JP2008202409A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2008202409A
JP2008202409A JP2007035889A JP2007035889A JP2008202409A JP 2008202409 A JP2008202409 A JP 2008202409A JP 2007035889 A JP2007035889 A JP 2007035889A JP 2007035889 A JP2007035889 A JP 2007035889A JP 2008202409 A JP2008202409 A JP 2008202409A
Authority
JP
Japan
Prior art keywords
exhaust
nox
internal combustion
combustion engine
throttle valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007035889A
Other languages
Japanese (ja)
Inventor
Yasuaki Nakano
泰彰 仲野
Masayuki Yokota
昌之 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP2007035889A priority Critical patent/JP2008202409A/en
Publication of JP2008202409A publication Critical patent/JP2008202409A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for easily performing an S poisoning recovery control for a former NOx catalyst by easily raising the temperature of the former NOx catalyst when two NOx catalysts are arranged in series in an exhaust emission control device of an internal combustion engine. <P>SOLUTION: This exhaust emission control device comprises two storage/reduction NOx catalysts 3, 4 arranged in series in the exhaust passage 2 of the internal combustion engine, an exhaust throttle valve 6 installed in an exhaust passage 2 between the two NOx catalysts 3, 4 and controlling the flow of an exhaust gas, and an S poisoning recovery control means for releasing the sulfur contents stored in the NOx catalysts 3, 4 by supplying a fuel into the exhaust gas to raise the temperature of the NOx catalysts 3, 4 and lower the air/fuel ratio of the exhaust gas for releasing the sulfur contents stored in the NOx catalysts 3, 4. When the stored sulfur contents are released by using the S poisoning recovery control means for the former NOx catalyst 3 on the upstream side out of the two NOx catalysts 3, 4, the exhaust throttle valve 6 is controlled to the closed side. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

ディーゼル機関において、排気からPMを捕捉するために排気通路にフィルタが配置される。このフィルタに対して、いわゆるPM再生制御が行われる。   In a diesel engine, a filter is disposed in the exhaust passage to capture PM from the exhaust. So-called PM regeneration control is performed on this filter.

PM再生制御は、フィルタに捕集されたPMの量が増大して、フィルタを通過する排気の流路抵抗が増大し、内燃機関の排気抵抗が上昇して機関出力の低下や燃費の悪化を生じることを防止するために行われる。具体的には、排気に燃料を供給してPMが着火燃焼する温度までフィルタを昇温し、フィルタに捕集されたPMを燃焼させてフィルタを再生する。   PM regeneration control increases the amount of PM trapped in the filter, increases the flow resistance of the exhaust gas that passes through the filter, increases the exhaust resistance of the internal combustion engine, and reduces engine output and fuel consumption. This is done to prevent it from happening. Specifically, the temperature of the filter is raised to a temperature at which PM is ignited and burned by supplying fuel to the exhaust, and the PM collected by the filter is burned to regenerate the filter.

そして、フィルタの昇温を容易に行うために、フィルタよりも下流の排気通路に設けられた排気絞り弁を閉じ側に制御し、背圧を高める技術が開示されている(例えば、特許文献1参照)。
特開2003−83034号公報 特開2001−20733号公報 特開2005−315189号公報
In order to easily raise the temperature of the filter, a technique is disclosed in which the exhaust throttle valve provided in the exhaust passage downstream of the filter is controlled to the closed side to increase the back pressure (for example, Patent Document 1). reference).
JP 2003-83034 A JP 2001-20733 A JP 2005-315189 A

ところで、吸蔵還元型NOx触媒(以下、NOx触媒という)を排気通路に直列に2つ並べる場合がある。このような場合には、下流側である後段のNOx触媒は昇温し易いものの、上流側である前段のNOx触媒は排気が下流へ流れるために昇温し難かった。このため、前段のNOx触媒に対してS被毒回復制御により吸蔵された硫黄成分を放出させることが困難であった。ここで、S被毒回復制御は、排気中に燃料を添加し、NOx触媒を例えば600〜700℃に昇温させると共に排気の空燃比を理論空燃比あるいはリッチとし、NOx触媒からSOxを放出させる制御である。   Incidentally, there are cases where two NOx storage reduction catalysts (hereinafter referred to as NOx catalysts) are arranged in series in the exhaust passage. In such a case, although the downstream NOx catalyst on the downstream side is likely to increase in temperature, the upstream NOx catalyst on the upstream side is difficult to increase in temperature because the exhaust gas flows downstream. For this reason, it is difficult to release the sulfur component occluded by the S poison recovery control with respect to the preceding NOx catalyst. Here, in the S poison recovery control, fuel is added to the exhaust, the temperature of the NOx catalyst is raised to, for example, 600 to 700 ° C., the air-fuel ratio of the exhaust is made the stoichiometric air-fuel ratio or rich, and SOx is released from the NOx catalyst. Control.

本発明の目的は、内燃機関の排気浄化装置において、2つのNOx触媒が直列に並ぶ場合に、前段のNOx触媒の昇温を容易に行い、前段のNOx触媒に対するS被毒回復制御を容易に実施する技術を提供することにある。   An object of the present invention is to easily raise the temperature of a preceding NOx catalyst and easily perform S poison recovery control on the preceding NOx catalyst when two NOx catalysts are arranged in series in an exhaust gas purification apparatus for an internal combustion engine. It is to provide technology to be implemented.

本発明にあっては、以下の構成を採用する。すなわち、
内燃機関の排気通路に直列に配置された2つの吸蔵還元型NOx触媒と、
前記2つの吸蔵還元型NOx触媒の間の排気通路に設けられ、排気流量を調節する排気絞り弁と、
排気中に還元剤を供給して前記吸蔵還元型NOx触媒を昇温させると共に排気の空燃比を低下させ前記吸蔵還元型NOx触媒に吸蔵された硫黄成分を放出させるS被毒回復制御手段と、
を備え、
前記2つの吸蔵還元型NOx触媒のうち上流側である前段の吸蔵還元型NOx触媒に対して前記S被毒回復制御手段を用いて吸蔵された硫黄成分を放出させる際に、前記排気絞り弁を閉じ側に制御することを特徴とする内燃機関の排気浄化装置である。
In the present invention, the following configuration is adopted. That is,
Two NOx storage reduction catalysts arranged in series in the exhaust passage of the internal combustion engine;
An exhaust throttle valve that is provided in an exhaust passage between the two NOx storage reduction catalysts and adjusts an exhaust flow rate;
S poison recovery control means for supplying a reducing agent into the exhaust to raise the temperature of the NOx storage reduction catalyst and lowering the air-fuel ratio of the exhaust to release the sulfur component stored in the NOx storage reduction catalyst;
With
When releasing the sulfur component stored using the S poison recovery control means to the upstream NOx catalyst upstream of the two NOx storage reduction catalysts, the exhaust throttle valve is An exhaust emission control device for an internal combustion engine, which is controlled to a closed side.

吸蔵還元型NOx触媒を排気通路に直列に2つ並べる場合がある。このような場合には、後段の吸蔵還元型NOx触媒は昇温し易いものの、前段の吸蔵還元型NOx触媒は排気が下流へ流れるために昇温し難かった。   In some cases, two NOx storage reduction catalysts are arranged in series in the exhaust passage. In such a case, although the latter storage-and-reduction NOx catalyst is likely to increase in temperature, the upstream storage-and-reduction NOx catalyst is difficult to increase in temperature because the exhaust gas flows downstream.

そこで、本発明では、前段の吸蔵還元型NOx触媒に対してS被毒回復制御手段を用いて吸蔵された硫黄成分を放出させる際に、排気絞り弁を閉じ側に制御するようにした。   Therefore, in the present invention, the exhaust throttle valve is controlled to the closed side when the stored sulfur component is released to the upstream NOx catalyst by using the S poison recovery control means.

これによると、排気絞り弁を閉じ側に制御することにより、排気絞り弁よりも上流側に排気を留め、前段の吸蔵還元型NOx触媒が昇温し易くなる。このため、前段の吸蔵還元型NOx触媒に対してS被毒回復制御手段を用いて吸蔵された硫黄成分を放出させることが容易にできる。   According to this, by controlling the exhaust throttle valve to the closed side, the exhaust is stopped upstream of the exhaust throttle valve, and the temperature of the NOx storage reduction catalyst in the previous stage is easily increased. For this reason, it is possible to easily release the sulfur component stored by using the S poison recovery control means with respect to the NOx storage reduction catalyst in the previous stage.

前記2つの吸蔵還元型NOx触媒の間の排気通路において排気に前記排気絞り弁をバイパスさせるバイパス通路を有し、前記バイパス通路を通常時は閉弁状態とすると共に前記バイパス通路が所定圧力を超えると開弁するバイパス弁を備えるとよい。   The exhaust passage between the two NOx storage reduction catalysts has a bypass passage that bypasses the exhaust throttle valve for exhaust, and the bypass passage is normally closed and the bypass passage exceeds a predetermined pressure. And a bypass valve that opens.

これによると、排気絞り弁を閉じ側に制御して排気絞り弁よりも上流側で排気の圧力が所定圧力を超える場合に、バイパス弁から排気を逃がすことができ、排気抵抗が上昇することによる機関出力の低下を抑制できる。なお、所定圧力とは、機関出力の低下を引き起こすほど排気の圧力が高圧となる閾値の圧力をいう。   According to this, when the exhaust throttle valve is controlled to the closed side and the exhaust pressure exceeds the predetermined pressure upstream from the exhaust throttle valve, the exhaust can be released from the bypass valve, and the exhaust resistance increases. Reduction of engine output can be suppressed. The predetermined pressure refers to a threshold pressure at which the exhaust pressure becomes high enough to cause a decrease in engine output.

本発明によると、内燃機関の排気浄化装置において、2つのNOx触媒が直列に並ぶ場合に、前段のNOx触媒の昇温を容易に行い、前段のNOx触媒に対するS被毒回復制御を容易に実施できる。   According to the present invention, in an exhaust gas purification apparatus for an internal combustion engine, when two NOx catalysts are arranged in series, the temperature of the preceding NOx catalyst is easily raised, and the S poison recovery control for the preceding NOx catalyst is easily performed. it can.

以下に本発明の具体的な実施例を説明する。   Specific examples of the present invention will be described below.

<実施例1>
図1は、本実施例に係る内燃機関の排気浄化装置を適用する内燃機関とその排気系の概略構成を示す図である。
<Example 1>
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which the exhaust gas purification apparatus for an internal combustion engine according to this embodiment is applied and its exhaust system.

図1に示す内燃機関1は、4つの気筒を有する水冷式のディーゼル機関であり、各気筒の燃焼室に直接燃料を噴射する燃料噴射弁を備えている。   An internal combustion engine 1 shown in FIG. 1 is a water-cooled diesel engine having four cylinders, and includes a fuel injection valve that directly injects fuel into a combustion chamber of each cylinder.

内燃機関1からは排気通路2が延びている。排気通路2の途中には、内燃機関1の気筒から排出される排気を浄化するために、吸蔵還元型NOx触媒(以下、NOx触媒という)3,4が2つ排気通路2の上下流に直列に並んで配置されている。   An exhaust passage 2 extends from the internal combustion engine 1. In the middle of the exhaust passage 2, two NOx storage reduction type NOx catalysts (hereinafter referred to as NOx catalysts) 3, 4 are connected in series upstream and downstream of the exhaust passage 2 in order to purify the exhaust discharged from the cylinders of the internal combustion engine 1. Are arranged side by side.

ここで、NOx触媒3,4は、NOx触媒3,4に流入する排気の空燃比がリーン(理論空燃比以上)であるときには、排気中のNOxを吸蔵して大気中に放出しないようにし、NOx触媒3,4に流入する排気の空燃比が理論空燃比あるいはそれ以下のリッチであるときには、吸蔵されていたNOxを放出する。そして、排気の空燃比が理論空燃比あるいはリッチである際に、排気中に炭化水素(HC)や一酸化炭素(CO)等の還元成分が存在していれば、NOx触媒3,4から放出された窒素酸化物(NOx)をNに還元して除去するものである。 Here, when the air-fuel ratio of the exhaust gas flowing into the NOx catalysts 3 and 4 is lean (greater than the theoretical air-fuel ratio), the NOx catalysts 3 and 4 store NOx in the exhaust gas so as not to be released into the atmosphere. When the air-fuel ratio of the exhaust gas flowing into the NOx catalysts 3 and 4 is rich at the stoichiometric air-fuel ratio or less, the stored NOx is released. When the air-fuel ratio of the exhaust gas is the stoichiometric air-fuel ratio or rich, if a reducing component such as hydrocarbon (HC) or carbon monoxide (CO) is present in the exhaust gas, it is released from the NOx catalysts 3 and 4. The nitrogen oxide (NOx) formed is reduced to N 2 and removed.

一方、NOx触媒3より上流側の排気通路2には、排気通路2内を流通する排気中に還元剤たる燃料を供給する燃料添加弁5が取り付けられている。   On the other hand, a fuel addition valve 5 is attached to the exhaust passage 2 upstream of the NOx catalyst 3 to supply fuel as a reducing agent into the exhaust gas flowing through the exhaust passage 2.

また、NOx触媒3,4の間の排気通路2には、排気通路2を流れる排気流量を調節する排気絞り弁6が配置されている。   An exhaust throttle valve 6 that adjusts the flow rate of exhaust gas flowing through the exhaust passage 2 is disposed in the exhaust passage 2 between the NOx catalysts 3 and 4.

さらに、排気通路2の排気に排気絞り弁6をバイパスさせる位置にバイパス弁7が配置されている。バイパス弁7は、NOx触媒3,4の間の排気通路2において排気に排気絞り弁6をバイパスさせるバイパス通路8を有し、バイパス通路8を通常時は閉弁状態とすると共にバイパス通路8が所定圧力を超えると開弁する機械式の弁になっている。なお、バイパス弁7が開弁する所定圧力は、機関出力の低下を引き起こすほど排気の圧力が高圧となる閾値の圧力である。   Further, a bypass valve 7 is disposed at a position where the exhaust throttle valve 6 is bypassed to the exhaust gas in the exhaust passage 2. The bypass valve 7 has a bypass passage 8 for bypassing the exhaust throttle valve 6 to the exhaust gas in the exhaust passage 2 between the NOx catalysts 3 and 4. The bypass passage 8 is normally closed and the bypass passage 8 is closed. It is a mechanical valve that opens when a predetermined pressure is exceeded. The predetermined pressure at which the bypass valve 7 opens is a threshold pressure at which the exhaust pressure becomes high enough to cause a decrease in engine output.

以上の構成の内燃機関1には、内燃機関1を制御するための電子制御ユニットであるECU9が併設されている。このECU9は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。ECU9には、燃料添加弁5が電気的に接続されており、ECU9が燃料添加弁5の燃料供給や燃料供給停止を制御可能になっている。また、ECU9には、排気絞り弁6が電気的に接続されており、ECU9が排気絞り弁6の開閉を制御可能になっている。   The internal combustion engine 1 having the above configuration is provided with an ECU 9 that is an electronic control unit for controlling the internal combustion engine 1. The ECU 9 is a unit that controls the operation state of the internal combustion engine 1 in accordance with the operation conditions of the internal combustion engine 1 and the request of the driver. The fuel addition valve 5 is electrically connected to the ECU 9 so that the ECU 9 can control fuel supply and fuel supply stop of the fuel addition valve 5. The exhaust throttle valve 6 is electrically connected to the ECU 9 so that the ECU 9 can control the opening and closing of the exhaust throttle valve 6.

そして、ECU9は、NOx触媒3,4に対して、排気を浄化する通常運転制御、S被毒回復制御、NOx還元制御等の制御を行う。   Then, the ECU 9 performs control such as normal operation control for purifying exhaust gas, S poison recovery control, and NOx reduction control for the NOx catalysts 3 and 4.

ここで、S被毒回復制御は、燃料添加弁5から燃料を継続して繰り返して添加し、NOx触媒3,4を例えば600〜700℃に昇温させると共に排気の空燃比を理論空燃比あるいはリッチとし、NOx触媒3,4からSOxを放出させる制御である。このS被毒回復制御が本発明のS被毒回復制御手段に相当する。   Here, in the S poison recovery control, the fuel is continuously and repeatedly added from the fuel addition valve 5 to raise the temperature of the NOx catalysts 3 and 4 to, for example, 600 to 700 ° C. and to set the air-fuel ratio of the exhaust to the stoichiometric air-fuel ratio or In this control, the exhaust gas is rich and SOx is released from the NOx catalysts 3 and 4. This S poison recovery control corresponds to the S poison recovery control means of the present invention.

NOx還元制御は、燃料添加弁5から燃料を比較的時間を空けて間欠的に添加し、排気の空燃比を理論空燃比あるいはリッチとし、NOx触媒3,4からNOxを放出及び還元させる制御である。なお、NOx還元制御は、比較的短時間のうちに繰り返し実行される制御である。   The NOx reduction control is a control in which fuel is intermittently added from the fuel addition valve 5 at a relatively long time, the exhaust air-fuel ratio is made the stoichiometric air-fuel ratio or rich, and NOx is released and reduced from the NOx catalysts 3 and 4. is there. Note that the NOx reduction control is repeatedly executed within a relatively short time.

ところで、排気通路2の上流側にある前段のNOx触媒3に対しては、下流側にある後段のNOx触媒4よりもS被毒回復制御の実施が困難であった。これは、後段のNOx触媒4は昇温し易いものの、前段のNOx触媒3は排気が下流へ流れるために昇温し難いためである。   By the way, it is more difficult to perform the S poison recovery control on the upstream NOx catalyst 3 on the upstream side of the exhaust passage 2 than on the downstream NOx catalyst 4 on the downstream side. This is because although the latter-stage NOx catalyst 4 is likely to increase in temperature, the former-stage NOx catalyst 3 is difficult to increase because exhaust gas flows downstream.

そこで、本実施例では、前段のNOx触媒3に対してS被毒回復制御を実施させる際に、排気絞り弁6を閉じ側に制御するようにした。   Therefore, in this embodiment, the exhaust throttle valve 6 is controlled to the closed side when the S poison recovery control is performed on the NOx catalyst 3 in the previous stage.

これによると、排気絞り弁6を閉じ側に制御することにより、排気絞り弁6よりも上流側に排気を留め、前段のNOx触媒3が昇温し易くなる。このため、前段のNOx触媒3に対してS被毒回復制御を実施させることが容易にできる。   According to this, by controlling the exhaust throttle valve 6 to the closed side, the exhaust is stopped upstream of the exhaust throttle valve 6 and the temperature of the NOx catalyst 3 in the previous stage is easily increased. For this reason, it is possible to easily perform the S poison recovery control on the NOx catalyst 3 in the previous stage.

ここで、排気絞り弁6を閉じ側に制御して排気絞り弁6よりも上流側で排気の圧力が所定圧力を超えると、排気の流れが滞り、内燃機関1の機関出力の低下を引き起こす。しかし、本実施例では、排気絞り弁6を閉じ側に制御して排気絞り弁6よりも上流側で排気の圧力が所定圧力を超える場合に、バイパス弁7から排気を逃がすことができ、排気抵抗が上昇することによる機関出力の低下を抑制できる。   Here, when the exhaust throttle valve 6 is controlled to the closed side and the exhaust pressure exceeds a predetermined pressure upstream of the exhaust throttle valve 6, the flow of the exhaust gas stagnates, causing a decrease in the engine output of the internal combustion engine 1. However, in the present embodiment, when the exhaust throttle valve 6 is controlled to the closed side and the exhaust pressure exceeds the predetermined pressure upstream of the exhaust throttle valve 6, the exhaust can be released from the bypass valve 7. A decrease in engine output due to an increase in resistance can be suppressed.

ここで、本実施例の前段のNOx触媒3に対してS被毒回復制御を実施させるための制
御を行う制御ルーチンについて、図2に示すフローチャートに基づいて説明する。なお、本ルーチンは、ECU9に予め記憶されており、周期的に実行されるルーチンである。
Here, a control routine for performing control for causing the S poison recovery control to be performed on the NOx catalyst 3 in the preceding stage of the present embodiment will be described based on the flowchart shown in FIG. This routine is stored in advance in the ECU 9 and is periodically executed.

本ルーチンの処理が開始されると、ECU9は、S101において、現在の運転状態において前段のNOx触媒3に対してS被毒回復制御の実施が必要か否かを判別する。   When the processing of this routine is started, the ECU 9 determines in S101 whether or not it is necessary to perform S poisoning recovery control on the preceding NOx catalyst 3 in the current operating state.

具体的には、ECU9は、排気通路2においてNOx触媒3の下流に配置された不図示のNOxセンサの検出値を読み取り、当該検出値から前段のNOx触媒3のNOx吸蔵量が過剰に低下したと読み取れる場合に前段のNOx触媒3に対してS被毒回復制御が必要になったと判断する。   Specifically, the ECU 9 reads a detected value of a NOx sensor (not shown) disposed downstream of the NOx catalyst 3 in the exhaust passage 2, and the NOx occlusion amount of the preceding NOx catalyst 3 is excessively reduced from the detected value. If it can be read, it is determined that the S poison recovery control is required for the NOx catalyst 3 in the previous stage.

なお、上記の他に、ECU9は、前段のNOx触媒3に対する前回のS被毒回復制御の実施後の内燃機関1での燃料噴射量の積算量もしくは内燃機関1を搭載した車両の走行距離に基づいて算出されるSOx吸蔵量から、NOx触媒3におけるSOx吸蔵量が所定吸蔵量Qse以上となった場合にS被毒回復制御が必要になったと判断してもよい。ここで、所定吸蔵量Qseは、前段のNOx触媒3のNOx吸蔵量が過剰に低下するおそれがあると判断できる閾値となる値である。   In addition to the above, the ECU 9 determines the accumulated amount of fuel injection in the internal combustion engine 1 or the travel distance of the vehicle on which the internal combustion engine 1 is mounted after the previous S poison recovery control for the NOx catalyst 3 in the previous stage. From the SOx occlusion amount calculated based on this, it may be determined that the S poison recovery control is necessary when the SOx occlusion amount in the NOx catalyst 3 becomes equal to or greater than the predetermined occlusion amount Qse. Here, the predetermined storage amount Qse is a value that serves as a threshold with which it can be determined that the NOx storage amount of the preceding NOx catalyst 3 may be excessively reduced.

そして、ECU9は、前段のNOx触媒3に対してS被毒回復制御が必要と判定した場合には、S102へ移行する。また、前段のNOx触媒3に対してS被毒回復制御が必要ないと判定した場合には、本ルーチンの処理を一旦終了する。   If the ECU 9 determines that the S poison recovery control is necessary for the preceding NOx catalyst 3, the ECU 9 proceeds to S102. Further, when it is determined that the S poison recovery control is not necessary for the preceding NOx catalyst 3, the processing of this routine is temporarily ended.

ECU9は、S102において、排気絞り弁6を閉じ側に制御する。具体的には、図3に示すように、内燃機関1の機関回転数と内燃機関1での燃料噴射量と排気絞り弁6の開度との相関を示すマップから、排気絞り弁6の開度を決定する。ここで、図3においては、内燃機関1の機関回転数及び内燃機関1での燃料噴射量が小さいときは排気絞り弁6の開度は閉じ側への閉じ量が少なく開度は大きく、内燃機関1の機関回転数及び内燃機関1での燃料噴射量が大きくなる程、排気絞り弁6の開度は閉じ側への閉じ量が大きくなり開度は小さくされる。図3のマップは予め実験などから求められており、ECU9に記憶させておくものである。   In S102, the ECU 9 controls the exhaust throttle valve 6 to the closed side. Specifically, as shown in FIG. 3, the exhaust throttle valve 6 is opened from a map showing the correlation between the engine speed of the internal combustion engine 1, the fuel injection amount in the internal combustion engine 1 and the opening of the exhaust throttle valve 6. Determine the degree. Here, in FIG. 3, when the engine speed of the internal combustion engine 1 and the fuel injection amount in the internal combustion engine 1 are small, the opening degree of the exhaust throttle valve 6 is small and the opening degree is large. As the engine speed of the engine 1 and the fuel injection amount in the internal combustion engine 1 are increased, the opening amount of the exhaust throttle valve 6 is increased and the opening amount is decreased. The map shown in FIG. 3 is obtained in advance from experiments and the like, and is stored in the ECU 9.

ECU9は、S103において、前段のNOx触媒3に対してS被毒回復制御を実施する。すなわち、燃料添加弁5から燃料を継続して繰り返して添加し、前段のNOx触媒3を例えば600〜700℃に昇温させると共に排気の空燃比を理論空燃比あるいはリッチとし、前段のNOx触媒3からSOxを放出させる。   In S103, the ECU 9 performs S poisoning recovery control for the NOx catalyst 3 in the previous stage. That is, fuel is continuously and repeatedly added from the fuel addition valve 5 to raise the temperature of the NOx catalyst 3 at the front stage to, for example, 600 to 700 ° C. To release SOx.

これにより、前段のNOx触媒3に対するS被毒回復制御を実施している最中には、排気絞り弁6の開度を閉じ側に制御しているため、排気絞り弁6よりも上流側に排気を留め、排気を下流へ流さないようにして、前段のNOx触媒3を昇温し易くする。このため、本実施例では、前段のNOx触媒3を例えば600〜700℃に昇温させることが容易に行えるので、前段のNOx触媒3に対してS被毒回復制御を実施させることが容易にできる。   As a result, while the S poison recovery control for the NOx catalyst 3 in the previous stage is being performed, the opening degree of the exhaust throttle valve 6 is controlled to the closed side, so that it is upstream of the exhaust throttle valve 6. The exhaust gas is stopped and the exhaust gas is not allowed to flow downstream, so that the temperature of the NOx catalyst 3 in the previous stage is easily increased. For this reason, in the present embodiment, it is possible to easily raise the temperature of the previous NOx catalyst 3 to, for example, 600 to 700 ° C. Therefore, it is easy to perform the S poison recovery control on the previous NOx catalyst 3. it can.

また、前段のNOx触媒3に対するS被毒回復制御を実施している最中には、排気絞り弁6を閉じ側に制御して排気絞り弁6よりも上流側で排気の圧力が所定圧力を超える場合があるが、その場合には、バイパス弁7から排気を逃がし、排気抵抗が上昇することによる機関出力の低下を抑制している。   Further, during the S poison recovery control for the NOx catalyst 3 in the previous stage, the exhaust throttle valve 6 is controlled to the closed side, and the exhaust pressure reaches a predetermined pressure upstream from the exhaust throttle valve 6. In this case, the exhaust gas is released from the bypass valve 7 to suppress a decrease in engine output due to an increase in exhaust resistance.

そして、本ステップの終了後、本ルーチンの処理を一旦終了する。   Then, after the end of this step, the processing of this routine is temporarily ended.

以上のように前段のNOx触媒3に対するS被毒回復制御を行うことで、2つのNOx触媒3,4が直列に並ぶ場合に、前段のNOx触媒3の昇温を容易に行い、前段のNOx触媒3に対するS被毒回復制御を容易に実施できる。   As described above, by performing the S poison recovery control for the preceding NOx catalyst 3, when the two NOx catalysts 3 and 4 are arranged in series, the temperature of the preceding NOx catalyst 3 can be easily increased, and the preceding NOx catalyst 3 can be heated. S poison recovery control for the catalyst 3 can be easily performed.

本発明に係る内燃機関の排気浄化装置は、上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもよい。   The exhaust gas purification apparatus for an internal combustion engine according to the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the gist of the present invention.

実施例1に係る内燃機関とその排気系を示す図である。1 is a diagram illustrating an internal combustion engine and an exhaust system thereof according to a first embodiment. 実施例1に係る前段のNOx触媒に対してS被毒回復制御を実施させるための制御を行う制御ルーチンを示すフローチャートである。3 is a flowchart showing a control routine for performing control for causing S poison recovery control to be performed on the preceding NOx catalyst according to the first embodiment. 実施例1に係る機関回転数と燃料噴射量と排気絞り弁開度との相関を示す図である。It is a figure which shows the correlation with the engine speed which concerns on Example 1, fuel injection quantity, and an exhaust throttle valve opening degree.

符号の説明Explanation of symbols

1 内燃機関
2 排気通路
3 前段の吸蔵還元型NOx触媒
4 後段の吸蔵還元型NOx触媒
5 燃料添加弁
6 排気絞り弁
7 バイパス弁
8 バイパス通路
9 ECU
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Exhaust passage 3 Occlusion reduction type | mold NOx catalyst 4 of a front | former stage NOx storage reduction | restoration type NOx catalyst 5 Fuel addition valve 6 Exhaust throttle valve 7 Bypass valve 8 Bypass path 9 ECU

Claims (2)

内燃機関の排気通路に直列に配置された2つの吸蔵還元型NOx触媒と、
前記2つの吸蔵還元型NOx触媒の間の排気通路に設けられ、排気流量を調節する排気絞り弁と、
排気中に還元剤を供給して前記吸蔵還元型NOx触媒を昇温させると共に排気の空燃比を低下させ前記吸蔵還元型NOx触媒に吸蔵された硫黄成分を放出させるS被毒回復制御手段と、
を備え、
前記2つの吸蔵還元型NOx触媒のうち上流側である前段の吸蔵還元型NOx触媒に対して前記S被毒回復制御手段を用いて吸蔵された硫黄成分を放出させる際に、前記排気絞り弁を閉じ側に制御することを特徴とする内燃機関の排気浄化装置。
Two NOx storage reduction catalysts arranged in series in the exhaust passage of the internal combustion engine;
An exhaust throttle valve that is provided in an exhaust passage between the two NOx storage reduction catalysts and adjusts an exhaust flow rate;
S poison recovery control means for supplying a reducing agent into the exhaust to raise the temperature of the NOx storage reduction catalyst and lowering the air-fuel ratio of the exhaust to release the sulfur component stored in the NOx storage reduction catalyst;
With
When releasing the sulfur component stored using the S poison recovery control means to the upstream NOx catalyst upstream of the two NOx storage reduction catalysts, the exhaust throttle valve is An exhaust purification device for an internal combustion engine, wherein the exhaust purification device is controlled to the closed side.
前記2つの吸蔵還元型NOx触媒の間の排気通路において排気に前記排気絞り弁をバイパスさせるバイパス通路を有し、前記バイパス通路を通常時は閉弁状態とすると共に前記バイパス通路が所定圧力を超えると開弁するバイパス弁を備えることを特徴とする請求項1に記載の内燃機関の排気浄化装置。

The exhaust passage between the two NOx storage reduction catalysts has a bypass passage that bypasses the exhaust throttle valve for exhaust, and the bypass passage is normally closed and the bypass passage exceeds a predetermined pressure. An exhaust purification device for an internal combustion engine according to claim 1, further comprising a bypass valve that opens.

JP2007035889A 2007-02-16 2007-02-16 Exhaust emission control device of internal combustion engine Pending JP2008202409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007035889A JP2008202409A (en) 2007-02-16 2007-02-16 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007035889A JP2008202409A (en) 2007-02-16 2007-02-16 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008202409A true JP2008202409A (en) 2008-09-04

Family

ID=39780187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007035889A Pending JP2008202409A (en) 2007-02-16 2007-02-16 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008202409A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187403A (en) * 2014-03-26 2015-10-29 三菱自動車工業株式会社 Internal combustion engine exhaust emission control device
JP2018021454A (en) * 2016-08-01 2018-02-08 三菱自動車工業株式会社 Exhaust gas recirculation system for internal combustion engine
CN108131184A (en) * 2016-12-01 2018-06-08 福特环球技术公司 For the method and system of exhaust gas recirculatioon and recuperation of heat

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187403A (en) * 2014-03-26 2015-10-29 三菱自動車工業株式会社 Internal combustion engine exhaust emission control device
JP2018021454A (en) * 2016-08-01 2018-02-08 三菱自動車工業株式会社 Exhaust gas recirculation system for internal combustion engine
CN108131184A (en) * 2016-12-01 2018-06-08 福特环球技术公司 For the method and system of exhaust gas recirculatioon and recuperation of heat
CN108131184B (en) * 2016-12-01 2022-03-18 福特环球技术公司 Method and system for exhaust gas recirculation and heat recovery

Similar Documents

Publication Publication Date Title
US8365516B2 (en) Exhaust gas purification apparatus for internal combustion engine
JP4972914B2 (en) Exhaust gas purification system regeneration control method and exhaust gas purification system
JP5790868B2 (en) Exhaust gas purification device for internal combustion engine
EP1555401B1 (en) Exhaust purifying apparatus for internal combustion engine
JP2006233936A (en) Exhaust emission control device for internal combustion engine
WO2013190635A1 (en) Exhaust purification device for internal combustion engine
JP2004346794A (en) Exhaust emission control device for internal combustion engine
JP4276472B2 (en) Catalyst deterioration determination device for internal combustion engine
JP2008038634A (en) Exhaust emission control device for internal combustion engine
JP6501065B2 (en) Engine exhaust purification system
JP4613787B2 (en) Exhaust gas purification device for internal combustion engine
JP2004324477A (en) Method for determining failure of exhaust emission control system
JP2016145532A (en) Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method for internal combustion engine
WO2016132875A1 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP2008202409A (en) Exhaust emission control device of internal combustion engine
JP2010019092A (en) Exhaust emission control device for internal combustion engine
WO2007015478A1 (en) Exhaust air cleaning apparatus
JP2007154769A (en) Exhaust emission control device
JP2009275667A (en) Emission control device of internal combustion engine
JP2006274985A (en) Exhaust gas aftertreatment device
JP2010007634A (en) Exhaust emission control device for an internal combustion engine
JP2007009810A (en) METHOD FOR CONTROLLING SULFUR PURGE OF NOx ELIMINATION SYSTEM AND NOx ELIMINATION SYSTEM
WO2009130800A1 (en) Exhaust purification system for internal combustion engine
JP2009185617A (en) Exhaust emission control device for internal combustion engine
JP2009264311A (en) Exhaust emission control device for internal combustion engine