve for adjusting an intake air amount in an intake system. The temperature of the filter is adjusted to a predetermined high temperature by controlling the throttle valve while controlling the air-fuel ratio or the air-fuel ratio near the stoichiometric air-fuel ratio.
According to a tenth aspect of the present invention, in the eighth aspect, the air-fuel ratio on the lean air-fuel ratio side is equivalent to an excess air ratio of 1.3 to 1.5.

また、請求項11の内燃機関の排気浄化装置では、請求項1乃至10において、前記目標排出温度設定手段は、前記目標排出温度を所定の耐熱温度以下の範囲で設定することを特徴としている。
また、請求項12の内燃機関の排気浄化装置では、請求項1において、前記内燃機関の前記排気系と吸気系とに前記燃焼室への吸気過給を行うターボチャージャを有し、前記第1の温度センサは、前記排気系の前記ターボチャージャよりも上流に位置して設けられ、前記燃焼室から排出され前記ターボチャージャに流入する排気の温度を検出し、前記放出制御手段は、前記排気浄化ユニットが前記所定の高温となったときに前記燃焼室から排出され前記ターボチャージャに流入すべき排気の温度を基本排出温度として設定する基本排出温度設定手段と、該基本排出温度設定手段により設定される基本排出温度及び前記所定の高温と前記第2の温度センサにより検出される温度との差に基づき前記燃焼室から排出され前記ターボチャージャに流入する排気の目標排出温度を設定する目標排出温度設定手段とを含み、前記目標排出温度設定手段により設定される目標排出温度と前記第1の温度センサにより検出される温度との差に基づいて前記排気浄化ユニットの温度調整を行うことを特徴としている。
The exhaust gas purifying apparatus for an internal combustion engine according to claim 11 is characterized in that, in claims 1 to 10, the target exhaust temperature setting means sets the target exhaust temperature within a range equal to or lower than a predetermined heat-resistant temperature.
Further, in the exhaust gas purifying apparatus for an internal combustion engine according to claim 12, in the exhaust gas purifying apparatus according to claim 1, the exhaust system and the intake system of the internal combustion engine further include a turbocharger for supercharging intake air to the combustion chamber. A temperature sensor provided upstream of the turbocharger in the exhaust system, detects a temperature of exhaust gas discharged from the combustion chamber and flowing into the turbocharger, and the emission control unit performs the exhaust purification. Basic exhaust temperature setting means for setting, as a basic exhaust temperature, the temperature of exhaust gas discharged from the combustion chamber and flowing into the turbocharger when the unit has reached the predetermined high temperature, and set by the basic exhaust temperature setting means. Based on the basic discharge temperature and the difference between the predetermined high temperature and the temperature detected by the second temperature sensor. Target exhaust temperature setting means for setting a target exhaust temperature of the exhaust gas to be exhausted, wherein the target exhaust temperature is set based on a difference between a target exhaust temperature set by the target exhaust temperature setting means and a temperature detected by the first temperature sensor. It is characterized in that the temperature of the exhaust gas purification unit is adjusted.

また、請求項13の内燃機関の排気浄化装置では、請求項12おいて、前記目標排出温度設定手段は、前記目標排出温度を前記ターボチャージャまたは前記排気浄化ユニットの耐熱温度以下の範囲で設定することを特徴としている。
また、請求項14の内燃機関の排気浄化装置では、請求項1または2において、前記内燃機関は、吸気系と排気系とを連通するEGR通路及び該EGR通路を開閉するEGR弁とからなるEGR装置を有し、前記放出制御手段は、排気空燃比を理論空燃比または該理論空燃比近傍の空燃比に制御するとともに前記EGR弁を開閉制御することにより前記排気浄化ユニットを所定の高温に温度調整することを特徴としている。
According to a thirteenth aspect of the present invention, in the twelfth aspect, the target exhaust temperature setting means sets the target exhaust temperature in a range equal to or lower than a heat resistant temperature of the turbocharger or the exhaust purification unit. It is characterized by:
According to a fourteenth aspect of the present invention, in the first or second aspect, the internal combustion engine includes an EGR passage that connects an intake system and an exhaust system, and an EGR valve that opens and closes the EGR passage. The emission control means controls the exhaust air-fuel ratio to a stoichiometric air-fuel ratio or an air-fuel ratio near the stoichiometric air-fuel ratio and controls the opening and closing of the EGR valve to bring the exhaust purification unit to a predetermined high temperature. It is characterized by adjustment.

また、請求項15の内燃機関の排気浄化装置では、請求項14において、前記内燃機関は、吸気系に吸入空気量を調節するスロットル弁を有し、前記放出制御手段は、排気空燃比を理論空燃比または該理論空燃比近傍の空燃比に制御するとともに、前記スロットル弁を所定量絞り側に制御し且つ前記EGR弁を開閉制御することにより前記排気浄化ユニットを所定の高温に温度調整することを特徴としている。   According to a fifteenth aspect of the present invention, in the fourteenth aspect, the internal combustion engine has a throttle valve for adjusting an intake air amount in an intake system, and the release control means determines the exhaust air-fuel ratio theoretically. Controlling the air-fuel ratio or the air-fuel ratio near the stoichiometric air-fuel ratio, controlling the throttle valve to the throttle side by a predetermined amount, and controlling the EGR valve to open and close to adjust the temperature of the exhaust gas purification unit to a predetermined high temperature. It is characterized by.

本発明の請求項1の内燃機関の排気浄化装置によれば、排気浄化ユニットに吸蔵または捕集された排気中の有害成分を放出し除去するときにおいて、排気浄化ユニットは、燃焼室から排出される排気の温度を検出する第1の温度センサからの温度情報と排気浄化ユニットに流入する排気の温度を検出する第2の温度センサからの温度情報とに基づいて所定の高温に温度制御されるので、例えば、排気浄化ユニットに流入する排気の温度を検出する第2の温度センサだけで排気浄化ユニットの温度制御を行おうとしたときには、応答が遅く、排気通路の熱容量が大きい或いは排気の熱エネルギ消費による温度低下があるような場合には大きくハンチングを引き起こして制御性が悪いのであるが、第2の温度センサにより排気浄化ユニットの温度を監視しながら、さらに第1の温度センサにより排気ポート近傍の排気温度をも監視することにより、燃焼室から排出される排気の温度を過不足無く適正な温度に制御して排気浄化ユニットを所定の高温に制御することができる。これにより、排気浄化ユニットの温度制御性を向上させ、排気浄化ユニットに吸蔵または捕集された有害成分の除去を応答性高く且つ高精度で実現することができる。   According to the exhaust gas purifying apparatus for an internal combustion engine of the first aspect of the present invention, when discharging and removing harmful components in the exhaust gas occluded or collected by the exhaust gas purifying unit, the exhaust gas purifying unit is discharged from the combustion chamber. The temperature is controlled to a predetermined high temperature based on the temperature information from the first temperature sensor for detecting the temperature of the exhaust gas and the temperature information from the second temperature sensor for detecting the temperature of the exhaust gas flowing into the exhaust gas purification unit. Therefore, for example, when trying to control the temperature of the exhaust gas purification unit only by the second temperature sensor that detects the temperature of the exhaust gas flowing into the exhaust gas purification unit, the response is slow, the heat capacity of the exhaust passage is large, or the heat energy of the exhaust gas is large. In the case where there is a temperature decrease due to consumption, hunting is greatly caused and controllability is poor. However, the temperature of the exhaust gas purification unit is detected by the second temperature sensor. While monitoring, the first temperature sensor also monitors the exhaust gas temperature near the exhaust port, thereby controlling the temperature of the exhaust gas discharged from the combustion chamber to an appropriate temperature without excess or shortage, and controlling the exhaust gas purification unit to a predetermined temperature. High temperature can be controlled. Thereby, the temperature controllability of the exhaust gas purification unit can be improved, and the removal of the harmful components occluded or trapped in the exhaust gas purification unit can be realized with high responsiveness and high accuracy.

また、請求項2の内燃機関の排気浄化装置によれば、請求項1において、排気浄化ユニットが当該排気浄化ユニットの目標温度である所定の高温となったときに燃焼室から排出されるべき排気の温度を基本排出温度として設定しておき、この基本排出温度及び上記所定の高温と第2の温度センサにより検出される温度との差に基づいて燃焼室から排出される排気の目標排出温度を設定し、第1の温度センサにより検出される温度が当該目標排出温度になるよう温度制御を行うようにしたので、燃焼室から排出される排気の温度を過不足無く適正な温度に良好に制御して排気浄化ユニットを所定の高温に速やかに到達させるようにできる。また、排気浄化ユニットの温度が所定の高温に近づけば目標排出温度も基本排出温度に近づくため、最終的には燃焼室から排出される排気の温度を良好に基本排出温度に向けて制御でき、排気浄化ユニットの温度をハンチングなく所定の高温に良好に収束させることができる。これにより、排気浄化ユニットの温度制御性を向上させ、排気浄化ユニットに吸蔵または捕集された有害成分の除去を応答性高く且つ高精度で実現することができる。   Further, according to the exhaust gas purifying apparatus for an internal combustion engine of the second aspect, the exhaust gas to be discharged from the combustion chamber when the exhaust gas purifying unit reaches a predetermined high temperature which is the target temperature of the exhaust gas purifying unit. Is set as the basic discharge temperature, and the target discharge temperature of the exhaust gas discharged from the combustion chamber is set based on the difference between the basic discharge temperature and the predetermined high temperature and the temperature detected by the second temperature sensor. The temperature is controlled so that the temperature detected by the first temperature sensor becomes the target discharge temperature, so that the temperature of the exhaust gas discharged from the combustion chamber is properly controlled to an appropriate temperature without excess or shortage. As a result, the exhaust gas purification unit can quickly reach a predetermined high temperature. Further, when the temperature of the exhaust gas purification unit approaches a predetermined high temperature, the target exhaust temperature also approaches the basic exhaust temperature, so that the temperature of exhaust gas finally discharged from the combustion chamber can be controlled appropriately toward the basic exhaust temperature, The temperature of the exhaust gas purification unit can be favorably converged to a predetermined high temperature without hunting. Thereby, the temperature controllability of the exhaust gas purification unit can be improved, and the removal of the harmful components occluded or collected in the exhaust gas purification unit can be realized with high responsiveness and high accuracy.

また、請求項3の内燃機関の排気浄化装置によれば、請求項1または2において、排気空燃比を理論空燃比または該理論空燃比近傍の空燃比に制御しながらスロットル弁を制御することにより排気浄化ユニットを所定の高温に温度調整するので、排気中のNOx或いはHC、CO等の増加を抑制しつつ、吸入空気量と排気浄化ユニットの温度との比例関係に基づき、排気温度ひいては排気浄化ユニットの温度を容易に制御することができる(図4参照)。   According to the third aspect of the present invention, the throttle valve is controlled while controlling the exhaust air-fuel ratio to a stoichiometric air-fuel ratio or an air-fuel ratio near the stoichiometric air-fuel ratio. Since the temperature of the exhaust gas purification unit is adjusted to a predetermined high temperature, it is possible to suppress an increase in NOx, HC, CO, and the like in the exhaust gas, and based on the proportional relationship between the amount of intake air and the temperature of the exhaust gas purification unit, purify the exhaust gas temperature and thus the exhaust gas The temperature of the unit can be easily controlled (see FIG. 4).

また、請求項4の内燃機関の排気浄化装置によれば、請求項3において、目標排出温度と第1の温度センサにより検出される温度との差に基づき基本スロットル位置を補正することで排気浄化ユニットの温度調整を行うので、基本スロットル位置を補正するだけで排気温度ひいては排気浄化ユニットの温度を容易に制御することができる。
また、請求項5の内燃機関の排気浄化装置によれば、請求項3または4において、内燃機関はディーゼルエンジンであって、排気空燃比を理論空燃比または該理論空燃比近傍の空燃比に制御しながら燃料噴射時期を遅角させるようにしたので、排気中のNOx或いはHC、CO等の増加とともにスモークの発生を防止しながら、排気浄化ユニットの温度制御性の向上を図ることができる。
According to a fourth aspect of the present invention, there is provided an exhaust purification system for an internal combustion engine, wherein the basic throttle position is corrected based on a difference between a target exhaust temperature and a temperature detected by a first temperature sensor. Since the temperature of the unit is adjusted, the exhaust gas temperature and thus the temperature of the exhaust gas purifying unit can be easily controlled only by correcting the basic throttle position.
According to a fifth aspect of the present invention, the internal combustion engine is a diesel engine and the exhaust air-fuel ratio is controlled to a stoichiometric air-fuel ratio or an air-fuel ratio near the stoichiometric air-fuel ratio. Since the fuel injection timing is retarded while increasing the amount of NOx, HC, CO and the like in the exhaust gas, the temperature controllability of the exhaust gas purification unit can be improved while preventing the generation of smoke.

また、請求項6の内燃機関の排気浄化装置によれば、請求項1において、排気浄化ユニットは排気中のNOxを吸蔵する吸蔵型NOx触媒であるので、該吸蔵型NOx触媒のSパージ時において、該吸蔵型NOx触媒の温度制御性を向上させ、Sパージを応答性高く且つ高精度で実現することができる。
また、請求項7の内燃機関の排気浄化装置によれば、請求項6において、排気空燃比を理論空燃比またはリッチ空燃比に制御しながらスロットル弁を制御することにより吸蔵型NOx触媒を所定の高温に温度調整するので、吸入空気量と吸蔵型NOx触媒の温度との比例関係に基づき、排気温度ひいては吸蔵型NOx触媒の温度を容易に制御することができる(図4参照)。また、排気空燃比をリッチ空燃比とするようにすれば、Sパージを吸蔵型NOx触媒の昇温中から早期に開始することができる。
Further, according to the exhaust gas purifying apparatus for an internal combustion engine of claim 6, in claim 1, the exhaust gas purifying unit is a storage type NOx catalyst for storing NOx in exhaust gas. Thus, the temperature controllability of the storage NOx catalyst can be improved, and the S purge can be realized with high responsiveness and high accuracy.
According to the exhaust gas purifying apparatus for an internal combustion engine of claim 7, the storage NOx catalyst is controlled to a predetermined value by controlling the throttle valve while controlling the exhaust air-fuel ratio to the stoichiometric air-fuel ratio or the rich air-fuel ratio. Since the temperature is adjusted to a high temperature, the exhaust gas temperature and thus the temperature of the storage NOx catalyst can be easily controlled based on the proportional relationship between the amount of intake air and the temperature of the storage NOx catalyst (see FIG. 4). In addition, if the exhaust air-fuel ratio is set to the rich air-fuel ratio, the S purge can be started early during the temperature rise of the storage NOx catalyst.

また、請求項8の内燃機関の排気浄化装置によれば、請求項1において、排気浄化ユニットは排気中のパティキュレート・マターを捕集するフィルタであるので、該フィルタの強制再生時において、該フィルタの温度制御性を向上させ、強制再生を応答性高く且つ高精度で実現することができる。
また、請求項9の内燃機関の排気浄化装置によれば、請求項8において、排気空燃比を理論空燃比または該理論空燃比近傍の空燃比に制御しながらスロットル弁を制御することによりフィルタを所定の高温に温度調整するので、排気中のNOx或いはHC、CO等の増加を抑制しつつ、吸入空気量とフィルタの温度との比例関係に基づき、排気温度ひいてはフィルタの温度を容易に制御することができる(図4参照)。
According to the exhaust gas purifying apparatus for an internal combustion engine of claim 8, the exhaust gas purifying unit in claim 1 is a filter for collecting particulate matter in the exhaust gas. The temperature controllability of the filter can be improved, and forced regeneration can be realized with high responsiveness and high accuracy.
According to the ninth aspect of the present invention, the filter is controlled by controlling the throttle valve while controlling the exhaust air-fuel ratio to the stoichiometric air-fuel ratio or an air-fuel ratio near the stoichiometric air-fuel ratio. Since the temperature is adjusted to a predetermined high temperature, it is possible to easily control the exhaust gas temperature and hence the filter temperature based on the proportional relationship between the intake air amount and the filter temperature while suppressing an increase in NOx or HC, CO, etc. in the exhaust gas. (See FIG. 4).

また、請求項10の内燃機関の排気浄化装置によれば、請求項8において、リーン空燃比側の空燃比は空気過剰率1.3〜1.5相当であるので、フィルタの強制再生中において、吸入空気量の増大に伴う排気温度の低下ひいてはフィルタの温度低下を極力防止しつつ酸素不足を解消でき、パティキュレート・マターの燃焼を良好に促進することができる。   Further, according to the exhaust gas purifying apparatus for an internal combustion engine of the tenth aspect, in the eighth aspect, the air-fuel ratio on the lean air-fuel ratio side corresponds to the excess air ratio of 1.3 to 1.5. In addition, it is possible to eliminate oxygen deficiency while minimizing a decrease in the exhaust gas temperature due to an increase in the intake air amount and a decrease in the temperature of the filter as much as possible, thereby favorably promoting the combustion of the particulate matter.

また、請求項11の内燃機関の排気浄化装置によれば、請求項1乃至10において、目標排出温度を所定の耐熱温度以下の範囲で設定するので、目標排出温度を所定の耐熱温度以下の範囲にクリップでき、排気浄化ユニット等の排気系部材の過熱による破損を防止しながら、排気浄化ユニットの温度制御性の向上を図ることができる。
また、請求項12の内燃機関の排気浄化装置によれば、請求項1において、排気系に特に熱容量の大きなターボチャージャを有する場合であっても、第2の温度センサにより排気浄化ユニットの温度を監視しながら、さらに第1の温度センサによりターボチャージャ上流の排気温度をも監視することにより、燃焼室から排出されターボチャージャに流入する排気の温度を過不足無く適正な温度に制御して排気浄化ユニットを所定の高温に制御することができる。これにより、ターボチャージャの存在に拘わらず、排気浄化ユニットの温度制御性を向上させ、排気浄化ユニットに吸蔵または捕集された有害成分の除去を応答性高く且つ高精度で実現することができる。
According to the exhaust gas purifying apparatus for an internal combustion engine of the eleventh aspect, since the target exhaust temperature is set in a range below the predetermined heat resistant temperature in the first to tenth aspects, the target exhaust temperature is set in the range below the predetermined heat resistant temperature. The temperature controllability of the exhaust gas purification unit can be improved while preventing the exhaust system members such as the exhaust gas purification unit from being damaged by overheating.
Further, according to the exhaust gas purification apparatus for an internal combustion engine of the twelfth aspect, even in the case of the first aspect, even if the exhaust system has a turbocharger having a particularly large heat capacity, the temperature of the exhaust gas purification unit is controlled by the second temperature sensor. While monitoring, the first temperature sensor also monitors the exhaust gas temperature upstream of the turbocharger, thereby controlling the temperature of the exhaust gas discharged from the combustion chamber and flowing into the turbocharger to an appropriate temperature without excess or shortage, thereby purifying the exhaust gas. The unit can be controlled at a predetermined high temperature. Thereby, regardless of the presence of the turbocharger, the temperature controllability of the exhaust gas purification unit can be improved, and the removal of the harmful components occluded or collected in the exhaust gas purification unit can be realized with high responsiveness and high accuracy.

また、請求項13の内燃機関の排気浄化装置によれば、請求項12おいて、目標排出温度をターボチャージャまたは排気浄化ユニットの耐熱温度以下の範囲で設定するので、目標排出温度を該耐熱温度以下の範囲にクリップでき、ターボチャージャや排気浄化ユニットの過熱による破損を防止しながら、排気浄化ユニットの温度制御性の向上を図ることができる。   According to the thirteenth aspect of the present invention, the target exhaust temperature is set in a range below the allowable temperature limit of the turbocharger or the exhaust purification unit. The temperature can be clipped within the following range, and the temperature controllability of the exhaust gas purification unit can be improved while preventing the turbocharger and the exhaust gas purification unit from being damaged by overheating.

また、請求項14の内燃機関の排気浄化装置によれば、請求項1または2において、EGR弁を開閉制御することにより排気浄化ユニットを所定の高温に温度調整するので、ポンピングロスの低減を図りながら、排気温度ひいては排気浄化ユニットの温度を効果的に上昇させることができる。
また、請求項15の内燃機関の排気浄化装置によれば、請求項14において、スロットル弁を所定量絞り側に制御し且つEGR弁を開閉制御して排気浄化ユニットを所定の高温に温度調整するので、ポンピングロスの低減を図りながら、排気温度ひいては排気浄化ユニットの温度をより一層効果的に上昇させることができる。
Further, according to the exhaust gas purifying apparatus for an internal combustion engine of claim 14, the exhaust gas purifying unit is controlled to open and close by adjusting the temperature of the exhaust gas purifying unit to a predetermined high temperature, thereby reducing pumping loss. However, it is possible to effectively increase the exhaust gas temperature and, consequently, the temperature of the exhaust gas purification unit.
According to a fifteenth aspect of the present invention, in the fourteenth aspect, the temperature of the exhaust purification unit is adjusted to a predetermined high temperature by controlling the throttle valve to the throttle side by a predetermined amount and controlling the opening and closing of the EGR valve. Therefore, it is possible to more effectively increase the exhaust gas temperature, and thus the temperature of the exhaust gas purification unit, while reducing the pumping loss.

以下、図面を参照して、本発明に係る内燃機関の排気浄化装置の一実施形態を説明する。
先ず、第1実施例について説明する。
図1を参照すると、本発明の第1実施例に係る内燃機関の排気浄化装置の概略構成図が示されており、以下同図に基づき説明する。
Hereinafter, an embodiment of an exhaust gas purifying apparatus for an internal combustion engine according to the present invention will be described with reference to the drawings.
First, a first embodiment will be described.
Referring to FIG. 1, there is shown a schematic configuration diagram of an exhaust gas purification apparatus for an internal combustion engine according to a first embodiment of the present invention, which will be described below with reference to FIG.

エンジン1としては、ここでは直列4気筒ディーゼルエンジン(以下、単にエンジンと記す)が採用される。
エンジン1の燃料供給系は例えばコモンレールシステムからなり、このシステムでは、各気筒毎にインジェクタ(燃料噴射ノズル)2が設けられており、これらのインジェクタ2はコモンレール(図示せず)に接続されている。そして、各インジェクタ2は、電子コントロールユニット(ECU)40に接続されており、ECU40からの燃料噴射指令に基づいて開閉弁し、コモンレール内の燃料を所望のタイミングで各燃焼室に高圧で噴射可能である。即ち、当該インジェクタ2は、主燃焼用の主噴射の他、初期噴射(パイロット噴射)、追加噴射や燃料噴射の休止等をも自在に実施可能である。なお、当該コモンレールシステムは公知であり、該コモンレールシステムの構成の詳細についてはここでは説明を省略する。
Here, an in-line four-cylinder diesel engine (hereinafter simply referred to as engine) is employed as the engine 1.
The fuel supply system of the engine 1 includes, for example, a common rail system. In this system, an injector (fuel injection nozzle) 2 is provided for each cylinder, and these injectors 2 are connected to a common rail (not shown). . Each injector 2 is connected to an electronic control unit (ECU) 40, and opens and closes valves based on a fuel injection command from the ECU 40, and can inject fuel in the common rail into each combustion chamber at a desired timing at a high pressure. It is. That is, the injector 2 is capable of freely performing initial injection (pilot injection), additional injection, suspension of fuel injection, and the like, in addition to main injection for main combustion. The common rail system is known, and the details of the configuration of the common rail system will not be described herein.

エンジン1の各気筒の燃焼室3に吸気弁を介して連通する吸気ポートには、吸気マニホールド4を介して吸気管6が接続されており、吸気管6にはターボチャージャ(過給機)8のポンプ8aを介してエアクリーナ9が設けられている。また、吸気管6のターボチャージャ8よりも吸気下流側には吸入空気量を調節する電磁式のスロットル弁5が接続されており、エアクリーナ9とターボチャージャ8との間には、吸入空気量を検出するエアフローセンサ(AFS)7が設けられている。   An intake port that communicates with a combustion chamber 3 of each cylinder of the engine 1 via an intake valve is connected to an intake pipe 6 via an intake manifold 4, and a turbocharger (supercharger) 8 is connected to the intake pipe 6. An air cleaner 9 is provided via a pump 8a. An electromagnetic throttle valve 5 for adjusting the amount of intake air is connected downstream of the turbocharger 8 of the intake pipe 6 with respect to the intake air, and an intake air amount is provided between the air cleaner 9 and the turbocharger 8. An air flow sensor (AFS) 7 for detecting is provided.

一方、エンジン1の各気筒の燃焼室3に排気弁を介して連通する排気ポートには、排気マニホールド10を介して排気管12が接続されており、排気管12にはターボチャージャ8のタービン8bが介装されている。
排気マニホールド10からはEGR通路14が延びており、該EGR通路14の終端は吸気マニホールド6に接続されている。そして、EGR通路14には、電磁式のEGR弁16が介装されている。
On the other hand, an exhaust port communicating with the combustion chamber 3 of each cylinder of the engine 1 via an exhaust valve is connected to an exhaust pipe 12 via an exhaust manifold 10. The exhaust pipe 12 is connected to a turbine 8 b of a turbocharger 8. Is interposed.
An EGR passage 14 extends from the exhaust manifold 10, and the end of the EGR passage 14 is connected to the intake manifold 6. The EGR passage 14 is provided with an electromagnetic EGR valve 16.

そして、排気管12には吸蔵型NOx触媒20が介装されている。吸蔵型NOx触媒20は、上述した如く排気空燃比(排気λ)がリーン空燃比寄りの酸化雰囲気においてNOxを一旦吸蔵させ、排気空燃比がリッチ空燃比寄りの主としてCOの存在する還元雰囲気においてNOxをN2(窒素)等に還元させる機能を持つものである。詳しくは、吸蔵型NOx触媒20は、貴金属として白金(Pt),ロジウム(Rh)等を有した触媒として構成されており、吸蔵材としてはバリウム(Ba)等のアルカリ金属、アルカリ土類金属が採用されている。なお、吸蔵型NOx触媒20は酸化機能或いは三元触媒機能を併せ有していてもよい。 A storage NOx catalyst 20 is interposed in the exhaust pipe 12. As described above, the storage NOx catalyst 20 temporarily stores NOx in an oxidizing atmosphere having an exhaust air-fuel ratio (exhaust λ) closer to a lean air-fuel ratio, and NOx in a reducing atmosphere mainly containing CO, which has an exhaust air-fuel ratio closer to a rich air-fuel ratio. Has a function of reducing to N 2 (nitrogen) or the like. More specifically, the storage NOx catalyst 20 is configured as a catalyst having platinum (Pt), rhodium (Rh) or the like as a noble metal, and an alkali metal such as barium (Ba) or an alkaline earth metal as a storage material. Has been adopted. Note that the storage NOx catalyst 20 may also have an oxidation function or a three-way catalyst function.

また、排気管12の燃焼室3寄りの部分、例えば排気マニホールド10或いはいずれかの気筒の排気ポートには、燃焼室3から排出されターボチャージャ8に流入する排気の温度を検出する温度センサ(第1の温度センサ)18が設けられている。さらに、排気管12の吸蔵型NOx触媒20には、吸蔵型NOx触媒20の入口温度を検出する温度センサ(第2の温度センサ)22が設けられており、吸蔵型NOx触媒20よりも排気上流側には、排気空燃比(排気λ)を検出する空燃比センサ(λセンサ)19が設けられている。なお、図1の構成では、温度センサ18は例えば排気ポートに設けられているが、これに限られるものではなく、例えば排気ポートの下流側且つターボチャージャ8の上流側の排気管12のいずれの部分に設けるようにしてもよい。   Further, a temperature sensor (a second sensor) that detects the temperature of exhaust gas discharged from the combustion chamber 3 and flowing into the turbocharger 8 is provided at a portion of the exhaust pipe 12 near the combustion chamber 3, for example, the exhaust port of the exhaust manifold 10 or any one of the cylinders. 1) is provided. Further, the storage NOx catalyst 20 of the exhaust pipe 12 is provided with a temperature sensor (second temperature sensor) 22 for detecting the inlet temperature of the storage NOx catalyst 20, and the exhaust gas is upstream of the storage NOx catalyst 20. On the side, an air-fuel ratio sensor (λ sensor) 19 for detecting an exhaust air-fuel ratio (exhaust λ) is provided. In the configuration of FIG. 1, the temperature sensor 18 is provided at, for example, the exhaust port, but is not limited to this. For example, any of the exhaust pipes 12 on the downstream side of the exhaust port and the upstream side of the turbocharger 8 is provided. You may make it provide in a part.

ECU40は、エンジン1を含めた本発明に係る内燃機関の排気浄化装置の総合的な制御を行うための制御装置である。
ECU40の入力側には、上記エアフローセンサ7、温度センサ18、22、空燃比センサ19の他、各種センサ類が接続されている。
一方、ECU40の出力側には、上記インジェクタ2、スロットル弁5、EGR弁16等の各種デバイスが接続されており、各種入力情報に基づき、空燃比(λ)、燃料噴射量、吸入空気量等が設定され、燃料噴射量の指令信号がインジェクタ2に供給され、吸入空気量の指令信号がスロットル弁5に供給され、その他の信号が各種デバイスに出力される。
The ECU 40 is a control device for performing comprehensive control of the exhaust gas purification device for an internal combustion engine including the engine 1 according to the present invention.
On the input side of the ECU 40, various sensors are connected in addition to the air flow sensor 7, the temperature sensors 18, 22 and the air-fuel ratio sensor 19.
On the other hand, various devices such as the injector 2, the throttle valve 5, the EGR valve 16 and the like are connected to the output side of the ECU 40, and based on various input information, an air-fuel ratio (λ), a fuel injection amount, an intake air amount, and the like. Is set, the fuel injection amount command signal is supplied to the injector 2, the intake air amount command signal is supplied to the throttle valve 5, and other signals are output to various devices.

ところで、上述したように、吸蔵型NOx触媒20にはNOxとともにSOx(有害成分)も吸蔵され(S被毒)、このSOxはNOxの浄化能力を低下させてしまうことから、吸蔵型NOx触媒20に吸蔵されるSOxの量が所定量に達したときには、当該SOxの放出除去、即ちSパージを実施するようにしている。ここに、吸蔵型NOx触媒20に吸蔵されるSOxの量については、例えばエンジン1の運転時間等に基づいて推定されるが、その他の方法で検出してもよい(硫黄成分堆積量検出手段、堆積量検出手段)。   By the way, as described above, the storage NOx catalyst 20 also stores SOx (harmful components) together with NOx (S poisoning), and this SOx lowers the NOx purification ability. When the amount of SOx stored in the fuel cell reaches a predetermined amount, release and removal of the SOx, that is, S purge is performed. Here, the amount of SOx stored in the storage NOx catalyst 20 is estimated based on, for example, the operation time of the engine 1 or the like, but may be detected by other methods (for example, sulfur component accumulation amount detection means, Accumulation amount detecting means).

Sパージを行うためには、上述したように吸蔵型NOx触媒20を還元雰囲気にするとともに所定の高温T1(例えば、650℃)に昇温させる必要があり、ここでは、吸蔵型NOx触媒20の温度制御性を向上させ、Sパージを応答性高く且つ高精度で実現するようにしている。
以下、このように構成された排気浄化装置の本発明の第1実施例に係るSパージ制御手法(硫黄成分放出手段、放出制御手段)について詳細に説明する。
In order to perform the S purge, it is necessary to set the storage NOx catalyst 20 in a reducing atmosphere and raise the temperature to a predetermined high temperature T1 (for example, 650 ° C.) as described above. The temperature controllability is improved, and the S purge is realized with high responsiveness and high accuracy.
Hereinafter, an S purge control method (sulfur component release means, release control means) according to the first embodiment of the present invention will be described in detail.

図2を参照すると、吸蔵型NOx触媒20を還元雰囲気にするためのλ制御のブロック図が示され、図3を参照すると、吸蔵型NOx触媒20を所定の高温T1に昇温させる温度制御のブロック図が示されており、以下これら図2及び図3に沿い説明する。
先ず、図2に示すように、吸蔵型NOx触媒20を還元雰囲気にすべく、ブロックB10では、排気空燃比(排気λ)の目標空燃比(目標λ)を設定する。ここでは、吸蔵型NOx触媒20の昇温時における排気中のNOx或いはHC、CO等の増加を防止するため、目標空燃比(目標λ)は、例えば理論空燃比(λ=1.0)とされる。なお、目標λは必ずしも理論空燃比(λ=1.0)でなくてもよく、排気中のNOx或いはHC、CO等が極端に増加しない範囲であれば理論空燃比近傍の空燃比であってもよい。
Referring to FIG. 2, there is shown a block diagram of λ control for bringing the storage NOx catalyst 20 into a reducing atmosphere. Referring to FIG. 3, temperature control for raising the temperature of the storage NOx catalyst 20 to a predetermined high temperature T1 is shown. A block diagram is shown and will be described below with reference to FIGS.
First, as shown in FIG. 2, in block B10, a target air-fuel ratio (target λ) of the exhaust air-fuel ratio (exhaust λ) is set in order to make the storage NOx catalyst 20 a reducing atmosphere. Here, the target air-fuel ratio (target λ) is, for example, a stoichiometric air-fuel ratio (λ = 1.0) in order to prevent an increase in NOx, HC, CO, and the like in the exhaust gas when the temperature of the storage NOx catalyst 20 is raised. Is done. It should be noted that the target λ may not necessarily be the stoichiometric air-fuel ratio (λ = 1.0), but may be an air-fuel ratio near the stoichiometric air-fuel ratio as long as NOx, HC, CO, etc. in the exhaust do not extremely increase. Is also good.

一方、ブロックB12では、エアフローセンサ7により吸入空気量を検出する。そして、ブロックB14において、実際の排気空燃比(実λ)が当該目標空燃比となるように吸入空気量に応じてインジェクタ2からの燃料の全噴射量を決定する。
また、ここでは、主噴射(メイン噴射)による燃焼の安定化を図り、ひいてはエンジントルクの安定化を図るため、主噴射に先だって少量の燃料をパイロット噴射しており、ブロックB16では、パイロット噴射量を設定する。これより、ブロックB18では、燃料の全噴射量とパイロット噴射量の差分が基本メイン噴射量として得られる。なお、パイロット噴射量と基本メイン噴射量との比率はエンジン1の運転状態に応じてエンジントルクの安定性を視ながら適宜設定されればよい。
On the other hand, in block B12, the air flow sensor 7 detects the amount of intake air. Then, in block B14, the total fuel injection amount from the injector 2 is determined according to the intake air amount so that the actual exhaust air-fuel ratio (actual λ) becomes the target air-fuel ratio.
Here, a small amount of fuel is pilot-injected prior to the main injection in order to stabilize the combustion by the main injection (main injection) and thereby stabilize the engine torque. Set. Thus, in block B18, the difference between the total fuel injection amount and the pilot injection amount is obtained as the basic main injection amount. Note that the ratio between the pilot injection amount and the basic main injection amount may be appropriately set according to the operating state of the engine 1 while observing the stability of the engine torque.

一方、ブロックB20では、λセンサ19によって実際の排気λ、即ち実λが検出されており、ブロックB22では、上記目標λと当該実λとの偏差が検出され、さらに当該偏差が燃料噴射量の補正量に変換される。そして、ブロックB24において、当該燃料噴射量の補正量が上記基本メイン噴射量に加味され、排気λを目標λとすべく実際に噴射すべきメイン噴射量が決定される。   On the other hand, in the block B20, the actual exhaust λ, that is, the actual λ, is detected by the λ sensor 19, and in the block B22, the deviation between the target λ and the actual λ is detected. It is converted into a correction amount. Then, in block B24, the correction amount of the fuel injection amount is added to the basic main injection amount, and the main injection amount to be actually injected so that the exhaust λ becomes the target λ is determined.

図3に示すように、ブロックB30では、運転者のアクセル操作量とエンジン回転速度Neとに基づき、スロットル弁5の基本スロットル位置が設定される(基本スロットル位置設定手段)。
また、ブロックB32では、吸蔵型NOx触媒20が目標触媒温度である所定の高温T1(例えば、650℃)となったときにエンジン1の燃焼室3から排出されターボチャージャ8に流入すべき排気の温度を予め実験等に基づき基本排出温度として設定しておく(基本排出温度設定手段)。
As shown in FIG. 3, in block B30, the basic throttle position of the throttle valve 5 is set based on the accelerator operation amount of the driver and the engine rotation speed Ne (basic throttle position setting means).
In block B32, the exhaust gas to be discharged from the combustion chamber 3 of the engine 1 and flow into the turbocharger 8 when the storage NOx catalyst 20 reaches a predetermined high temperature T1 (for example, 650 ° C.) which is a target catalyst temperature. The temperature is set in advance as a basic discharge temperature based on experiments or the like (basic discharge temperature setting means).

一方、ブロックB36では、温度センサ22により吸蔵型NOx触媒20の入口温度、即ち実触媒温度が検出され、ブロックB38では、当該実触媒温度とブロックB34における目標触媒温度、即ち所定の高温T1との偏差が検出される。そして、ブロックB40では、当該偏差が上記基本排出温度に加味されて燃焼室3から排出されターボチャージャ8に流入する排気の目標排出温度が設定される(目標排出温度設定手段)。   On the other hand, in block B36, the inlet temperature of the storage NOx catalyst 20, that is, the actual catalyst temperature is detected by the temperature sensor 22, and in block B38, the actual catalyst temperature and the target catalyst temperature in block B34, that is, the predetermined high temperature T1 are determined. A deviation is detected. Then, in block B40, a target discharge temperature of exhaust gas discharged from the combustion chamber 3 and flowing into the turbocharger 8 is set in consideration of the deviation in addition to the basic discharge temperature (target discharge temperature setting means).

なお、目標排出温度が高すぎるとターボチャージャ8や吸蔵型NOx触媒20、その他の触媒等の排気系部材が過熱するおそれがあることから、目標排出温度にはブロックB39においてこれら排気系部材の耐熱温度でクリップが掛けられる。つまり、目標排出温度はターボチャージャ8や吸蔵型NOx触媒20等の排気系部材の耐熱温度以下の範囲で設定される。これにより、ターボチャージャ8や吸蔵型NOx触媒20等の過熱による損傷が防止される。   If the target discharge temperature is too high, the exhaust system members such as the turbocharger 8, the storage NOx catalyst 20, and other catalysts may be overheated. Clips are applied at temperature. That is, the target exhaust temperature is set in a range not higher than the allowable temperature limit of the exhaust system members such as the turbocharger 8 and the storage NOx catalyst 20. Thus, damage due to overheating of the turbocharger 8, the storage NOx catalyst 20, and the like is prevented.

ブロックB42では、温度センサ18により燃焼室3から排出されターボチャージャ8に流入する排気の温度、即ち実排出温度が検出され、ブロックB44では、当該実排出温度と上記目標排出温度との偏差が検出され、さらに当該偏差がスロットル弁5のスロットル位置の補正量に変換される。
図4を参照すると、例えばディーゼルエンジンにおいて空燃比を一定(例えば、理論空燃比、即ちλ=1.0)の状況下でスロットル位置を変更して吸入空気量を変化させた場合の触媒温度が発明者の実験データとして示されているが、空燃比一定の下では吸入空気量と触媒温度とは比例関係にあることが確認されている。つまり、空燃比一定の下では、スロットル位置が増大側に変化すると、これに応じて排気温度が上昇して吸蔵型NOx触媒20が昇温するのである。
In block B42, the temperature of the exhaust gas discharged from the combustion chamber 3 and flowing into the turbocharger 8, that is, the actual exhaust temperature, is detected by the temperature sensor 18, and in block B44, the deviation between the actual exhaust temperature and the target exhaust temperature is detected. Then, the deviation is converted into a correction amount of the throttle position of the throttle valve 5.
Referring to FIG. 4, for example, in a diesel engine, when the air-fuel ratio is constant (for example, the stoichiometric air-fuel ratio, that is, λ = 1.0), the catalyst temperature when the throttle position is changed and the intake air amount is changed is shown. Although shown as experimental data of the inventor, it has been confirmed that the intake air amount and the catalyst temperature have a proportional relationship under a constant air-fuel ratio. In other words, when the air-fuel ratio is constant, when the throttle position changes to the increasing side, the exhaust gas temperature rises accordingly, and the temperature of the storage NOx catalyst 20 rises.

従って、ここでは、同図の比例関係に基づいて実排出温度と目標排出温度との偏差を吸入空気量、即ちスロットル位置の補正量に変換する。
このようにスロットル位置の補正量が求められると、ブロックB46において、当該補正量が上記基本スロットル位置に加味され、目標スロットル位置が設定される。
なお、目標スロットル位置が設定されると当該目標スロットル位置に向けてスロットル弁5が制御され、吸入空気量が変化するが、この吸入空気量の変化量は上記図2のλ制御に適宜フィードバックされ、排気λが常に目標λとなるように制御される。
Therefore, here, the deviation between the actual discharge temperature and the target discharge temperature is converted into an intake air amount, that is, a throttle position correction amount, based on the proportional relationship in FIG.
When the correction amount of the throttle position is obtained in this way, in block B46, the correction amount is added to the basic throttle position, and the target throttle position is set.
When the target throttle position is set, the throttle valve 5 is controlled toward the target throttle position, and the intake air amount changes. The change amount of the intake air amount is appropriately fed back to the λ control in FIG. , The exhaust λ is always controlled to the target λ.

λ制御と温度制御とは一体不可分にして繰り返し実施され、これにより、排気温度が目標排出温度に向けて上昇し、吸蔵型NOx触媒20の温度が良好に目標触媒温度である所定の高温T1に制御される。
吸蔵型NOx触媒20の温度が目標DPF温度である所定の高温T1に達すると、排気空燃比(排気λ)が理論空燃比(λ=1.0)に制御されているので、吸蔵型NOx触媒20に吸蔵されているSOxの放出、即ちSOxの還元除去が良好に促進される。
The λ control and the temperature control are repeatedly performed in an integral manner, whereby the exhaust gas temperature rises toward the target exhaust gas temperature, and the temperature of the storage NOx catalyst 20 reaches a predetermined high temperature T1, which is the target catalyst temperature. Controlled.
When the temperature of the storage NOx catalyst 20 reaches a predetermined high temperature T1, which is the target DPF temperature, the exhaust air-fuel ratio (exhaust λ) is controlled to the stoichiometric air-fuel ratio (λ = 1.0). The release of the SOx stored in the fuel cell 20, that is, the reduction and removal of the SOx, is favorably promoted.

これより、吸蔵型NOx触媒20に吸蔵されているSOxの除去が完了し、吸蔵型NOx触媒20のNOx吸蔵能力が良好に回復する。実際には、吸蔵型NOx触媒20の温度が所定の高温T1に達してからSOxの除去が完了するまでの時間が予め設定されており、Sパージは当該設定時間に亘り実施される。
このように、本発明の第1実施例に係るSパージ制御では、吸蔵型NOx触媒20が所定の高温T1となったときに燃焼室3から排出されターボチャージャ8に流入すべき排気の温度を基本排出温度として設定し、さらに、吸蔵型NOx触媒20に当該吸蔵型NOx触媒20の温度を検出する温度センサ22を設けるとともに排気マニホールド10或いは排気ポートに燃焼室3から排出されターボチャージャ8に流入する排気の温度を検出する温度センサ18を設け、目標触媒温度である所定の高温T1と温度センサ22により検出される温度との差を上記基本排出温度に加味して燃焼室3から排出されターボチャージャ8に流入する排気の目標排出温度を設定し、温度センサ18により検出される温度が当該目標排出温度になるよう温度制御を行うようにしている。
Thus, the removal of the SOx stored in the storage NOx catalyst 20 is completed, and the NOx storage capacity of the storage NOx catalyst 20 recovers favorably. Actually, the time from when the temperature of the storage NOx catalyst 20 reaches the predetermined high temperature T1 to when the removal of SOx is completed is set in advance, and the S purge is performed over the set time.
As described above, in the S purge control according to the first embodiment of the present invention, the temperature of the exhaust gas discharged from the combustion chamber 3 and flowing into the turbocharger 8 when the storage NOx catalyst 20 reaches the predetermined high temperature T1 is determined. The temperature is set as the basic exhaust temperature, and the storage NOx catalyst 20 is further provided with a temperature sensor 22 for detecting the temperature of the storage NOx catalyst 20, and is discharged from the combustion chamber 3 into the exhaust manifold 10 or the exhaust port and flows into the turbocharger 8. A temperature sensor 18 for detecting the temperature of the exhaust gas to be exhausted is provided. The difference between the predetermined high temperature T1 which is the target catalyst temperature and the temperature detected by the temperature sensor 22 is added to the above-mentioned basic exhaust temperature, and the turbo exhausted from the combustion chamber 3 A target discharge temperature of exhaust gas flowing into the charger 8 is set, and temperature control is performed so that the temperature detected by the temperature sensor 18 becomes the target discharge temperature. It is way.

これにより、本発明に係るSパージ制御では、特にターボチャージャ8の存在により排気通路の熱容量が大きい場合であっても、燃焼室3から排出されターボチャージャ8に流入する排気の温度を過不足無く適正な温度に良好に制御し、吸蔵型NOx触媒20を所定の高温T1に速やかに到達させるようにできる。また、λ制御と温度制御とが繰り返し実施されると吸蔵型NOx触媒20の温度が所定の高温T1に近づくことになるが、吸蔵型NOx触媒20の温度が所定の高温T1に近づけば目標排出温度が基本排出温度に近づくことになるため、最終的には燃焼室3から排出されターボチャージャ8に流入する排気の温度を良好に基本排出温度に向けて制御できることになり、吸蔵型NOx触媒の温度をハンチングなく所定の高温T1に良好に収束させることができる。従って、本発明に係るSパージ制御を用いることで、吸蔵型NOx触媒20の温度制御性を向上させ、Sパージを応答性高く且つ高精度で実現することができる。   Thus, in the S purge control according to the present invention, even if the heat capacity of the exhaust passage is large due to the presence of the turbocharger 8, the temperature of the exhaust gas discharged from the combustion chamber 3 and flowing into the turbocharger 8 can be adjusted to an appropriate level. It is possible to control the temperature of the storage NOx catalyst 20 to a predetermined high temperature T1 quickly by properly controlling the temperature to an appropriate temperature. If the λ control and the temperature control are repeatedly performed, the temperature of the storage NOx catalyst 20 approaches the predetermined high temperature T1, but if the temperature of the storage NOx catalyst 20 approaches the predetermined high temperature T1, the target emission is reduced. Since the temperature approaches the basic discharge temperature, the temperature of the exhaust gas finally discharged from the combustion chamber 3 and flowing into the turbocharger 8 can be favorably controlled toward the basic discharge temperature. The temperature can be favorably converged to the predetermined high temperature T1 without hunting. Therefore, by using the S purge control according to the present invention, the temperature controllability of the storage NOx catalyst 20 can be improved, and the S purge can be realized with high responsiveness and high accuracy.

また、スロットル弁5のスロットル位置を制御することによって吸蔵型NOx触媒20の温度を制御可能であるので、吸蔵型NOx触媒20の温度制御を容易に実施することができる。
ところで、図4には、インジェクタ2の燃料噴射時期を遅角側に変化させた場合のスモーク(黒煙)の発生度合いが発明者の実験データとして併せて示されているが、同図に示すように、空燃比一定の下では燃料噴射時期が遅角側であるほどスモークの発生が抑制されることが確認されている。
Further, since the temperature of the storage NOx catalyst 20 can be controlled by controlling the throttle position of the throttle valve 5, the temperature of the storage NOx catalyst 20 can be easily controlled.
Incidentally, FIG. 4 also shows the degree of generation of smoke (black smoke) when the fuel injection timing of the injector 2 is changed to the retard side as experimental data of the inventor. As described above, it has been confirmed that when the air-fuel ratio is constant, the more the fuel injection timing is on the retard side, the more the generation of smoke is suppressed.

従って、本発明に係るSパージ制御では、上記λ制御及び温度制御を実施するとともに燃料噴射時期を大きく遅角させるようにする。同図によれば、空燃比一定(例えば、理論空燃比、即ちλ=1.0)の下では、燃料噴射時期を例えば35°ATDCより遅角側に制御するのがよく、好ましくは例えば40°ATDCより遅角側に制御するのがよい。
これにより、ディーゼルエンジンでは排気空燃比を理論空燃比またはリッチ空燃比に制御しようとするとスモークを発生し易いのであるが、このようなスモークの発生を防止しながら、吸蔵型NOx触媒20の温度制御性の向上を図ることが可能である。
Therefore, in the S purge control according to the present invention, the λ control and the temperature control are performed, and the fuel injection timing is greatly retarded. According to the figure, when the air-fuel ratio is constant (for example, stoichiometric air-fuel ratio, that is, λ = 1.0), the fuel injection timing is preferably controlled to a retard side from 35 ° ATDC, for example, It is better to control to the retard side than ATDC.
Thus, in a diesel engine, when the exhaust air-fuel ratio is controlled to the stoichiometric air-fuel ratio or the rich air-fuel ratio, smoke is easily generated. However, while the generation of such smoke is prevented, the temperature control of the storage NOx catalyst 20 is performed. It is possible to improve the performance.

また、Sパージを実施する場合には、EGR弁16を全閉状態とするのがよい。これにより、高温の排気がEGR通路14を介して吸気系に流入することがなくなり、EGR弁16等の吸気系部材の過熱による損傷が防止される。また、これによってもスモークの発生が抑制される。
図5を参照すると、上記Sパージ制御を実施した場合の実験結果(エンジントルク、吸入空気量、実触媒温度、実排出温度、メイン噴射量、パイロット噴射量、排気λ、スモーク発生度合い)がタイムチャートで示されており、同図中には、併せて、吸蔵型NOx触媒20の温度を検出すべく温度センサ22だけを設けてハンチングなく制御した場合の実触媒温度及び実排出温度が破線で示され、追加噴射により触媒反応を利用して吸蔵型NOx触媒20の温度制御を実施した場合の実触媒温度及び実排出温度が一点鎖線で示されているが、本発明に係るSパージ制御を実施することにより、同図に示す如く、排気λを良好に一定に保持しつつ、エンジントルクの変動を殆ど生じることなくスモークの発生度合いを小さく抑えながら、温度センサ22だけを設けた場合(破線)や触媒反応を利用した場合(一点鎖線)に比べて、燃焼室3から排出されターボチャージャ8に流入する排気の温度、即ち排出温度を速やかに上昇させて吸蔵型NOx触媒20の温度、即ち触媒温度を速やかに所定の高温T1(例えば、650℃)まで上昇させることができ、また、排出温度を良好に基本排出温度に向けて制御して吸蔵型NOx触媒20の温度をハンチングなく所定の高温T1に良好に収束させることができる。
When performing the S purge, the EGR valve 16 is preferably set to a fully closed state. This prevents high-temperature exhaust gas from flowing into the intake system via the EGR passage 14, and prevents damage to the intake system members such as the EGR valve 16 due to overheating. This also suppresses the generation of smoke.
Referring to FIG. 5, the experimental results (engine torque, intake air amount, actual catalyst temperature, actual exhaust temperature, main injection amount, pilot injection amount, exhaust λ, degree of smoke generation) in the case where the above-mentioned S purge control is performed are time-dependent. Also shown in the chart, the actual catalyst temperature and the actual discharge temperature in the case where only the temperature sensor 22 is provided to detect the temperature of the storage type NOx catalyst 20 and control is performed without hunting are shown by broken lines in FIG. Although the actual catalyst temperature and the actual discharge temperature when the temperature control of the storage NOx catalyst 20 is performed by utilizing the catalytic reaction by the additional injection are shown by the dashed line, the S purge control according to the present invention is not performed. As shown in the figure, while maintaining the exhaust λ satisfactorily constant, the temperature sensor is controlled with a small degree of smoke generation with almost no fluctuation in engine torque. The temperature of the exhaust gas discharged from the combustion chamber 3 and flowing into the turbocharger 8, that is, the exhaust temperature is quickly increased and stored as compared with the case where only 2 is provided (broken line) or the case where the catalytic reaction is used (dashed line). The temperature of the type NOx catalyst 20, that is, the catalyst temperature can be quickly raised to a predetermined high temperature T1 (for example, 650 ° C.). The temperature of 20 can be favorably converged to a predetermined high temperature T1 without hunting.

なお、ここでは、排気の昇温からSパージが終了するまで目標λを理論空燃比(λ=1.0)としたが、吸蔵型NOx触媒20の温度が所定の高温T1に達するまで理論空燃比よりもリーン空燃比側とした後、目標λを理論空燃比(λ=1.0)に設定変更するようにしてもよい。
また、排気中のHC、CO等が極端に増加しない範囲において、目標λをSパージ制御の開始時点から理論空燃比(λ=1.0)よりもリッチ空燃比側に設定しておいてもよい。
Here, the target λ is set to the stoichiometric air-fuel ratio (λ = 1.0) from the time when the temperature of the exhaust gas rises until the end of the S purge. After setting the lean air-fuel ratio side to the fuel ratio, the target λ may be changed to the stoichiometric air-fuel ratio (λ = 1.0).
Further, in a range where HC, CO, etc. in the exhaust do not extremely increase, the target λ may be set to a rich air-fuel ratio side from the stoichiometric air-fuel ratio (λ = 1.0) from the start of the S purge control. Good.

以下、第1実施例の変形例について説明する。
上記第1実施例では、Sパージ実施の際に、目標λを例えば1.0に設定し、図3に示す温度制御のブロック図に沿って目標スロットル位置を制御するようにしたが、これに限定されるものではない。即ち、Sパージ実施の際に、吸入空気量を可変制御することなく、吸入空気量を一定の吸気量に減少させる吸気絞り手段(例えば、スロットル弁5を所定量絞り側に制御)を設け、図3のブロックB30及びブロックB46をそれぞれ基本パイロット噴射量、目標パイロット噴射量とし、燃料噴射量を制御することによって排気温度を所定の高温に温度調整してもよい。
Hereinafter, a modified example of the first embodiment will be described.
In the first embodiment, at the time of performing the S purge, the target λ is set to, for example, 1.0, and the target throttle position is controlled according to the block diagram of the temperature control shown in FIG. It is not limited. That is, at the time of performing the S purge, intake throttle means (for example, controlling the throttle valve 5 to a predetermined amount throttle side) for reducing the intake air amount to a constant intake amount without variably controlling the intake air amount is provided. The blocks B30 and B46 in FIG. 3 may be used as the basic pilot injection amount and the target pilot injection amount, respectively, and the exhaust gas temperature may be adjusted to a predetermined high temperature by controlling the fuel injection amount.

次に、第2実施例について説明する。
図6を参照すると、本発明の第2実施例に係る内燃機関の排気浄化装置の概略構成図が示されており、以下第2実施例について説明する。なお、図6においては、ターボチャージャ8が介装されていない点が上記図1と異なっているのみであり、その他の構成は図1と同一であり、またSパージ制御のブロック図についても図2、3と同一であるため、ここでは構成及びSパージ制御手法については説明を省略する。但し、ターボチャージャ8が介装されていないことに伴い、温度センサ18は排気マニホールド10或いは排気ポートに設けられており、図3のブロックB40では、燃焼室3から排出される排気の目標排出温度が設定され、ブロックB42では、燃焼室3から排出される排気の温度が温度センサ18により実排出温度として検出される。
Next, a second embodiment will be described.
Referring to FIG. 6, there is shown a schematic configuration diagram of an exhaust gas purifying apparatus for an internal combustion engine according to a second embodiment of the present invention, and the second embodiment will be described below. 6 differs from FIG. 1 only in that no turbocharger 8 is interposed, the other configuration is the same as FIG. 1, and a block diagram of the S purge control is also shown in FIG. Since these are the same as 2 and 3, description of the configuration and the S purge control method is omitted here. However, since the turbocharger 8 is not interposed, the temperature sensor 18 is provided in the exhaust manifold 10 or the exhaust port. In a block B40 in FIG. Is set, and in block B42, the temperature of the exhaust gas discharged from the combustion chamber 3 is detected by the temperature sensor 18 as the actual discharge temperature.

即ち、本発明の第2実施例に係るSパージ制御では、吸蔵型NOx触媒20が所定の高温T1となったときに燃焼室3から排出されるべき排気の温度を基本排出温度として設定し、さらに、吸蔵型NOx触媒20に当該吸蔵型NOx触媒20の温度を検出する温度センサ22を設けるとともに排気マニホールド10或いは排気ポートに燃焼室3から排出される排気の温度を検出する温度センサ18を設け、目標触媒温度である所定の高温T1と温度センサ22により検出される温度との差を上記基本排出温度に加味して燃焼室3から排出される排気の目標排出温度として設定し、温度センサ18により検出される温度が当該目標排出温度になるよう温度制御を行うようにしている。   That is, in the S purge control according to the second embodiment of the present invention, the temperature of the exhaust gas to be discharged from the combustion chamber 3 when the storage NOx catalyst 20 has reached the predetermined high temperature T1, is set as the basic discharge temperature, Further, the storage NOx catalyst 20 is provided with a temperature sensor 22 for detecting the temperature of the storage NOx catalyst 20, and the exhaust manifold 10 or an exhaust port is provided with a temperature sensor 18 for detecting the temperature of exhaust gas discharged from the combustion chamber 3. The temperature difference between the predetermined high temperature T1 as the target catalyst temperature and the temperature detected by the temperature sensor 22 is set as a target discharge temperature of the exhaust gas discharged from the combustion chamber 3 in consideration of the basic discharge temperature. Is controlled so that the temperature detected by the above becomes the target discharge temperature.

これにより、本発明の第2実施例に係るSパージ制御では、例えば排気管12が長く、排気の熱エネルギ消費による温度低下があるような場合であっても、燃焼室3から排出される排気の温度を過不足無く適正な温度に良好に制御し、吸蔵型NOx触媒20を所定の高温T1に速やかに到達させるようにでき、吸蔵型NOx触媒の温度をハンチングなく所定の高温T1に良好に収束させることができる。従って、吸蔵型NOx触媒20の温度制御性を向上させ、Sパージを応答性高く且つ高精度で実現することができる。   Thus, in the S purge control according to the second embodiment of the present invention, even if the exhaust pipe 12 is long and the temperature is reduced due to the exhaust heat energy consumption, the exhaust gas discharged from the combustion chamber 3 is reduced. The temperature of the NOx storage catalyst can be properly controlled to an appropriate temperature without excess or shortage so that the storage NOx catalyst 20 can quickly reach the predetermined high temperature T1, and the temperature of the storage NOx catalyst can be satisfactorily maintained at the predetermined high temperature T1 without hunting. It can be converged. Therefore, the temperature controllability of the storage NOx catalyst 20 can be improved, and S purge can be realized with high responsiveness and high accuracy.

次に、第3実施例について説明する。
図7を参照すると、本発明の第3実施例に係る内燃機関の排気浄化装置の概略構成図が示されており、以下第3実施例について説明する。なお、図7においては、吸蔵型NOx触媒20の上流側に酸化触媒24を設けている点が上記図6と異なっているのみであり、その他の構成は図6と同一であり、またSパージ制御のブロック図についても図2、3と同一であるため、ここでは構成及びSパージ制御手法については説明を省略する。
Next, a third embodiment will be described.
Referring to FIG. 7, there is shown a schematic configuration diagram of an exhaust gas purifying apparatus for an internal combustion engine according to a third embodiment of the present invention, and the third embodiment will be described below. 7 is different from FIG. 6 only in that an oxidation catalyst 24 is provided on the upstream side of the storage NOx catalyst 20. Other configurations are the same as those in FIG. Since the control block diagram is the same as in FIGS. 2 and 3, the description of the configuration and the S purge control method is omitted here.

即ち、本発明の第3実施例に係るSパージ制御では、上記第2実施例の場合と同様に、吸蔵型NOx触媒20が所定の高温T1となったときに燃焼室3から排出されるべき排気の温度を基本排出温度として設定し、さらに、吸蔵型NOx触媒20に当該吸蔵型NOx触媒20の温度を検出する温度センサ22を設けるとともに排気マニホールド10或いは排気ポートに燃焼室3から排出される排気の温度を検出する温度センサ18を設け、目標触媒温度である所定の高温T1と温度センサ22により検出される温度との差を上記基本排出温度に加味して燃焼室3から排出される排気の目標排出温度として設定し、温度センサ18により検出される温度が当該目標排出温度になるよう温度制御を行うようにしている。   That is, in the S purge control according to the third embodiment of the present invention, similarly to the case of the second embodiment, when the storage type NOx catalyst 20 has reached the predetermined high temperature T1, it should be discharged from the combustion chamber 3. The temperature of the exhaust gas is set as a basic exhaust temperature. Further, the storage NOx catalyst 20 is provided with a temperature sensor 22 for detecting the temperature of the storage NOx catalyst 20, and the exhaust gas is discharged from the combustion chamber 3 to the exhaust manifold 10 or the exhaust port. A temperature sensor 18 for detecting the temperature of the exhaust gas is provided. And the temperature is controlled so that the temperature detected by the temperature sensor 18 becomes the target discharge temperature.

これにより、本発明の第3実施例に係るSパージ制御では、特に酸化触媒24の存在により排気通路の熱容量が大きい場合であっても、燃焼室3から排出される排気の温度を過不足無く適正な温度に良好に制御し、吸蔵型NOx触媒20を所定の高温T1に速やかに到達させるようにでき、吸蔵型NOx触媒の温度をハンチングなく所定の高温T1に良好に収束させることができる。従って、吸蔵型NOx触媒20の温度制御性を向上させ、Sパージを応答性高く且つ高精度で実現することができる。   Thus, in the S purge control according to the third embodiment of the present invention, even if the heat capacity of the exhaust passage is large due to the presence of the oxidation catalyst 24, the temperature of the exhaust gas discharged from the combustion chamber 3 is not excessively and sufficiently. It is possible to control the temperature of the storage NOx catalyst 20 to the predetermined high temperature T1 promptly by properly controlling the temperature to an appropriate temperature, and to converge the temperature of the storage NOx catalyst to the predetermined high temperature T1 without hunting. Therefore, the temperature controllability of the storage NOx catalyst 20 can be improved, and S purge can be realized with high responsiveness and high accuracy.

なお、ここでは吸蔵型NOx触媒20の上流側に酸化触媒24を設けるようにしたが、酸化触媒24に代えて後述するようなパティキュレート・フィルタを配置した場合においても上記同様の作用効果が得られるものである。
次に、第4実施例について説明する。
第4実施例では、図1に示す第1実施例の吸蔵型NOx触媒20に代えて、図8に示すようなディーゼル・パティキュレート・フィルタ(以下、DPFと略す)20’を用いる点が上記第1実施例と異なっており、以下、第1実施例との共通部分については説明を省略し、異なる部分についてのみ説明する。
Here, the oxidation catalyst 24 is provided on the upstream side of the storage type NOx catalyst 20. However, the same operation and effect as described above can be obtained even when a particulate filter as described later is arranged in place of the oxidation catalyst 24. It is what is done.
Next, a fourth embodiment will be described.
The fourth embodiment is different from the first embodiment shown in FIG. 1 in that a diesel particulate filter (hereinafter abbreviated as DPF) 20 'as shown in FIG. 8 is used in place of the storage NOx catalyst 20 of the first embodiment. The third embodiment is different from the first embodiment. Hereinafter, the description of the common parts with the first embodiment will be omitted, and only the different parts will be described.

上述したように、排気中にはパティキュレート・マター(有害成分、以下、PMと略す)を有害成分として含んでおり、このようなPMをDPF20’によって捕集するようにしている。そして、DPF20’は、PMの堆積によって徐々に排圧が上昇して排気抵抗が増大してしまい、ひいては燃費が悪化することから、PMの堆積量が所定量に達したときには、堆積したPMを燃焼除去し、DPF20’を強制的に再生(DPF強制再生)するようにしている。   As described above, the exhaust contains particulate matter (harmful component, hereinafter abbreviated as PM) as a harmful component, and such PM is trapped by the DPF 20 '. Then, the DPF 20 ′ gradually increases the exhaust pressure due to the deposition of PM and increases the exhaust resistance, which in turn deteriorates fuel efficiency. Therefore, when the deposition amount of PM reaches a predetermined amount, the DPF 20 ′ removes the deposited PM. The combustion is removed and the DPF 20 'is forcibly regenerated (DPF forced regeneration).

上記SOxの量の場合と同様に、PMの堆積量については、例えばエンジン1の運転時間等に基づいて推定されるが、その他の方法(DPF20’の前後差圧)で検出してもよい(パティキュレート・マター堆積量検出手段、堆積量検出手段)。
DPF強制再生を行うためには、上述したようにDPF20’を所定の高温T1’(例えば、650〜700℃)に昇温させる必要があり、ここでは、DPF20’の温度制御性を向上させ、DPF強制再生を応答性高く且つ高精度で実現するようにしている。
As in the case of the SOx amount, the PM accumulation amount is estimated based on, for example, the operation time of the engine 1 or the like, but may be detected by another method (differential pressure across the DPF 20 ′) ( Particulate matter deposited amount detecting means, deposited amount detecting means).
In order to perform DPF forced regeneration, it is necessary to raise the temperature of the DPF 20 'to a predetermined high temperature T1' (for example, 650 to 700 ° C) as described above. Here, the temperature controllability of the DPF 20 'is improved. The DPF forced regeneration is realized with high responsiveness and high accuracy.

以下、このように構成された排気浄化装置の本発明の第4実施例に係るDPF強制再生制御手法(強制再生手段、放出制御手段)について詳細に説明する。
第4実施例では、所定の高温T1’に達するまでは、λ制御については上記Sパージの場合と同様に図2のブロック図が適用され、温度制御については図3のブロック図に代えて図9のブロック図が適用される。
Hereinafter, the DPF forced regeneration control method (forcible regeneration means, release control means) according to the fourth embodiment of the present invention of the exhaust gas purification apparatus thus configured will be described in detail.
In the fourth embodiment, the block diagram of FIG. 2 is applied to the λ control until the predetermined high temperature T 1 ′ is reached, and the temperature control is replaced with the block diagram of FIG. 9 applies.

図2に示すように、ブロックB10では、排気空燃比(排気λ)の目標空燃比(目標λ)を設定する。ここでは、DPF20’の昇温時における排気中のNOx或いはHC、CO等の増加を防止するため、目標空燃比(目標λ)は、例えば理論空燃比(λ=1.0)とされる。なお、目標λは必ずしも理論空燃比(λ=1.0)でなくてもよく、排気中のNOx或いはHC、CO等が極端に増加しない範囲であれば理論空燃比近傍の空燃比、即ち、リッチ側空燃比であってもよく、リーン側空燃比であってもかまわない。以降、ブロックB12〜B22を経て、ブロックB24において排気λを目標λとすべく実際に噴射すべきメイン噴射量が決定されるが、ブロックB12〜B24については上述した通りであり、説明を省略する。   As shown in FIG. 2, in block B10, a target air-fuel ratio (target λ) of the exhaust air-fuel ratio (exhaust λ) is set. Here, the target air-fuel ratio (target λ) is set to, for example, a stoichiometric air-fuel ratio (λ = 1.0) in order to prevent an increase in NOx, HC, CO, and the like in the exhaust gas when the temperature of the DPF 20 ′ rises. Note that the target λ does not necessarily have to be the stoichiometric air-fuel ratio (λ = 1.0), and the air-fuel ratio in the vicinity of the stoichiometric air-fuel ratio, that is, as long as NOx, HC, CO, and the like in the exhaust do not extremely increase. The air-fuel ratio on the rich side may be used, or the air-fuel ratio on the lean side may be used. Thereafter, through blocks B12 to B22, the main injection amount to be actually injected is determined in block B24 so that the exhaust λ becomes the target λ. However, blocks B12 to B24 are as described above, and description thereof will be omitted. .

図9に示すように、ブロックB30では、スロットル弁5の基本スロットル位置が設定される(基本スロットル位置設定手段)。また、ブロックB32では、DPF20’が目標触媒温度である所定の高温T1’(例えば、650〜700℃)となったときにエンジン1の燃焼室3から排出されターボチャージャ8に流入すべき排気の温度を基本排出温度として設定しておく(基本排出温度設定手段)。   As shown in FIG. 9, in block B30, a basic throttle position of the throttle valve 5 is set (basic throttle position setting means). In block B32, when the DPF 20 'reaches a predetermined high temperature T1' (for example, 650 to 700 ° C.) which is the target catalyst temperature, the exhaust gas to be discharged from the combustion chamber 3 of the engine 1 and flow into the turbocharger 8 The temperature is set as a basic discharge temperature (basic discharge temperature setting means).

一方、ブロックB36’では、温度センサ22によりDPF20’の入口温度、即ち実DPF温度を検出し、ブロックB38では、当該実DPF温度とブロックB34’における目標DPF温度、即ち所定の高温T1’との偏差が検出される。そして、ブロックB40では、当該偏差が上記基本排出温度に加味されて燃焼室3から排出されターボチャージャ8に流入する排気の目標排出温度が設定される(目標排出温度設定手段)。なお、上記同様、目標排出温度にはブロックB39において排気系部材の耐熱温度でクリップが掛けられる。   On the other hand, in block B36 ', the inlet temperature of the DPF 20', that is, the actual DPF temperature, is detected by the temperature sensor 22, and in block B38, the actual DPF temperature and the target DPF temperature in the block B34 ', that is, the predetermined high temperature T1'. A deviation is detected. Then, in block B40, a target discharge temperature of exhaust gas discharged from the combustion chamber 3 and flowing into the turbocharger 8 is set in consideration of the deviation in addition to the basic discharge temperature (target discharge temperature setting means). As described above, the target discharge temperature is clipped at block B39 at the heat-resistant temperature of the exhaust system member.

ブロックB42では、温度センサ18により燃焼室3から排出されターボチャージャ8に流入する実排出温度が検出され、ブロックB44では、当該実排出温度と上記目標排出温度との偏差が検出され、さらに当該偏差が図4の比例関係に基づいてスロットル弁5のスロットル位置の補正量に変換される。そして、ブロックB46において、当該補正量が上記基本スロットル位置に加味され、目標スロットル位置が設定される。   In block B42, the actual exhaust temperature exhausted from the combustion chamber 3 and flowing into the turbocharger 8 is detected by the temperature sensor 18, and in block B44, the deviation between the actual exhaust temperature and the target exhaust temperature is detected, and the deviation is further detected. Is converted into a correction amount of the throttle position of the throttle valve 5 based on the proportional relationship in FIG. Then, in block B46, the correction amount is added to the basic throttle position, and a target throttle position is set.

なお、この場合にも、吸入空気量の変化量は上記図2のλ制御に適宜フィードバックされ、排気λが常に目標λとなるように制御される。これにより、排気温度が目標排出温度に向けて上昇し、DPF20’の温度が良好に目標DPF温度である所定の高温T1’に制御される。
DPF20’の温度が目標DPF温度である所定の高温T1’に達した後、所定時間経過すると、目標λが理論空燃比(λ=1.0)よりもリーン空燃比側(例えば、1.3<λ≦1.5)に設定変更される。このように目標λをリーン空燃比側(例えば、1.3<λ≦1.5)に設定変更すると、吸入空気量の増大に伴う排気温度の低下、即ちDPF20’の温度低下を極力防止しつつ酸素不足を解消でき、PMの燃焼が良好に促進される。
Also in this case, the amount of change in the intake air amount is appropriately fed back to the λ control in FIG. 2 described above, and the exhaust λ is controlled to always be the target λ. As a result, the exhaust gas temperature rises toward the target exhaust temperature, and the temperature of the DPF 20 'is controlled to a predetermined high temperature T1' which is the target DPF temperature.
When a predetermined time elapses after the temperature of the DPF 20 'has reached a predetermined high temperature T1', which is the target DPF temperature, the target λ is closer to the lean air-fuel ratio than the stoichiometric air-fuel ratio (λ = 1.0) (for example, 1.3). <Λ ≦ 1.5). When the target λ is changed to the lean air-fuel ratio side (for example, 1.3 <λ ≦ 1.5), a decrease in the exhaust gas temperature due to an increase in the intake air amount, that is, a decrease in the temperature of the DPF 20 ′ is prevented as much as possible. In addition, oxygen deficiency can be eliminated while PM combustion is favorably promoted.

これより、DPF20’に捕集されているPMの燃焼が完了し、DPF20’に捕集されたPMが除去されてDPF20’が良好に再生する。実際には、DPF20’の温度が所定の高温T1’に達した後のPMの燃焼完了の判断は、DPF20’の前後差圧やDPF20’の下流側に別途設けた温度センサからの情報により行われる。なお、DPF20’に捕集されたPM堆積量及び再生時の設定温度に応じてPMの燃焼が完了するまでの時間を予め設定し、DPF強制再生制御を当該設定時間に亘り実施してもよい。   Thus, the combustion of the PM collected by the DPF 20 'is completed, the PM collected by the DPF 20' is removed, and the DPF 20 'is properly regenerated. In practice, the determination of the completion of PM combustion after the temperature of the DPF 20 'has reached the predetermined high temperature T1' is made based on the pressure difference across the DPF 20 'and information from a temperature sensor separately provided downstream of the DPF 20'. Is In addition, the time until the combustion of PM is completed may be set in advance according to the amount of accumulated PM collected by the DPF 20 ′ and the set temperature at the time of regeneration, and the DPF forced regeneration control may be performed over the set time. .

このように、本発明の第4実施例に係るDPF強制再生制御では、DPF20’が所定の高温T1’となったときに燃焼室3から排出されターボチャージャ8に流入すべき排気の温度を基本排出温度として設定し、さらに、DPF20’に当該DPF20’の温度を検出する温度センサ22を設けるとともに排気マニホールド10或いは排気ポートに燃焼室3から排出されターボチャージャ8に流入する排気の温度を検出する温度センサ18を設け、目標DPF温度である所定の高温T1’と温度センサ22により検出される温度との差を上記基本排出温度に加味して燃焼室3から排出されターボチャージャ8に流入する排気の目標排出温度を設定し、温度センサ18により検出される温度が当該目標排出温度になるよう温度制御を行うようにしている。   As described above, in the DPF forced regeneration control according to the fourth embodiment of the present invention, when the DPF 20 'has reached the predetermined high temperature T1', the temperature of the exhaust gas discharged from the combustion chamber 3 and flowing into the turbocharger 8 is basically determined. The temperature is set as the exhaust temperature, and a temperature sensor 22 for detecting the temperature of the DPF 20 ′ is provided in the DPF 20 ′, and the temperature of the exhaust gas discharged from the combustion chamber 3 and flowing into the turbocharger 8 is detected in the exhaust manifold 10 or the exhaust port. A temperature sensor 18 is provided, and the exhaust gas discharged from the combustion chamber 3 and flows into the turbocharger 8 in consideration of the difference between the predetermined high temperature T1 'as the target DPF temperature and the temperature detected by the temperature sensor 22 in addition to the basic discharge temperature. Is set, and the temperature is controlled so that the temperature detected by the temperature sensor 18 becomes the target discharge temperature. To have.

これにより、本発明に係るDPF強制再生制御では、特にターボチャージャ8の存在により排気通路の熱容量が大きい場合であっても、燃焼室3から排出されターボチャージャ8に流入する排気の温度を過不足無く適正な温度に良好に制御し、DPF20’を所定の高温T1’に速やかに到達させるようにできる。また、λ制御と温度制御とが繰り返し実施されるとDPF20’の温度が所定の高温T1’に近づくことになるが、DPF20’の温度が所定の高温T1’に近づけば目標排出温度が基本排出温度に近づくことになるため、最終的には燃焼室3から排出されターボチャージャ8に流入する排気の温度を良好に基本排出温度に向けて制御できることになり、DPF20’の温度をハンチングなく所定の高温T1’に良好に収束させることができる。従って、本発明に係るDPF強制再生制御を用いることで、DPF20’の温度制御性を向上させ、DPF強制再生を応答性高く且つ高精度で実現することができる。   As a result, in the DPF forced regeneration control according to the present invention, the temperature of exhaust gas discharged from the combustion chamber 3 and flowing into the turbocharger 8 is excessively or insufficiently increased even when the heat capacity of the exhaust passage is large due to the presence of the turbocharger 8. Therefore, the temperature of the DPF 20 'can be quickly controlled to a predetermined high temperature T1'. When the λ control and the temperature control are repeatedly performed, the temperature of the DPF 20 ′ approaches the predetermined high temperature T1 ′. However, when the temperature of the DPF 20 ′ approaches the predetermined high temperature T1 ′, the target discharge temperature becomes the basic discharge temperature. Since the temperature approaches the temperature, the temperature of the exhaust gas finally discharged from the combustion chamber 3 and flowing into the turbocharger 8 can be favorably controlled toward the basic discharge temperature, and the temperature of the DPF 20 'can be controlled to a predetermined value without hunting. It is possible to favorably converge on the high temperature T1 '. Therefore, by using the DPF forced regeneration control according to the present invention, the temperature controllability of the DPF 20 'can be improved, and the DPF forced regeneration can be realized with high responsiveness and high accuracy.

また、スロットル弁5のスロットル位置を制御することによってDPF20’の温度を制御可能であるので、DPF20’の温度制御を容易に実施することができる。
また、DPF強制再生制御においても、図4に基づき、上記λ制御及び温度制御を実施するとともに燃料噴射時期を例えば35°ATDCより遅角側、好ましくは例えば40°ATDCより遅角側に制御するのがよい。これにより、スモークの発生を防止しながら、DPF20’の温度制御性の向上を図ることが可能である。
Further, since the temperature of the DPF 20 'can be controlled by controlling the throttle position of the throttle valve 5, the temperature of the DPF 20' can be easily controlled.
Also in the DPF forced regeneration control, based on FIG. 4, the λ control and the temperature control are performed, and the fuel injection timing is controlled, for example, to the retard side from 35 ° ATDC, preferably, to the retard side from 40 ° ATDC, for example. Is good. Thereby, it is possible to improve the temperature controllability of the DPF 20 ′ while preventing the generation of smoke.

また、この場合にもEGR弁16を全閉状態とするのがよい。これにより、EGR弁16等の吸気系部材の過熱による損傷が防止され、スモークの発生がさらに抑制される。
図10を参照すると、上記DPF強制再生制御を実施した場合の実験結果(吸入空気量、実DPF温度、実排出温度、メイン噴射量、パイロット噴射量、排気λ)が図5と同様にタイムチャートで示されており、同図中には、併せて、DPF20’の温度を検出すべく温度センサ22だけを設けてハンチングなく制御した場合の実DPF温度及び実排出温度が破線で示され、追加噴射により触媒反応を利用してDPF20’の温度制御を実施した場合の実DPF温度及び実排出温度が一点鎖線で示されているが、本発明に係るDPF強制再生制御を実施することにより、同図に示す如く、排気λを良好に一定に保持しつつ、温度センサ22だけを設けた場合(破線)や触媒反応を利用した場合(一点鎖線)に比べて、燃焼室3から排出されターボチャージャ8に流入する排気の温度、即ち排出温度を速やかに上昇させてDPF20’の温度、即ちDPF温度を速やかに所定の高温T1’(例えば、650〜700℃)まで上昇させることができ、また、排出温度を良好に基本排出温度に向けて制御してDPF20’の温度をハンチングなく所定の高温T1’に良好に収束させることができる。
Also in this case, it is preferable that the EGR valve 16 be fully closed. This prevents damage to the intake system members such as the EGR valve 16 due to overheating, and further suppresses the generation of smoke.
Referring to FIG. 10, the experimental results (the intake air amount, the actual DPF temperature, the actual exhaust temperature, the main injection amount, the pilot injection amount, and the exhaust λ) when the DPF forced regeneration control is performed are time charts as in FIG. In the same drawing, the actual DPF temperature and the actual discharge temperature when only the temperature sensor 22 is provided to detect the temperature of the DPF 20 ′ and control is performed without hunting are indicated by broken lines, and are added. The actual DPF temperature and the actual discharge temperature in the case where the temperature control of the DPF 20 ′ is performed by utilizing the catalytic reaction by injection are indicated by dashed lines, but the same is achieved by performing the DPF forced regeneration control according to the present invention. As shown in the figure, compared with the case where only the temperature sensor 22 is provided (dashed line) or the case where a catalytic reaction is utilized (dashed line), the turbo exhausted from the combustion chamber 3 while maintaining the exhaust gas λ in a good and constant state. The temperature of the exhaust gas flowing into the charger 8, that is, the exhaust temperature, can be quickly raised to raise the temperature of the DPF 20 ′, that is, the DPF temperature, to a predetermined high temperature T 1 ′ (for example, 650 to 700 ° C.). The temperature of the DPF 20 'can be satisfactorily converged to a predetermined high temperature T1' without hunting by properly controlling the discharge temperature toward the basic discharge temperature.

以下、第4実施例の変形例について説明する。
上記第4実施例では、DPF20’の強制再生制御実施の際に、目標λを例えば1.0に設定し、図9に示す温度制御のブロック図に沿って目標スロットル位置を制御するようにしたが、これに限定されるものではない。即ち、DPF20’の強制再生制御実施の際に、吸入空気量を可変制御することなく、吸入空気量を一定の吸気量に減少させる吸気絞り手段(例えば、スロットル弁5を所定量絞り側に制御)を設け、図9のブロックB30及びブロックB46をそれぞれ基本パイロット噴射量、目標パイロット噴射量とし、燃料噴射量を制御することによって排気温度を所定の高温に温度調整してもよい。
Hereinafter, a modified example of the fourth embodiment will be described.
In the fourth embodiment, when the forced regeneration control of the DPF 20 'is performed, the target λ is set to, for example, 1.0, and the target throttle position is controlled according to the temperature control block diagram shown in FIG. However, the present invention is not limited to this. That is, when the forced regeneration control of the DPF 20 'is performed, intake throttle means for reducing the intake air amount to a constant intake amount without variably controlling the intake air amount (for example, controlling the throttle valve 5 to a predetermined amount to the throttle side). ), The block B30 and the block B46 in FIG. 9 may be used as the basic pilot injection amount and the target pilot injection amount, respectively, and the exhaust gas temperature may be adjusted to a predetermined high temperature by controlling the fuel injection amount.

さらに、上記第4実施例では、DPF20’の強制再生制御実施の際に、目標λを例えば1.0に設定し、且つEGR弁16を全閉状態として目標スロットル位置を制御するようにしたが、これに限定されるものではない。即ち、DPF20’の強制再生制御実施の際に、吸入空気量を可変制御することなく、吸入空気量を一定の吸気量に減少させる吸気絞り手段(例えば、スロットル弁5を所定量絞り側に制御)を設け、EGR弁16を開閉制御することによって排気温度を所定の高温に温度調整してもよい。なお、EGR弁16を開閉制御する場合、吸気絞り手段を設けることなく、EGR系に損傷のない範囲でEGR弁16のみを開閉制御することによって排気温度を所定の高温に温度調整してもよい。このようにすれば、ポンピングロスの低減が図られ、排気温度ひいてはDPF20’の温度が効果的に上昇する。   Further, in the fourth embodiment, when the forced regeneration control of the DPF 20 'is performed, the target λ is set to, for example, 1.0, and the EGR valve 16 is fully closed to control the target throttle position. However, the present invention is not limited to this. That is, when the forced regeneration control of the DPF 20 'is performed, intake throttle means for reducing the intake air amount to a constant intake amount without variably controlling the intake air amount (for example, controlling the throttle valve 5 to a predetermined amount to the throttle side). The exhaust gas temperature may be adjusted to a predetermined high temperature by controlling the opening and closing of the EGR valve 16. When the opening and closing control of the EGR valve 16 is performed, the exhaust gas temperature may be adjusted to a predetermined high temperature by controlling the opening and closing of only the EGR valve 16 within a range where the EGR system is not damaged without providing the intake throttle means. . In this way, the pumping loss can be reduced, and the exhaust gas temperature and thus the temperature of the DPF 20 'can be effectively increased.

次に、第5実施例について説明する。
第5実施例では、図示しないが、上記第4実施例と同様、図6に示す第2実施例の吸蔵型NOx触媒20に代えて上記図8に示すDPF20’を用いる点が上記第2実施例と異なっており、また、ターボチャージャ8が介装されていない点が上記第4実施例と異なっている。
Next, a fifth embodiment will be described.
Although not shown in the fifth embodiment, the second embodiment is different from the fourth embodiment in that the storage type NOx catalyst 20 of the second embodiment shown in FIG. 6 is replaced with the DPF 20 'shown in FIG. It differs from the fourth embodiment in that the turbocharger 8 is not interposed.

当該第5実施例に係るDPF強制再生制御では、例えば排気管12が長く、排気の熱エネルギ消費による温度低下があるような場合であっても、燃焼室3から排出される排気の温度を過不足無く適正な温度に良好に制御し、DPF20’を所定の高温T1’に速やかに到達させるようにでき、DPF20’の温度をハンチングなく所定の高温T1’に良好に収束させることができる。従って、DPF20’の温度制御性を向上させ、DPF強制再生を応答性高く且つ高精度で実現することができる。   In the DPF forced regeneration control according to the fifth embodiment, the temperature of the exhaust gas discharged from the combustion chamber 3 exceeds the temperature even if the exhaust pipe 12 is long and there is a temperature decrease due to the exhaust heat energy consumption. It is possible to control the temperature of the DPF 20 'to the predetermined high temperature T1' quickly without any shortcomings, and to converge the temperature of the DPF 20 'to the predetermined high temperature T1' without hunting. Accordingly, the temperature controllability of the DPF 20 'can be improved, and the DPF forced regeneration can be realized with high responsiveness and high accuracy.

次に、第6実施例について説明する。
第6実施例では、やはり図示しないが、上記第4、5実施例と同様、図7に示す第3実施例の吸蔵型NOx触媒20に代えて上記図8に示すDPF20’を用いる点が上記第3実施例と異なっており、また、DPF20’の上流側に酸化触媒24を設けている点が上記第5実施例と異なっている。
Next, a sixth embodiment will be described.
Although not shown in the sixth embodiment, similar to the fourth and fifth embodiments, the point that the storage type NOx catalyst 20 of the third embodiment shown in FIG. 7 is replaced with the DPF 20 ′ shown in FIG. The fifth embodiment is different from the fifth embodiment in that an oxidation catalyst 24 is provided upstream of the DPF 20 '.

当該第6実施例に係るDPF強制再生制御では、特に酸化触媒24の存在により排気通路の熱容量が大きい場合であっても、燃焼室3から排出される排気の温度を過不足無く適正な温度に良好に制御し、DPF20’を所定の高温T1’に速やかに到達させるようにでき、DPF20’の温度をハンチングなく所定の高温T1’に良好に収束させることができる。従って、DPF20’の温度制御性を向上させ、DPF強制再生を応答性高く且つ高精度で実現することができる。   In the DPF forced regeneration control according to the sixth embodiment, even when the heat capacity of the exhaust passage is large due to the presence of the oxidation catalyst 24, the temperature of the exhaust gas discharged from the combustion chamber 3 is adjusted to an appropriate temperature without excess or shortage. It is possible to control the temperature of the DPF 20 'to the predetermined high temperature T1' promptly and to converge the temperature of the DPF 20 'to the predetermined high temperature T1' without hunting. Accordingly, the temperature controllability of the DPF 20 'can be improved, and the DPF forced regeneration can be realized with high responsiveness and high accuracy.

なお、ここではDPF20’の上流側に酸化触媒24を設けるようにしたが、酸化触媒24に代えて吸蔵型NOx触媒を配置した場合においても上記同様の作用効果が得られるものである。
以上で本発明に係る排気浄化装置の実施形態についての説明を終えるが、本発明の実施形態は上記実施形態に限られるものではない。
Here, the oxidation catalyst 24 is provided on the upstream side of the DPF 20 ′. However, the same operation and effect as described above can be obtained when a storage type NOx catalyst is provided instead of the oxidation catalyst 24.
The description of the embodiment of the exhaust gas purification apparatus according to the present invention is finished above, but the embodiment of the present invention is not limited to the above embodiment.

例えば、上記実施形態では、エンジン1をコモンレール式のディーゼルエンジンとしたが、ディーゼルエンジンは如何なる方式のものであってもよい。
また、エンジン1としてディーゼルエンジンを採用したが、エンジン1は吸気管噴射型或いは筒内噴射型のガソリンエンジン等であってもよく、これらの場合であっても本発明を良好に適用可能である。
For example, in the above embodiment, the engine 1 is a common rail diesel engine, but the diesel engine may be of any type.
In addition, although a diesel engine is adopted as the engine 1, the engine 1 may be an intake pipe injection type or a cylinder injection type gasoline engine or the like, and the present invention can be applied favorably even in these cases. .

本発明の吸蔵型NOx触媒を用いた第1実施例に係る内燃機関の排気浄化装置を示す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating an exhaust gas purification device for an internal combustion engine according to a first embodiment using a storage-type NOx catalyst of the present invention. Sパージ制御時におけるλ制御のブロック図である。It is a block diagram of λ control at the time of S purge control. Sパージ制御時における温度制御のブロック図である。It is a block diagram of temperature control at the time of S purge control. 例えばディーゼルエンジンにおいて空燃比を一定(例えば、理論空燃比)の状況下で吸入空気量を変化させた場合の触媒温度(DPF温度)を示す実験データであって、吸入空気量と触媒温度(DPF温度)との比例関係を示す図である。For example, the experimental data shows the catalyst temperature (DPF temperature) when the intake air amount is changed in a diesel engine under the condition that the air-fuel ratio is constant (for example, the stoichiometric air-fuel ratio). FIG. 本発明に係るSパージ制御を実施した場合の実験結果(エンジントルク、吸入空気量、実触媒温度、実排出温度、メイン噴射量、パイロット噴射量、排気λ、スモーク発生度合い)を示すタイムチャートである。5 is a time chart showing experimental results (engine torque, intake air amount, actual catalyst temperature, actual exhaust temperature, main injection amount, pilot injection amount, exhaust λ, degree of smoke generation) when the S purge control according to the present invention is performed. is there. 本発明の吸蔵型NOx触媒を用いた第2実施例に係る内燃機関の排気浄化装置を示す概略構成図である。It is a schematic structure figure showing an exhaust gas purification device of an internal-combustion engine concerning a 2nd example using a storage type NOx catalyst of the present invention. 本発明の吸蔵型NOx触媒を用いた第3実施例に係る内燃機関の排気浄化装置を示す概略構成図である。FIG. 5 is a schematic configuration diagram showing an exhaust gas purification device for an internal combustion engine according to a third embodiment using the storage type NOx catalyst of the present invention. 本発明のDPFを用いた第4、5、6実施例に係る内燃機関の排気浄化装置のDPFを示す概略図である。It is the schematic which shows the DPF of the exhaust gas purification device of the internal combustion engine which concerns on the 4th, 5th, and 6th Example using the DPF of this invention. DPF強制再生制御時における温度制御のブロック図である。It is a block diagram of temperature control at the time of DPF forced regeneration control. 本発明に係るDPF強制再生制御を実施した場合の実験結果(吸入空気量、実DPF温度、実排出温度、メイン噴射量、パイロット噴射量、排気λ)を示すタイムチャートである。5 is a time chart showing experimental results (intake air amount, actual DPF temperature, actual discharge temperature, main injection amount, pilot injection amount, exhaust λ) when DPF forced regeneration control according to the present invention is performed.

符号の説明Explanation of reference numerals

1 ディーゼルエンジン(内燃機関)
2 インジェクタ
5 スロットル弁
7 エアフローセンサ(AFS)
8 ターボチャージャ
10 排気マニホールド
12 排気管
18 温度センサ(第1の温度センサ)
19 空燃比センサ(λセンサ)
20 吸蔵型NOx触媒
20’ ディーゼル・パティキュレート・フィルタ(DPF)
22 温度センサ(第2の温度センサ)
24 酸化触媒
40 電子制御ユニット(ECU)
1 diesel engine (internal combustion engine)
2 Injector 5 Throttle valve 7 Air flow sensor (AFS)
8 Turbocharger 10 Exhaust manifold 12 Exhaust pipe 18 Temperature sensor (first temperature sensor)
19 Air-fuel ratio sensor (λ sensor)
20 Storage NOx catalyst 20 'Diesel particulate filter (DPF)
22 Temperature sensor (second temperature sensor)
24 oxidation catalyst 40 electronic control unit (ECU)

Claims (15)

内燃機関の排気系に設けられ、排気の浄化を行う排気浄化ユニットと、
前記排気系に前記内燃機関の排気ポート近傍に位置して設けられ、前記内燃機関の燃焼室から排出される排気の温度を検出する第1の温度センサと、
前記排気系に前記排気浄化ユニット近傍に位置して設けられ、該排気浄化ユニットに流入する排気の温度を検出する第2の温度センサと、
前記排気浄化ユニットに吸蔵または捕集された排気中の有害成分の堆積量を推定または検出する堆積量検出手段と、
前記堆積量検出手段により推定または検出される有害成分の堆積量が所定量に達したとき、前記排気浄化ユニットを前記燃焼室から排出される排気の熱によって所定の高温に温度調整して該堆積した有害成分を放出し除去する放出制御手段とを備え、
前記放出制御手段は、前記第1の温度センサからの温度情報と前記第2の温度センサからの温度情報とに基づいて前記排気浄化ユニットを所定の高温に温度調整することを特徴とする内燃機関の排気浄化装置。
An exhaust purification unit that is provided in an exhaust system of the internal combustion engine and purifies exhaust gas;
A first temperature sensor that is provided in the exhaust system near an exhaust port of the internal combustion engine and detects a temperature of exhaust gas discharged from a combustion chamber of the internal combustion engine;
A second temperature sensor that is provided in the exhaust system near the exhaust gas purification unit and detects a temperature of exhaust gas flowing into the exhaust gas purification unit;
Accumulation amount detection means for estimating or detecting the accumulation amount of harmful components in the exhaust gas occluded or collected in the exhaust gas purification unit,
When the accumulation amount of the harmful component estimated or detected by the accumulation amount detection means reaches a predetermined amount, the exhaust gas purifying unit is adjusted to a predetermined high temperature by the heat of the exhaust gas discharged from the combustion chamber, and the temperature of the exhaust gas purification unit is adjusted. Release control means for releasing and removing the harmful components,
The internal combustion engine, wherein the release control means adjusts the temperature of the exhaust gas purification unit to a predetermined high temperature based on temperature information from the first temperature sensor and temperature information from the second temperature sensor. Exhaust purification equipment.
前記放出制御手段は、
前記排気浄化ユニットが前記所定の高温となったときに前記燃焼室から排出されるべき排気の温度を基本排出温度として設定する基本排出温度設定手段と、該基本排出温度設定手段により設定される基本排出温度及び前記所定の高温と前記第2の温度センサにより検出される温度との差に基づき前記燃焼室から排出される排気の目標排出温度を設定する目標排出温度設定手段とを含み、
前記目標排出温度設定手段により設定される目標排出温度と前記第1の温度センサにより検出される温度との差に基づいて前記排気浄化ユニットの温度調整を行うことを特徴とする、請求項1記載の内燃機関の排気浄化装置。
The release control means,
Basic exhaust temperature setting means for setting a temperature of exhaust gas to be discharged from the combustion chamber when the exhaust purification unit has reached the predetermined high temperature as a basic discharge temperature; and a basic discharge temperature setting means for setting the basic discharge temperature. Target discharge temperature setting means for setting a target discharge temperature of exhaust gas discharged from the combustion chamber based on a difference between the discharge temperature and the predetermined high temperature and a temperature detected by the second temperature sensor,
The temperature adjustment of the exhaust gas purification unit is performed based on a difference between a target exhaust temperature set by the target exhaust temperature setting means and a temperature detected by the first temperature sensor. Exhaust purification device for internal combustion engine.
前記内燃機関は、吸気系に吸入空気量を調節するスロットル弁を有し、
前記放出制御手段は、排気空燃比を理論空燃比または該理論空燃比近傍の空燃比に制御しながら前記スロットル弁を制御することにより前記排気浄化ユニットを所定の高温に温度調整することを特徴とする、請求項1または2記載の内燃機関の排気浄化装置。
The internal combustion engine has a throttle valve for adjusting an intake air amount in an intake system,
The release control means controls the temperature of the exhaust gas purification unit to a predetermined high temperature by controlling the throttle valve while controlling the exhaust air-fuel ratio to a stoichiometric air-fuel ratio or an air-fuel ratio near the stoichiometric air-fuel ratio. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1 or 2, wherein:
前記放出制御手段は、
前記内燃機関の運転状態に応じて前記スロットル弁の基本スロットル位置を設定する基本スロットル位置設定手段を含み、
前記目標排出温度設定手段により設定される目標排出温度と前記第1の温度センサにより検出される温度との差に基づき前記基本スロットル位置設定手段により設定される基本スロットル位置を補正することで前記排気浄化ユニットの温度調整を行うことを特徴とする、請求項3記載の内燃機関の排気浄化装置。
The release control means,
Basic throttle position setting means for setting a basic throttle position of the throttle valve according to the operating state of the internal combustion engine,
By correcting a basic throttle position set by the basic throttle position setting means based on a difference between a target discharge temperature set by the target discharge temperature setting means and a temperature detected by the first temperature sensor, the exhaust gas is exhausted. The exhaust gas purifying apparatus for an internal combustion engine according to claim 3, wherein the temperature of the purifying unit is adjusted.
前記内燃機関はディーゼルエンジンであって、
前記放出制御手段は、排気空燃比を理論空燃比または該理論空燃比近傍の空燃比に制御しながら燃料噴射時期を遅角させることを特徴とする、請求項3または4記載の内燃機関の排気浄化装置。
The internal combustion engine is a diesel engine,
The exhaust gas of an internal combustion engine according to claim 3 or 4, wherein the release control means retards the fuel injection timing while controlling the exhaust air-fuel ratio to a stoichiometric air-fuel ratio or an air-fuel ratio near the stoichiometric air-fuel ratio. Purification device.
前記排気浄化ユニットは、前記内燃機関の排気系に設けられ、前記内燃機関がリーン空燃比運転状態にあるとき排気中のNOxを吸蔵させ、理論空燃比運転またはリッチ空燃比運転状態にあるとき前記吸蔵させたNOxを還元する吸蔵型NOx触媒を含み、
前記第2の温度センサは、前記吸蔵型NOx触媒近傍に位置して設けられ、該吸蔵型NOx触媒に流入する排気の温度を検出し、
前記堆積量検出手段は、前記吸蔵型NOx触媒に吸蔵された排気中の硫黄成分の堆積量を推定または検出する硫黄成分堆積量検出手段から構成され、
前記放出制御手段は、前記硫黄成分堆積量検出手段により推定または検出される硫黄成分の堆積量が所定量に達したとき、前記吸蔵型NOx触媒を前記燃焼室から排出される排気の熱によって所定の高温に温度調整し、その後、排気空燃比を理論空燃比またはリッチ空燃比に制御するとともに前記吸蔵型NOx触媒を前記所定の高温に維持して該堆積した硫黄成分を放出する硫黄成分放出手段から構成され、
前記硫黄成分放出手段は、前記第1の温度センサからの温度情報と前記第2の温度センサからの温度情報とに基づいて前記吸蔵型NOx触媒を所定の高温に温度調整することを特徴とする、請求項1記載の内燃機関の排気浄化装置。
The exhaust gas purification unit is provided in an exhaust system of the internal combustion engine, stores NOx in exhaust when the internal combustion engine is in a lean air-fuel ratio operation state, and stores the NOx in a stoichiometric air-fuel ratio operation state or a rich air-fuel ratio operation state. An occluded NOx catalyst for reducing occluded NOx,
The second temperature sensor is provided near the storage NOx catalyst, and detects the temperature of exhaust gas flowing into the storage NOx catalyst,
The accumulation amount detection unit is configured by a sulfur component accumulation amount detection unit that estimates or detects the accumulation amount of the sulfur component in the exhaust gas occluded by the occlusion type NOx catalyst,
When the amount of sulfur component estimated or detected by the sulfur component amount detection unit reaches a predetermined amount, the release control unit causes the storage NOx catalyst to perform a predetermined operation based on heat of exhaust gas exhausted from the combustion chamber. Temperature, and then control the exhaust air-fuel ratio to the stoichiometric air-fuel ratio or the rich air-fuel ratio, and maintain the storage NOx catalyst at the predetermined high temperature to release the accumulated sulfur component. Consisting of
The sulfur component releasing means adjusts the temperature of the NOx storage catalyst to a predetermined high temperature based on temperature information from the first temperature sensor and temperature information from the second temperature sensor. An exhaust gas purifying apparatus for an internal combustion engine according to claim 1.
前記内燃機関は、吸気系に吸入空気量を調節するスロットル弁を有し、
前記硫黄成分放出手段は、排気空燃比を理論空燃比またはリッチ空燃比に制御しながら前記スロットル弁を制御することにより前記吸蔵型NOx触媒を所定の高温に温度調整することを特徴とする、請求項6記載の内燃機関の排気浄化装置。
The internal combustion engine has a throttle valve for adjusting an intake air amount in an intake system,
The sulfur component releasing means controls the temperature of the storage NOx catalyst to a predetermined high temperature by controlling the throttle valve while controlling the exhaust air-fuel ratio to a stoichiometric air-fuel ratio or a rich air-fuel ratio. Item 7. An exhaust gas purification device for an internal combustion engine according to Item 6.
前記排気浄化ユニットは、前記内燃機関の排気系に設けられ、排気中のパティキュレート・マターを捕集するフィルタを含み、
前記第2の温度センサは、前記フィルタ近傍に位置して設けられ、該フィルタに流入する排気の温度を検出し、
前記堆積量検出手段は、前記フィルタに捕集された排気中のパティキュレート・マターの堆積量を推定または検出するパティキュレート・マター堆積量検出手段から構成され、
前記放出制御手段は、前記パティキュレート・マター堆積量検出手段により推定または検出されるパティキュレート・マターの堆積量が所定量に達したとき、前記フィルタを前記燃焼室から排出される排気の熱によって所定の高温に温度調整し、その後、排気空燃比を理論空燃比よりリーン空燃比側の空燃比に制御するとともに前記フィルタを前記所定の高温に維持して該堆積したパティキュレート・マターを燃焼させ前記フィルタの再生を行う強制再生手段から構成され、
前記強制再生手段は、前記第1の温度センサからの温度情報と前記第2の温度センサからの温度情報とに基づいて前記フィルタを所定の高温に温度調整することを特徴とする、請求項1記載の内燃機関の排気浄化装置。
The exhaust gas purification unit is provided in an exhaust system of the internal combustion engine, and includes a filter that collects particulate matter in exhaust gas,
The second temperature sensor is provided near the filter and detects a temperature of exhaust gas flowing into the filter.
The deposition amount detection means is constituted by a particulate matter deposition amount detection means for estimating or detecting the deposition amount of the particulate matter in the exhaust gas collected by the filter,
When the amount of particulate matter estimated or detected by the particulate matter accumulation amount detection means reaches a predetermined amount, the release control means causes the filter to emit heat from exhaust gas discharged from the combustion chamber. The temperature is adjusted to a predetermined high temperature, and thereafter, the exhaust air-fuel ratio is controlled to an air-fuel ratio on the lean air-fuel ratio side from the stoichiometric air-fuel ratio, and the filter is maintained at the predetermined high temperature to burn the deposited particulate matter. Consisting of forced regeneration means for regenerating the filter,
The temperature of the filter may be adjusted to a predetermined high temperature based on temperature information from the first temperature sensor and temperature information from the second temperature sensor. An exhaust gas purifying apparatus for an internal combustion engine according to claim 1.
前記内燃機関は、吸気系に吸入空気量を調節するスロットル弁を有し、
前記強制再生手段は、排気空燃比を理論空燃比または該理論空燃比近傍の空燃比に制御しながら前記スロットル弁を制御することにより前記フィルタを所定の高温に温度調整することを特徴とする、請求項8記載の内燃機関の排気浄化装置。
The internal combustion engine has a throttle valve for adjusting an intake air amount in an intake system,
The forced regeneration unit controls the temperature of the filter to a predetermined high temperature by controlling the throttle valve while controlling the exhaust air-fuel ratio to a stoichiometric air-fuel ratio or an air-fuel ratio near the stoichiometric air-fuel ratio, An exhaust gas purifying apparatus for an internal combustion engine according to claim 8.
前記リーン空燃比側の空燃比は、空気過剰率1.3〜1.5相当であることを特徴とする、請求項8記載の内燃機関の排気浄化装置。   The exhaust gas purification apparatus for an internal combustion engine according to claim 8, wherein the air-fuel ratio on the lean air-fuel ratio side is equivalent to an excess air ratio of 1.3 to 1.5. 前記目標排出温度設定手段は、前記目標排出温度を所定の耐熱温度以下の範囲で設定することを特徴とする、請求項1乃至10のいずれか記載の内燃機関の排気浄化装置。   The exhaust gas purifying apparatus for an internal combustion engine according to any one of claims 1 to 10, wherein the target discharge temperature setting means sets the target discharge temperature in a range equal to or lower than a predetermined heat-resistant temperature. 前記内燃機関の前記排気系と吸気系とに前記燃焼室への吸気過給を行うターボチャージャを有し、
前記第1の温度センサは、前記排気系の前記ターボチャージャよりも上流に位置して設けられ、前記燃焼室から排出され前記ターボチャージャに流入する排気の温度を検出し、
前記放出制御手段は、
前記排気浄化ユニットが前記所定の高温となったときに前記燃焼室から排出され前記ターボチャージャに流入すべき排気の温度を基本排出温度として設定する基本排出温度設定手段と、該基本排出温度設定手段により設定される基本排出温度及び前記所定の高温と前記第2の温度センサにより検出される温度との差に基づき前記燃焼室から排出され前記ターボチャージャに流入する排気の目標排出温度を設定する目標排出温度設定手段とを含み、
前記目標排出温度設定手段により設定される目標排出温度と前記第1の温度センサにより検出される温度との差に基づいて前記排気浄化ユニットの温度調整を行うことを特徴とする、請求項1記載の内燃機関の排気浄化装置。
The exhaust system and the intake system of the internal combustion engine have a turbocharger that performs intake supercharging to the combustion chamber,
The first temperature sensor is provided upstream of the turbocharger of the exhaust system, and detects a temperature of exhaust gas discharged from the combustion chamber and flowing into the turbocharger,
The release control means,
Basic exhaust temperature setting means for setting, as a basic exhaust temperature, the temperature of exhaust gas discharged from the combustion chamber and flowing into the turbocharger when the exhaust purification unit has reached the predetermined high temperature; and Setting a target discharge temperature of exhaust discharged from the combustion chamber and flowing into the turbocharger based on a basic discharge temperature set by the above and a difference between the predetermined high temperature and a temperature detected by the second temperature sensor. Discharge temperature setting means,
The temperature of the exhaust gas purification unit is adjusted based on a difference between a target exhaust temperature set by the target exhaust temperature setting means and a temperature detected by the first temperature sensor. Exhaust purification device for internal combustion engine.
前記目標排出温度設定手段は、前記目標排出温度を前記ターボチャージャまたは前記排気浄化ユニットの耐熱温度以下の範囲で設定することを特徴とする、請求項12記載の内燃機関の排気浄化装置。   The exhaust gas purifying apparatus for an internal combustion engine according to claim 12, wherein the target exhaust temperature setting means sets the target exhaust temperature within a range equal to or lower than a heat resistant temperature of the turbocharger or the exhaust gas purification unit. 前記内燃機関は、吸気系と排気系とを連通するEGR通路及び該EGR通路を開閉するEGR弁とからなるEGR装置を有し、
前記放出制御手段は、排気空燃比を理論空燃比または該理論空燃比近傍の空燃比に制御するとともに前記EGR弁を開閉制御することにより前記排気浄化ユニットを所定の高温に温度調整することを特徴とする、請求項1または2記載の内燃機関の排気浄化装置。
The internal combustion engine includes an EGR device including an EGR passage that communicates an intake system and an exhaust system, and an EGR valve that opens and closes the EGR passage.
The release control means controls the exhaust gas purification unit to a predetermined high temperature by controlling the exhaust air-fuel ratio to a stoichiometric air-fuel ratio or an air-fuel ratio near the stoichiometric air-fuel ratio and controlling the opening and closing of the EGR valve. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1 or 2, wherein:
前記内燃機関は、吸気系に吸入空気量を調節するスロットル弁を有し、
前記放出制御手段は、排気空燃比を理論空燃比または該理論空燃比近傍の空燃比に制御するとともに、前記スロットル弁を所定量絞り側に制御し且つ前記EGR弁を開閉制御することにより前記排気浄化ユニットを所定の高温に温度調整することを特徴とする、請求項14記載の内燃機関の排気浄化装置。
The internal combustion engine has a throttle valve for adjusting an intake air amount in an intake system,
The release control means controls the exhaust air-fuel ratio to a stoichiometric air-fuel ratio or an air-fuel ratio in the vicinity of the stoichiometric air-fuel ratio, controls the throttle valve to a predetermined throttle side, and controls the opening and closing of the EGR valve to control the exhaust air-fuel ratio. The exhaust gas purifying apparatus for an internal combustion engine according to claim 14, wherein the temperature of the purifying unit is adjusted to a predetermined high temperature.
JP2004114485A 2003-04-25 2004-04-08 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP4114077B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004114485A JP4114077B2 (en) 2003-04-25 2004-04-08 Exhaust gas purification device for internal combustion engine
DE102004019658A DE102004019658B4 (en) 2003-04-25 2004-04-22 Exhaust emission control device for an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003122604 2003-04-25
JP2004114485A JP4114077B2 (en) 2003-04-25 2004-04-08 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004340137A true JP2004340137A (en) 2004-12-02
JP4114077B2 JP4114077B2 (en) 2008-07-09

Family

ID=33455438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004114485A Expired - Lifetime JP4114077B2 (en) 2003-04-25 2004-04-08 Exhaust gas purification device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP4114077B2 (en)
DE (1) DE102004019658B4 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174393A (en) * 2008-01-23 2009-08-06 Toyota Motor Corp Control apparatus for internal combustion engine
JP2010534781A (en) * 2007-10-17 2010-11-11 デルファイ・テクノロジーズ・インコーポレーテッド Internal combustion engine system
JP2013505395A (en) * 2009-09-22 2013-02-14 イートン コーポレーション Control method of engine in transient operation
US8381513B2 (en) 2007-06-05 2013-02-26 Delphi Technologies Holding S.Arl Internal combustion engine system
WO2015145996A1 (en) * 2014-03-25 2015-10-01 株式会社デンソー Control device for internal combustion engine
JP2016160893A (en) * 2015-03-04 2016-09-05 いすゞ自動車株式会社 Exhaust emission control system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7275374B2 (en) * 2004-12-29 2007-10-02 Honeywell International Inc. Coordinated multivariable control of fuel and air in engines
DE102007008331A1 (en) * 2007-02-16 2008-08-21 Volkswagen Ag Method and device for the exhaust aftertreatment of an internal combustion engine operated with natural gas
DE102007056102B4 (en) * 2007-11-15 2011-05-19 Continental Automotive Gmbh Method for operating an internal combustion engine and an exhaust aftertreatment system connected thereto with a particle filter and an SCR catalytic converter
DE102019113735A1 (en) * 2019-05-23 2020-11-26 Volkswagen Aktiengesellschaft Method for operating an internal combustion engine with variable and temperature-regulated exhaust valve actuation
DE102019113741A1 (en) * 2019-05-23 2020-11-26 Volkswagen Aktiengesellschaft Internal combustion engine with variable exhaust valve actuation and with electromotive or mechanical charging
DE102019113747A1 (en) * 2019-05-23 2020-11-26 Volkswagen Aktiengesellschaft Method for operating an internal combustion engine with variable exhaust valve actuation and with additional influencing of the combustion chamber filling

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3552584B2 (en) * 1998-12-11 2004-08-11 トヨタ自動車株式会社 Catalyst heating device for internal combustion engine
US6237326B1 (en) * 1999-08-24 2001-05-29 Ford Global Technolgies, Inc. Engine control system and method with lean catalyst and particulate filter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8381513B2 (en) 2007-06-05 2013-02-26 Delphi Technologies Holding S.Arl Internal combustion engine system
JP2010534781A (en) * 2007-10-17 2010-11-11 デルファイ・テクノロジーズ・インコーポレーテッド Internal combustion engine system
JP2009174393A (en) * 2008-01-23 2009-08-06 Toyota Motor Corp Control apparatus for internal combustion engine
JP4506842B2 (en) * 2008-01-23 2010-07-21 トヨタ自動車株式会社 Control device for internal combustion engine
JP2013505395A (en) * 2009-09-22 2013-02-14 イートン コーポレーション Control method of engine in transient operation
WO2015145996A1 (en) * 2014-03-25 2015-10-01 株式会社デンソー Control device for internal combustion engine
JP2015183607A (en) * 2014-03-25 2015-10-22 株式会社デンソー Internal combustion engine control device
JP2016160893A (en) * 2015-03-04 2016-09-05 いすゞ自動車株式会社 Exhaust emission control system

Also Published As

Publication number Publication date
JP4114077B2 (en) 2008-07-09
DE102004019658B4 (en) 2010-06-17
DE102004019658A1 (en) 2004-12-09

Similar Documents

Publication Publication Date Title
US7104051B2 (en) Exhaust gas purification device
JP4270155B2 (en) Exhaust purification catalyst thermal degradation state detection device
EP1555401A1 (en) Exhaust purifying apparatus for internal combustion engine
JP2006233936A (en) Exhaust emission control device for internal combustion engine
JP2007040221A (en) Exhaust emission control device
JP2007023888A (en) Control device of internal combustion engine
JP2010031833A (en) Exhaust emission control device for diesel engine
JP2008138619A (en) Exhaust emission control device of internal combustion engine
JP4114077B2 (en) Exhaust gas purification device for internal combustion engine
WO2005088095A1 (en) Regeneration controller for exhaust purification apparatus of internal combustion engine
JP2010144565A (en) Exhaust emission control device for internal combustion engine
JP2001263130A (en) Exhaust emission control device for engine
WO2016125738A1 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP4613787B2 (en) Exhaust gas purification device for internal combustion engine
JP2006152841A (en) Exhaust emission control device of internal combustion engine
WO2016132875A1 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP5516888B2 (en) Exhaust gas purification device for internal combustion engine
JP2009299617A (en) Exhaust emission control device for internal combustion engine
JP2007255304A (en) Exhaust emission control device
JP2006274980A (en) Exhaust emission control device
JP2006266221A (en) Rising temperature controller of aftertreatment device
JP4357241B2 (en) Exhaust purification equipment
JP2006274985A (en) Exhaust gas aftertreatment device
JP2006266220A (en) Rising temperature controller of aftertreatment device
JP5544758B2 (en) Diesel engine control system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4114077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term