JP2010007634A - Exhaust emission control device for an internal combustion engine - Google Patents

Exhaust emission control device for an internal combustion engine Download PDF

Info

Publication number
JP2010007634A
JP2010007634A JP2008170976A JP2008170976A JP2010007634A JP 2010007634 A JP2010007634 A JP 2010007634A JP 2008170976 A JP2008170976 A JP 2008170976A JP 2008170976 A JP2008170976 A JP 2008170976A JP 2010007634 A JP2010007634 A JP 2010007634A
Authority
JP
Japan
Prior art keywords
exhaust
air
fuel ratio
catalyst
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008170976A
Other languages
Japanese (ja)
Inventor
Kenichi Tsujimoto
健一 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008170976A priority Critical patent/JP2010007634A/en
Publication of JP2010007634A publication Critical patent/JP2010007634A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide technology making a catalyst suitably recover exhaust gas control capacity while avoiding excessive temperature rise of the catalyst and a filter in an exhaust emission control device for an internal combustion engine. <P>SOLUTION: Flow rate of exhaust gas flowing into NSR and DPF is reduced as compared to that before execution of S regeneration or is set to zero when S regeneration is executed by adding fuel from a fuel addition valve arranged in an exhaust gas passage at an upstream side of NSR and DPF, and flow rate of exhaust gas flowing into NSR and DPF is increased as compared to that during execution of S regeneration when S regeneration is completed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

車両の減速時に、内燃機関の排気通路に配置された触媒の排気浄化能力を回復するために排気の空燃比を低下させる場合において、EGR弁を開弁してEGRガスを吸入したりスロットル弁を絞ったりすることにより、新気量を減少させる吸気系リッチ制御と、内燃機関でのポスト噴射や排気通路へ直接燃料を供給する排気通路内噴射等による排気中の燃料量を増加させる燃料系リッチ制御と、を併用する技術が開示されている(例えば、特許文献1参照)。
特開2006−316757号公報 特開2004−60537号公報 特開2007−9810号公報 特開2007−198145号公報 特開2005−113800号公報
When the vehicle is decelerating, when the air-fuel ratio of the exhaust gas is lowered in order to restore the exhaust purification ability of the catalyst arranged in the exhaust passage of the internal combustion engine, the EGR valve is opened to suck in the EGR gas or Fuel system rich that increases the amount of fuel in the exhaust, such as by intake system rich control that reduces the amount of fresh air by throttling, and post injection in an internal combustion engine or injection in the exhaust passage that supplies fuel directly to the exhaust passage A technique of using both control and control is disclosed (for example, see Patent Document 1).
JP 2006-316757 A JP 2004-60537 A Japanese Patent Laid-Open No. 2007-9810 JP 2007-198145 A JP 2005-113800 A

特許文献1に記載の技術では、触媒の排気浄化能力を回復するために排気の空燃比を低下させる場合に、新気量を減少させることで供給する燃料量を削減できる。しかしながら、排気通路に粒子状物質を捕集するフィルタが存在する場合には、新気量を減少させるだけではフィルタが過昇温してしまう場合がある。   In the technique described in Patent Document 1, when the air-fuel ratio of the exhaust gas is lowered in order to recover the exhaust gas purification ability of the catalyst, the amount of fuel to be supplied can be reduced by reducing the fresh air amount. However, if there is a filter that collects particulate matter in the exhaust passage, the filter may be overheated simply by reducing the amount of fresh air.

本発明は上記事情に鑑みてなされたものであり、その目的とするところは、内燃機関の排気浄化装置において、触媒及びフィルタの過昇温を回避しつつ、触媒の排気浄化能力を好適に回復させる技術を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to suitably recover the exhaust purification ability of the catalyst while avoiding excessive temperature rise of the catalyst and the filter in the exhaust purification device of the internal combustion engine. It is to provide the technology to make.

第1の本発明にあっては、以下の構成を採用する。すなわち、本発明は、
内燃機関の排気通路に配置され、流入する排気の空燃比が低下すると排気浄化能力を回復可能な触媒と、
前記排気通路に配置され、粒子状物質を捕集するフィルタと、
前記触媒及び前記フィルタよりも上流側に還元剤を供給する還元剤供給手段と、
前記還元剤供給手段によって還元剤を供給し、前記触媒に流入する排気の空燃比を低下させて前記触媒の排気浄化能力を回復させる排気空燃比低下手段と、
前記触媒及び前記フィルタに流入する排気の流量を調節する排気流量調節手段と、
前記排気空燃比低下手段が前記触媒に流入する排気の空燃比を低下させる際に、前記排気流量調節手段によって排気の流量を、前記排気空燃比低下手段が前記触媒に流入する排気の空燃比を低下させる前に比して減少させる又は零にすると共に、前記排気空燃比低下手段が前記触媒に流入する排気の空燃比を低下させることを終了する際に、前記排気流量調節手段によって排気の流量を、前記排気空燃比低下手段が前記触媒に流入する排気の空燃比を低下させていた最中に比して増加させる第1制御手段と、
を備えたことを特徴とする内燃機関の排気浄化装置である。
In the first aspect of the present invention, the following configuration is adopted. That is, the present invention
A catalyst that is disposed in the exhaust passage of the internal combustion engine and that can recover the exhaust purification ability when the air-fuel ratio of the inflowing exhaust decreases,
A filter disposed in the exhaust passage and collecting particulate matter;
Reducing agent supply means for supplying a reducing agent upstream of the catalyst and the filter;
An exhaust air / fuel ratio lowering means for supplying a reducing agent by the reducing agent supply means and lowering an air / fuel ratio of exhaust flowing into the catalyst to recover an exhaust purification capability of the catalyst;
Exhaust flow rate adjusting means for adjusting the flow rate of exhaust gas flowing into the catalyst and the filter;
When the exhaust air-fuel ratio lowering means lowers the air-fuel ratio of the exhaust flowing into the catalyst, the exhaust flow rate adjusting means reduces the exhaust flow rate, and the exhaust air-fuel ratio lowering means decreases the exhaust air flow ratio flowing into the catalyst. When the exhaust air-fuel ratio lowering means finishes reducing the air-fuel ratio of the exhaust gas flowing into the catalyst, the exhaust flow rate adjusting means causes the exhaust flow rate to be reduced. A first control means for increasing the exhaust air / fuel ratio lowering means as compared to the time when the exhaust air / fuel ratio of the exhaust gas flowing into the catalyst is being lowered,
An exhaust emission control device for an internal combustion engine, comprising:

内燃機関の排気通路に触媒及びフィルタを備える場合にあっても、還元剤供給手段によって還元剤を供給し、触媒に流入する排気の空燃比を低下させて触媒の排気浄化能力を回復させることが排気空燃比低下手段によって実施される。   Even when a catalyst and a filter are provided in the exhaust passage of the internal combustion engine, the reducing agent is supplied by the reducing agent supply means, and the air-fuel ratio of the exhaust gas flowing into the catalyst is lowered to recover the exhaust purification ability of the catalyst. This is implemented by the exhaust air / fuel ratio lowering means.

ここで、排気空燃比低下手段が触媒に流入する排気の空燃比を低下させる際に、排気の流量が多いと、触媒に流入する排気の空燃比を低下させるための還元剤供給手段によって供給される還元剤の供給量が増加し、還元剤の反応が過度に生じて触媒の一部が過度に昇温し、触媒では部分的に過昇温するおそれがある。しかし、フィルタに供給される酸素による粒子状物質の酸化発熱よりも、フィルタを流通する排気による冷却が勝り、フィルタでは過昇温しない。   Here, when the exhaust air / fuel ratio lowering means lowers the air / fuel ratio of the exhaust flowing into the catalyst, if the flow rate of the exhaust gas is large, it is supplied by the reducing agent supplying means for reducing the air / fuel ratio of the exhaust flowing into the catalyst. The amount of reducing agent supplied increases, the reaction of the reducing agent occurs excessively, and the temperature of a part of the catalyst increases excessively, and the catalyst may partially overheat. However, cooling by the exhaust gas flowing through the filter is superior to oxidation heat generation of the particulate matter due to oxygen supplied to the filter, and the filter does not overheat.

一方、排気空燃比低下手段が触媒に流入する排気の空燃比を低下させる際に、排気の流量が少ないと、フィルタを流通する排気による冷却よりも、フィルタに供給される酸素による粒子状物質の酸化発熱が勝り、フィルタでは部分的に過昇温するおそれがある。しかし、触媒に流入する排気の空燃比を低下させるための還元剤供給手段によって供給される還元剤の供給量が減少し、還元剤の反応が抑制されて触媒が過度に昇温することはなく、触媒では過昇温しない。   On the other hand, when the exhaust air-fuel ratio lowering means lowers the air-fuel ratio of the exhaust flowing into the catalyst, if the flow rate of the exhaust gas is small, the particulate matter due to oxygen supplied to the filter is less than the cooling by the exhaust flowing through the filter. Oxidation heat generation is excellent, and the filter may partially overheat. However, the supply amount of the reducing agent supplied by the reducing agent supply means for reducing the air-fuel ratio of the exhaust gas flowing into the catalyst is reduced, the reaction of the reducing agent is suppressed, and the temperature of the catalyst does not rise excessively. The catalyst does not overheat.

そこで、本発明では、排気空燃比低下手段が触媒に流入する排気の空燃比を低下させる際に、排気流量調節手段によって排気の流量を、排気空燃比低下手段が触媒に流入する排気の空燃比を低下させる前に比して減少させる又は零にするようにした。またそれと共に、排気空燃比低下手段が触媒に流入する排気の空燃比を低下させることを終了する際に、排気流量調節手段によって排気の流量を、排気空燃比低下手段が触媒に流入する排気の空燃比を低下させていた最中に比して増加させるようにした。   Therefore, in the present invention, when the exhaust air-fuel ratio lowering means lowers the air-fuel ratio of the exhaust flowing into the catalyst, the exhaust flow rate adjusting means reduces the exhaust flow rate, and the exhaust air-fuel ratio lowering means flows into the catalyst. It is made to decrease or zero compared with before decreasing. At the same time, when the exhaust air-fuel ratio lowering means finishes reducing the air-fuel ratio of the exhaust flowing into the catalyst, the exhaust flow rate adjusting means changes the exhaust flow rate, and the exhaust air-fuel ratio lowering means reduces the exhaust gas flowing into the catalyst. The air-fuel ratio was increased compared to the time when it was decreasing.

本発明によると、排気空燃比低下手段が触媒に流入する排気の空燃比を低下させる際に、排気の流量が排気空燃比低下前に比して減少する又は零となる。このため、フィルタが部分的に過昇温するおそれが生じるような排気の流量が減少する又は零となるときには、還元剤供給手段によってフィルタよりも上流側から還元剤が供給され、フィルタに流入する排気の空燃比も低下しており、フィルタに流入する排気の酸素濃度が減少している。これにより、フィルタに供給される酸素による粒子状物質の酸化発熱があまり生じず、フィルタの過昇温が回避できる。また、触媒に流入する排気の空燃比を低下させるために還元剤供給手段によって供給される還元剤の供給量が減少して還元剤の反応が抑制されて触媒が過度に昇温することはなく、触媒の過昇温も回避できる。さらには、空燃比を低下させた排気が触媒に留まり易く、触媒の排気浄化能力を回復させることが促進でき、触媒の排気浄化能力を好適に回復できる。   According to the present invention, when the exhaust air / fuel ratio lowering means lowers the air / fuel ratio of the exhaust gas flowing into the catalyst, the flow rate of the exhaust gas decreases or becomes zero compared to before the exhaust air / fuel ratio decreases. For this reason, when the flow rate of exhaust gas that may cause the filter to partially overheat decreases or becomes zero, the reducing agent is supplied from the upstream side of the filter by the reducing agent supply means and flows into the filter. The air-fuel ratio of the exhaust gas is also decreasing, and the oxygen concentration of the exhaust gas flowing into the filter is decreasing. Thereby, the oxidation heat generation of the particulate matter due to oxygen supplied to the filter does not occur so much, and overheating of the filter can be avoided. In addition, the amount of reducing agent supplied by the reducing agent supply means is decreased in order to reduce the air-fuel ratio of the exhaust gas flowing into the catalyst, so that the reaction of the reducing agent is suppressed and the temperature of the catalyst does not rise excessively. In addition, excessive heating of the catalyst can be avoided. Furthermore, the exhaust gas whose air-fuel ratio has been lowered tends to stay in the catalyst, and the recovery of the exhaust gas purification ability of the catalyst can be promoted, so that the exhaust gas purification capacity of the catalyst can be suitably recovered.

一方、本発明によると、排気空燃比低下手段が触媒に流入する排気の空燃比を低下させることを終了する際に、排気の流量が排気空燃比低下中に比して増加する。このため、還元剤供給手段によってフィルタよりも上流側から還元剤が供給されなくなり、フィルタに流入する排気の空燃比が上昇し始め、フィルタに流入する排気の酸素濃度が増加する。しかし、このときには、排気の流量が増加する。これにより、フィルタに供給される酸素による粒子状物質の酸化発熱よりも、フィルタを流通する排気による冷却が勝り、フィルタの過昇温が回避できる。また、排気の流量が増加するときには、排気空燃比の低下を終了しているので、還元剤の反応は生じず触媒が過度に昇温されず、触媒の過昇温も回避できる。   On the other hand, according to the present invention, when the exhaust air / fuel ratio lowering means finishes decreasing the air / fuel ratio of the exhaust gas flowing into the catalyst, the flow rate of the exhaust gas increases as compared with the exhaust air / fuel ratio decreasing. For this reason, the reducing agent is not supplied from the upstream side of the filter by the reducing agent supply means, the air-fuel ratio of the exhaust gas flowing into the filter starts to rise, and the oxygen concentration of the exhaust gas flowing into the filter increases. However, at this time, the flow rate of the exhaust gas increases. Thereby, the cooling by the exhaust gas flowing through the filter is superior to the oxidation heat generation of the particulate matter due to oxygen supplied to the filter, and the excessive temperature rise of the filter can be avoided. Further, when the exhaust gas flow rate increases, the reduction of the exhaust air-fuel ratio is completed, so that the reaction of the reducing agent does not occur, the catalyst is not excessively heated, and the excessive temperature increase of the catalyst can be avoided.

したがって、触媒及びフィルタの過昇温を回避しつつ、触媒の排気浄化能力を好適に回復させることができる。   Therefore, the exhaust gas purification ability of the catalyst can be suitably recovered while avoiding excessive temperature rise of the catalyst and the filter.

前記触媒は、前記フィルタよりも上流側の排気通路に配置されてもよいし、前記触媒は、前記フィルタよりも下流側の排気通路に配置されてもよい。   The catalyst may be disposed in an exhaust passage upstream of the filter, and the catalyst may be disposed in an exhaust passage downstream of the filter.

第2の本発明にあっては、以下の構成を採用する。すなわち、本発明は、
内燃機関の排気通路に配置され、流入する排気の空燃比が低下すると排気浄化能力を回復可能な触媒と、
前記触媒よりも上流側の排気通路に配置され、粒子状物質を捕集するフィルタと、
前記フィルタよりも下流側且つ前記触媒よりも上流側に還元剤を供給する還元剤供給手段と、
前記還元剤供給手段によって還元剤を供給し、前記触媒に流入する排気の空燃比を低下させて前記触媒の排気浄化能力を回復させる排気空燃比低下手段と、
前記触媒及び前記フィルタに流入する排気の流量を調節する排気流量調節手段と、
前記フィルタよりも上流側の排気の酸素濃度を調節する酸素濃度調節手段と、
前記排気空燃比低下手段が前記触媒に流入する排気の空燃比を低下させる際に、前記排気流量調節手段によって排気の流量を、前記排気空燃比低下手段が前記触媒に流入する排気の空燃比を低下させる前に比して減少させ又は零にし、且つ、前記酸素濃度調節手段によって排気の酸素濃度を、前記排気空燃比低下手段が前記触媒に流入する排気の空燃比を低下させる前に比して減少させると共に、前記排気空燃比低下手段が前記触媒に流入する排気の空燃比を低下させることを終了する際に、前記排気流量調節手段によって排気の流量を、前記排気空燃比低下手段が前記触媒に流入する排気の空燃比を低下させていた最中に比して増加させ、且つ、前記酸素濃度調節手段によって排気の酸素濃度を、前記排気空燃比低下手段が前記触媒に流入する排気の空燃比を低下させいた最中に比して増加させる第2制御手段と、
を備えたことを特徴とする内燃機関の排気浄化装置である。
In the second present invention, the following configuration is adopted. That is, the present invention
A catalyst that is disposed in the exhaust passage of the internal combustion engine and can recover the exhaust purification ability when the air-fuel ratio of the inflowing exhaust gas decreases,
A filter that is disposed in an exhaust passage upstream of the catalyst and collects particulate matter;
Reducing agent supply means for supplying a reducing agent downstream from the filter and upstream from the catalyst;
An exhaust air / fuel ratio lowering means for supplying a reducing agent by the reducing agent supply means and lowering an air / fuel ratio of exhaust flowing into the catalyst to recover an exhaust purification capability of the catalyst;
Exhaust flow rate adjusting means for adjusting the flow rate of exhaust gas flowing into the catalyst and the filter;
Oxygen concentration adjusting means for adjusting the oxygen concentration of the exhaust gas upstream of the filter;
When the exhaust air-fuel ratio lowering means lowers the air-fuel ratio of the exhaust flowing into the catalyst, the exhaust flow rate adjusting means reduces the exhaust flow rate, and the exhaust air-fuel ratio lowering means decreases the exhaust air flow ratio flowing into the catalyst. The oxygen concentration of the exhaust gas is reduced or reduced to zero as compared with before the reduction, and the oxygen concentration of the exhaust gas is compared with that before the exhaust air / fuel ratio reduction device reduces the air / fuel ratio of the exhaust gas flowing into the catalyst. And when the exhaust air-fuel ratio reducing means finishes reducing the air-fuel ratio of the exhaust gas flowing into the catalyst, the exhaust air-fuel ratio reducing means reduces the exhaust flow rate by the exhaust flow rate adjusting means. The air-fuel ratio of the exhaust gas flowing into the catalyst is increased as compared with the time when the exhaust gas was being lowered, and the oxygen concentration of the exhaust gas is decreased by the oxygen concentration adjusting means, and the exhaust air-fuel ratio decreasing means flows into the catalyst A second control means for increasing compared during the air-fuel ratio of the exhaust gas was reduced that,
An exhaust emission control device for an internal combustion engine, comprising:

そこで、本発明では、排気空燃比低下手段が触媒に流入する排気の空燃比を低下させる際に、排気流量調節手段によって排気の流量を、排気空燃比低下手段が触媒に流入する排気の空燃比を低下させる前に比して減少させ又は零にし、且つ、酸素濃度調節手段によって排気の酸素濃度を、排気空燃比低下手段が触媒に流入する排気の空燃比を低下させる前に比して減少させるようにした。またそれと共に、排気空燃比低下手段が触媒に流入する排気の空燃比を低下させることを終了する際に、排気流量調節手段によって排気の流量を、排気空燃比低下手段が触媒に流入する排気の空燃比を低下させていた最中に比して増加させ、且つ、酸素濃度調節手段によって排気の酸素濃度を、排気空燃比低下手段が触媒に流入する排気の空燃比を低下させいた最中に比して増加させるようにした。   Therefore, in the present invention, when the exhaust air-fuel ratio lowering means lowers the air-fuel ratio of the exhaust flowing into the catalyst, the exhaust flow rate adjusting means reduces the exhaust flow rate, and the exhaust air-fuel ratio lowering means flows into the catalyst. The oxygen concentration of the exhaust gas is reduced by the oxygen concentration adjusting means, and the oxygen concentration of the exhaust gas is reduced by the oxygen concentration adjusting means as compared with that before the exhaust air / fuel ratio reducing means lowers the air / fuel ratio of the exhaust gas flowing into the catalyst. I tried to make it. At the same time, when the exhaust air-fuel ratio lowering means finishes reducing the air-fuel ratio of the exhaust flowing into the catalyst, the exhaust flow rate adjusting means changes the exhaust flow rate, and the exhaust air-fuel ratio lowering means reduces the exhaust gas flowing into the catalyst. While the air-fuel ratio is being decreased, the oxygen concentration of the exhaust gas is increased by the oxygen concentration adjusting means, and the air-fuel ratio of the exhaust gas flowing into the catalyst is reduced by the exhaust air-fuel ratio reducing means. It was made to increase compared with.

本発明によると、排気空燃比低下手段が触媒に流入する排気の空燃比を低下させる際に、排気の流量が排気空燃比低下前に比して減少する又は零となり、且つ、フィルタに流入する排気の酸素濃度が排気空燃比低下前に比して減少する。このため、フィルタが部分的に過昇温するおそれが生じるような排気の流量が減少する又は零となるときには、酸素濃度調節手段によってフィルタよりも上流側の排気の酸素濃度が減少し、フィルタに流入する排気の酸素濃度が減少している。これにより、フィルタに供給される酸素による粒子状物質の酸化発熱があまり生じず、フィルタの過昇温が回避できる。また、触媒に流入する排気の空燃比を低下させるために還元剤供給手段によって供給される還元剤の供給量が減少して還元剤の反応が抑制されて触媒が過度に昇温することはなく、触媒の過昇温も回避できる。さらには、空燃比を低下させた排気が触媒に留まり易く、触媒の排気浄化能力を回復させることが促進でき、触媒の排気浄化能力を好適に回復できる。   According to the present invention, when the exhaust air / fuel ratio lowering means lowers the air / fuel ratio of the exhaust gas flowing into the catalyst, the flow rate of the exhaust gas decreases or becomes zero as compared to before the exhaust air / fuel ratio decreases and flows into the filter. The oxygen concentration of the exhaust gas is reduced as compared with that before the exhaust air-fuel ratio is lowered. For this reason, when the flow rate of the exhaust gas, which may cause the filter to partially overheat, decreases or becomes zero, the oxygen concentration of the exhaust gas upstream of the filter is reduced by the oxygen concentration adjusting means, The oxygen concentration in the inflowing exhaust is decreasing. Thereby, the oxidation heat generation of the particulate matter due to oxygen supplied to the filter does not occur so much, and overheating of the filter can be avoided. In addition, the amount of reducing agent supplied by the reducing agent supply means is decreased in order to reduce the air-fuel ratio of the exhaust gas flowing into the catalyst, so that the reaction of the reducing agent is suppressed and the temperature of the catalyst does not rise excessively. In addition, excessive heating of the catalyst can be avoided. Furthermore, the exhaust gas whose air-fuel ratio has been lowered tends to stay in the catalyst, and the recovery of the exhaust gas purification ability of the catalyst can be promoted, so that the exhaust gas purification capacity of the catalyst can be suitably recovered.

一方、本発明によると、排気空燃比低下手段が触媒に流入する排気の空燃比を低下させることを終了する際に、排気の流量が排気空燃比低下中に比して増加し、且つ、フィルタに流入する排気の酸素濃度が排気空燃比低下中に比して増加する。このため、排気空燃比の低下を終了すると、酸素濃度調節手段によって排気の酸素濃度が排気空燃比低下中に比して増加し、フィルタに流入する排気の酸素濃度が増加する。しかし、このときには、排気の流量が増加する。これにより、フィルタに供給される酸素による粒子状物質の酸化発
熱よりも、フィルタを流通する排気による冷却が勝り、フィルタの過昇温が回避できる。また、排気の流量が増加するときには、排気空燃比の低下を終了しているので、還元剤の反応は生じず触媒が過度に昇温されず、触媒の過昇温も回避できる。
On the other hand, according to the present invention, when the exhaust air-fuel ratio lowering means finishes reducing the air-fuel ratio of the exhaust flowing into the catalyst, the flow rate of the exhaust increases as compared with the exhaust air-fuel ratio decreasing, and the filter The oxygen concentration of the exhaust gas flowing into the exhaust gas increases as compared to when the exhaust air-fuel ratio is decreasing. For this reason, when the exhaust air-fuel ratio is finished lowering, the oxygen concentration of the exhaust gas is increased by the oxygen concentration adjusting means compared to when the exhaust air-fuel ratio is being lowered, and the oxygen concentration of the exhaust gas flowing into the filter is increased. However, at this time, the flow rate of the exhaust gas increases. Thereby, the cooling by the exhaust gas flowing through the filter is superior to the oxidation heat generation of the particulate matter due to oxygen supplied to the filter, and the excessive temperature rise of the filter can be avoided. Further, when the exhaust gas flow rate increases, the reduction of the exhaust air-fuel ratio is completed, so that the reaction of the reducing agent does not occur, the catalyst is not excessively heated, and the excessive temperature increase of the catalyst can be avoided.

したがって、触媒及びフィルタの過昇温を回避しつつ、触媒の排気浄化能力を好適に回復させることができる。   Therefore, the exhaust gas purification ability of the catalyst can be suitably recovered while avoiding excessive temperature rise of the catalyst and the filter.

前記還元剤供給手段は、前記内燃機関への燃料供給量の増加、又は、前記排気通路に配置された還元剤添加弁による排気への還元剤の添加の少なくともいずれかにより還元剤を供給するとよい。本発明によると、還元剤を供給でき、排気の空燃比を低下させることができる。   The reducing agent supply means may supply the reducing agent by at least one of an increase in the amount of fuel supplied to the internal combustion engine or an addition of the reducing agent to the exhaust by a reducing agent addition valve arranged in the exhaust passage. . According to the present invention, the reducing agent can be supplied and the air-fuel ratio of the exhaust can be lowered.

前記排気流量調節手段は、前記内燃機関の吸気通路に配置されたスロットル弁の開度、前記排気通路から前記吸気通路へ排気の一部をEGRガスとして還流させるEGR通路に配置されたEGR弁の開度、前記排気通路に配置された排気絞り弁の開度、ターボチャージャのタービンに設けられたノズルベーンの開度、又は、前記内燃機関の機関停止の少なくともいずれかによって排気の流量を調節するとよい。本発明によると、触媒及びフィルタに流入する排気の流量を調節できる。   The exhaust flow rate adjusting means includes an opening degree of a throttle valve disposed in an intake passage of the internal combustion engine, an EGR valve disposed in an EGR passage that recirculates a part of exhaust gas from the exhaust passage to the intake passage as EGR gas. The flow rate of the exhaust gas may be adjusted by at least one of the opening degree, the opening degree of the exhaust throttle valve disposed in the exhaust passage, the opening degree of the nozzle vane provided in the turbine of the turbocharger, or the engine stop of the internal combustion engine. . According to the present invention, the flow rate of the exhaust gas flowing into the catalyst and the filter can be adjusted.

前記排気空燃比低下手段が前記触媒に流入する排気の空燃比を低下させる期間は、前記触媒の下流側の排気の空燃比、前記触媒のNOx吸蔵量、前記触媒のSOx吸蔵量、又は、前記触媒の床温の少なくともいずれかの変化に基づいて制御されるとよい。本発明によると、触媒に流入する排気の空燃比を低下させる好適な期間を設定できる。   The period during which the exhaust air-fuel ratio lowering means lowers the air-fuel ratio of the exhaust flowing into the catalyst is the air-fuel ratio of the exhaust downstream of the catalyst, the NOx storage amount of the catalyst, the SOx storage amount of the catalyst, or the It may be controlled based on at least any change in the bed temperature of the catalyst. According to the present invention, it is possible to set a suitable period for reducing the air-fuel ratio of the exhaust gas flowing into the catalyst.

前記酸素濃度調節手段は、前記内燃機関への燃料供給量の増加、又は、前記フィルタよりも上流側の前記排気通路に配置された還元剤添加弁による排気への還元剤の添加の少なくともいずれかにより排気の酸素濃度を調節するとよい。本発明によると、フィルタよりも上流側の排気の酸素濃度を調節できる。   The oxygen concentration adjusting means is at least one of an increase in the amount of fuel supplied to the internal combustion engine or the addition of a reducing agent to the exhaust by a reducing agent addition valve disposed in the exhaust passage upstream of the filter. The oxygen concentration of the exhaust may be adjusted by According to the present invention, the oxygen concentration in the exhaust gas upstream of the filter can be adjusted.

本発明によると、内燃機関の排気浄化装置において、触媒及びフィルタの過昇温を回避しつつ、触媒の排気浄化能力を好適に回復させることができる。   According to the present invention, in the exhaust gas purification apparatus for an internal combustion engine, the exhaust gas purification ability of the catalyst can be suitably recovered while avoiding excessive temperature rise of the catalyst and the filter.

以下に本発明の具体的な実施例を説明する。   Specific examples of the present invention will be described below.

<実施例1>
図1は、本実施例に係る内燃機関の排気浄化装置を適用する内燃機関及びその吸気系・排気系の概略構成を示す図である。図1に示す内燃機関1は、4つの気筒を有する水冷式の4ストロークサイクル・ディーゼルエンジンである。内燃機関1は車両に搭載されている。内燃機関1には、吸気通路2及び排気通路3が接続されている。
<Example 1>
FIG. 1 is a diagram illustrating a schematic configuration of an internal combustion engine to which an exhaust gas purification apparatus for an internal combustion engine according to the present embodiment is applied and an intake system / exhaust system thereof. An internal combustion engine 1 shown in FIG. 1 is a water-cooled four-stroke cycle diesel engine having four cylinders. The internal combustion engine 1 is mounted on a vehicle. An intake passage 2 and an exhaust passage 3 are connected to the internal combustion engine 1.

内燃機関1に接続された吸気通路2の途中には、排気のエネルギを駆動源として作動するターボチャージャ4のコンプレッサ4aが配置されている。コンプレッサ4aよりも上流側の吸気通路2には、該吸気通路2内を流通する新気吸入空気(新気)の流量を検出するエアフローメータ5が配置されている。エアフローメータ5により、内燃機関1の新気量(吸気量)が測定される。   In the middle of the intake passage 2 connected to the internal combustion engine 1, a compressor 4a of a turbocharger 4 that operates using exhaust energy as a drive source is disposed. An air flow meter 5 for detecting the flow rate of fresh intake air (fresh air) flowing through the intake passage 2 is disposed in the intake passage 2 upstream of the compressor 4a. A fresh air amount (intake amount) of the internal combustion engine 1 is measured by the air flow meter 5.

コンプレッサ4aよりも下流側の吸気通路2には、該吸気通路2内を流通する吸気の流量を調節するスロットル弁6が配置されている。スロットル弁6は、電動アクチュエータ
により開閉される。本実施例におけるスロットル弁6が本発明の排気流量調節手段に相当する。吸気通路2及び吸気通路2に配置される上記機器が内燃機関1の吸気系を構成している。
A throttle valve 6 for adjusting the flow rate of the intake air flowing through the intake passage 2 is disposed in the intake passage 2 downstream of the compressor 4a. The throttle valve 6 is opened and closed by an electric actuator. The throttle valve 6 in this embodiment corresponds to the exhaust flow rate adjusting means of the present invention. The intake passage 2 and the devices disposed in the intake passage 2 constitute an intake system of the internal combustion engine 1.

一方、内燃機関1に接続された排気通路3の途中には、ターボチャージャ4のタービン4bが配置されている。タービン4bは排気通路3を流れる排気によって駆動され、コンプレッサ4aは駆動されたタービン4bと共に回転して吸気通路2を流れる吸気を過給する。そしてタービン4bを収容するタービン室にタービン4bの全周を囲むように複数の可変ノズルベーン4cが設けられ、これらの可変ノズルベーン4cをそれぞれ回動させることで、可変ノズルベーン4c間に形成されるノズル通路断面積を変化させている。可変ノズルベーン4cを回動することによって、ノズル通路断面積を小さくすると、ターボチャージャ4の過給圧を高めることができると共に、タービン4bよりも下流側の排気通路3へ流通する排気の流量を削減できる。可変ノズルベーン4cは、電動アクチュエータにより回動される。本実施例の可変ノズルベーン4cが本発明の排気流量調節手段に相当する。   On the other hand, a turbine 4 b of the turbocharger 4 is arranged in the middle of the exhaust passage 3 connected to the internal combustion engine 1. The turbine 4b is driven by exhaust gas flowing through the exhaust passage 3, and the compressor 4a rotates together with the driven turbine 4b to supercharge intake air flowing through the intake passage 2. A plurality of variable nozzle vanes 4c are provided in a turbine chamber that accommodates the turbine 4b so as to surround the entire circumference of the turbine 4b, and a nozzle passage formed between the variable nozzle vanes 4c by rotating each of these variable nozzle vanes 4c. The cross-sectional area is changed. When the nozzle passage cross-sectional area is reduced by rotating the variable nozzle vane 4c, the supercharging pressure of the turbocharger 4 can be increased and the flow rate of the exhaust gas flowing to the exhaust passage 3 downstream of the turbine 4b is reduced. it can. The variable nozzle vane 4c is rotated by an electric actuator. The variable nozzle vane 4c of this embodiment corresponds to the exhaust flow rate adjusting means of the present invention.

タービン4bよりも下流側の排気通路3には、吸蔵還元型NOx触媒(以下、NSRという)7が配置されている。NSR7は、内燃機関1が通常運転状態のように流入する排気の酸素濃度が高いときは、排気中のNOxを吸蔵し、流入する排気の空燃比が低下して排気の酸素濃度が低下し且つ還元剤が存在するときは、吸蔵されていたNOxを放出還元しNOx吸蔵能力を回復する特性を有する。また、内燃機関1が通常運転状態のように流入する排気の酸素濃度が高いときは、排気中のNOxと共にSOxをも吸蔵し、高温に昇温され且つ流入する排気の空燃比が低下して排気の酸素濃度が低下し且つ還元剤が存在するときは、吸蔵されていたSOxを放出還元しNOx吸蔵能力を回復する特性を有する。本実施例におけるNSR7が本発明の触媒に相当し、NSR7のNOx吸蔵能力が本発明の排気浄化能力に相当する。   An NOx storage reduction catalyst (hereinafter referred to as NSR) 7 is disposed in the exhaust passage 3 downstream of the turbine 4b. The NSR 7 occludes NOx in the exhaust when the internal combustion engine 1 is in a normal operation state when the oxygen concentration of the exhaust is high, and the air-fuel ratio of the exhaust flowing in decreases to reduce the oxygen concentration of the exhaust. When the reducing agent is present, it has a characteristic of releasing and reducing the stored NOx to recover the NOx storage capacity. Further, when the oxygen concentration of the exhaust gas flowing into the internal combustion engine 1 is high as in the normal operation state, SOx is also occluded together with NOx in the exhaust gas, the temperature is raised to a high temperature, and the air-fuel ratio of the exhaust gas flowing in decreases. When the oxygen concentration in the exhaust gas is reduced and a reducing agent is present, the stored SOx is released and reduced to restore the NOx storage capacity. The NSR 7 in this embodiment corresponds to the catalyst of the present invention, and the NOx storage capacity of the NSR 7 corresponds to the exhaust purification capacity of the present invention.

なお、本発明の触媒としては、流入する排気の空燃比が低下すると排気浄化能力を回復可能な触媒であればよく、NOx直接還元型触媒や、アンモニア選択還元型NOx触媒であってもよい。これらの触媒であっても、流入する排気の空燃比が低下すると、吸着したSOxを放出還元し、排気浄化能力を回復できる。   The catalyst of the present invention may be any catalyst that can recover the exhaust purification ability when the air-fuel ratio of the inflowing exhaust gas decreases, and may be a NOx direct reduction type catalyst or an ammonia selective reduction type NOx catalyst. Even with these catalysts, when the air-fuel ratio of the inflowing exhaust gas decreases, the adsorbed SOx can be released and reduced, and the exhaust gas purification ability can be recovered.

NSR7よりも下流側の排気通路3には、排気中の粒子状物質(PM:Particulate Matter)を捕集するディーゼルパティキュレートフィルタ(以下、DPFという)8が配置
されている。
A diesel particulate filter (hereinafter referred to as DPF) 8 that collects particulate matter (PM) in the exhaust is disposed in the exhaust passage 3 downstream of the NSR 7.

DPF8よりも下流側の排気通路3には、該排気通路3内を流通する排気の流量を調節する排気絞り弁9が配置されている。排気絞り弁9は、電動アクチュエータにより開閉される。本実施例における排気絞り弁9が本発明の排気流量調節手段に相当する。   An exhaust throttle valve 9 that adjusts the flow rate of the exhaust gas flowing through the exhaust passage 3 is disposed in the exhaust passage 3 downstream of the DPF 8. The exhaust throttle valve 9 is opened and closed by an electric actuator. The exhaust throttle valve 9 in this embodiment corresponds to the exhaust flow rate adjusting means of the present invention.

NSR7の直下流且つDPF8よりも上流側の排気通路3には、NSR7から流出する排気の空燃比を検出する排気空燃比センサ10が配置されている。   An exhaust air / fuel ratio sensor 10 for detecting the air / fuel ratio of the exhaust gas flowing out from the NSR 7 is disposed in the exhaust passage 3 immediately downstream of the NSR 7 and upstream of the DPF 8.

タービン4bよりも下流側且つNSR7よりも上流側の排気通路3には、該排気通路3内を流通する排気中に還元剤たる燃料(軽油)を添加する燃料添加弁11が配置されている。燃料添加弁11から排気通路3内の排気中へ添加された燃料は、NSR7に流入する排気空燃比を低下させてNSR7に吸蔵されたNOxやSOxを放出還元することや、DPF8に流入してDPF8を昇温させPMを酸化除去することができる。排気通路3及び排気通路3に配置される上記機器が内燃機関1の排気系を構成している。   In the exhaust passage 3 downstream of the turbine 4b and upstream of the NSR 7, a fuel addition valve 11 for adding fuel (light oil) as a reducing agent to the exhaust gas flowing through the exhaust passage 3 is disposed. The fuel added from the fuel addition valve 11 into the exhaust gas in the exhaust passage 3 lowers the exhaust air / fuel ratio flowing into the NSR 7 to release and reduce NOx and SOx stored in the NSR 7 or flows into the DPF 8. The temperature of the DPF 8 can be raised to oxidize and remove PM. The exhaust passage 3 and the devices arranged in the exhaust passage 3 constitute an exhaust system of the internal combustion engine 1.

一方、内燃機関1には、排気通路3内を流通する排気の一部を吸気通路2へ還流(再循環)させるEGR(Exhaust Gas Recirculation)通路12が備えられている。本実施例
では、EGR通路12によって還流される排気をEGRガスと称している。EGR通路12は、タービン4bよりも上流側の排気通路3と、スロットル弁6よりも下流側の吸気通路2とを接続している。このEGR通路12を通って、排気の一部がEGRガスとして内燃機関1へ送り込まれる。EGR通路12には、EGR通路12の通路断面積を調整することにより、該EGR通路12を流通するEGRガスの流量を調節するEGR弁13が配置される。EGR弁13は、電動アクチュエータにより開閉される。本実施例のEGR弁13が本発明の排気流量調節手段に相当する。
On the other hand, the internal combustion engine 1 is provided with an EGR (Exhaust Gas Recirculation) passage 12 that recirculates (recirculates) part of the exhaust gas flowing through the exhaust passage 3 to the intake passage 2. In this embodiment, the exhaust gas recirculated by the EGR passage 12 is referred to as EGR gas. The EGR passage 12 connects the exhaust passage 3 upstream of the turbine 4 b and the intake passage 2 downstream of the throttle valve 6. Through this EGR passage 12, a part of the exhaust is sent to the internal combustion engine 1 as EGR gas. The EGR passage 12 is provided with an EGR valve 13 for adjusting the flow rate of the EGR gas flowing through the EGR passage 12 by adjusting the passage sectional area of the EGR passage 12. The EGR valve 13 is opened and closed by an electric actuator. The EGR valve 13 of this embodiment corresponds to the exhaust flow rate adjusting means of the present invention.

また、内燃機関1には、該内燃機関1の気筒内に燃料を供給する燃料噴射弁14が備えられている。   Further, the internal combustion engine 1 is provided with a fuel injection valve 14 for supplying fuel into the cylinder of the internal combustion engine 1.

以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU15が併設されている。このECU15は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。   The internal combustion engine 1 configured as described above is provided with an ECU 15 that is an electronic control unit for controlling the internal combustion engine 1. The ECU 15 is a unit that controls the operation state of the internal combustion engine 1 in accordance with the operation conditions of the internal combustion engine 1 and the request of the driver.

ECU15には、エアフローメータ5や排気空燃比センサ10の他、アクセルペダルの踏み込み量に応じた電気信号を出力するアクセル開度センサ16、及び、内燃機関1の機関回転数を検出するクランクポジションセンサ17等の各種センサが電気配線を介して接続され、これら各種センサの出力信号がECU15に入力される。   In addition to the air flow meter 5 and the exhaust air / fuel ratio sensor 10, the ECU 15 includes an accelerator opening sensor 16 that outputs an electrical signal corresponding to the amount of depression of the accelerator pedal, and a crank position sensor that detects the engine speed of the internal combustion engine 1. Various sensors such as 17 are connected via electric wiring, and output signals of these various sensors are input to the ECU 15.

一方、ECU15には、可変ノズルベーン4c、スロットル弁6、排気絞り弁9、及びEGR弁13の電動アクチュエータ、並びに燃料添加弁11及び燃料噴射弁14が電気配線を介して接続されており、該ECU15によりこれらの機器が制御される。   On the other hand, the variable nozzle vane 4c, the throttle valve 6, the exhaust throttle valve 9, and the electric actuator of the EGR valve 13, the fuel addition valve 11 and the fuel injection valve 14 are connected to the ECU 15 via electric wiring. By controlling these devices.

ところで、排気通路3に配置されたNSR7では、吸蔵されるNOxが内燃機関1の運転時間と共に増加する。そして、NSR7は吸蔵されたNOxが増加して行くと、NOx吸蔵能力が低下してしまう。最終的には、NSR7のNOx吸蔵能力が飽和し、排気中のNOxがNSR7に吸蔵されずに大気中へ放出されてしまうおそれもある。そこで、NSR7のNOx吸蔵能力を回復させるために、NSR7に吸蔵されたNOx吸蔵量が所定量以上になると、燃料添加弁11から燃料を添加させる。これにより、燃料添加弁11よりも下流側の排気通路3に配置されたNSR7に流入する排気の空燃比を低下させ、NSR7からNOxを放出還元させるNOx還元を実施する場合がある。本実施例におけるNOx還元を実行するECU15が本発明の排気空燃比低下手段に相当する。   By the way, in the NSR 7 disposed in the exhaust passage 3, the stored NOx increases with the operation time of the internal combustion engine 1. And when NSR7 occluded NOx increases, the NOx occlusion capability will decrease. Eventually, the NOx storage capacity of the NSR 7 is saturated, and NOx in the exhaust may be released into the atmosphere without being stored in the NSR 7. Therefore, in order to restore the NOx storage capacity of the NSR 7, when the NOx storage amount stored in the NSR 7 exceeds a predetermined amount, fuel is added from the fuel addition valve 11. As a result, there is a case where the air-fuel ratio of the exhaust gas flowing into the NSR 7 disposed in the exhaust passage 3 on the downstream side of the fuel addition valve 11 is reduced, and NOx reduction for releasing and reducing NOx from the NSR 7 may be performed. The ECU 15 that performs NOx reduction in this embodiment corresponds to the exhaust air-fuel ratio lowering means of the present invention.

また、NSR7では、NOxと共に吸蔵されるSOxが内燃機関1の運転時間と共に増加する。そして、NSR7は吸蔵されたSOxが増加して行くと、NOx吸蔵能力が低下してしまう。そこで、NSR7のNOx吸蔵能力を回復させるために、NSR7に吸蔵されたSOx吸蔵量が所定量以上になると、燃料添加弁11から燃料を添加させる。これにより、燃料添加弁11よりも下流側の排気通路3に配置されたNSR7を高温に昇温すると共にNSR7に流入する排気の空燃比を低下させ、NSR7からSOxを放出還元させるS再生を実施する場合がある。本実施例におけるS再生を実行するECU15が本発明の排気空燃比低下手段に相当する。以下、S再生を例に挙げて説明する。しかし、NOx還元でも同様な制御が行われる。   In NSR 7, SOx stored together with NOx increases with the operating time of the internal combustion engine 1. And as NSR7 occluded SOx increases, the NOx occlusion capability decreases. Therefore, in order to restore the NOx storage capacity of the NSR 7, when the SOx storage amount stored in the NSR 7 exceeds a predetermined amount, fuel is added from the fuel addition valve 11. As a result, the NSR 7 disposed in the exhaust passage 3 downstream of the fuel addition valve 11 is heated to a high temperature, the air-fuel ratio of the exhaust gas flowing into the NSR 7 is lowered, and S regeneration is performed in which SOx is released and reduced from the NSR 7. There is a case. The ECU 15 that executes S regeneration in this embodiment corresponds to the exhaust air-fuel ratio lowering means of the present invention. Hereinafter, the S reproduction will be described as an example. However, similar control is performed in NOx reduction.

このようなS再生は、内燃機関1が搭載された車両の減速時等に実行される。ここで、S再生を実行する際に、NSR7に流入する排気の流量が多いと、図2に実線で示すように、NSR7に流入する排気の空燃比を低下させるために燃料添加弁11によって供給される燃料の添加量が増加し、燃料の反応が過度に生じてNSR7の一部が過度に昇温し、
NSR7では部分的に過昇温するおそれがある。しかし、S再生を実行する際に、DPF8に流入する排気の流量が多いと、図2に破線で示すように、DPF8に供給される酸素によるPMの酸化発熱よりも、DPF8を流通する排気による冷却が勝り、DPF8では過昇温しない。
Such S regeneration is performed when the vehicle on which the internal combustion engine 1 is mounted is decelerated. Here, when the S regeneration is performed, if the flow rate of the exhaust gas flowing into the NSR 7 is large, as shown by the solid line in FIG. 2, the fuel supply valve 11 supplies the exhaust gas flowing into the NSR 7 to reduce the air-fuel ratio. The amount of added fuel increases, the fuel reaction occurs excessively, and a part of the NSR 7 rises excessively,
NSR7 may partially overheat. However, when the S regeneration is performed, if the flow rate of the exhaust gas flowing into the DPF 8 is large, as shown by the broken line in FIG. 2, the exhaust gas flowing through the DPF 8 rather than the oxidative heat generation of PM due to the oxygen supplied to the DPF 8. Cooling is superior and the DPF 8 does not overheat.

一方、S再生を実行する際に、DPF8に流入する排気の流量が少ないと、図3に破線で示すように、DPF8を流通する排気による冷却よりも、DPF8に供給される酸素によるPMの酸化発熱が勝り、DPF8では部分的に過昇温するおそれがある。しかし、S再生を実行する際に、NSR7に流入する排気の流量が少ないと、図3に実線で示すように、NSR7に流入する排気の空燃比を低下させるために燃料添加弁11によって添加される燃料の添加量が減少し、燃料の反応が抑制されてNSR7が過度に昇温することはなく、NSR7では過昇温しない。   On the other hand, when performing the S regeneration, if the flow rate of the exhaust gas flowing into the DPF 8 is small, the oxidation of PM by the oxygen supplied to the DPF 8 rather than the cooling by the exhaust gas flowing through the DPF 8 as shown by the broken line in FIG. There is a possibility that the heat generation is excellent and the DPF 8 partially overheats. However, when performing the S regeneration, if the flow rate of the exhaust gas flowing into the NSR 7 is small, it is added by the fuel addition valve 11 in order to reduce the air-fuel ratio of the exhaust gas flowing into the NSR 7 as shown by the solid line in FIG. The amount of added fuel is reduced, the reaction of the fuel is suppressed, and the NSR 7 does not excessively rise in temperature, and the NSR 7 does not overheat.

そこで、本実施例では、図4に示すように、NSR7に対するS再生を実行する際に、NSR7及びDPF8に流入する排気の流量を、S再生を実行する前に比して減少させる又は零にするようにした。またそれと共に、S再生を終了する際に、NSR7及びDPF8に流入する排気の流量を、S再生の実行中に比して増加させるようにした。   Therefore, in this embodiment, as shown in FIG. 4, when performing S regeneration on the NSR 7, the flow rate of the exhaust gas flowing into the NSR 7 and the DPF 8 is reduced or reduced to zero compared to before performing S regeneration. I tried to do it. At the same time, when the S regeneration is terminated, the flow rate of the exhaust gas flowing into the NSR 7 and the DPF 8 is increased as compared with the execution of the S regeneration.

ここで、S再生を実行する際に排気の流量を減少させる又は零にするタイミングは、S再生を実行して燃料添加弁11から燃料が添加された後のタイミングでもよいし、燃料添加弁11から燃料が添加される直前のタイミングでもよく、限定されない。すなわち、排気の流量が減少した又は零となった状態のときに、燃料添加弁11から添加された燃料によって排気の空燃比が低下されており、排気の酸素濃度が減少した状態となっていればよい。本実施例では、図4に示すように、排気の流量を所定流量以下にした直後に、S再生を開始し燃料添加弁11から燃料を添加するようにしている。これは、排気の流量を減少させた状態で燃料添加弁11から燃料を添加すると、排気の空燃比を低下させるために必要な燃料の添加量が少なくて済むからである。   Here, the timing at which the flow rate of the exhaust gas is reduced or made zero when performing the S regeneration may be the timing after the S regeneration is performed and the fuel is added from the fuel addition valve 11, or the fuel addition valve 11 The timing just before the fuel is added may be used and is not limited. That is, when the exhaust gas flow rate is reduced or zero, the air-fuel ratio of the exhaust gas is lowered by the fuel added from the fuel addition valve 11, and the oxygen concentration of the exhaust gas is reduced. That's fine. In this embodiment, as shown in FIG. 4, immediately after the flow rate of the exhaust gas is reduced to a predetermined flow rate or less, S regeneration is started and fuel is added from the fuel addition valve 11. This is because if the fuel is added from the fuel addition valve 11 in a state where the flow rate of the exhaust gas is reduced, the amount of fuel addition required for lowering the air-fuel ratio of the exhaust gas can be reduced.

S再生を実行する際における低下する排気の空燃比は、排気空燃比センサ10が検出する検出値をフィードバックして燃料添加弁11からの燃料の添加量を制御し、所望のリッチ空燃比となるようにしている。   The air-fuel ratio of the exhaust gas that is lowered when the S regeneration is performed is a desired rich air-fuel ratio by feeding back the detection value detected by the exhaust air-fuel ratio sensor 10 to control the amount of fuel added from the fuel addition valve 11. I am doing so.

S再生を実行する際に排気の流量を減少させる又は零にする手法は、スロットル弁6の開度を閉じ側に制御して吸気量を減少させ、内燃機関1から排出させる排気の流量を減少させることでもよい。可変ノズルベーン4cの開度を閉じ側に制御してタービン4bよりも下流側の排気通路3の排気の流量を減少させることでもよい。排気絞り弁9を閉じ側に制御して排気通路3を流通する排気の流量を減少させる又は零にすることでもよい。内燃機関1を機関停止して内燃機関1から排出される排気を零にすることでもよい。EGR弁13を開き側に制御してEGR通路12に排気の多くを還流させてEGR通路12との接続部より下流側の排気通路3の排気の流量を減少させることでもよい。本実施例では、上記列挙した手法の1つ又は2以上を組み合わせることにより、排気の流量を減少させる又は零にすることができる。排気の流量は、空燃比を低下させた排気がNSR7に留まり易く、NSR7のNOx吸蔵能力を回復させることが促進できるように、できるだけ減少させるか、又は零にすることが望ましい。   The method of reducing or reducing the exhaust flow rate when executing the S regeneration is to control the opening degree of the throttle valve 6 to the closed side to reduce the intake air amount, thereby reducing the flow rate of the exhaust gas discharged from the internal combustion engine 1. It may be allowed to. The flow rate of the exhaust gas in the exhaust passage 3 on the downstream side of the turbine 4b may be decreased by controlling the opening of the variable nozzle vane 4c to the closed side. The flow rate of the exhaust gas flowing through the exhaust passage 3 may be reduced or made zero by controlling the exhaust throttle valve 9 to the closed side. The engine exhausted from the internal combustion engine 1 may be made zero by stopping the internal combustion engine 1. The EGR valve 13 may be controlled to open to recirculate much of the exhaust gas to the EGR passage 12 so that the flow rate of the exhaust gas in the exhaust passage 3 downstream from the connection portion with the EGR passage 12 may be reduced. In this embodiment, the flow rate of the exhaust gas can be reduced or zero by combining one or more of the above-described methods. It is desirable that the flow rate of the exhaust gas be reduced as much as possible or zero so that the exhaust gas whose air-fuel ratio has been lowered tends to stay in the NSR 7 and the recovery of the NOx storage capacity of the NSR 7 can be promoted.

一方、S再生を終了する際に排気の流量を増加させるタイミングは、S再生が終了して燃料添加弁11から燃料が添加終了された後のタイミングでもよいし、燃料添加弁11から燃料が添加終了される直前のタイミングでもよく、限定されない。すなわち、燃料添加弁11からの燃料の添加が終了されることによって排気の空燃比が上昇して、排気の酸素濃度が増加した状態となったときに、排気の流量が増加した状態となっていればよい。本
実施例では、図4に示すように、S再生が終了して燃料添加弁11から燃料が添加終了された後に、排気空燃比センサ10の検出値が所定空燃比以上になると、排気の流量を増加させるようにしている。
On the other hand, the timing of increasing the exhaust gas flow rate when S regeneration ends may be the timing after S regeneration ends and the addition of fuel from the fuel addition valve 11 ends, or the fuel is added from the fuel addition valve 11 It may be the timing just before the end, and is not limited. That is, when the addition of fuel from the fuel addition valve 11 is completed and the air-fuel ratio of the exhaust gas is increased and the oxygen concentration of the exhaust gas is increased, the flow rate of the exhaust gas is increased. Just do it. In the present embodiment, as shown in FIG. 4, when the detected value of the exhaust air / fuel ratio sensor 10 becomes equal to or higher than a predetermined air / fuel ratio after S regeneration is completed and fuel is added from the fuel addition valve 11, the flow rate of the exhaust gas is increased. Try to increase.

S再生を終了する際に排気の流量を増加させる手法は、スロットル弁6の開度を開き側に制御して吸気量を増加させ、内燃機関1から排出させる排気の流量を増加させることでもよい。可変ノズルベーン4cの開度を開き側に制御してタービン4bよりも下流側の排気通路3の排気の流量を増加させることでもよい。排気絞り弁9を開き側に制御して排気の流量を増加させることでもよい。停止していた内燃機関1を再始動させて内燃機関1から排気を排出させることでもよい。EGR弁13を閉じ側に制御してEGR通路12には排気をあまり還流させずEGR通路12との接続部より下流側の排気通路3の排気の流量を増加させることでもよい。本実施例では、上記列挙した手法の1つ又は2以上を組み合わせることにより、排気の流量を増加させることができる。排気の流量は、車両の減速時等の内燃機関1が通常運転されることにより排出される流量であればよい。   The method of increasing the exhaust gas flow rate when the S regeneration is finished may be to increase the intake air flow rate by controlling the opening of the throttle valve 6 to the open side to increase the exhaust gas flow rate discharged from the internal combustion engine 1. . The flow rate of the exhaust gas in the exhaust passage 3 on the downstream side of the turbine 4b may be increased by controlling the opening of the variable nozzle vane 4c to the opening side. It is also possible to increase the flow rate of exhaust by controlling the exhaust throttle valve 9 to the open side. The internal combustion engine 1 that has been stopped may be restarted to exhaust the exhaust gas from the internal combustion engine 1. It is also possible to control the EGR valve 13 to the closed side and increase the flow rate of the exhaust gas in the exhaust gas passage 3 on the downstream side of the connection portion with the EGR passage 12 without causing the exhaust gas to recirculate so much in the EGR passage 12. In the present embodiment, the flow rate of the exhaust gas can be increased by combining one or more of the methods listed above. The flow rate of the exhaust gas may be a flow rate that is discharged when the internal combustion engine 1 is normally operated during deceleration of the vehicle.

本実施例によると、S再生を実行する際に、NSR7及びDPF8に流入する排気の流量がS再生の実行前に比して減少する又は零となる。このため、DPF8が部分的に過昇温するおそれが生じるような排気の流量が減少する又は零となるときには、燃料添加弁11によってDPF8よりも上流側から燃料が添加され、DPF8に流入する排気の空燃比も低下しており、DPF8に流入する排気の酸素濃度が減少している。すると、図5に実線で示すように、排気の流量が減少する又は零となるときにはDPF8に流入する排気の酸素濃度が低いので、DPF8に供給される酸素によるPMの酸化発熱があまり生じず、DPF8の過昇温が回避できる。また、NSR7に流入する排気の空燃比を低下させるために燃料添加弁11によって供給される燃料の添加量が減少して燃料の反応が抑制されてNSR7が過度に昇温することはなく、NSRの過昇温も回避できる。さらには、空燃比を低下させた排気がNSR7に留まり易く、NSR7のNOx吸蔵能力を回復させることが促進でき、NSR7のNOx吸蔵能力を好適に回復できる。   According to the present embodiment, when the S regeneration is executed, the flow rate of the exhaust gas flowing into the NSR 7 and the DPF 8 is reduced or becomes zero as compared with that before the S regeneration is executed. For this reason, when the flow rate of the exhaust gas, which may cause the DPF 8 to partially overheat, decreases or becomes zero, fuel is added from the upstream side of the DPF 8 by the fuel addition valve 11 and the exhaust gas flowing into the DPF 8 The air-fuel ratio of the exhaust gas also decreases, and the oxygen concentration of the exhaust gas flowing into the DPF 8 decreases. Then, as shown by the solid line in FIG. 5, when the flow rate of the exhaust gas decreases or becomes zero, the oxygen concentration of the exhaust gas flowing into the DPF 8 is low, so the oxidation heat of PM due to the oxygen supplied to the DPF 8 does not occur so much. Overheating of the DPF 8 can be avoided. Further, in order to reduce the air-fuel ratio of the exhaust gas flowing into the NSR 7, the amount of fuel added by the fuel addition valve 11 is reduced, the reaction of the fuel is suppressed, and the NSR 7 does not rise excessively. It is possible to avoid excessive temperature rise. Further, the exhaust gas whose air-fuel ratio has been lowered tends to stay in the NSR 7, and the recovery of the NOx storage capacity of the NSR 7 can be promoted, so that the NOx storage capacity of the NSR 7 can be recovered appropriately.

一方、本実施例によると、S再生を終了する際に、排気の流量がS再生の実行中に比して増加する。このため、燃料添加弁11によってDPF8よりも上流側から燃料が添加されなくなり、DPF8に流入する排気の空燃比が上昇し始め、DPFに流入する排気の酸素濃度が増加する。しかし、このときには、DPF8に流入する排気の流量が増加する。これにより、DPF8に供給される酸素によるPMの酸化発熱よりも、DPF8を流通する排気による冷却が勝り、DPF8の過昇温が回避できる。また、DPF8及びNSR7に流入する排気の流量が増加するときには、S再生が終了し排気空燃比の低下を終了しているので、燃料の反応は生じずNSR7が過度に昇温されず、NSR7の過昇温も回避できる。   On the other hand, according to the present embodiment, when the S regeneration is terminated, the flow rate of the exhaust gas is increased as compared with the execution of the S regeneration. For this reason, fuel is not added from the upstream side of the DPF 8 by the fuel addition valve 11, the air-fuel ratio of the exhaust gas flowing into the DPF 8 starts to rise, and the oxygen concentration of the exhaust gas flowing into the DPF increases. However, at this time, the flow rate of the exhaust gas flowing into the DPF 8 increases. Thereby, the cooling by the exhaust gas flowing through the DPF 8 is superior to the oxidation heat generation of the PM by the oxygen supplied to the DPF 8, and the excessive temperature rise of the DPF 8 can be avoided. Further, when the flow rate of the exhaust gas flowing into the DPF 8 and the NSR 7 increases, the S regeneration is completed and the exhaust air-fuel ratio is finished decreasing. Therefore, the reaction of the fuel does not occur, the NSR 7 is not excessively heated, and the NSR 7 Overheating can also be avoided.

したがって、本実施例によると、NSR7及びDPF8の過昇温を回避しつつ、NSR7のNOx吸蔵能力を好適に回復させることができる。   Therefore, according to the present embodiment, it is possible to suitably recover the NOx storage capability of the NSR 7 while avoiding excessive temperature rise of the NSR 7 and the DPF 8.

次に、本実施例によるS再生制御ルーチン1について説明する。図6は、本実施例によるS再生制御ルーチン1を示したフローチャートである。本ルーチンは、所定の時間毎に繰り返し実行される。本ルーチンを実行するECU15が本発明の第1制御手段に相当する。   Next, the S regeneration control routine 1 according to this embodiment will be described. FIG. 6 is a flowchart showing the S regeneration control routine 1 according to this embodiment. This routine is repeatedly executed every predetermined time. The ECU 15 that executes this routine corresponds to the first control means of the present invention.

ステップS101では、S再生実行要求があるか否かを判別する。車両の減速時等における各種センサで検出する内燃機関1の運転状態等からS再生実行条件が成立している場合に、S再生実行要求があると判断できる。   In step S101, it is determined whether or not there is an S reproduction execution request. It can be determined that there is an S regeneration execution request when the S regeneration execution condition is established from the operating state of the internal combustion engine 1 detected by various sensors during deceleration of the vehicle or the like.

ステップS101において、S再生実行要求があると肯定判定された場合には、ステップS102へ移行する。ステップS101において、S再生実行要求がないと否定判定された場合には、本ルーチンを一旦終了する。   If it is determined in step S101 that there is an S regeneration execution request, the process proceeds to step S102. If it is determined in step S101 that there is no S regeneration execution request, this routine is temporarily terminated.

ステップS102では、排気流量を減少させる又は零にする。上記列挙した手法の1つ又は2以上を組み合わせることにより、排気の流量を減少させる又は零にする。   In step S102, the exhaust flow rate is decreased or made zero. By combining one or more of the above listed techniques, the exhaust flow rate is reduced or zeroed.

ステップS103では、排気流量が所定流量以下か否かを判別する。エアフローメータ5で検出する吸気量や各種センサで検出する内燃機関1の運転状態等から排気流量を推定し、推定された排気流量が所定流量以下であるか否かを判別する。所定流量は、予め定められた流量であり、ステップS102の処理を行う前に比して減少した流量である。   In step S103, it is determined whether the exhaust flow rate is equal to or lower than a predetermined flow rate. The exhaust flow rate is estimated from the intake air amount detected by the air flow meter 5 and the operating state of the internal combustion engine 1 detected by various sensors, and it is determined whether or not the estimated exhaust flow rate is equal to or less than a predetermined flow rate. The predetermined flow rate is a predetermined flow rate, and is a flow rate that is reduced as compared to before performing the process of step S102.

ステップS103において、排気流量が所定流量以下であると肯定判定された場合には、ステップS104へ移行する。ステップS103において、排気流量が所定流量よりも多いと否定判定された場合には、ループしてステップS103へ戻る。   If it is determined in step S103 that the exhaust gas flow rate is equal to or lower than the predetermined flow rate, the process proceeds to step S104. If it is determined in step S103 that the exhaust gas flow rate is greater than the predetermined flow rate, the process loops and returns to step S103.

ステップS104では、S再生を実行する。すなわち、燃料添加弁11から燃料を添加し、NSR7を高温に昇温すると共にNSR7に流入する排気の空燃比を低下させ、NSR7からSOxを放出還元させる。   In step S104, S reproduction is executed. That is, fuel is added from the fuel addition valve 11, the temperature of the NSR 7 is raised to a high temperature, the air-fuel ratio of the exhaust gas flowing into the NSR 7 is lowered, and SOx is released and reduced from the NSR 7.

ここで、S再生の実行期間は、排気空燃比センサ10が検出するNSR7の下流側の排気の空燃比や、NSR7のSOx吸蔵量、又は、NSR7の床温の少なくともいずれかの変化に基づいて制御されるとよい。これにより、S再生の実行時間を最適にできる。   Here, the execution period of S regeneration is based on a change in at least one of the air-fuel ratio of the exhaust downstream of the NSR 7 detected by the exhaust air-fuel ratio sensor 10, the SOx occlusion amount of the NSR 7, or the bed temperature of the NSR 7. It should be controlled. Thereby, the execution time of S reproduction can be optimized.

ステップS105では、排気空燃比センサ10の検出値が所定空燃比以上であるか否かを判別する。所定空燃比は、予め定められた空燃比であり、例えばS再生中の空燃比変動で検出されてしまうような低い空燃比ではなく、S再生が終了して排気の空燃比が上昇するときに検出できる空燃比が設定される。   In step S105, it is determined whether or not the detected value of the exhaust air / fuel ratio sensor 10 is equal to or greater than a predetermined air / fuel ratio. The predetermined air-fuel ratio is a predetermined air-fuel ratio, for example, not a low air-fuel ratio that would be detected by air-fuel ratio fluctuations during S regeneration, but when S air regeneration ends and the exhaust air-fuel ratio rises An air-fuel ratio that can be detected is set.

ステップS105において、排気空燃比センサ10の検出値が所定空燃比以上であると肯定判定された場合には、ステップS106へ移行する。ステップS105において、排気空燃比センサ10の検出値が所定空燃比よりも低いと否定判定された場合には、ループしてステップS105へ戻る。   If it is determined in step S105 that the detected value of the exhaust air-fuel ratio sensor 10 is equal to or greater than the predetermined air-fuel ratio, the process proceeds to step S106. If it is determined in step S105 that the detected value of the exhaust air-fuel ratio sensor 10 is lower than the predetermined air-fuel ratio, the process loops and returns to step S105.

ステップS106では、排気流量を増加させる。上記列挙した手法の1つ又は2以上を組み合わせることにより、排気の流量を増加させる。   In step S106, the exhaust gas flow rate is increased. The exhaust flow rate is increased by combining one or more of the methods listed above.

以上説明した本ルーチンによれば、S再生を実行する直前に、NSR7及びDPF8に流入する排気の流量を減少させる又は零にすることができると共に、S再生を終了した直後に、NSR7及びDPF8に流入する排気の流量を増加させることができる。これにより、NSR7及びDPF8の過昇温を回避して、S再生を実行できる。   According to this routine described above, the flow rate of the exhaust gas flowing into the NSR 7 and the DPF 8 can be reduced or zero immediately before the S regeneration is performed, and the NSR 7 and the DPF 8 are immediately restored after the S regeneration is finished. The flow rate of the inflowing exhaust gas can be increased. Thereby, it is possible to avoid the excessive temperature rise of the NSR 7 and the DPF 8 and execute the S regeneration.

なお、上記実施例では、S再生について説明したが、NOx還元でも同様である。NOx還元の実行期間は、排気空燃比センサ10が検出するNSR7の下流側の排気の空燃比や、NSR7のNOx吸蔵量、又は、NSR7の床温の少なくともいずれかの変化に基づいて制御されるとよい。これにより、NOx還元の実行時間を最適にできる。   In the above embodiment, the S regeneration has been described, but the same applies to NOx reduction. The NOx reduction execution period is controlled based on a change in at least one of the air-fuel ratio of the exhaust downstream of the NSR 7 detected by the exhaust air-fuel ratio sensor 10, the NOx occlusion amount of the NSR 7, or the bed temperature of the NSR 7. Good. Thereby, the execution time of NOx reduction can be optimized.

また、上記実施例では、S再生の実行時に排気の空燃比を低下させることを、燃料添加弁11から燃料を添加することで行っていた。しかし本発明はこれに限られない。例えば、主噴射増量やアフター噴射やポスト噴射といった、燃料噴射弁14から内燃機関1への
燃料供給量を増加して、S再生の実行時に排気の空燃比を低下させるようにしてもよい。
In the above embodiment, the air-fuel ratio of the exhaust gas is reduced by adding fuel from the fuel addition valve 11 when performing the S regeneration. However, the present invention is not limited to this. For example, the amount of fuel supplied from the fuel injection valve 14 to the internal combustion engine 1, such as main injection increase, after injection, or post injection, may be increased, and the air-fuel ratio of the exhaust may be reduced when S regeneration is performed.

また、上記実施例で列挙した排気流量調節手段に限られない。例えば、図7に示すように、2つの内燃機関1の排気通路3が途中で一旦合流し、再度分岐する構成において、再度分岐する排気通路3にNSR7及びDPF8が配置され、そのNSR7及びDPF8よりも上流に配置された排気制御弁18を開閉することによって、NSR7及びDPF8に流入する排気の流量を調節するようにしてもよい。また、図8に示すように、内燃機関1の排気通路3にNSR7及びDPF8が配置され、NSR7よりも上流側の排気通路3からDPF8の下流側の排気通路3にバイパスするバイパス通路19を設けた構成において、排気の流通経路を、NSR7及びDPF8の配置された排気通路3か、バイパス通路19か、を選択する排気流通経路選択弁20を切り換えることによって、NSR7及びDPF8に流入する排気の流量を調節するようにしてもよい。また、図9に示すように、内燃機関1の排気通路3にNSR7及びDPF8が配置され、NSR7よりも上流側の排気通路3からDPF8の上流側の排気通路3にバイパスするバイパス通路21を設けた構成において、排気の流通経路を、NSR7の配置された排気通路3か、バイパス通路21か、を選択する排気流通経路選択弁22を切り換えることによって、NSR7に流入する排気の流量を調節するようにしてもよい。これらの場合には、排気制御弁18や排気流通経路選択弁20,21が本発明の排気流量調節手段に相当する。   Further, the exhaust flow rate adjusting means listed in the above embodiment is not limited. For example, as shown in FIG. 7, in a configuration in which the exhaust passages 3 of the two internal combustion engines 1 once merge in the middle and branch again, NSR 7 and DPF 8 are arranged in the exhaust passage 3 that branches again, and the NSR 7 and DPF 8 Alternatively, the flow rate of the exhaust gas flowing into the NSR 7 and the DPF 8 may be adjusted by opening and closing the exhaust control valve 18 disposed upstream. Further, as shown in FIG. 8, NSR 7 and DPF 8 are arranged in the exhaust passage 3 of the internal combustion engine 1, and a bypass passage 19 is provided that bypasses the exhaust passage 3 upstream from the NSR 7 to the exhaust passage 3 downstream of the DPF 8. In this configuration, the flow rate of the exhaust gas flowing into the NSR 7 and the DPF 8 is switched by switching the exhaust circulation route selection valve 20 that selects the exhaust passage 3 in which the NSR 7 and the DPF 8 are arranged or the bypass passage 19. May be adjusted. Further, as shown in FIG. 9, NSR 7 and DPF 8 are arranged in the exhaust passage 3 of the internal combustion engine 1, and a bypass passage 21 that bypasses the exhaust passage 3 upstream of the NSR 7 to the exhaust passage 3 upstream of the DPF 8 is provided. In this configuration, the flow rate of the exhaust gas flowing into the NSR 7 is adjusted by switching the exhaust gas flow route selection valve 22 that selects the exhaust passage 3 where the NSR 7 is disposed or the bypass passage 21 as the exhaust passage route. It may be. In these cases, the exhaust control valve 18 and the exhaust flow path selection valves 20 and 21 correspond to the exhaust flow rate adjusting means of the present invention.

また、上記実施例では、NSR7がDPF8よりも上流側の排気通路3に配置されていた。しかし本発明はこれに限られない。図10に示すように、NSR7がDPF8よりも下流側の排気通路3に配置されていてもよい。この場合であっても、DPF8よりも上流側の燃料添加弁11や内燃機関1から、S再生の実行時に、NSR7及びDPF8に流入する排気に燃料が供給されれば、上記実施例と同様な制御が可能となる。   Moreover, in the said Example, NSR7 was arrange | positioned in the exhaust passage 3 upstream from DPF8. However, the present invention is not limited to this. As shown in FIG. 10, the NSR 7 may be disposed in the exhaust passage 3 on the downstream side of the DPF 8. Even in this case, if fuel is supplied from the fuel addition valve 11 or the internal combustion engine 1 upstream of the DPF 8 to the exhaust gas flowing into the NSR 7 and the DPF 8 when the S regeneration is performed, the same as in the above embodiment. Control becomes possible.

また、上記実施例では、排気空燃比センサ10の検出値を用いて排気空燃比を検出していた。しかし本発明はこれに限られない。例えば、排気空燃比センサ10と同位置に配置される、HCセンサや酸素濃度センサ等によって排気空燃比を検出してもよい。また、これらのセンサを用いず、内燃機関1の運転状態に基づくマップから排気空燃比を推定してもよい。   In the above embodiment, the exhaust air / fuel ratio is detected using the detected value of the exhaust air / fuel ratio sensor 10. However, the present invention is not limited to this. For example, the exhaust air / fuel ratio may be detected by an HC sensor, an oxygen concentration sensor, or the like disposed at the same position as the exhaust air / fuel ratio sensor 10. Further, the exhaust air / fuel ratio may be estimated from a map based on the operating state of the internal combustion engine 1 without using these sensors.

<実施例2>
本実施例では、NSR7がDPF8よりも下流側の排気通路3に配置されており、且つ、燃料添加弁11がDPF8とNSR7との間に配置された場合を説明する。本実施例ではその特徴部分を説明し、その他の構成は上記実施例と同様であるので説明は省略する。
<Example 2>
In the present embodiment, the case where the NSR 7 is arranged in the exhaust passage 3 downstream of the DPF 8 and the fuel addition valve 11 is arranged between the DPF 8 and the NSR 7 will be described. In the present embodiment, the characteristic part will be described, and the other configurations are the same as those in the above embodiment, and the description thereof will be omitted.

本実施例では、図11に示すように、NSR7がDPF8よりも下流側の排気通路3に配置されている。また、燃料添加弁11がDPF8よりも下流側且つNSR7よりも上流側の排気通路3に配置されている。   In this embodiment, as shown in FIG. 11, the NSR 7 is arranged in the exhaust passage 3 on the downstream side of the DPF 8. A fuel addition valve 11 is disposed in the exhaust passage 3 downstream of the DPF 8 and upstream of the NSR 7.

本実施例の構成であると、NSR7に対してS再生を実行する場合に、燃料添加弁11から燃料を添加しても、燃料添加弁11よりも上流側の排気通路3に配置されたDPF8に流入する排気の空燃比が低下せず、DPF8に流入する排気の酸素濃度が低下してない。これでは、S再生を実行する際に、DPF8及びNSR7に流入する排気の流量をS再生の実行前に比して減少させる又は零とすると、DPF8を流通する排気による冷却よりも、DPF8に供給される酸素によるPMの酸化発熱が勝り、DPF8が部分的に過昇温するおそれがある。   With the configuration of this embodiment, when performing S regeneration on the NSR 7, the DPF 8 disposed in the exhaust passage 3 upstream of the fuel addition valve 11 even if fuel is added from the fuel addition valve 11. The air-fuel ratio of the exhaust gas flowing into the exhaust gas does not decrease, and the oxygen concentration of the exhaust gas flowing into the DPF 8 does not decrease. In this case, when the S regeneration is executed, if the flow rate of the exhaust gas flowing into the DPF 8 and the NSR 7 is reduced or made zero compared to before the execution of the S regeneration, the supply to the DPF 8 is performed rather than the cooling by the exhaust gas flowing through the DPF 8. There is a possibility that the oxidation heat of PM by the oxygen that is generated is superior and the DPF 8 partially overheats.

そこで、本実施例では、S再生を実行する際に、DPF8及びNSR7に流入する排気の流量を、S再生を実行する前に比して減少させる又は零にし、且つ、DPF8に流入す
る排気の酸素濃度を、S再生を実行する前に比して減少させるようにした。またそれと共に、S再生を終了する際に、DPF8及びNSR7に流入する排気の流量を、S再生の最中に比して増加させ、且つ、DPF8に流入する排気の酸素濃度を、S再生の実行中に比して増加させるようにした。
Therefore, in this embodiment, when performing the S regeneration, the flow rate of the exhaust gas flowing into the DPF 8 and the NSR 7 is reduced or made zero as compared to before performing the S regeneration, and the exhaust gas flowing into the DPF 8 is reduced. The oxygen concentration was decreased as compared to before performing S regeneration. At the same time, when the S regeneration is finished, the flow rate of the exhaust gas flowing into the DPF 8 and the NSR 7 is increased as compared to the time during the S regeneration, and the oxygen concentration of the exhaust gas flowing into the DPF 8 is increased. Increased compared to running.

ここで、DPF8に流入する排気の酸素濃度を減少させる手法は、主噴射増量やアフター噴射やポスト噴射といった、燃料噴射弁14から内燃機関1への燃料供給量を増加して、内燃機関1から排出される排気の空燃比を低下させつつ、排気の酸素濃度を減少させるようにしている。なお、本手法では、主に、DPF8に流入する排気の酸素濃度を減少させることが目的であるため、NSR7に対してS再生を実行する程に排気の空燃比を低下させる必要はない。   Here, the method of reducing the oxygen concentration of the exhaust gas flowing into the DPF 8 is to increase the amount of fuel supplied from the fuel injection valve 14 to the internal combustion engine 1 such as main injection increase, after injection, or post injection. While reducing the air-fuel ratio of the exhaust gas discharged, the oxygen concentration of the exhaust gas is decreased. In this method, the main purpose is to reduce the oxygen concentration of the exhaust gas flowing into the DPF 8, and therefore it is not necessary to reduce the air-fuel ratio of the exhaust gas as the S regeneration is performed on the NSR 7.

DPF8に流入する排気の酸素濃度を増加させる手法は、主噴射増量やアフター噴射やポスト噴射といった、燃料噴射弁14から内燃機関1への燃料供給量の増加を止めて、内燃機関1から排出される排気の空燃比を上昇させつつ、排気の酸素濃度を増加させるようにしている。排気の酸素濃度の増加量は、車両の減速時等の内燃機関1が通常運転されることにより排出される量であればよい。このため、本実施例の内燃機関1が本発明の酸素濃度調節手段に相当する。   The method for increasing the oxygen concentration of the exhaust gas flowing into the DPF 8 is to stop the increase in the amount of fuel supplied from the fuel injection valve 14 to the internal combustion engine 1, such as main injection increase, after injection, or post injection, and to be discharged from the internal combustion engine 1. The oxygen concentration of the exhaust gas is increased while the air-fuel ratio of the exhaust gas is increased. The amount of increase in the oxygen concentration of the exhaust may be an amount that is discharged when the internal combustion engine 1 is normally operated during deceleration of the vehicle. For this reason, the internal combustion engine 1 of the present embodiment corresponds to the oxygen concentration adjusting means of the present invention.

本実施例によると、S再生を実行する際に、DPF8及びNSR7に流入する排気の流量がS再生の実行前に比して減少する又は零となり、且つ、DPF8に流入する排気の酸素濃度がS再生の実行前に比して減少する。このため、DPF8が部分的に過昇温するおそれが生じるような排気の流量が減少する又は零となるときには、燃料噴射弁14から内燃機関1へ燃料供給量が増加し、DPF8に流入する排気の酸素濃度が減少している。これにより、DPF8に供給される酸素によるPMの酸化発熱があまり生じず、DPF8の過昇温が回避できる。また、NSR7に流入する排気の空燃比を低下させるために燃料添加弁11によって供給される燃料の添加量が減少して燃料の反応が抑制されてNSR7が過度に昇温することはなく、NSR7の過昇温も回避できる。さらには、空燃比を低下させた排気がNSRに留まり易く、NSR7のNOx吸蔵能力を回復させることが促進でき、NSR7のNOx吸蔵能力を好適に回復できる。   According to the present embodiment, when performing S regeneration, the flow rate of the exhaust gas flowing into the DPF 8 and NSR 7 decreases or becomes zero as compared to before performing the S regeneration, and the oxygen concentration of the exhaust gas flowing into the DPF 8 is Reduced compared to before S regeneration. For this reason, when the flow rate of the exhaust gas, which may cause the DPF 8 to partially overheat, decreases or becomes zero, the fuel supply amount from the fuel injection valve 14 to the internal combustion engine 1 increases, and the exhaust gas flowing into the DPF 8 The oxygen concentration is decreasing. Thereby, the oxidation heat generation of PM due to oxygen supplied to the DPF 8 does not occur so much, and excessive temperature rise of the DPF 8 can be avoided. In addition, the amount of fuel added by the fuel addition valve 11 is reduced to reduce the air-fuel ratio of the exhaust gas flowing into the NSR 7, the reaction of the fuel is suppressed, and the NSR 7 does not rise excessively. It is possible to avoid excessive temperature rise. Further, the exhaust gas whose air-fuel ratio has been lowered is likely to stay in the NSR, and the recovery of the NOx storage capability of the NSR 7 can be promoted, and the NOx storage capability of the NSR 7 can be preferably recovered.

一方、本実施例によると、S再生を終了する際に、DPF8及びNSR7に流入する排気の流量がS再生の実行中に比して増加し、且つ、DPF8に流入する排気の酸素濃度がS再生の実行中に比して増加する。このため、S再生が終了し排気空燃比の低下を終了すると、燃料噴射弁14から内燃機関1へ燃料供給量が減少し、DPF8に流入する排気の酸素濃度が増加する。しかし、このときには、DPF8に流入する排気の流量が増加する。これにより、DPF8に供給される酸素によるPMの酸化発熱よりも、DPF8を流通する排気による冷却が勝り、DPF8の過昇温が回避できる。また、DPF8及びNSR7に流入する排気の流量が増加するときには、S再生が終了し排気空燃比の低下を終了しているので、燃料の反応は生じずNSR7が過度に昇温されず、NSR7の過昇温も回避できる。   On the other hand, according to the present embodiment, when the S regeneration is finished, the flow rate of the exhaust gas flowing into the DPF 8 and the NSR 7 increases as compared with the execution of the S regeneration, and the oxygen concentration of the exhaust gas flowing into the DPF 8 is S Increased during playback. For this reason, when the S regeneration is completed and the decrease in the exhaust air-fuel ratio is completed, the amount of fuel supplied from the fuel injection valve 14 to the internal combustion engine 1 decreases, and the oxygen concentration of the exhaust gas flowing into the DPF 8 increases. However, at this time, the flow rate of the exhaust gas flowing into the DPF 8 increases. Thereby, the cooling by the exhaust gas flowing through the DPF 8 is superior to the oxidation heat generation of the PM by the oxygen supplied to the DPF 8, and the excessive temperature rise of the DPF 8 can be avoided. Further, when the flow rate of the exhaust gas flowing into the DPF 8 and the NSR 7 increases, the S regeneration is completed and the exhaust air-fuel ratio is finished decreasing. Therefore, the reaction of the fuel does not occur, the NSR 7 is not excessively heated, and the NSR 7 Overheating can also be avoided.

したがって、DPF8及びNSR7の過昇温を回避しつつ、NSR7のNOx吸蔵能力を好適に回復させることができる。   Therefore, the NOx occlusion capability of NSR 7 can be suitably recovered while avoiding excessive temperature rise of DPF 8 and NSR 7.

次に、本実施例によるS再生制御ルーチン2について説明する。図12は、本実施例によるS再生制御ルーチン2を示したフローチャートである。本ルーチンは、所定の時間毎に繰り返し実行される。本ルーチンを実行するECU15が本発明の第2制御手段に相当する。なお、本ルーチンにおいて上記実施例のS再生制御ルーチン1と同様な処理については説明を省略する。   Next, the S regeneration control routine 2 according to this embodiment will be described. FIG. 12 is a flowchart showing the S regeneration control routine 2 according to this embodiment. This routine is repeatedly executed every predetermined time. The ECU 15 that executes this routine corresponds to the second control means of the present invention. In this routine, the description of the same processing as that of the S regeneration control routine 1 of the above embodiment is omitted.

ステップS103において、排気流量が所定流量以下であると肯定判定された場合には、ステップS201へ移行する。ステップS103において、排気流量が所定流量よりも多いと否定判定された場合には、ループしてステップS103へ戻る。   If it is determined in step S103 that the exhaust gas flow rate is equal to or lower than the predetermined flow rate, the process proceeds to step S201. If it is determined in step S103 that the exhaust gas flow rate is greater than the predetermined flow rate, the process loops and returns to step S103.

ステップS201では、DPF8に流入する排気の酸素濃度を減少させる。すなわち、上記で説明した手法により燃料噴射弁14から内燃機関1への燃料供給量を増加する。   In step S201, the oxygen concentration of the exhaust gas flowing into the DPF 8 is decreased. That is, the amount of fuel supplied from the fuel injection valve 14 to the internal combustion engine 1 is increased by the method described above.

ステップS105において、排気空燃比センサ10の検出値が所定空燃比以上であると肯定判定された場合には、ステップS202へ移行する。ステップS105において、排気空燃比センサ10の検出値が所定空燃比よりも低いと否定判定された場合には、ループしてステップS105へ戻る。   If it is determined in step S105 that the detected value of the exhaust air-fuel ratio sensor 10 is equal to or greater than the predetermined air-fuel ratio, the process proceeds to step S202. If it is determined in step S105 that the detected value of the exhaust air-fuel ratio sensor 10 is lower than the predetermined air-fuel ratio, the process loops and returns to step S105.

ステップS202では、DPF8に流入する排気の酸素濃度を増加させる。すなわち、燃料噴射弁14から内燃機関1への燃料供給量を減少する。   In step S202, the oxygen concentration of the exhaust gas flowing into the DPF 8 is increased. That is, the amount of fuel supplied from the fuel injection valve 14 to the internal combustion engine 1 is reduced.

以上説明した本ルーチンによれば、S再生を実行する直前に、DPF8及びNSR7に流入する排気の流量を減少させる又は零にし、且つ、DPF8に流入する排気の酸素濃度を減少させることができると共に、S再生を終了した直後に、DPF8及びNSR7に流入する排気の流量を増加させ、且つ、DPF8に流入する排気の酸素濃度を増加させることができる。これにより、DPF8及びNSR7の過昇温を回避して、S再生を実行できる。   According to the routine described above, immediately before the S regeneration is executed, the flow rate of the exhaust gas flowing into the DPF 8 and the NSR 7 can be reduced or made zero, and the oxygen concentration of the exhaust gas flowing into the DPF 8 can be decreased. Immediately after the completion of the S regeneration, the flow rate of the exhaust gas flowing into the DPF 8 and the NSR 7 can be increased, and the oxygen concentration of the exhaust gas flowing into the DPF 8 can be increased. Thereby, it is possible to avoid the excessive temperature rise of the DPF 8 and the NSR 7 and execute the S regeneration.

なお、上記実施例では、DPF8に流入する排気の酸素濃度を減少させることや増加させることを、燃料噴射弁14から内燃機関1への燃料供給量を調節することで行っていた。しかし本発明はこれに限られない。例えばDPF8よりも上流側の排気通路3に上流側燃料添加弁を配置し、上流側燃料添加弁から燃料を添加することで、DPF8に流入する排気の酸素濃度を減少させるようにしてもよい。この場合では、上流側燃料添加弁が本発明の酸素濃度調節手段に相当する。   In the above embodiment, the oxygen concentration of the exhaust gas flowing into the DPF 8 is reduced or increased by adjusting the amount of fuel supplied from the fuel injection valve 14 to the internal combustion engine 1. However, the present invention is not limited to this. For example, an upstream fuel addition valve may be disposed in the exhaust passage 3 upstream of the DPF 8, and fuel may be added from the upstream fuel addition valve to reduce the oxygen concentration of the exhaust flowing into the DPF 8. In this case, the upstream fuel addition valve corresponds to the oxygen concentration adjusting means of the present invention.

本発明に係る内燃機関の排気浄化装置は、上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもよい。   The exhaust gas purification apparatus for an internal combustion engine according to the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the gist of the present invention.

実施例1に係る内燃機関及びその吸気系・排気系の概略構成を示す図。1 is a diagram showing a schematic configuration of an internal combustion engine and an intake system / exhaust system thereof according to Embodiment 1. FIG. 排気流量が多い場合のNSR床温及びDPF床温を示す図。The figure which shows the NSR floor temperature and DPF floor temperature in case there are many exhaust gas flow rates. 排気流量が少ない場合のNSR床温及びDPF床温を示す図。The figure which shows the NSR floor temperature and DPF floor temperature when there are few exhaust gas flow rates. 実施例1に係るS再生時における排気空燃比及び排気流量を示す図。FIG. 3 is a diagram showing an exhaust air-fuel ratio and an exhaust flow rate during S regeneration according to the first embodiment. 排気流量が少ない場合において排気の酸素濃度で変化するDPF床温を示す図。The figure which shows the DPF bed temperature which changes with the oxygen concentration of exhaust when there are few exhaust gas flow rates. 実施例1に係るS再生制御ルーチン1を示すフローチャート。3 is a flowchart showing an S regeneration control routine 1 according to the first embodiment. 実施例1の他の例に係る内燃機関及びその排気系の概略構成を示す図。FIG. 3 is a diagram illustrating a schematic configuration of an internal combustion engine and an exhaust system thereof according to another example of the first embodiment. 実施例1の他の例に係る内燃機関及びその排気系の概略構成を示す図。FIG. 3 is a diagram illustrating a schematic configuration of an internal combustion engine and an exhaust system thereof according to another example of the first embodiment. 実施例1の他の例に係る内燃機関及びその排気系の概略構成を示す図。FIG. 3 is a diagram illustrating a schematic configuration of an internal combustion engine and an exhaust system thereof according to another example of the first embodiment. 実施例1の他の例に係る内燃機関及びその吸気系・排気系の概略構成を示す図。FIG. 3 is a diagram illustrating a schematic configuration of an internal combustion engine and an intake system / exhaust system thereof according to another example of the first embodiment. 実施例2に係る内燃機関及びその吸気系・排気系の概略構成を示す図。FIG. 3 is a diagram illustrating a schematic configuration of an internal combustion engine and an intake system and an exhaust system thereof according to a second embodiment. 実施例2に係るS再生制御ルーチン2を示すフローチャート。9 is a flowchart showing an S regeneration control routine 2 according to the second embodiment.

符号の説明Explanation of symbols

1 内燃機関
2 吸気通路
3 排気通路
4 ターボチャージャ
4a コンプレッサ
4b タービン
4c 可変ノズルベーン
5 エアフローメータ
6 スロットル弁
7 NSR
8 DPF
9 排気絞り弁
10 排気空燃比センサ
11 燃料添加弁
12 EGR通路
13 EGR弁
14 燃料噴射弁
15 ECU
16 アクセル開度センサ
17 クランクポジションセンサ
18 排気制御弁
19 バイパス通路
20 排気流通経路選択弁
21 バイパス通路
22 排気流通経路選択弁
1 Internal combustion engine 2 Intake passage 3 Exhaust passage 4 Turbocharger 4a Compressor 4b Turbine 4c Variable nozzle vane 5 Air flow meter 6 Throttle valve 7 NSR
8 DPF
9 Exhaust throttle valve 10 Exhaust air / fuel ratio sensor 11 Fuel addition valve 12 EGR passage 13 EGR valve 14 Fuel injection valve 15 ECU
16 Accelerator opening sensor 17 Crank position sensor 18 Exhaust control valve 19 Bypass passage 20 Exhaust flow path selection valve 21 Bypass path 22 Exhaust flow path selection valve

Claims (8)

内燃機関の排気通路に配置され、流入する排気の空燃比が低下すると排気浄化能力を回復可能な触媒と、
前記排気通路に配置され、粒子状物質を捕集するフィルタと、
前記触媒及び前記フィルタよりも上流側に還元剤を供給する還元剤供給手段と、
前記還元剤供給手段によって還元剤を供給し、前記触媒に流入する排気の空燃比を低下させて前記触媒の排気浄化能力を回復させる排気空燃比低下手段と、
前記触媒及び前記フィルタに流入する排気の流量を調節する排気流量調節手段と、
前記排気空燃比低下手段が前記触媒に流入する排気の空燃比を低下させる際に、前記排気流量調節手段によって排気の流量を、前記排気空燃比低下手段が前記触媒に流入する排気の空燃比を低下させる前に比して減少させる又は零にすると共に、前記排気空燃比低下手段が前記触媒に流入する排気の空燃比を低下させることを終了する際に、前記排気流量調節手段によって排気の流量を、前記排気空燃比低下手段が前記触媒に流入する排気の空燃比を低下させていた最中に比して増加させる第1制御手段と、
を備えたことを特徴とする内燃機関の排気浄化装置。
A catalyst that is disposed in the exhaust passage of the internal combustion engine and can recover the exhaust purification ability when the air-fuel ratio of the inflowing exhaust gas decreases,
A filter disposed in the exhaust passage and collecting particulate matter;
Reducing agent supply means for supplying a reducing agent upstream of the catalyst and the filter;
An exhaust air / fuel ratio lowering means for supplying a reducing agent by the reducing agent supply means and lowering an air / fuel ratio of exhaust flowing into the catalyst to recover an exhaust purification capability of the catalyst;
Exhaust flow rate adjusting means for adjusting the flow rate of exhaust gas flowing into the catalyst and the filter;
When the exhaust air-fuel ratio lowering means lowers the air-fuel ratio of the exhaust flowing into the catalyst, the exhaust flow rate adjusting means reduces the exhaust flow rate, and the exhaust air-fuel ratio lowering means decreases the exhaust air flow ratio flowing into the catalyst. When the exhaust air-fuel ratio lowering means finishes reducing the air-fuel ratio of the exhaust gas flowing into the catalyst, the exhaust flow rate adjusting means causes the exhaust flow rate to be reduced. A first control means for increasing the exhaust air / fuel ratio lowering means compared to the time when the exhaust air / fuel ratio of the exhaust flowing into the catalyst is being lowered,
An exhaust emission control device for an internal combustion engine, comprising:
前記触媒は、前記フィルタよりも上流側の排気通路に配置されたことを特徴とする請求項1に記載の内燃機関の排気浄化装置。   The exhaust purification device for an internal combustion engine according to claim 1, wherein the catalyst is disposed in an exhaust passage upstream of the filter. 前記触媒は、前記フィルタよりも下流側の排気通路に配置されたことを特徴とする請求項1に記載の内燃機関の排気浄化装置。   2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the catalyst is arranged in an exhaust passage downstream of the filter. 内燃機関の排気通路に配置され、流入する排気の空燃比が低下すると排気浄化能力を回復可能な触媒と、
前記触媒よりも上流側の排気通路に配置され、粒子状物質を捕集するフィルタと、
前記フィルタよりも下流側且つ前記触媒よりも上流側に還元剤を供給する還元剤供給手段と、
前記還元剤供給手段によって還元剤を供給し、前記触媒に流入する排気の空燃比を低下させて前記触媒の排気浄化能力を回復させる排気空燃比低下手段と、
前記触媒及び前記フィルタに流入する排気の流量を調節する排気流量調節手段と、
前記フィルタよりも上流側の排気の酸素濃度を調節する酸素濃度調節手段と、
前記排気空燃比低下手段が前記触媒に流入する排気の空燃比を低下させる際に、前記排気流量調節手段によって排気の流量を、前記排気空燃比低下手段が前記触媒に流入する排気の空燃比を低下させる前に比して減少させ又は零にし、且つ、前記酸素濃度調節手段によって排気の酸素濃度を、前記排気空燃比低下手段が前記触媒に流入する排気の空燃比を低下させる前に比して減少させると共に、前記排気空燃比低下手段が前記触媒に流入する排気の空燃比を低下させることを終了する際に、前記排気流量調節手段によって排気の流量を、前記排気空燃比低下手段が前記触媒に流入する排気の空燃比を低下させていた最中に比して増加させ、且つ、前記酸素濃度調節手段によって排気の酸素濃度を、前記排気空燃比低下手段が前記触媒に流入する排気の空燃比を低下させいた最中に比して増加させる第2制御手段と、
を備えたことを特徴とする内燃機関の排気浄化装置。
A catalyst that is disposed in the exhaust passage of the internal combustion engine and can recover the exhaust purification ability when the air-fuel ratio of the inflowing exhaust gas decreases,
A filter that is disposed in an exhaust passage upstream of the catalyst and collects particulate matter;
Reducing agent supply means for supplying a reducing agent downstream from the filter and upstream from the catalyst;
An exhaust air / fuel ratio lowering means for supplying a reducing agent by the reducing agent supply means and lowering an air / fuel ratio of exhaust flowing into the catalyst to recover an exhaust purification capability of the catalyst;
Exhaust flow rate adjusting means for adjusting the flow rate of exhaust gas flowing into the catalyst and the filter;
Oxygen concentration adjusting means for adjusting the oxygen concentration of the exhaust gas upstream of the filter;
When the exhaust air-fuel ratio lowering means lowers the air-fuel ratio of the exhaust flowing into the catalyst, the exhaust flow rate adjusting means reduces the exhaust flow rate, and the exhaust air-fuel ratio lowering means decreases the exhaust air flow ratio flowing into the catalyst. The oxygen concentration of the exhaust gas is reduced or reduced to zero as compared with before the reduction, and the oxygen concentration of the exhaust gas is compared with that before the exhaust air / fuel ratio reduction device reduces the air / fuel ratio of the exhaust gas flowing into the catalyst. And when the exhaust air-fuel ratio reducing means finishes reducing the air-fuel ratio of the exhaust gas flowing into the catalyst, the exhaust air-fuel ratio reducing means reduces the exhaust flow rate by the exhaust flow rate adjusting means. The air-fuel ratio of the exhaust gas flowing into the catalyst is increased as compared with the time when the exhaust gas was being lowered, and the oxygen concentration of the exhaust gas is decreased by the oxygen concentration adjusting means, and the exhaust air-fuel ratio decreasing means flows into the catalyst A second control means for increasing compared during the air-fuel ratio of the exhaust gas was reduced that,
An exhaust emission control device for an internal combustion engine, comprising:
前記還元剤供給手段は、前記内燃機関への燃料供給量の増加、又は、前記排気通路に配置された還元剤添加弁による排気への還元剤の添加の少なくともいずれかにより還元剤を供給することを特徴とする請求項1〜4のいずれか1項に記載の内燃機関の排気浄化装置。   The reducing agent supply means supplies the reducing agent by at least one of an increase in the amount of fuel supplied to the internal combustion engine or an addition of the reducing agent to the exhaust by a reducing agent addition valve disposed in the exhaust passage. The exhaust emission control device for an internal combustion engine according to any one of claims 1 to 4, wherein: 前記排気流量調節手段は、前記内燃機関の吸気通路に配置されたスロットル弁の開度、
前記排気通路から前記吸気通路へ排気の一部をEGRガスとして還流させるEGR通路に配置されたEGR弁の開度、前記排気通路に配置された排気絞り弁の開度、ターボチャージャのタービンに設けられたノズルベーンの開度、又は、前記内燃機関の機関停止の少なくともいずれかによって排気の流量を調節することを特徴とする請求項1〜5のいずれか1項に記載の内燃機関の排気浄化装置。
The exhaust flow rate adjusting means includes an opening degree of a throttle valve disposed in an intake passage of the internal combustion engine,
An opening degree of an EGR valve arranged in an EGR passage for recirculating a part of the exhaust gas from the exhaust passage to the intake passage as EGR gas, an opening degree of an exhaust throttle valve arranged in the exhaust passage, and provided in a turbine of a turbocharger The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 5, wherein the flow rate of the exhaust gas is adjusted by at least one of an opening degree of the nozzle vane provided or an engine stop of the internal combustion engine. .
前記排気空燃比低下手段が前記触媒に流入する排気の空燃比を低下させる期間は、前記触媒の下流側の排気の空燃比、前記触媒のNOx吸蔵量、前記触媒のSOx吸蔵量、又は、前記触媒の床温の少なくともいずれかの変化に基づいて制御されることを特徴とする請求項1〜6のいずれか1項に記載の内燃機関の排気浄化装置。   The period during which the exhaust air-fuel ratio lowering means lowers the air-fuel ratio of the exhaust flowing into the catalyst is the air-fuel ratio of the exhaust downstream of the catalyst, the NOx storage amount of the catalyst, the SOx storage amount of the catalyst, or the The exhaust emission control device for an internal combustion engine according to any one of claims 1 to 6, wherein the exhaust gas purification device is controlled based on at least any change in the bed temperature of the catalyst. 前記酸素濃度調節手段は、前記内燃機関への燃料供給量の増加、又は、前記フィルタよりも上流側の前記排気通路に配置された還元剤添加弁による排気への還元剤の添加の少なくともいずれかにより排気の酸素濃度を調節することを特徴とする請求項4に記載の内燃機関の排気浄化装置。   The oxygen concentration adjusting means is at least one of an increase in the amount of fuel supplied to the internal combustion engine or the addition of a reducing agent to the exhaust by a reducing agent addition valve disposed in the exhaust passage upstream of the filter. The exhaust gas purification apparatus for an internal combustion engine according to claim 4, wherein the oxygen concentration of the exhaust gas is adjusted by the control.
JP2008170976A 2008-06-30 2008-06-30 Exhaust emission control device for an internal combustion engine Withdrawn JP2010007634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008170976A JP2010007634A (en) 2008-06-30 2008-06-30 Exhaust emission control device for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008170976A JP2010007634A (en) 2008-06-30 2008-06-30 Exhaust emission control device for an internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010007634A true JP2010007634A (en) 2010-01-14

Family

ID=41588402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008170976A Withdrawn JP2010007634A (en) 2008-06-30 2008-06-30 Exhaust emission control device for an internal combustion engine

Country Status (1)

Country Link
JP (1) JP2010007634A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039453A1 (en) * 2014-09-12 2016-03-17 いすゞ自動車株式会社 Exhaust-gas-cleaning system and method for controlling the same
WO2016039450A1 (en) * 2014-09-12 2016-03-17 いすゞ自動車株式会社 Exhaust-gas-cleaning system and method of controlling same
US10239676B2 (en) 2013-10-16 2019-03-26 Dow Global Technologies Llc Flexible film composition for heat seals and container with same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10239676B2 (en) 2013-10-16 2019-03-26 Dow Global Technologies Llc Flexible film composition for heat seals and container with same
WO2016039453A1 (en) * 2014-09-12 2016-03-17 いすゞ自動車株式会社 Exhaust-gas-cleaning system and method for controlling the same
WO2016039450A1 (en) * 2014-09-12 2016-03-17 いすゞ自動車株式会社 Exhaust-gas-cleaning system and method of controlling same
CN106715855A (en) * 2014-09-12 2017-05-24 五十铃自动车株式会社 Exhaust-gas-cleaning system and method for controlling the same
CN107075999A (en) * 2014-09-12 2017-08-18 五十铃自动车株式会社 Emission control system and its control method
EP3192988A4 (en) * 2014-09-12 2018-06-27 Isuzu Motors Limited Exhaust-gas-cleaning system and method of controlling same
EP3192990A4 (en) * 2014-09-12 2018-07-18 Isuzu Motors, Ltd. Exhaust-gas-cleaning system and method for controlling the same
US10240499B2 (en) 2014-09-12 2019-03-26 Isuzu Motors Limited Exhaust purification system and control method of the same
US10247074B2 (en) 2014-09-12 2019-04-02 Isuzu Motors Limited Exhaust purification system and control method of the same
CN107075999B (en) * 2014-09-12 2019-08-16 五十铃自动车株式会社 Emission control system and its control method

Similar Documents

Publication Publication Date Title
JP4337809B2 (en) Exhaust gas purification system for internal combustion engine
JP2008008205A (en) Exhaust gas recirculation device for internal combustion engine
JP2008255940A (en) Exhaust gas recirculation device for internal combustion engine
EP1725748A1 (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
JP2007126995A (en) Exhaust gas recirculation system of internal combustion engine
JP2006200473A (en) Control device for engine with exhaust gas after-treating device
JP2008138638A (en) Exhaust recirculating device of internal combustion engine
JP2008008241A (en) Control device for engine
US7950225B2 (en) Exhaust control system for an internal combustion engine
JP2004324454A (en) Exhaust emission control device of internal combustion engine
JP2016145532A (en) Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method for internal combustion engine
JP2010007634A (en) Exhaust emission control device for an internal combustion engine
JP2007107474A (en) Exhaust emission control device for internal combustion engine
US20180266344A1 (en) Internal combustion engine
JP2010151075A (en) Exhaust gas recirculation device for internal combustion engine
JP2010116913A (en) Dpf regeneration processing device for vehicle
JP5240514B2 (en) Engine exhaust gas recirculation system
JP4727472B2 (en) Exhaust purification device
JP2007040223A (en) Exhaust emission control device
JP2006266220A (en) Rising temperature controller of aftertreatment device
JP4500765B2 (en) Exhaust gas purification device for internal combustion engine
JP2009002192A (en) Exhaust emission control device for internal combustion engine
JP2008202409A (en) Exhaust emission control device of internal combustion engine
JP5379733B2 (en) Engine exhaust purification system
JP2007291975A (en) Exhaust recirculation device of internal combustion engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110906