JP4609178B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4609178B2
JP4609178B2 JP2005134222A JP2005134222A JP4609178B2 JP 4609178 B2 JP4609178 B2 JP 4609178B2 JP 2005134222 A JP2005134222 A JP 2005134222A JP 2005134222 A JP2005134222 A JP 2005134222A JP 4609178 B2 JP4609178 B2 JP 4609178B2
Authority
JP
Japan
Prior art keywords
fuel
exhaust
temperature
particulate filter
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005134222A
Other languages
Japanese (ja)
Other versions
JP2006307801A (en
Inventor
秀 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005134222A priority Critical patent/JP4609178B2/en
Publication of JP2006307801A publication Critical patent/JP2006307801A/en
Application granted granted Critical
Publication of JP4609178B2 publication Critical patent/JP4609178B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Silencers (AREA)

Description

本発明は内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

機関から排出される排気ガス中に含まれるパティキュレートを捕集するためのパティキュレートフィルタと、流入する排気ガスの空燃比がリーンのときには排気ガス中のNOxを吸蔵し、流入する排気ガスの空燃比がリッチになると吸蔵しているNOxを放出するNOxトラップ触媒とを機関排気通路内に配置し、パティキュレートフィルタを再生するときにはまず初めにパティキュレートフィルタの温度を再生可能なほぼ600℃以上まで昇温させる昇温制御を行い、次いで排気ガスの空燃比がリーンのもとでパティキュレートフィルタの温度をほぼ600℃以上に保持してパティキュレートフィルタ上に堆積したパティキュレートを燃焼させ、それによってパティキュレートフィルタを再生するようにした内燃機関が公知である(例えば特許文献1を参照)。
特開2002−227688号公報
Particulate filters for collecting particulates contained in exhaust gas discharged from the engine, and NOx in the exhaust gas are occluded when the air-fuel ratio of the inflowing exhaust gas is lean, and the inflowing exhaust gas is empty A NOx trap catalyst that releases the stored NOx when the fuel ratio becomes rich is placed in the engine exhaust passage, and when regenerating the particulate filter, the temperature of the particulate filter is first raised to approximately 600 ° C. or higher so that the temperature can be regenerated. The temperature rise control is performed to raise the temperature, and then the particulate filter deposited on the particulate filter is burned while maintaining the temperature of the particulate filter at about 600 ° C. or higher when the air-fuel ratio of the exhaust gas is lean. An internal combustion engine in which a particulate filter is regenerated is known (for example, See Patent Document 1).
JP 2002-227688 A

ところでNOxトラップ触媒が排気ガス中のNOxを吸蔵しうるNOxトラップ触媒の上限温度はほぼ500℃であってパティキュレートフィルタを再生可能な温度に比べてかなり低い。一方、パティキュレートフィルタを再生すべく排気ガスの空燃比がリーンのもとでパティキュレートフィルタの温度がほぼ600℃以上に保持されるときにはNOxトラップ触媒の温度はNOxトラップ触媒がNOxを吸蔵しうる温度よりもかなり高い温度となる。従ってパティキュレートフィルタの再生作用が行われるときには排気ガスの空燃比がリーンとされて排気ガス中には多量のNOxが含まれているにもかかわらず、NOxトラップ触媒によるNOxの吸蔵作用が行われないために多量のNOxが大気中に放出されるという問題がある。   Incidentally, the upper limit temperature of the NOx trap catalyst at which the NOx trap catalyst can store NOx in the exhaust gas is approximately 500 ° C., which is considerably lower than the temperature at which the particulate filter can be regenerated. On the other hand, when the temperature of the particulate filter is maintained at approximately 600 ° C. or higher with the air-fuel ratio of the exhaust gas being lean to regenerate the particulate filter, the temperature of the NOx trap catalyst is such that the NOx trap catalyst can store NOx. The temperature is considerably higher than the temperature. Therefore, when the regeneration action of the particulate filter is performed, the NOx occlusion action is performed by the NOx trap catalyst even though the exhaust gas air-fuel ratio is lean and the exhaust gas contains a large amount of NOx. Therefore, there is a problem that a large amount of NOx is released into the atmosphere.

上記問題点を解決するために本発明によれば、流入する排気ガスの空燃比がリーンのときには排気ガス中のNOxを吸蔵し、流入する排気ガスの空燃比がリッチになると吸蔵しているNOxを放出するNOx吸蔵還元触媒を機関排気通路内に配置し、NOx吸蔵還元触媒下流の機関排気通路内に排気ガス中に含まれるパティキュレートを捕集するためのパティキュレートフィルタを配置し、パティキュレートフィルタを再生するときにはまず初めにパティキュレートフィルタの温度を再生可能な温度まで昇温させる昇温制御が行われ、次いでパティキュレートフィルタを再生するための再生処理が行われる内燃機関の排気浄化装置において、パティキュレートフィルタの再生処理中、パティキュレートフィルタの温度をパティキュレートフィルタの再生目標温度範囲内に維持しつつNOx吸蔵還元触媒の温度がパティキュレートフィルタの温度よりも低いNOxを吸蔵しうる温度になるように、NOx吸蔵還元触媒に流入する排気ガスの空燃比がリーンのもとで間欠的に繰返しリッチにされる間欠リッチ空燃比期間と、NOx吸蔵還元触媒に流入する排気ガスの空燃比が継続的にリーンに維持されるリーン空燃比期間とが交互に繰返される。 In order to solve the above problems, according to the present invention, NOx in the exhaust gas is occluded when the air-fuel ratio of the inflowing exhaust gas is lean, and the NOx occluded when the air-fuel ratio of the inflowing exhaust gas becomes rich. A NOx storage reduction catalyst that releases NOx is disposed in the engine exhaust passage, and a particulate filter for collecting particulates contained in the exhaust gas is disposed in the engine exhaust passage downstream of the NOx storage reduction catalyst. In an exhaust gas purification apparatus for an internal combustion engine, temperature increase control is first performed to raise the temperature of the particulate filter to a reproducible temperature when the filter is regenerated, and then regeneration processing is performed to regenerate the particulate filter. during regeneration process of the particulate filter, the temperature of the particulate of the particulate filter Fi As the temperature of the NOx storage reduction catalyst to a temperature capable of occluding lower NOx than the temperature of the particulate filter while maintaining the reproduction target temperature range of data, the air-fuel ratio of the exhaust gas flowing into the NOx storage-reduction catalyst The intermittent rich air-fuel ratio period in which the exhaust gas is intermittently rich repeatedly under lean and the lean air-fuel ratio period in which the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst is continuously kept lean are alternately repeated. It is.

また、上記問題点を解決するために本発明によれば、共通の排気通路から分岐された第1の排気通路と第2の排気通路を具備し、流入する排気ガスの空燃比がリーンのときには排気ガス中のNOxを吸蔵し、流入する排気ガスの空燃比がリッチになると吸蔵しているNOxを放出するNOx吸蔵還元触媒を第1の排気通路内および第2の排気通路内に夫々配置すると共に、NOx吸蔵還元触媒下流の第1の排気通路および第2の排気通路内に夫々排気ガス中に含まれるパティキュレートを捕集するためのパティキュレートフィルタを配置し、パティキュレートフィルタを再生するときにはまず初めにパティキュレートフィルタの温度を再生可能な温度まで昇温させる昇温制御が行われ、次いでパティキュレートフィルタを再生するための再生処理が行われる内燃機関の排気浄化装置において、第1の排気通路および第2の排気通路上流の共通の排気通路内に燃料添加弁を配置し、パティキュレートフィルタの再生処理中、パティキュレートフィルタの温度をパティキュレートフィルタの再生目標温度範囲内に維持しつつNOx吸蔵還元触媒の温度がパティキュレートフィルタの温度よりも低いNOxを吸蔵しうる温度になるように、排気ガスの空燃比がリーンのもとで該燃料添加弁から燃料が排気ガス中に間欠的に噴射される燃料添加期間と、燃料添加弁からの燃料の噴射が休止される燃料添加休止期間とが交互に繰返されると共に、第1の排気通路が開通し第2の排気通路が閉鎖される状態と、第1の排気通路が閉鎖され第2の排気通路が開通する状態とが交互に繰返される。 Further, in order to solve the above problems, according to the present invention, the first exhaust passage and the second exhaust passage branched from the common exhaust passage are provided, and when the air-fuel ratio of the inflowing exhaust gas is lean. NOx storage reduction catalysts that store NOx in the exhaust gas and release the stored NOx when the air-fuel ratio of the inflowing exhaust gas becomes rich are disposed in the first exhaust passage and the second exhaust passage, respectively. In addition, when a particulate filter for collecting particulates contained in the exhaust gas is disposed in each of the first exhaust passage and the second exhaust passage downstream of the NOx storage reduction catalyst, and the particulate filter is regenerated. First, temperature rise control is performed to raise the temperature of the particulate filter to a recyclable temperature, and then regeneration to regenerate the particulate filter. In the exhaust purification system for an internal combustion engine management is performed, the fuel addition valve disposed in the first exhaust passage and the second exhaust passage common exhaust passage upstream, during regeneration process of the particulate filter, the particulate filter The air-fuel ratio of the exhaust gas is lean so that the temperature of the NOx occlusion reduction catalyst becomes a temperature at which NOx lower than the temperature of the particulate filter can be occluded while maintaining the temperature within the regeneration target temperature range of the particulate filter. The fuel addition period in which fuel is intermittently injected into the exhaust gas from the fuel addition valve and the fuel addition stop period in which the fuel injection from the fuel addition valve is stopped are alternately repeated , and the first The exhaust passage is opened and the second exhaust passage is closed, and the first exhaust passage is closed and the second exhaust passage is opened alternately.

パティキュレートフィルタの再生処理中であってもNOx吸蔵還元触媒によるNOxの浄化作用が可能となる。   Even during the regeneration process of the particulate filter, it is possible to purify NOx by the NOx storage reduction catalyst.

図1に圧縮着火式内燃機関の全体図を示す。
図1を参照すると、1は機関本体、2は各気筒の燃焼室、3は各燃焼室2内に夫々燃料を噴射するための電子制御式燃料噴射弁、4は吸気マニホルド、5は排気マニホルドを夫々示す。吸気マニホルド4は吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結され、コンプレッサ7aの入口はエアフローメータ8を介してエアクリーナ9に連結される。吸気ダクト6内には電気制御式スロットル弁10が配置され、更に吸気ダクト6周りには吸気ダクト6内を流れる吸入空気を冷却するための冷却装置11が配置される。図1に示される実施例では機関冷却水が冷却装置11内に導かれ、機関冷却水によって吸入空気が冷却される。一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7bの入口に連結され、排気タービン7bの出口は排気通路21を介して排気後処理装置20に連結される。
FIG. 1 shows an overall view of a compression ignition type internal combustion engine.
Referring to FIG. 1, 1 is an engine body, 2 is a combustion chamber of each cylinder, 3 is an electronically controlled fuel injection valve for injecting fuel into each combustion chamber 2, 4 is an intake manifold, and 5 is an exhaust manifold. Respectively. The intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 via the intake duct 6, and the inlet of the compressor 7 a is connected to the air cleaner 9 via the air flow meter 8. An electrically controlled throttle valve 10 is arranged in the intake duct 6, and a cooling device 11 for cooling intake air flowing in the intake duct 6 is arranged around the intake duct 6. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 11, and the intake air is cooled by the engine cooling water. On the other hand, the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7, and the outlet of the exhaust turbine 7 b is connected to the exhaust aftertreatment device 20 via the exhaust passage 21.

排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、EGRと称す)通路12を介して互いに連結され、EGR通路12内には電気制御式EGR制御弁13が配置される。また、EGR通路12周りにはEGR通路12内を流れるEGRガスを冷却するための冷却装置14が配置される。図1に示される実施例では機関冷却水が冷却装置14内に導かれ、機関冷却水によってEGRガスが冷却される。一方、各燃料噴射弁3は燃料供給管15を介してコモンレール16に連結される。このコモンレール16内へは電子制御式の吐出量可変な燃料ポンプ17から燃料が供給され、コモンレール16内に供給された燃料は各燃料供給管15を介して燃料噴射弁3に供給される。   The exhaust manifold 5 and the intake manifold 4 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 12, and an electrically controlled EGR control valve 13 is disposed in the EGR passage 12. A cooling device 14 for cooling the EGR gas flowing in the EGR passage 12 is disposed around the EGR passage 12. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 14, and the EGR gas is cooled by the engine cooling water. On the other hand, each fuel injection valve 3 is connected to a common rail 16 through a fuel supply pipe 15. Fuel is supplied into the common rail 16 from an electronically controlled fuel pump 17 with variable discharge amount, and the fuel supplied into the common rail 16 is supplied to the fuel injection valve 3 through each fuel supply pipe 15.

図1に示されるように排気後処理装置20内には上流側から順にNOx吸蔵還元触媒23、パティキュレートフィルタ24、酸化触媒25が配置される。また、排気後処理装置20内にはNOx吸蔵還元触媒23の温度を検出するための温度センサ28と、パティキュレートフィルタ24の前後差圧を検出するための差圧センサ29と、酸化触媒25から排出された排気ガスの温度および空燃比を夫々検出するための温度センサ30および空燃比センサ31が配置される。また、NOx吸蔵還元触媒23上流の排気通路21内には燃料添加弁32が配置される。この燃料添加弁32からは図1においてFで示されるように燃料が添加される。本発明による実施例ではこの燃料は軽油からなる。   As shown in FIG. 1, a NOx storage reduction catalyst 23, a particulate filter 24, and an oxidation catalyst 25 are arranged in order from the upstream side in the exhaust aftertreatment device 20. Further, in the exhaust aftertreatment device 20, there are a temperature sensor 28 for detecting the temperature of the NOx storage reduction catalyst 23, a differential pressure sensor 29 for detecting the differential pressure across the particulate filter 24, and the oxidation catalyst 25. A temperature sensor 30 and an air-fuel ratio sensor 31 for detecting the temperature and air-fuel ratio of the exhaust gas discharged are arranged. A fuel addition valve 32 is disposed in the exhaust passage 21 upstream of the NOx storage reduction catalyst 23. Fuel is added from the fuel addition valve 32 as shown by F in FIG. In an embodiment according to the invention, this fuel consists of light oil.

電子制御ユニット40はデジタルコンピュータからなり、双方向性バス41によって互いに接続されたROM(リードオンリメモリ)42、RAM(ランダムアクセスメモリ)43、CPU(マイクロプロセッサ)44、入力ポート45および出力ポート46を具備する。エアフローメータ8、各温度センサ28,30、差圧センサ29および空燃比センサ31の出力信号は夫々対応するAD変換器47を介して入力ポート45に入力される。また、アクセルペダル49にはアクセルペダル49の踏込み量Lに比例した出力電圧を発生する負荷センサ50が接続され、負荷センサ50の出力電圧は対応するAD変換器47を介して入力ポート45に入力される。更に入力ポート45にはクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ51が接続される。一方、出力ポート46は対応する駆動回路48を介して燃料噴射弁3、スロットル弁10駆動装置、EGR制御弁13、燃料ポンプ17および燃料添加弁32に接続される。   The electronic control unit 40 comprises a digital computer and is connected to each other by a bidirectional bus 41. A ROM (read only memory) 42, a RAM (random access memory) 43, a CPU (microprocessor) 44, an input port 45 and an output port 46 are connected. It comprises. The output signals of the air flow meter 8, the temperature sensors 28 and 30, the differential pressure sensor 29, and the air-fuel ratio sensor 31 are input to the input port 45 via the corresponding AD converters 47. The accelerator pedal 49 is connected to a load sensor 50 that generates an output voltage proportional to the depression amount L of the accelerator pedal 49, and the output voltage of the load sensor 50 is input to the input port 45 via the corresponding AD converter 47. Is done. Further, a crank angle sensor 51 that generates an output pulse every time the crankshaft rotates, for example, 15 ° is connected to the input port 45. On the other hand, the output port 46 is connected to the fuel injection valve 3, the throttle valve 10 drive device, the EGR control valve 13, the fuel pump 17, and the fuel addition valve 32 via corresponding drive circuits 48.

図2はNOx吸蔵還元触媒23の構造を示している。図2に示される実施例ではNOx吸蔵還元触媒23はハニカム構造をなしており、薄肉の隔壁60により互いに分離された複数個の排気ガス流通路61を具備する。各隔壁60の両側表面上には例えばアルミナからなる触媒担体が担持されており、図3(A)および(B)はこの触媒担体65の表面部分の断面を図解的に示している。図3(A)および(B)に示されるように触媒担体65の表面上には貴金属触媒66が分散して担持されており、更に触媒担体65の表面上にはNOx吸収剤67の層が形成されている。   FIG. 2 shows the structure of the NOx storage reduction catalyst 23. In the embodiment shown in FIG. 2, the NOx occlusion reduction catalyst 23 has a honeycomb structure and includes a plurality of exhaust gas flow passages 61 separated from each other by thin partition walls 60. A catalyst carrier made of alumina, for example, is supported on both surfaces of each partition wall 60, and FIGS. 3A and 3B schematically show a cross section of the surface portion of the catalyst carrier 65. As shown in FIGS. 3A and 3B, a noble metal catalyst 66 is dispersedly supported on the surface of the catalyst carrier 65, and a layer of NOx absorbent 67 is further formed on the surface of the catalyst carrier 65. Is formed.

本発明による実施例では貴金属触媒66として白金Ptが用いられており、NOx吸収剤67を構成する成分としては例えばカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つが用いられている。
機関吸気通路、燃焼室2およびNOx吸蔵還元触媒23上流の排気通路内に供給された空気および燃料(炭化水素)の比を排気ガスの空燃比と称すると、NOx吸収剤67は排気ガスの空燃比がリーンのときにはNOxを吸収し、排気ガス中の酸素濃度が低下すると吸収したNOxを放出するNOxの吸放出作用を行う。
In the embodiment according to the present invention, platinum Pt is used as the noble metal catalyst 66, and the components constituting the NOx absorbent 67 are, for example, alkali metals such as potassium K, sodium Na, cesium Cs, barium Ba, and calcium Ca. At least one selected from rare earths such as alkaline earth, lanthanum La, and yttrium Y is used.
When the ratio of air and fuel (hydrocarbon) supplied into the engine intake passage, the combustion chamber 2 and the exhaust passage upstream of the NOx storage reduction catalyst 23 is referred to as the air-fuel ratio of the exhaust gas, the NOx absorbent 67 When the fuel ratio is lean, NOx is absorbed, and when the oxygen concentration in the exhaust gas decreases, the NOx is absorbed and released to release the absorbed NOx.

即ち、NOx吸収剤67を構成する成分としてバリウムBaを用いた場合を例にとって説明すると、排気ガスの空燃比がリーンのとき、即ち排気ガス中の酸素濃度が高いときには排気ガス中に含まれるNOは図3(A)に示されるように白金Pt66上において酸化されてNO2となり、次いでNOx吸収剤67内に吸収されて酸化バリウムBaOと結合しながら硝酸イオンNO3 -の形でNOx吸収剤67内に拡散する。このようにしてNOxがNOx吸収剤67内に吸収される。排気ガス中の酸素濃度が高い限り白金Pt66の表面でNO2が生成され、NOx吸収剤67のNOx吸収能力が飽和しない限りNO2がNOx吸収剤67内に吸収されて硝酸イオンNO3 -が生成される。 That is, the case where barium Ba is used as a component constituting the NOx absorbent 67 will be described as an example. When the air-fuel ratio of the exhaust gas is lean, that is, when the oxygen concentration in the exhaust gas is high, the NO contained in the exhaust gas 3A is oxidized on platinum Pt66 to become NO 2 as shown in FIG. 3 (A), and then is absorbed into the NOx absorbent 67 and combined with barium oxide BaO to form a NOx absorbent in the form of nitrate ions NO 3 −. It diffuses in 67. In this way, NOx is absorbed in the NOx absorbent 67. Exhaust oxygen concentration in the gas, NO 2 is produced on a high as long as the surface of the platinum PT66, unless NO 2 to NOx absorbing capability of the NOx absorbent 67 is not saturated is absorbed in the NOx absorbent 67 nitrate ions NO 3 - is Generated.

これに対し、排気ガスの空燃比がリッチ或いは理論空燃比にされると排気ガス中の酸化濃度が低下するために反応が逆方向(NO3 -→NO2)に進み、斯くして図3(B)に示されるようにNOx吸収剤67内の硝酸イオンNO3 -がNO2の形でNOx吸収剤67から放出される。次いで放出されたNOxは排気ガス中に含まれる未燃HC,COによって還元される。 On the other hand, when the air-fuel ratio of the exhaust gas is made rich or stoichiometric, the oxidation concentration in the exhaust gas decreases, so that the reaction proceeds in the reverse direction (NO 3 → NO 2 ). As shown in (B), nitrate ions NO 3 in the NOx absorbent 67 are released from the NOx absorbent 67 in the form of NO 2 . Next, the released NOx is reduced by unburned HC and CO contained in the exhaust gas.

このように排気ガスの空燃比がリーンであるとき、即ちリーン空燃比のもとで燃焼が行われているときには排気ガス中のNOxがNOx吸収剤67内に吸収される。しかしながらリーン空燃比のもとでの燃焼が継続して行われるとその間にNOx吸収剤67のNOx吸収能力が飽和してしまい、斯くしてNOx吸収剤67によりNOxを吸収できなくなってしまう。そこで本発明による実施例ではNOx吸収剤67の吸収能力が飽和する前に燃料添加弁32から燃料を添加することによって排気ガスの空燃比を一時的にリッチにし、それによってNOx吸収剤67からNOxを放出させるようにしている。   Thus, when the air-fuel ratio of the exhaust gas is lean, that is, when combustion is performed under the lean air-fuel ratio, NOx in the exhaust gas is absorbed into the NOx absorbent 67. However, if combustion under a lean air-fuel ratio is continuously performed, the NOx absorbent capacity of the NOx absorbent 67 is saturated during that time, and therefore the NOx absorbent 67 cannot absorb NOx. Therefore, in the embodiment according to the present invention, the air-fuel ratio of the exhaust gas is temporarily made rich by adding fuel from the fuel addition valve 32 before the absorption capacity of the NOx absorbent 67 is saturated, and thereby the NOx absorbent 67 to the NOx. To be released.

一方、図4(A)および(B)はパティキュレートフィルタ24の構造を示している。なお、図4(A)はパティキュレートフィルタ24の正面図を示しており、図4(B)はパティキュレートフィルタ24の側面断面図を示している。図4(A)および(B)に示されるようにパティキュレートフィルタ24はハニカム構造をなしており、互いに平行をなして延びる複数個の排気流通路70,71を具備する。これら排気流通路は下流端が栓72により閉塞された排気ガス流入通路70と、上流端が栓73により閉塞された排気ガス流出通路71とにより構成される。なお、図4(A)においてハッチングを付した部分は栓73を示している。従って排気ガス流入通路70および排気ガス流出通路71は薄肉の隔壁74を介して交互に配置される。云い換えると排気ガス流入通路70および排気ガス流出通路71は各排気ガス流入通路70が4つの排気ガス流出通路71によって包囲され、各排気ガス流出通路71が4つの排気ガス流入通路70によって包囲されるように配置される。   4A and 4B show the structure of the particulate filter 24. FIG. 4A shows a front view of the particulate filter 24, and FIG. 4B shows a side sectional view of the particulate filter 24. As shown in FIGS. 4A and 4B, the particulate filter 24 has a honeycomb structure and includes a plurality of exhaust flow passages 70 and 71 extending in parallel with each other. These exhaust flow passages include an exhaust gas inflow passage 70 whose downstream end is closed by a plug 72 and an exhaust gas outflow passage 71 whose upstream end is closed by a plug 73. In addition, the hatched part in FIG. Therefore, the exhaust gas inflow passages 70 and the exhaust gas outflow passages 71 are alternately arranged via the thin partition walls 74. In other words, in the exhaust gas inflow passage 70 and the exhaust gas outflow passage 71, each exhaust gas inflow passage 70 is surrounded by four exhaust gas outflow passages 71, and each exhaust gas outflow passage 71 is surrounded by four exhaust gas inflow passages 70. Arranged so that.

パティキュレートフィルタ24は例えばコージライトのような多孔質材料から形成されており、従って排気ガス流入通路70内に流入した排気ガスは図4(B)において矢印で示されるように周囲の隔壁74内を通って隣接する排気ガス流出通路71内に流出する。   The particulate filter 24 is made of, for example, a porous material such as cordierite. Therefore, the exhaust gas flowing into the exhaust gas inflow passage 70 is contained in the surrounding partition wall 74 as shown by an arrow in FIG. And flows into the adjacent exhaust gas outflow passage 71.

本発明による実施例では各排気ガス流入通路70および各排気ガス流出通路71の周壁面、即ち各隔壁74の両側表面上および隔壁74内の細孔内壁面上にも例えばアルミナからなる触媒担体が担持されており、この触媒担体65の表面上には図3(A)および(B)に示されるように白金Ptからなる貴金属触媒66が分散して担持されており、NOx吸収剤67の層が形成されている。従ってリーン空燃比のもとで燃焼が行われているときには排気ガス中のNOxがパティキュレートフィルタ24上のNOx吸収剤67内にも吸収される。このNOx吸収剤67に吸収されたNOxも燃料添加弁32から燃料を添加することによって放出される。なお、この場合パティキュレートフィルタ24として、NOx吸収剤67を担持していないパティキュレートフィルタを用いることもできる。   In the embodiment according to the present invention, catalyst carriers made of alumina, for example, are also provided on the peripheral wall surfaces of the exhaust gas inflow passages 70 and the exhaust gas outflow passages 71, that is, on both side surfaces of the partition walls 74 and on the pore inner wall surfaces of the partition walls 74. As shown in FIGS. 3A and 3B, a noble metal catalyst 66 made of platinum Pt is dispersed and supported on the surface of the catalyst carrier 65, and a layer of NOx absorbent 67 is supported. Is formed. Therefore, when combustion is performed under a lean air-fuel ratio, NOx in the exhaust gas is also absorbed in the NOx absorbent 67 on the particulate filter 24. The NOx absorbed in the NOx absorbent 67 is also released by adding fuel from the fuel addition valve 32. In this case, a particulate filter that does not carry the NOx absorbent 67 may be used as the particulate filter 24.

一方、排気ガス中に含まれるパティキュレート、即ち粒子状物質はパティキュレートフィルタ24上に捕集され、順次酸化される。しかしながら捕集される粒子状物質の量が酸化される粒子状物質の量よりも多くなると粒子状物質がパティキュレートフィルタ24上に次第に堆積し、この場合粒子状物質の堆積量が増大すると機関出力の低下を招いてしまう。従って粒子状物質の堆積量が増大したときには堆積した粒子状物質を除去しなければならない。この場合、空気過剰のもとでパティキュレートフィルタ24の温度をほぼ600℃以上に維持すると堆積した粒子状物質は酸化され、除去される。   On the other hand, particulates contained in the exhaust gas, that is, particulate matter, are collected on the particulate filter 24 and sequentially oxidized. However, when the amount of particulate matter collected is larger than the amount of particulate matter to be oxidized, particulate matter gradually accumulates on the particulate filter 24. In this case, if the amount of particulate matter deposited increases, the engine output Will be reduced. Therefore, when the amount of accumulated particulate matter increases, the deposited particulate matter must be removed. In this case, if the temperature of the particulate filter 24 is maintained at approximately 600 ° C. or higher under excess air, the deposited particulate matter is oxidized and removed.

そこで本発明による実施例ではパティキュレートフィルタ24上に堆積した粒子状物質の量が許容量を越えたとき、例えば差圧センサ29により検出されたパティキュレートフィルタ24の前後差圧ΔPが許容値を越えたときにはパティキュレートフィルタ24に流入する排気ガスの空燃比をリーンに維持しつつ燃料添加弁32から燃料を添加してこの添加された燃料の酸化反応熱によりパティキュレートフィルタ24の温度をほぼ600℃以上に維持するようにしている。   Therefore, in the embodiment according to the present invention, when the amount of the particulate matter deposited on the particulate filter 24 exceeds the allowable amount, for example, the differential pressure ΔP before and after the particulate filter 24 detected by the differential pressure sensor 29 has an allowable value. When exceeding, the fuel is added from the fuel addition valve 32 while keeping the air-fuel ratio of the exhaust gas flowing into the particulate filter 24 lean, and the temperature of the particulate filter 24 is set to about 600 by the oxidation reaction heat of the added fuel. The temperature is kept above ℃.

図5はNOx吸蔵還元触媒23およびパティキュレートフィルタ24からの、又はNOx吸蔵還元触媒23からのNOx放出制御、およびパティキュレートフィルタ24の再生制御のタイムチャートを示している。図5においてXで示されるようにNOx吸収剤67に吸収されているNOx吸収量が許容値を越える毎にNOx吸収剤67に流入する排気ガスの空燃比A/Fがリーンからリッチに一時的に切換えられる。このときNOxがNOx吸収剤67から放出され、還元される。   FIG. 5 shows a time chart of NOx release control from the NOx storage reduction catalyst 23 and the particulate filter 24, or NOx release control from the NOx storage reduction catalyst 23, and regeneration control of the particulate filter 24. As indicated by X in FIG. 5, the air-fuel ratio A / F of the exhaust gas flowing into the NOx absorbent 67 temporarily changes from lean to rich every time the amount of NOx absorbed in the NOx absorbent 67 exceeds the allowable value. Is switched to. At this time, NOx is released from the NOx absorbent 67 and reduced.

一方、パティキュレートフィルタ24の前後差圧ΔPが許容値PXを越えるとまず初めに図5に示されるように排気ガスの空燃比がリーンのもとでパティキュレートフィルタ24の温度を再生可能な温度まで昇温させる昇温制御が行われる。この昇温制御は、燃料添加弁32から燃料を添加することによって、或いは燃料噴射弁3からの燃料噴射時期を圧縮上死点まで遅角させることによって、行われる。   On the other hand, when the differential pressure ΔP across the particulate filter 24 exceeds the allowable value PX, first, as shown in FIG. 5, the temperature at which the temperature of the particulate filter 24 can be regenerated with the air-fuel ratio of the exhaust gas being lean is shown. The temperature rise control is performed to raise the temperature up to. This temperature increase control is performed by adding fuel from the fuel addition valve 32 or by retarding the fuel injection timing from the fuel injection valve 3 to the compression top dead center.

次いでパティキュレートフィルタ24の温度が再生可能な温度、即ちほぼ600℃以上になるとパティキュレートフィルタ24を再生するための再生処理が行われる。図5からわかるように本発明ではパティキュレートフィルタ24の再生処理中、パティキュレートフィルタ24の温度を再生温度以上に保持しつつ排気ガス中のNOxを除去するために時折排気ガスの空燃比がリッチとされる。次いで再生処理が完了すると排気ガスの空燃比がリーンに戻される。   Next, when the temperature of the particulate filter 24 reaches a reproducible temperature, that is, approximately 600 ° C. or higher, a regeneration process for regenerating the particulate filter 24 is performed. As can be seen from FIG. 5, in the present invention, during the regeneration process of the particulate filter 24, the air-fuel ratio of the exhaust gas is occasionally rich in order to remove NOx in the exhaust gas while maintaining the temperature of the particulate filter 24 at or above the regeneration temperature. It is said. Next, when the regeneration process is completed, the air-fuel ratio of the exhaust gas is returned to lean.

図6は図5に示される再生処理中における燃料添加弁32からの燃料添加方法、およびNOx吸蔵還元触媒23に流入する排気ガスの空燃比A/Fの変動を示している。更に、図6にはNOx吸蔵還元触媒23の温度Tnの変化、およびパティキュレートフィルタ24の温度Tfの変化も示されている。   FIG. 6 shows the fuel addition method from the fuel addition valve 32 during the regeneration process shown in FIG. 5 and the fluctuation of the air-fuel ratio A / F of the exhaust gas flowing into the NOx storage reduction catalyst 23. Further, FIG. 6 also shows changes in the temperature Tn of the NOx storage reduction catalyst 23 and changes in the temperature Tf of the particulate filter 24.

図6を参照すると、本発明では、パティキュレートフィルタ24の再生処理中に、NOx吸蔵還元触媒23に流入する排気ガスの空燃比がリーンのもとで間欠的に繰返しリッチにされる間欠リッチ空燃比期間Fと、NOx吸蔵還元触媒23に流入する排気ガスの空燃比が継続的にリーンに維持されるリーン空燃比期間Rとが交互に繰返される。   Referring to FIG. 6, according to the present invention, the intermittent rich air in which the air-fuel ratio of the exhaust gas flowing into the NOx occlusion reduction catalyst 23 is repeatedly made rich repeatedly intermittently during the regeneration process of the particulate filter 24. The fuel ratio period F and the lean air-fuel ratio period R in which the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst 23 is continuously kept lean are alternately repeated.

具体的に言うと、図1に示されるようにNOx吸蔵還元触媒23上流の機関排気通路21内に燃料添加弁32を配置した場合には、間欠リッチ空燃比期間Fのときには燃料添加弁32から間欠的に燃料が噴射されて排気ガスの空燃比が間欠的に繰返しリッチにされ、リーン空燃比期間Rのときには燃料添加弁32からの間欠的な燃料噴射が停止される。なお、図6においてリーン空燃比期間Rにおける排気ガスの空燃比A/Fは燃焼室2内における空燃比、即ちベース空燃比を示しており、パルス状をなす各燃料添加の間隔は図6に示されるように各燃料添加の間において排気ガスの空燃比がリッチからほぼこのベース空燃比まで戻ることのできる比較的長い間隔に設定されている。   More specifically, when the fuel addition valve 32 is arranged in the engine exhaust passage 21 upstream of the NOx storage reduction catalyst 23 as shown in FIG. The fuel is intermittently injected, and the air-fuel ratio of the exhaust gas is intermittently made rich. During the lean air-fuel ratio period R, intermittent fuel injection from the fuel addition valve 32 is stopped. In FIG. 6, the air-fuel ratio A / F of the exhaust gas in the lean air-fuel ratio period R indicates the air-fuel ratio in the combustion chamber 2, that is, the base air-fuel ratio, and the intervals of each fuel addition in the form of pulses are shown in FIG. As shown, the air-fuel ratio of the exhaust gas is set at a relatively long interval that can return from rich to almost this base air-fuel ratio during each fuel addition.

燃料添加弁32から燃料が添加されると添加された燃料の一部はNOx吸蔵還元触媒23内において酸化せしめられ、残りの添加燃料はNOx吸蔵還元触媒23を通り抜けてパティキュレートフィルタ24に流入し、パティキュレートフィルタ24内において酸化せしめられる。この場合、燃料添加弁32から燃料が添加されると、即ち間欠リッチ空燃比期間Fでは図6に示されるように添加燃料の酸化反応熱によってNOx吸蔵還元触媒23の温度Tnは上昇せしめられ、これに対しパティキュレートフィルタ24の温度TfはNOx吸蔵還元触媒23のTnほど大きな変化をしないで高温に維持されている。一方、燃料の添加作用が停止されると、即ちリーン空燃比期間RではNOx吸蔵還元触媒23において添加燃料の酸化反応が行われないためにNOx吸蔵還元触媒23の温度Tnが低下する。しかしながらパティキュレートフィルタ24上における粒子状物質の酸化反応は続行しているのでパティキュレートフィルタ24の温度Tfはあまり変化しない。   When fuel is added from the fuel addition valve 32, a part of the added fuel is oxidized in the NOx storage reduction catalyst 23, and the remaining added fuel passes through the NOx storage reduction catalyst 23 and flows into the particulate filter 24. Then, it is oxidized in the particulate filter 24. In this case, when fuel is added from the fuel addition valve 32, that is, in the intermittent rich air-fuel ratio period F, the temperature Tn of the NOx occlusion reduction catalyst 23 is raised by the oxidation reaction heat of the added fuel as shown in FIG. On the other hand, the temperature Tf of the particulate filter 24 is maintained at a high temperature without changing as much as Tn of the NOx storage reduction catalyst 23. On the other hand, when the fuel addition action is stopped, that is, during the lean air-fuel ratio period R, the oxidation reaction of the added fuel is not performed in the NOx storage reduction catalyst 23, so the temperature Tn of the NOx storage reduction catalyst 23 decreases. However, since the oxidation reaction of the particulate matter on the particulate filter 24 continues, the temperature Tf of the particulate filter 24 does not change much.

さて、パティキュレートフィルタ24の良好な再生を行うには、パティキュレートフィルタ24の温度Tfを再生可能な下限温度TL以上であってパティキュレートフィルタ24の劣化をひき起こす上限温度TH以下に保持することが必要である。即ち、パティキュレートフィルタ24の温度Tfを下限温度TLと上限温度TH間の再生目標温度範囲内に維持することが必要である。ところがパティキュレートフィルタ24の温度Tfは間欠リッチ空燃比期間Fを長くすれば上昇し、リーン空燃比期間Rを長くすれば下降する。従って本発明による実施例では、パティキュレートフィルタ24の温度Tfが再生目標温度範囲の下限温度TLまで低下したときには間欠リッチ空燃比期間Fが長くされ、パティキュレートフィルタ24の温度Tfが再生目標温度範囲の上限温度THまで上昇したときには間欠リッチ空燃比期間Fが短かくされる。   In order to perform the regeneration of the particulate filter 24 satisfactorily, the temperature Tf of the particulate filter 24 is maintained at a temperature equal to or higher than a recyclable lower limit temperature TL and lower than an upper limit temperature TH that causes deterioration of the particulate filter 24. is required. That is, it is necessary to maintain the temperature Tf of the particulate filter 24 within the regeneration target temperature range between the lower limit temperature TL and the upper limit temperature TH. However, the temperature Tf of the particulate filter 24 increases when the intermittent rich air-fuel ratio period F is lengthened and decreases when the lean air-fuel ratio period R is lengthened. Therefore, in the embodiment according to the present invention, the intermittent rich air-fuel ratio period F is lengthened when the temperature Tf of the particulate filter 24 falls to the lower limit temperature TL of the regeneration target temperature range, and the temperature Tf of the particulate filter 24 becomes the regeneration target temperature range. When the temperature rises to the upper limit temperature TH, the intermittent rich air-fuel ratio period F is shortened.

このように本発明によれば、パティキュレートフィルタ24の再生時にはパティキュレートフィルタ24の温度Tfが再生目標温度範囲内に維持されるのでパティキュレートフィルタ24上に堆積した粒子状物質は確実に酸化除去される。   As described above, according to the present invention, when the particulate filter 24 is regenerated, the temperature Tf of the particulate filter 24 is maintained within the regeneration target temperature range, so that the particulate matter deposited on the particulate filter 24 is surely oxidized and removed. Is done.

一方、燃料添加弁32から燃料が添加されると前述したようにNOx吸蔵還元触媒23およびパティキュレートフィルタ24において添加燃料が酸化する。従ってNOx吸蔵還元触媒23の温度Tnはこの添加燃料の酸化反応熱により上昇し、NOx吸蔵還元触媒23から流出する排気ガス温はNOx吸蔵還元触媒23の温度よりも高くなる。このとき、パティキュレートフィルタ24はこの高温の排気ガスにより加熱され、しかもパティキュレートフィルタ24内では添加燃料の酸化反応熱が発生するので図6に示されるようにパティキュレートフィルタ24の温度TfはNOx吸蔵還元触媒23の温度Tnよりもかなり高くなる。言い換えると、NOx吸蔵還元触媒23の温度Tnはパティキュレートフィルタ24の温度Tfよりも低くなる。   On the other hand, when fuel is added from the fuel addition valve 32, the added fuel is oxidized in the NOx storage reduction catalyst 23 and the particulate filter 24 as described above. Therefore, the temperature Tn of the NOx storage reduction catalyst 23 rises due to the oxidation reaction heat of the added fuel, and the exhaust gas temperature flowing out from the NOx storage reduction catalyst 23 becomes higher than the temperature of the NOx storage reduction catalyst 23. At this time, the particulate filter 24 is heated by the high-temperature exhaust gas, and the heat of oxidation reaction of the added fuel is generated in the particulate filter 24. Therefore, as shown in FIG. 6, the temperature Tf of the particulate filter 24 is NOx. It becomes considerably higher than the temperature Tn of the storage reduction catalyst 23. In other words, the temperature Tn of the NOx storage reduction catalyst 23 is lower than the temperature Tf of the particulate filter 24.

ところでNOx吸蔵還元触媒23に担持されているNOx吸収剤67は200℃から250℃以上でかつ450℃から500℃以下の温度範囲のときに排気ガスの空燃比がリーンであれば排気ガス中のNOxを吸収する性質を有する。即ち、NOx吸収剤67の温度が200℃から250℃以下のときには白金Ptが十分に活性化していないためにNOが十分に酸化されず、その結果NOxの吸収作用は行われない。一方、NOx吸収剤67の温度が450℃から500℃になるとNOx吸収剤67の吸収されているNOxがNOx吸収剤67内で分解され、NOx吸収剤67から自然放出される。このときにもNOxの吸収作用は行われない。   By the way, if the NOx absorbent 67 carried on the NOx occlusion reduction catalyst 23 is in the temperature range of 200 ° C. to 250 ° C. and 450 ° C. to 500 ° C., if the air-fuel ratio of the exhaust gas is lean, It has the property of absorbing NOx. That is, when the temperature of the NOx absorbent 67 is 200 ° C. to 250 ° C. or less, platinum Pt is not sufficiently activated, so that NO is not sufficiently oxidized, and as a result, NOx absorption action is not performed. On the other hand, when the temperature of the NOx absorbent 67 is changed from 450 ° C. to 500 ° C., the NOx absorbed by the NOx absorbent 67 is decomposed in the NOx absorbent 67 and spontaneously released from the NOx absorbent 67. At this time, NOx absorption is not performed.

さて、図6からわかるようにリーン空燃比期間Rの後半ではNOx吸蔵還元触媒23の温度Tnは500℃以下に低下し、間欠リッチ空燃比期間Fに移っても暫らくの間、即ち、間欠リッチ空燃比期間Fの前半ではNOx吸蔵還元触媒23の温度Tnは500℃以下となっている。従って、リーン空燃比期間Rの前半、および間欠リッチ空燃比期間Fの後半であって排気ガスの空燃比A/Fがリーンのときには排気ガス中に含まれるNOxはNOx吸蔵還元触媒23に吸蔵され、斯くしてパティキュレートフィルタ24を再生しながら排気ガス中のNOxを浄化できることになる。なお、NOx吸蔵還元触媒23に吸蔵されたNOxは間欠空燃比リッチ期間Fにおいて排気ガスの空燃比がリッチになったときに放出され還元される。   As can be seen from FIG. 6, in the second half of the lean air-fuel ratio period R, the temperature Tn of the NOx occlusion reduction catalyst 23 decreases to 500 ° C. or less, and for a while even in the intermittent rich air-fuel ratio period F, that is, intermittent In the first half of the rich air-fuel ratio period F, the temperature Tn of the NOx storage reduction catalyst 23 is 500 ° C. or less. Accordingly, when the air-fuel ratio A / F of the exhaust gas is lean in the first half of the lean air-fuel ratio period R and the second half of the intermittent rich air-fuel ratio period F, NOx contained in the exhaust gas is stored in the NOx storage reduction catalyst 23. Thus, NOx in the exhaust gas can be purified while the particulate filter 24 is regenerated. Note that NOx occluded in the NOx occlusion reduction catalyst 23 is released and reduced when the air-fuel ratio of the exhaust gas becomes rich in the intermittent air-fuel ratio rich period F.

図7にパティキュレートフィルタ24の再生制御を示す。
図7を参照すると、まず初めにステップ100においてパティキュレートフィルタ24の前後差圧ΔPが許容値PXを越えたか否かが判別される。次いでステップ101では図5に示される昇温制御が行われる。次いでステップ102では昇温制御が完了したか否かが判別され、昇温制御が完了したときにはステップ103に進んでパティキュレートフィルタ24の再生処理が行われる。この再生処理ルーチンが図10に示されている。次いでステップ104ではパティキュレートフィルタ24の前後差圧ΔPが最小値MIN以下になったか否かが判別され、ΔP<MINになったときには再生処理を完了する。
FIG. 7 shows the regeneration control of the particulate filter 24.
Referring to FIG. 7, first, at step 100, it is judged if the differential pressure ΔP across the particulate filter 24 has exceeded the allowable value PX. Next, at step 101, the temperature rise control shown in FIG. 5 is performed. Next, at step 102, it is determined whether or not the temperature raising control is completed. When the temperature raising control is completed, the routine proceeds to step 103 where regeneration processing of the particulate filter 24 is performed. This reproduction processing routine is shown in FIG. Next, at step 104, it is determined whether or not the differential pressure ΔP across the particulate filter 24 has become equal to or smaller than the minimum value MIN. When ΔP <MIN, the regeneration process is completed.

図6に示される実施例ではパルス状に燃料を添加する基準燃料添加期間Fv、即ち基準となる間欠リッチ空燃比期間Fが予め定められており、この燃料添加期間Fvは図8に示されるように吸入空気量Gaが増大するほど長くなる。   In the embodiment shown in FIG. 6, a reference fuel addition period Fv in which fuel is added in a pulsed manner, that is, a reference intermittent rich air-fuel ratio period F, is predetermined, and this fuel addition period Fv is as shown in FIG. As the intake air amount Ga increases, it becomes longer.

図9に時間割込みルーチンを示す。
図9を参照すると、まず始めにステップ110において温度センサ28又は温度センサ30の一方又は双方から推定されたパティキュレートフィルタ24の温度Tが再生目標温度範囲の下限温度TLよりも低いか否かが判別され、T<TLのときにはステップ111に進んで燃料添加期間Fvに対する補正値ΔFに設定値αが加算される。一方、ステップ110においてT≧TLであると判別されたときにはステップ112に進んでパティキュレートフィルタ24の温度Tが再生目標温度範囲の上限温度THよりも高いか否かが判別され、T>THのときにはステップ113に進んで燃料添加期間Fvに対する補正値ΔFから設定値αが減算される。
FIG. 9 shows a time interrupt routine.
Referring to FIG. 9, first, at step 110, whether or not the temperature T of the particulate filter 24 estimated from one or both of the temperature sensor 28 and the temperature sensor 30 is lower than the lower limit temperature TL of the regeneration target temperature range. When T <TL, the routine proceeds to step 111 where the set value α is added to the correction value ΔF for the fuel addition period Fv. On the other hand, when it is judged at step 110 that T ≧ TL, the routine proceeds to step 112, where it is judged if the temperature T of the particulate filter 24 is higher than the upper limit temperature TH of the regeneration target temperature range, and T> TH. Sometimes, the routine proceeds to step 113, where the set value α is subtracted from the correction value ΔF for the fuel addition period Fv.

図10を参照するとまず初めにステップ120において図8から燃料添加期間Fvが算出される。次いでステップ121では燃料添加期間Fvに補正値ΔFを加算することによって最終的な燃料添加期間F、即ち間欠リッチ空燃比期間Fが求められ、この燃料添加期間Fに基づいて燃料添加作用が行われる。次いで図7のステップ104に進む。   Referring to FIG. 10, first, at step 120, the fuel addition period Fv is calculated from FIG. Next, at step 121, the final fuel addition period F, that is, the intermittent rich air-fuel ratio period F, is obtained by adding the correction value ΔF to the fuel addition period Fv, and the fuel addition operation is performed based on the fuel addition period F. . Next, the routine proceeds to step 104 in FIG.

図11に変形例を示す。この変形例ではリーン空燃比期間Rのときに間欠リッチ空燃比期間Fのときに比べて少量の燃料が間欠的に繰返し噴射される。   FIG. 11 shows a modification. In this modification, a smaller amount of fuel is intermittently and repeatedly injected during the lean air-fuel ratio period R than during the intermittent rich air-fuel ratio period F.

また、別の変形例においては、間欠リッチ空燃比期間Fのときには予め定められた期間をおいて膨張行程後半又は排気行程中に燃焼室2内に追加の燃料を噴射して排気ガスの空燃比を間欠的に繰返しリッチにし、リーンの空燃比期間Rのときには追加の燃料の噴射作用を停止させるようにしている。この場合、図11に示される場合と同様の空燃比変化を生じるように、リーン空燃比期間Rのときには予め定められた期間をおいて膨張行程後半又は排気行程中に燃焼室2内に間欠リッチ空燃比期間Fのときに比べて少量の追加の燃料を噴射させることもできる。   In another modified example, during the intermittent rich air-fuel ratio period F, additional fuel is injected into the combustion chamber 2 during the latter half of the expansion stroke or during the exhaust stroke after a predetermined period. Is repeatedly made rich so that the injection of additional fuel is stopped during the lean air-fuel ratio period R. In this case, intermittent rich in the combustion chamber 2 during the latter half of the expansion stroke or during the exhaust stroke with a predetermined period during the lean air-fuel ratio period R so that the same air-fuel ratio change as that shown in FIG. 11 occurs. It is also possible to inject a small amount of additional fuel as compared to during the air-fuel ratio period F.

図12に別の実施例を示す。
この実施例では、排気後処理装置20が排気タービン7bの出口に連結された共通の排気通路21から分岐された第1の排気通路22aと第2の排気通路22bとを具備する。第1の排気通路22a内には上流側から順に第1のNOx吸蔵還元触媒23a、第1のパティキュレートフィルタ24a、第1の酸化触媒25a、およびアクチュエータ27aにより駆動される第1の排気制御弁26aが配置され、第2の排気通路22b内には上流側から順に第2のNOx吸蔵還元触媒23b、第2のパティキュレートフィルタ24b、第2の酸化触媒25b、およびアクチュエータ27bにより駆動される第2の排気制御弁26bが配置される。これら第1の排気通路22aおよび第2の排気通路22bは第1の排気制御弁26aおよび第2の排気制御弁26bの下流において共通の排気管27に合流せしめられる。
FIG. 12 shows another embodiment.
In this embodiment, the exhaust aftertreatment device 20 includes a first exhaust passage 22a and a second exhaust passage 22b branched from a common exhaust passage 21 connected to the outlet of the exhaust turbine 7b. In the first exhaust passage 22a, a first exhaust control valve driven by the first NOx storage reduction catalyst 23a, the first particulate filter 24a, the first oxidation catalyst 25a, and the actuator 27a in order from the upstream side. 26a is disposed in the second exhaust passage 22b in order from the upstream side by the second NOx storage reduction catalyst 23b, the second particulate filter 24b, the second oxidation catalyst 25b, and the actuator 27b. Two exhaust control valves 26b are arranged. The first exhaust passage 22a and the second exhaust passage 22b are joined to a common exhaust pipe 27 downstream of the first exhaust control valve 26a and the second exhaust control valve 26b.

また、第1の排気通路22aには第1のNOx吸蔵還元触媒23aの温度を検出するための温度センサ28aと、第1のパティキュレートフィルタ24aの前後差圧を検出するための第1の差圧センサ29aと、第1の酸化触媒25aから排出された排気ガスの温度および空燃比を夫々検出するための温度センサ30aおよび空燃比センサ31aが配置され、第2の排気通路22bには第2のNOx吸蔵還元触媒23bの温度を検出するための温度センサ28bと、第2のパティキュレートフィルタ24bの前後差圧を検出するための第2の差圧センサ29bと、第2の酸化触媒25bから排出された排気ガスの温度および空燃比を夫々検出するための温度センサ30bおよび空燃比センサ31bが配置される。またこの実施例では第1の排気通路22aおよび第2の排気通路22b上流の共通の排気通路21内には第1の排気通路22aおよび第2の排気通路22bに対して共通の燃料添加弁32が配置されている。   The first exhaust passage 22a has a temperature sensor 28a for detecting the temperature of the first NOx storage reduction catalyst 23a and a first difference for detecting the differential pressure across the first particulate filter 24a. A pressure sensor 29a, a temperature sensor 30a and an air-fuel ratio sensor 31a for detecting the temperature and air-fuel ratio of the exhaust gas discharged from the first oxidation catalyst 25a, respectively, are disposed, and a second exhaust passage 22b is provided with a second sensor. A temperature sensor 28b for detecting the temperature of the NOx storage reduction catalyst 23b, a second differential pressure sensor 29b for detecting the differential pressure across the second particulate filter 24b, and the second oxidation catalyst 25b. A temperature sensor 30b and an air-fuel ratio sensor 31b are provided for detecting the temperature of the exhaust gas and the air-fuel ratio, respectively. Further, in this embodiment, a common fuel addition valve 32 is provided in the common exhaust passage 21 upstream of the first exhaust passage 22a and the second exhaust passage 22b with respect to the first exhaust passage 22a and the second exhaust passage 22b. Is arranged.

図13に圧縮着火式内燃機関の別の実施例を示す。この実施例では排気マニホルド5に燃料添加弁32が取付けられ、この燃料添加弁32から排気マニホルド5内に燃料、即ち軽油が添加される。なお、図12および図13に示される各NOx吸蔵還元触媒23a,23bは図1に示されるNOx吸蔵還元触媒23と実質的に同一であり、図12および図13に示される各パティキュレートフィルタ24a,24bは図1に示されるパティキュレートフィルタ24と実質的に同一である。   FIG. 13 shows another embodiment of the compression ignition type internal combustion engine. In this embodiment, a fuel addition valve 32 is attached to the exhaust manifold 5, and fuel, that is, light oil, is added into the exhaust manifold 5 from the fuel addition valve 32. 12 and FIG. 13 is substantially the same as the NOx storage reduction catalyst 23 shown in FIG. 1, and each particulate filter 24a shown in FIG. 12 and FIG. 24b are substantially the same as the particulate filter 24 shown in FIG.

図14はパティキュレートフィルタ再生時における燃料添加弁32からの燃料添加作用と、各排気制御弁26a,26bの開閉動作と、各NOx吸蔵還元触媒23a,23bに流入する排気ガスの空燃比A/Fと、各パティキュレートフィルタ24a,24bの温度Tfと、各NOx吸蔵還元触媒23a,23bの温度Tnとを示している。なお、図14においてIは第1の排気通路22aを示しており、IIは第2の排気通路22bを示している。   14 shows the fuel addition action from the fuel addition valve 32 during particulate filter regeneration, the opening / closing operation of the exhaust control valves 26a, 26b, and the air-fuel ratio A / of the exhaust gas flowing into the NOx storage reduction catalysts 23a, 23b. F, temperature Tf of each particulate filter 24a, 24b, and temperature Tn of each NOx storage reduction catalyst 23a, 23b are shown. In FIG. 14, I indicates the first exhaust passage 22a, and II indicates the second exhaust passage 22b.

図14を参照すると、この実施例ではパティキュレートフィルタの再生処理中に、燃料添加弁32から燃料が間欠的に噴射される燃料添加期間Fと、燃料添加弁32からの燃料の噴射が休止される燃料添加休止期間Rとが交互に繰返される。また、この実施例でもパティキュレートフィルタ24a,24bの温度Tfが再生目標温度範囲内となるように燃料添加期間Fが制御される。即ち、パティキュレートフィルタ24a,24bの温度Tfが再生目標温度範囲の下限温度TLまで低下したときには燃料添加期間Fが長くされ、パティキュレートフィルタ24a,24bの温度Tfが再生目標温度範囲の上限温度THまで上昇したときには燃料添加期間Fが短かくされる。   Referring to FIG. 14, in this embodiment, during the regeneration process of the particulate filter, the fuel addition period F during which fuel is intermittently injected from the fuel addition valve 32 and the fuel injection from the fuel addition valve 32 are suspended. The fuel addition suspension period R is alternately repeated. Also in this embodiment, the fuel addition period F is controlled so that the temperature Tf of the particulate filters 24a, 24b is within the regeneration target temperature range. That is, when the temperature Tf of the particulate filters 24a and 24b is reduced to the lower limit temperature TL of the regeneration target temperature range, the fuel addition period F is lengthened, and the temperature Tf of the particulate filters 24a and 24b is increased to the upper limit temperature TH of the regeneration target temperature range. The fuel addition period F is shortened when it rises to.

さて、この実施例では図14に示されるように第1の排気制御弁26aおよび第2の排気制御弁26bは開弁と閉弁とが繰返され、この場合第1の排気制御弁26aが開弁したときには第2の排気制御弁26bが閉弁せしめられ、第1の排気制御弁26aが閉弁したときには第2の排気制御弁26bが開弁せしめられる。即ち、第1の排気通路22aが開通し第2の排気通路22bが閉鎖される状態と、第1の排気通路22aが閉鎖され第2の排気通路22bが開通する状態とが交互に繰返される。   In this embodiment, as shown in FIG. 14, the first exhaust control valve 26a and the second exhaust control valve 26b are repeatedly opened and closed. In this case, the first exhaust control valve 26a is opened. When the valve is opened, the second exhaust control valve 26b is closed, and when the first exhaust control valve 26a is closed, the second exhaust control valve 26b is opened. That is, the state where the first exhaust passage 22a is opened and the second exhaust passage 22b is closed and the state where the first exhaust passage 22a is closed and the second exhaust passage 22b is opened are alternately repeated.

また、このとき第1の排気制御弁26aおよび第2の排気制御弁26bは燃料添加期間F中に開弁又は閉弁せしめられ、第1の排気制御弁26aおよび第2の排気制御弁26bが燃料添加期間F中に開弁せしめられたときには燃料添加休止期間R中開弁され続け、第1の排気制御弁26aおよび第2の排気制御弁26bが燃料添加期間F中に閉弁せしめられたときには燃料添加休止期間R中閉鎖され続ける。即ち、第1の排気通路22aおよび第2の排気通路22bは燃料添加期間F中に開通又は閉鎖され、燃料添加休止期間R中は開通又は閉鎖され続ける。   At this time, the first exhaust control valve 26a and the second exhaust control valve 26b are opened or closed during the fuel addition period F, and the first exhaust control valve 26a and the second exhaust control valve 26b are opened. When the valve was opened during the fuel addition period F, the valve continued to be opened during the fuel addition suspension period R, and the first exhaust control valve 26a and the second exhaust control valve 26b were closed during the fuel addition period F. Sometimes it remains closed during the fuel addition suspension period R. That is, the first exhaust passage 22a and the second exhaust passage 22b are opened or closed during the fuel addition period F, and kept open or closed during the fuel addition suspension period R.

このように第1の排気通路22aおよび第2の排気通路22bが燃料添加期間F中に開通又は閉鎖され、燃料添加休止期間R中開通又は閉鎖され続けるとパティキュレートフィルタ24a,24bを再生しつつ排気ガス中のNOxを浄化することができる。即ち、図14における最初の燃料添加期間Fに注目すると、燃料添加が開始されたときは第1の排気制御弁26aは閉弁し、第2の排気制御弁26bは開弁しているので排気ガスは第2の排気通路22b内にのみ流入しており、従って燃料添加弁32から添加された燃料、即ち軽油は第2の排気通路22b内にのみ流入する。第2の排気通路22b内に流入した燃料は第2のNOx吸蔵還元触媒23bおよび第1のパティキュレートフィルタ24bに一旦付着し、次いで蒸発して酸化せしめられる。   As described above, when the first exhaust passage 22a and the second exhaust passage 22b are opened or closed during the fuel addition period F and kept open or closed during the fuel addition suspension period R, the particulate filters 24a and 24b are regenerated. NOx in the exhaust gas can be purified. That is, paying attention to the first fuel addition period F in FIG. 14, when the fuel addition is started, the first exhaust control valve 26a is closed and the second exhaust control valve 26b is opened. The gas flows only into the second exhaust passage 22b. Therefore, the fuel added from the fuel addition valve 32, that is, light oil, flows only into the second exhaust passage 22b. The fuel that has flowed into the second exhaust passage 22b temporarily adheres to the second NOx storage reduction catalyst 23b and the first particulate filter 24b, and then evaporates and is oxidized.

一方、図14に示されるように一回目の燃料添加が行われるとただちに第1の排気制御弁26aが開弁し、第2の排気制御弁26bが閉弁するので今度は排気ガスが第1の排気通路22a内にのみ流入し、従って燃料添加弁32から添加された燃料、即ち軽油は第1の排気通路22a内にのみ流入する。第1の排気通路22a内に流入した燃料は第1のNOx吸蔵還元触媒23aおよび第1のパティキュレートフィルタ24aに一旦付着し、次いで蒸発して酸化せしめられる。   On the other hand, as shown in FIG. 14, as soon as the first fuel addition is performed, the first exhaust control valve 26a is opened and the second exhaust control valve 26b is closed. Therefore, the fuel added from the fuel addition valve 32, that is, light oil, flows only into the first exhaust passage 22a. The fuel that has flowed into the first exhaust passage 22a temporarily adheres to the first NOx storage reduction catalyst 23a and the first particulate filter 24a, and then is evaporated and oxidized.

その結果、図14のIに示されるように第1のNOx吸蔵還元触媒23aの温度Tnは上昇し、第1のパティキュレートフィルタ24aの温度Tfは高温に保持され続ける。次いで燃料添加期間Fから燃料添加休止期間Rに移るとNOx吸蔵還元触媒23aでは酸化反応熱の発生が中断するためにNOx吸蔵還元触媒23aの温度Tnが低下する。このときパティキュレートフィルタ24aでは粒子状物質の酸化反応が続行しているのでパティキュレートフィルタ24aの温度Tfはあまり変化しない。   As a result, as shown in FIG. 14I, the temperature Tn of the first NOx storage reduction catalyst 23a rises, and the temperature Tf of the first particulate filter 24a continues to be maintained at a high temperature. Next, when the fuel addition period F shifts to the fuel addition suspension period R, the generation of heat of oxidation reaction is interrupted in the NOx storage reduction catalyst 23a, so the temperature Tn of the NOx storage reduction catalyst 23a decreases. At this time, since the particulate matter oxidation reaction continues in the particulate filter 24a, the temperature Tf of the particulate filter 24a does not change much.

次いで再び燃料添加期間Fとなり、一回目の燃料添加が完了すると第2の排気制御弁26bが開弁し、第1の排気制御弁26aが閉弁する。このときには図14のIIに示されるように第2のNOx吸蔵還元触媒23bの温度Tnは上昇し、第2のパティキュレートフィルタ24bの温度Tfは高温に保持され続ける。次いで燃料添加期間Fから燃料添加休止期間Rに移るとNOx吸蔵還元触媒23bでは酸化反応熱の発生が中断するためにNOx吸蔵還元触媒23bの温度Tnが低下する。このときパティキュレートフィルタ24bでは粒子状物質の酸化反応が続行しているのでパティキュレートフィルタ24bの温度Tfはあまり変化しない。   Next, the fuel addition period F is reached again. When the first fuel addition is completed, the second exhaust control valve 26b is opened, and the first exhaust control valve 26a is closed. At this time, as shown in II of FIG. 14, the temperature Tn of the second NOx storage reduction catalyst 23b rises, and the temperature Tf of the second particulate filter 24b is kept at a high temperature. Next, when the fuel addition period F shifts to the fuel addition suspension period R, the generation of heat of oxidation reaction is interrupted in the NOx storage reduction catalyst 23b, so the temperature Tn of the NOx storage reduction catalyst 23b decreases. At this time, since the particulate matter oxidation reaction continues in the particulate filter 24b, the temperature Tf of the particulate filter 24b does not change much.

一方、再び図14において最初の燃料添加期間Fに注目すると、一回目の燃料添加が行われた後、ただちに第2の排気制御弁26bが閉弁せしめられる。第2の排気制御弁26bが閉弁せしめられると第2の排気通路22b内の限られた容積内に存在する酸素による酸化反応熱しか発生しないので第2のNOx吸蔵還元触媒23bの温度Tnは比較的低温に維持される。従ってこの実施例では図14からわかるように第2の排気制御弁26bが開弁した後、暫らくの間は第2のNOx吸蔵還元触媒23bの温度Tnは500℃以下であり、また燃料添加休止期間Rになると第2のNOx吸蔵還元触媒23bの温度Tnは500℃以下となる。   On the other hand, when attention is again paid to the first fuel addition period F in FIG. 14, the second exhaust control valve 26b is closed immediately after the first fuel addition. When the second exhaust control valve 26b is closed, only the heat of oxidation reaction due to the oxygen present in the limited volume in the second exhaust passage 22b is generated, so the temperature Tn of the second NOx storage reduction catalyst 23b is It is kept at a relatively low temperature. Accordingly, in this embodiment, as can be seen from FIG. 14, the temperature Tn of the second NOx occlusion reduction catalyst 23b is 500 ° C. or less for a while after the second exhaust control valve 26b is opened, and the fuel addition In the rest period R, the temperature Tn of the second NOx storage reduction catalyst 23b becomes 500 ° C. or less.

即ち、第2のNOx吸蔵還元触媒23b内を排気ガスが流れているときに第2のNOx吸蔵還元触媒23bの温度Tnが比較的長い時間に亘って500℃以下となるので排気ガス中のNOxは第2のNOx吸蔵還元触媒23b内に良好に吸蔵されることになる。同様に第1のNOx吸蔵還元触媒23a内を排気ガスが流れているときにも第1のNOx吸蔵還元触媒23aの温度Tnが比較的長い時間に亘って500℃以下となるので排気ガス中のNOxは第1のNOx吸蔵還元触媒23a内に良好に吸蔵されることになる。   That is, when the exhaust gas flows through the second NOx storage reduction catalyst 23b, the temperature Tn of the second NOx storage reduction catalyst 23b becomes 500 ° C. or less over a relatively long time, so that the NOx in the exhaust gas. Is occluded satisfactorily in the second NOx occlusion reduction catalyst 23b. Similarly, when the exhaust gas is flowing through the first NOx storage reduction catalyst 23a, the temperature Tn of the first NOx storage reduction catalyst 23a becomes 500 ° C. or less over a relatively long time, so that NOx is occluded well in the first NOx occlusion reduction catalyst 23a.

再び図14において最初の燃料添加期間Fに注目すると、最初の燃料添加が行われるときには第2の排気制御弁26bは開弁しており、このとき燃料添加弁32から添加された燃料は第2のNOx吸蔵還元触媒23bおよび第1のパティキュレートフィルタ24b上に付着し、この付着燃料は第2の排気制御弁26bが閉弁した後に蒸発する。このとき第2の排気通路22b内は排気ガスが流れておらず、第2の排気通路22b内の限られた容積内の排気ガス中に付着燃料が蒸発するので図14に示されるように第2の排気通路22b内における排気ガスの空燃比A/Fはリッチとなる。その結果、第2のNOx吸蔵還元触媒23bからNOxが放出され、還元される。   Referring again to the first fuel addition period F in FIG. 14, when the first fuel addition is performed, the second exhaust control valve 26b is opened, and at this time, the fuel added from the fuel addition valve 32 is the second fuel added. The NOx occlusion reduction catalyst 23b and the first particulate filter 24b are attached, and the attached fuel evaporates after the second exhaust control valve 26b is closed. At this time, the exhaust gas does not flow in the second exhaust passage 22b, and the attached fuel evaporates in the exhaust gas within a limited volume in the second exhaust passage 22b. Therefore, as shown in FIG. The air-fuel ratio A / F of the exhaust gas in the two exhaust passages 22b becomes rich. As a result, NOx is released from the second NOx storage reduction catalyst 23b and reduced.

同じことが第1の排気制御弁26aの閉弁時についても言える。即ち、図14に示されるように第1の排気制御弁26aが閉弁しているときに第1の排気通路22a内における排気ガスの空燃比A/Fはリッチになり、従って第1のNOx吸蔵還元触媒23aからNOxが放出され、還元される。   The same is true when the first exhaust control valve 26a is closed. That is, as shown in FIG. 14, when the first exhaust control valve 26a is closed, the air-fuel ratio A / F of the exhaust gas in the first exhaust passage 22a becomes rich, and therefore the first NOx. NOx is released from the storage reduction catalyst 23a and reduced.

また、図14に示される実施例では各NOx吸蔵還元触媒23a,23b内を排気ガスが流通しているときに燃料添加弁32から噴射される燃料によって排気ガスの空燃比A/Fが間欠的にリッチにされる。従ってこのときにも各NOx吸蔵還元触媒23a,23bからNOxが放出され、還元される。   Further, in the embodiment shown in FIG. 14, the air-fuel ratio A / F of the exhaust gas is intermittently changed by the fuel injected from the fuel addition valve 32 when the exhaust gas is flowing through the NOx storage reduction catalysts 23a and 23b. To be rich. Accordingly, at this time as well, NOx is released from the NOx storage reduction catalysts 23a and 23b and reduced.

再度、図14における最初の燃料添加期間Fに注目すると、第1の排気制御弁26aが閉弁しているときに行われる燃料噴射は主に第2の排気通路22b内の排気ガスの空燃比A/Fをリッチにするために使用され、第1の排気制御弁26bが開弁しているときに行われる燃料噴射はパティキュレートフィルタ24aの温度Tfを下限温度TL以上に保持するために使用される。この場合、第2の排気通路22b内の排気ガスの空燃比A/Fをリッチにするのに必要な燃料量に比べてパティキュレートフィルタ24aの温度Tfを下限温度TL以上に保持するのに必要な燃料量の方がはるかに多いので、図14に示されるように第1の排気通路22aおよび第2の排気通路22bは燃料添加期間Fの初期に開通又は閉鎖される。即ち、第1の排気制御弁26aおよび第2の排気制御弁26bは燃料添加期間Fの初期に開弁又は閉弁される。   Looking again at the first fuel addition period F in FIG. 14, the fuel injection performed when the first exhaust control valve 26a is closed is mainly the air-fuel ratio of the exhaust gas in the second exhaust passage 22b. Used to make the A / F rich, fuel injection performed when the first exhaust control valve 26b is open is used to keep the temperature Tf of the particulate filter 24a above the lower limit temperature TL. Is done. In this case, it is necessary to maintain the temperature Tf of the particulate filter 24a at or above the lower limit temperature TL compared to the amount of fuel necessary to make the air-fuel ratio A / F of the exhaust gas in the second exhaust passage 22b rich. Since the amount of fuel is much larger, the first exhaust passage 22a and the second exhaust passage 22b are opened or closed at the beginning of the fuel addition period F as shown in FIG. That is, the first exhaust control valve 26a and the second exhaust control valve 26b are opened or closed at the beginning of the fuel addition period F.

さて、この実施例においても基準となる燃料添加期間Ftが予め定められており、この燃料添加期間Ftは図15(A)に示されるように吸入空気量Gaが増大するほど長くなる。また、各排気制御弁26a,26bについては、一方の排気制御弁が開弁したときに他方の排気制御弁を吸入空気量にかかわらずに閉弁させることができる。しかしながら吸入空気量が多いときに片方の排気制御弁を閉弁しておくと背圧が上昇し、出力の低下を招く。そこで図15(B)に示す例では排気制御弁閉弁時の開度Sを吸入空気量Gaが増大したときには大きくするようにしている。   Also in this embodiment, the reference fuel addition period Ft is determined in advance, and this fuel addition period Ft becomes longer as the intake air amount Ga increases as shown in FIG. As for each exhaust control valve 26a, 26b, when one exhaust control valve is opened, the other exhaust control valve can be closed regardless of the intake air amount. However, if one of the exhaust control valves is closed when the amount of intake air is large, the back pressure increases and the output decreases. Therefore, in the example shown in FIG. 15B, the opening degree S when the exhaust control valve is closed is increased when the intake air amount Ga is increased.

図16に時間割込みルーチンを示す。
図16を参照すると、まず始めにステップ200において温度センサ28a,28b又は温度センサ30a,30bから推定されたパティキュレートフィルタ24aの温度T1又はパティキュレートフィルタ24bの温度T2が再生目標温度範囲の下限温度TLよりも低いか否かが判別され、T1又はT2<TLのときにはステップ201に進んで燃料添加期間Ftに対する補正値ΔFに設定値βが加算される。一方、ステップ200においてT1およびT2≧TLであると判別されたときにはステップ202に進んでパティキュレートフィルタ24aの温度T1又はパティキュレートフィルタ24bの温度T2が再生目標温度範囲の上限温度THよりも高いか否かが判別され、T1又はT2>THのときにはステップ203に進んで燃料添加期間Ftに対する補正値ΔFから設定値βが減算される。
FIG. 16 shows a time interrupt routine.
Referring to FIG. 16, first, in step 200, the temperature T 1 of the particulate filter 24a or the temperature T 2 of the particulate filter 24b estimated from the temperature sensors 28a and 28b or the temperature sensors 30a and 30b is within the regeneration target temperature range. It is determined whether or not the temperature is lower than the lower limit temperature TL. When T 1 or T 2 <TL, the routine proceeds to step 201 where the set value β is added to the correction value ΔF for the fuel addition period Ft. On the other hand, when it is determined in step 200 that T 1 and T 2 ≧ TL, the routine proceeds to step 202 where the temperature T 1 of the particulate filter 24a or the temperature T 2 of the particulate filter 24b is the upper limit temperature TH of the regeneration target temperature range. If T 1 or T 2 > TH, the routine proceeds to step 203 where the set value β is subtracted from the correction value ΔF for the fuel addition period Ft.

図17は図7のステップ103において行われる再生処理を示している。
図17を参照するとまず初めにステップ210において図15(A)から燃料添加期間Ftが算出される。次いでステップ211では燃料添加期間Ftに補正値ΔFを加算することによって最終的な燃料添加期間Fが求められ、この燃料添加期間Fに基づいて燃料添加作用が行われる。次いでステップ212において図15(B)から排気制御弁閉弁時の開度θが求められ、排気制御弁閉弁時の開度がこの開度θとされる。次いで図7のステップ104に進む。
FIG. 17 shows the reproduction process performed in step 103 of FIG.
Referring to FIG. 17, first, at step 210, the fuel addition period Ft is calculated from FIG. 15 (A). Next, at step 211, the final fuel addition period F is obtained by adding the correction value ΔF to the fuel addition period Ft, and the fuel addition operation is performed based on the fuel addition period F. Next, at step 212, the opening degree θ when the exhaust control valve is closed is obtained from FIG. 15B, and the opening degree when the exhaust control valve is closed is set to this opening degree θ. Next, the routine proceeds to step 104 in FIG.

図18に別の実施例を示す。この実施例では図18に示されるように燃料添加休止期間R中に燃料添加弁32から燃料添加期間F中よりも少量の燃料が間欠的に噴射される。   FIG. 18 shows another embodiment. In this embodiment, as shown in FIG. 18, a smaller amount of fuel is intermittently injected from the fuel addition valve 32 during the fuel addition suspension period R than during the fuel addition period F.

図19に示す実施例では燃料添加弁32から同量の燃料が等しい間隔を隔てて噴射される。この実施例でも間欠的に行われる各燃料噴射時に、開通している方の排気通路22a,22b内の排気ガスの空燃比A/Fはリッチとなり、また閉鎖している方の排気通路22a,22b内の排気ガスの空燃比A/Fもリッチになる。 In the embodiment shown in FIG. 19, the same amount of fuel is injected from the fuel addition valve 32 at equal intervals. Also in this embodiment, at the time of each fuel injection performed intermittently, the air-fuel ratio A / F of the exhaust gas in the opened exhaust passages 22a, 22b becomes rich and the exhaust passage 22a, The air-fuel ratio A / F of the exhaust gas in 22b also becomes rich.

また、この実施例では燃料添加弁32から間欠的に噴射される燃料量を制御することによってパティキュレートフィルタ24a,24bの温度がパティキュレートフィルタ24a,24bの再生目標温度範囲内に維持される。即ち、この実施例ではパティキュレートフィルタ24a,24bの温度が再生目標温度範囲の下限温度TLまで低下したときには燃料添加量が増大せしめられ、パティキュレートフィルタ24a,24bの温度が再生目標温度範囲の上限温度THまで上昇したときには燃料添加量が減少せしめられる。   In this embodiment, the temperature of the particulate filters 24a, 24b is maintained within the regeneration target temperature range of the particulate filters 24a, 24b by controlling the amount of fuel intermittently injected from the fuel addition valve 32. That is, in this embodiment, when the temperature of the particulate filters 24a and 24b is reduced to the lower limit temperature TL of the regeneration target temperature range, the fuel addition amount is increased, and the temperature of the particulate filters 24a and 24b is increased to the upper limit of the regeneration target temperature range. When the temperature rises to TH, the fuel addition amount is decreased.

また、この実施例では基準となる燃料添加量Qoが予め定められており、この燃料添加量Qoは図20(A)に示されるように吸入空気量Gaが増大するほど増大する。また、この実施例でも図20(B)に示されるように排気制御弁閉弁時の開度Sが吸入空気量Gaの増大に伴ない大きくされる。   In this embodiment, a reference fuel addition amount Qo is determined in advance, and the fuel addition amount Qo increases as the intake air amount Ga increases as shown in FIG. Also in this embodiment, as shown in FIG. 20B, the opening degree S when the exhaust control valve is closed is increased as the intake air amount Ga increases.

図21に時間割込みルーチンを示す。
図21を参照すると、まず始めにステップ300において温度センサ28a,28b又は温度センサ30a,30bから推定されたパティキュレートフィルタ24aの温度T1又はパティキュレートフィルタ24bの温度T2が再生目標温度範囲の下限温度TLよりも低いか否かが判別され、T1又はT2<TLのときにはステップ301に進んで燃料添加量Qoに対する補正値ΔQに設定値γが加算される。一方、ステップ300においてT1およびT2≧TLであると判別されたときにはステップ302に進んでパティキュレートフィルタ24aの温度T1又はパティキュレートフィルタ24bの温度T2が再生目標温度範囲の上限温度THよりも高いか否かが判別され、T1又はT2>THのときにはステップ303に進んで燃料添加量Qoに対する補正値ΔQから設定値γが減算される。
FIG. 21 shows a time interrupt routine.
Referring to FIG. 21, first, in step 300, the temperature T 1 of the particulate filter 24a or the temperature T 2 of the particulate filter 24b estimated from the temperature sensors 28a and 28b or the temperature sensors 30a and 30b is within the regeneration target temperature range. It is determined whether or not the temperature is lower than the lower limit temperature TL. When T 1 or T 2 <TL, the routine proceeds to step 301 where the set value γ is added to the correction value ΔQ for the fuel addition amount Qo. On the other hand, when it is determined in step 300 that T 1 and T 2 ≧ TL, the routine proceeds to step 302 where the temperature T 1 of the particulate filter 24a or the temperature T 2 of the particulate filter 24b is the upper limit temperature TH of the regeneration target temperature range. If T 1 or T 2 > TH, the routine proceeds to step 303 where the set value γ is subtracted from the correction value ΔQ for the fuel addition amount Qo.

図22は図7のステップ103において行われる再生処理を示している。
図22を参照するとまず初めにステップ310において図20(A)から燃料添加量Qoが算出される。次いでステップ311では燃料添加量Qoに補正値ΔQを加算することによって最終的な燃料添加量Qが求められ、この燃料添加量Qに基づいて燃料添加作用が行われる。次いでステップ312において図20(B)から排気制御弁閉弁時の開度θが求められ、排気制御弁閉弁時の開度がこの開度θとされる。次いで図7のステップ104に進む。
FIG. 22 shows the reproduction process performed in step 103 of FIG.
Referring to FIG. 22, first, at step 310, the fuel addition amount Qo is calculated from FIG. Next, at step 311, the final fuel addition amount Q is obtained by adding the correction value ΔQ to the fuel addition amount Qo, and the fuel addition action is performed based on this fuel addition amount Q. Next, at step 312, the opening degree θ when the exhaust control valve is closed is obtained from FIG. 20B, and the opening degree when the exhaust control valve is closed is this opening degree θ. Next, the routine proceeds to step 104 in FIG.

図23(A)および(B)に変形例を示す。
図23(A)に示す例では第1の排気通路22aの下流端と第2の排気通路22bの下流端の排気通路27への合流部に一個の排気制御弁26が配置され、この一個の排気制御弁26によって実線で示されるように第1の排気通路22aと第2の排気通路22bが共に開通している状態と、破線aで示されるように第1の排気通路22aのみが閉鎖されている状態と、破線bで示されるように第2の排気通路22bのみが閉鎖されている状態との3つの状態に切換えられる。
A modification is shown in FIGS.
In the example shown in FIG. 23 (A), one exhaust control valve 26 is arranged at the junction of the downstream end of the first exhaust passage 22a and the downstream end of the second exhaust passage 22b to the exhaust passage 27. The exhaust control valve 26 opens both the first exhaust passage 22a and the second exhaust passage 22b as shown by the solid line, and only the first exhaust passage 22a is closed as shown by the broken line a. And a state in which only the second exhaust passage 22b is closed as indicated by a broken line b.

図23(B)に示す例では第1のNOx吸蔵還元触媒23a上流の第1の排気通路22aに第1の排気制御弁26aが配置され、第2のNOx吸蔵還元触媒23b上流の第2の排気通路22bに第2の排気制御弁26bが配置される。この場合でも添加した燃料が第1のNOx吸蔵還元触媒23aおよび第1のパティキュレートフィルタ24aに付着したときに第1の排気制御弁26aを閉弁すれば第1の排気通路22a内の排気ガスはリッチになり、添加した燃料が第2のNOx吸蔵還元触媒23bおよび第2のパティキュレートフィルタ24bに付着したときに第2の排気制御弁26bを閉弁すれば第2の排気通路22b内の排気ガスはリッチになる。   In the example shown in FIG. 23B, the first exhaust control valve 26a is disposed in the first exhaust passage 22a upstream of the first NOx storage reduction catalyst 23a, and the second NOx storage reduction catalyst 23b upstream. A second exhaust control valve 26b is disposed in the exhaust passage 22b. Even in this case, if the first exhaust control valve 26a is closed when the added fuel adheres to the first NOx storage reduction catalyst 23a and the first particulate filter 24a, the exhaust gas in the first exhaust passage 22a. Becomes rich, and if the second exhaust control valve 26b is closed when the added fuel adheres to the second NOx storage reduction catalyst 23b and the second particulate filter 24b, the inside of the second exhaust passage 22b Exhaust gas becomes rich.

図24に更に別の実施例を示す。図24に示されるようにこの実施例では第1のNOx吸蔵還元触媒23a上流の第1の排気通路22aに第1の燃料添加弁32aが配置され、第2のNOx吸蔵還元触媒23b上流の第2の排気通路22bに第2の燃料添加弁32bが配置される。この実施例では第1の燃料添加弁32aによる燃料添加期間Fと燃料添加休止期間Rは夫々第2の燃料添加弁32bによる燃料添加期間Fと燃料添加休止期間Rに完全に同期して行われ、第1の排気制御弁26aと第2の排気制御弁26bは一方が開弁すれば他方は閉弁し、他方が開弁すれば一方が閉弁せしめられる。   FIG. 24 shows still another embodiment. As shown in FIG. 24, in this embodiment, the first fuel addition valve 32a is disposed in the first exhaust passage 22a upstream of the first NOx storage reduction catalyst 23a, and the second NOx storage reduction catalyst 23b upstream. The second fuel addition valve 32b is disposed in the second exhaust passage 22b. In this embodiment, the fuel addition period F and the fuel addition stop period R by the first fuel addition valve 32a are completely synchronized with the fuel addition period F and the fuel addition stop period R by the second fuel addition valve 32b, respectively. The first exhaust control valve 26a and the second exhaust control valve 26b are closed when one is opened, and the other is closed when the other is opened.

圧縮着火式内燃機関の全体図である。1 is an overall view of a compression ignition type internal combustion engine. NOx吸蔵還元触媒の側面断面図である。It is side surface sectional drawing of a NOx storage reduction catalyst. 触媒担体の表面部分の断面図である。It is sectional drawing of the surface part of a catalyst support | carrier. パティキュレートフィルタの構造を示す図である。It is a figure which shows the structure of a particulate filter. パティキュレートフィルタの昇温制御と再生処理を説明するためのタイムチャートである。It is a time chart for demonstrating the temperature rising control and regeneration process of a particulate filter. 燃料添加時期および排気ガスの空燃比の変動等を示すタイムチャートである。6 is a time chart showing fuel addition timing, fluctuations in the air-fuel ratio of exhaust gas, and the like. パティキュレートフィルタの再生制御を行うためのフローチャートである。It is a flowchart for performing regeneration control of a particulate filter. 基準となる燃料添加期間Fvを示す図である。It is a figure which shows the fuel addition period Fv used as a reference | standard. 時間割込みを示すフローチャートである。It is a flowchart which shows a time interruption. 再生処理を行うためのフローチャートである。It is a flowchart for performing reproduction processing. 変形例における燃料添加時期等を示す図である。It is a figure which shows the fuel addition time etc. in a modification. 圧縮着火式内燃機関の別の実施例を示す図である。It is a figure which shows another Example of a compression ignition type internal combustion engine. 圧縮着火式内燃機関の更に別の実施例を示す図である。It is a figure which shows another Example of a compression ignition type internal combustion engine. 燃料添加時期、排気制御弁の開閉弁時期および排気ガスの空燃比の変動等を示す図である。It is a figure which shows the fluctuation | variation of the fuel addition time, the on-off valve timing of an exhaust control valve, the air fuel ratio of exhaust gas, etc. 基準となる燃料添加期間Ft等を示す図である。It is a figure which shows the fuel addition period Ft etc. used as a reference | standard. 時間割込みを示すフローチャートである。It is a flowchart which shows a time interruption. 再生処理を行うためのフローチャートである。It is a flowchart for performing reproduction processing. 燃料添加時期、排気制御弁の開閉弁時期および排気ガスの空燃比の変動等を示す図である。It is a figure which shows the fluctuation | variation of the fuel addition time, the on-off valve timing of an exhaust control valve, the air fuel ratio of exhaust gas, etc. 燃料添加時期、排気制御弁の開閉弁時期および排気ガスの空燃比の変動等を示す図である。It is a figure which shows the fluctuation | variation of the fuel addition time, the on-off valve timing of an exhaust control valve, the air fuel ratio of exhaust gas, etc. 基準となる燃料添加量Qo等を示す図である。It is a figure which shows fuel addition amount Qo etc. used as a reference | standard. 時間割込みを示すフローチャートである。It is a flowchart which shows a time interruption. 再生処理を行うためのフローチャートである。It is a flowchart for performing reproduction processing. 圧縮着火式内燃機関の種々の変形例を示す図である。It is a figure which shows the various modifications of a compression ignition type internal combustion engine. 圧縮着火式内燃機関の更に別の実施例を示す図である。It is a figure which shows another Example of a compression ignition type internal combustion engine.

符号の説明Explanation of symbols

5 排気マニホルド
20 排気後処理装置
21,27 共通の排気通路
22a 第1の排気通路
22b 第2の排気通路
23 NOx吸蔵還元触媒
23a 第1のNOx吸蔵還元触媒
23b 第2のNOx吸蔵還元触媒
24 パティキュレートフィルタ
24a 第1のパティキュレートフィルタ
24b 第2のパティキュレートフィルタ
25 酸化触媒
25a 第1の酸化触媒
25b 第2の酸化触媒
26 排気制御弁
26a 第1の排気制御弁
26b 第2の排気制御弁
32 燃料添加弁
5 Exhaust manifold 20 Exhaust aftertreatment device 21, 27 Common exhaust passage 22a First exhaust passage 22b Second exhaust passage 23 NOx storage reduction catalyst 23a First NOx storage reduction catalyst 23b Second NOx storage reduction catalyst 24 Patty Curate filter 24a First particulate filter 24b Second particulate filter 25 Oxidation catalyst 25a First oxidation catalyst 25b Second oxidation catalyst 26 Exhaust control valve 26a First exhaust control valve 26b Second exhaust control valve 32 Fuel addition valve

Claims (18)

流入する排気ガスの空燃比がリーンのときには排気ガス中のNOxを吸蔵し、流入する排気ガスの空燃比がリッチになると吸蔵しているNOxを放出するNOx吸蔵還元触媒を機関排気通路内に配置し、該NOx吸蔵還元触媒下流の機関排気通路内に排気ガス中に含まれるパティキュレートを捕集するためのパティキュレートフィルタを配置し、パティキュレートフィルタを再生するときにはまず初めにパティキュレートフィルタの温度を再生可能な温度まで昇温させる昇温制御が行われ、次いでパティキュレートフィルタを再生するための再生処理が行われる内燃機関の排気浄化装置において、上記パティキュレートフィルタの再生処理中、パティキュレートフィルタの温度をパティキュレートフィルタの再生目標温度範囲内に維持しつつNOx吸蔵還元触媒の温度がパティキュレートフィルタの温度よりも低いNOxを吸蔵しうる温度になるように、NOx吸蔵還元触媒に流入する排気ガスの空燃比がリーンのもとで間欠的に繰返しリッチにされる間欠リッチ空燃比期間と、NOx吸蔵還元触媒に流入する排気ガスの空燃比が継続的にリーンに維持されるリーン空燃比期間とが交互に繰返される内燃機関の排気浄化装置。 An NOx occlusion reduction catalyst that stores NOx in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is lean and releases the stored NOx when the air-fuel ratio of the inflowing exhaust gas becomes rich is disposed in the engine exhaust passage. When a particulate filter for collecting particulates contained in the exhaust gas is disposed in the engine exhaust passage downstream of the NOx storage reduction catalyst, and the particulate filter is regenerated, first, the temperature of the particulate filter In the exhaust gas purification apparatus for an internal combustion engine in which the temperature raising control for raising the temperature to a recyclable temperature is performed, and then the regeneration process for regenerating the particulate filter is performed, during the regeneration process of the particulate filter , the particulate filter While maintaining the temperature of the particulate filter within the regeneration target temperature range of the particulate filter As the temperature of the Ox storage reduction catalyst to a temperature capable of occluding lower NOx than the temperature of the particulate filter, the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst is intermittently repeated rich under a lean The internal combustion engine exhaust gas purification apparatus in which the intermittent rich air-fuel ratio period and the lean air-fuel ratio period in which the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst is continuously maintained lean are alternately repeated. リーン空燃比期間のときにNOx吸蔵還元触媒の温度が低下して排気ガス中に含まれるNOxがNOx吸蔵還元触媒に吸蔵され、NOx吸蔵還元触媒に吸蔵されたNOxは間欠空燃比リッチ期間において排気ガスの空燃比がリッチになったときに放出され還元される請求項1に記載の内燃機関の排気浄化装置。   During the lean air-fuel ratio period, the temperature of the NOx occlusion reduction catalyst decreases, NOx contained in the exhaust gas is occluded in the NOx occlusion reduction catalyst, and NOx occluded in the NOx occlusion reduction catalyst is exhausted in the intermittent air fuel ratio rich period. The exhaust emission control device for an internal combustion engine according to claim 1, wherein the exhaust gas purification device releases and reduces when the air-fuel ratio of the gas becomes rich. NOx吸蔵還元触媒上流の機関排気通路内に燃料添加弁を配置し、上記間欠リッチ空燃比期間のときには該燃料添加弁から間欠的に燃料が噴射されて排気ガスの空燃比が間欠的に繰返しリッチにされ、上記リーン空燃比期間のときには該燃料添加弁からの間欠的な燃料噴射が停止される請求項1に記載の内燃機関の排気浄化装置。   A fuel addition valve is disposed in the engine exhaust passage upstream of the NOx storage reduction catalyst. During the intermittent rich air-fuel ratio period, fuel is intermittently injected from the fuel addition valve, and the air-fuel ratio of the exhaust gas is intermittently repeatedly rich. 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein intermittent fuel injection from the fuel addition valve is stopped during the lean air-fuel ratio period. NOx吸蔵還元触媒上流の機関排気通路内に燃料添加弁を配置し、上記間欠リッチ空燃比期間のときには該燃料添加弁から間欠的に燃料が噴射されて排気ガスの空燃比が間欠的に繰返しリッチにされ、上記リーン空燃比期間のときには上記間欠リッチ空燃比期間のときに比べて少量の燃料が間欠的に繰返し噴射される請求項1に記載の内燃機関の排気浄化装置。   A fuel addition valve is disposed in the engine exhaust passage upstream of the NOx storage reduction catalyst. During the intermittent rich air-fuel ratio period, fuel is intermittently injected from the fuel addition valve, and the air-fuel ratio of the exhaust gas is intermittently repeatedly rich. 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein a small amount of fuel is intermittently and repeatedly injected during the lean air-fuel ratio period as compared with the intermittent rich air-fuel ratio period. 上記間欠リッチ空燃比期間のときには予め定められた期間をおいて膨張行程後半又は排気行程中に燃焼室内に追加の燃料を噴射することにより排気ガスの空燃比が間欠的に繰返しリッチにされ、上記リーン空燃比期間のときには上記追加の燃料の噴射作用が停止される請求項1に記載の内燃機関の排気浄化装置。   During the intermittent rich air-fuel ratio period, the air-fuel ratio of the exhaust gas is intermittently made rich repeatedly by injecting additional fuel into the combustion chamber during the latter half of the expansion stroke or during the exhaust stroke after a predetermined period. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the injection action of the additional fuel is stopped during the lean air-fuel ratio period. 上記間欠リッチ空燃比期間のときには予め定められた期間をおいて膨張行程後半又は排気行程中に燃焼室内に追加の燃料を噴射することにより排気ガスの空燃比が間欠的に繰返しリッチにされ、上記リーン空燃比期間のときには予め定められた期間をおいて膨張行程後半又は排気行程中に燃焼室内に上記間欠リッチ空燃比期間のときに比べて少量の追加の燃料が噴射される請求項1に記載の内燃機関の排気浄化装置。   During the intermittent rich air-fuel ratio period, the air-fuel ratio of the exhaust gas is intermittently made rich repeatedly by injecting additional fuel into the combustion chamber during the latter half of the expansion stroke or during the exhaust stroke after a predetermined period. 2. A small amount of additional fuel is injected into the combustion chamber during the second half of the expansion stroke or during the exhaust stroke at a lean air-fuel ratio period, as compared to the intermittent rich air-fuel ratio period. Exhaust gas purification device for internal combustion engine. パティキュレートフィルタの温度が上記再生目標温度範囲の下限温度まで低下したときには間欠リッチ空燃比期間が長くされ、パティキュレートフィルタの温度が上記再生目標温度範囲の上限温度まで上昇したときには間欠リッチ空燃比期間が短かくされる請求項1に記載の内燃機関の排気浄化装置。The intermittent rich air-fuel ratio period is lengthened when the temperature of the particulate filter falls to the lower limit temperature of the regeneration target temperature range, and the intermittent rich air-fuel ratio period when the temperature of the particulate filter rises to the upper limit temperature of the regeneration target temperature range. 2. An exhaust emission control device for an internal combustion engine according to claim 1, wherein 共通の排気通路から分岐された第1の排気通路と第2の排気通路を具備し、流入する排気ガスの空燃比がリーンのときには排気ガス中のNOxを吸蔵し、流入する排気ガスの空燃比がリッチになると吸蔵しているNOxを放出するNOx吸蔵還元触媒を第1の排気通路内および第2の排気通路内に夫々配置すると共に、NOx吸蔵還元触媒下流の第1の排気通路および第2の排気通路内に夫々排気ガス中に含まれるパティキュレートを捕集するためのパティキュレートフィルタを配置し、パティキュレートフィルタを再生するときにはまず初めにパティキュレートフィルタの温度を再生可能な温度まで昇温させる昇温制御が行われ、次いでパティキュレートフィルタを再生するための再生処理が行われる内燃機関の排気浄化装置において、第1の排気通路および第2の排気通路上流の上記共通の排気通路内に燃料添加弁を配置し、上記パティキュレートフィルタの再生処理中、パティキュレートフィルタの温度をパティキュレートフィルタの再生目標温度範囲内に維持しつつNOx吸蔵還元触媒の温度がパティキュレートフィルタの温度よりも低いNOxを吸蔵しうる温度になるように、排気ガスの空燃比がリーンのもとで該燃料添加弁から燃料が排気ガス中に間欠的に噴射される燃料添加期間と、燃料添加弁からの燃料の噴射が休止される燃料添加休止期間とが交互に繰返されると共に、第1の排気通路が開通し第2の排気通路が閉鎖される状態と、第1の排気通路が閉鎖され第2の排気通路が開通する状態とが交互に繰返される内燃機関の排気浄化装置。 The first exhaust passage and the second exhaust passage branched from the common exhaust passage are provided. When the air-fuel ratio of the inflowing exhaust gas is lean, NOx in the exhaust gas is occluded and the air-fuel ratio of the inflowing exhaust gas is stored. NOx occlusion reduction catalysts that release NOx occluded when the gas becomes rich are disposed in the first exhaust passage and the second exhaust passage, respectively, and the first exhaust passage and the second exhaust gas downstream of the NOx occlusion reduction catalyst are arranged. In order to regenerate the particulate filter, the temperature of the particulate filter is first raised to a recyclable temperature when a particulate filter for collecting particulates contained in the exhaust gas is arranged in each exhaust passage. In an exhaust gas purification apparatus for an internal combustion engine in which a temperature raising control is performed, and then a regeneration process for regenerating the particulate filter is performed, A fuel addition valve is disposed in the common exhaust passage upstream of the exhaust passage and the second exhaust passage, and during the regeneration process of the particulate filter, the temperature of the particulate filter is within the regeneration target temperature range of the particulate filter. While maintaining the temperature of the NOx occlusion reduction catalyst so that the temperature at which NOx is lower than the temperature of the particulate filter can be occluded, the fuel is added to the exhaust gas from the fuel addition valve with the air-fuel ratio of the exhaust gas being lean. The fuel addition period intermittently injected into the fuel supply period and the fuel addition stop period during which fuel injection from the fuel addition valve is stopped are alternately repeated, and the first exhaust passage is opened and the second exhaust passage is opened. An exhaust purification device for an internal combustion engine in which a closed state and a state in which a first exhaust passage is closed and a second exhaust passage is opened alternately are repeated . いずれか一方の排気通路が閉鎖されると閉鎖された方の排気通路内に配置されたNOx吸蔵還元触媒の温度が低下すると共に閉鎖された方の排気通路内における排気ガスの空燃比がリッチになるために閉鎖された方の排気通路内に配置されたNOx吸蔵還元触媒からNOxが放出されて還元され、閉鎖されていた排気通路が開通すると開通した排気通路内に配置されているNOx吸蔵還元触媒に排気ガス中に含まれるNOxが吸蔵される請求項8に記載の内燃機関の排気浄化装置。 When either one of the exhaust passages is closed, the temperature of the NOx storage reduction catalyst disposed in the closed exhaust passage decreases and the air-fuel ratio of the exhaust gas in the closed exhaust passage becomes rich. Therefore, NOx is released and reduced from the NOx occlusion reduction catalyst arranged in the closed exhaust passage, and the NOx occlusion reduction is arranged in the opened exhaust passage when the closed exhaust passage is opened. The exhaust gas purification apparatus for an internal combustion engine according to claim 8 , wherein NOx contained in the exhaust gas is occluded in the catalyst . 上記パティキュレートフィルタの再生処理中に燃料添加弁から間欠的に燃料が噴射されたときに、開通している方の排気通路内における排気ガスの空燃比が間欠的にリッチにされる請求項8に記載の内燃機関の排気浄化装置。 9. The air-fuel ratio of exhaust gas in the open exhaust passage is intermittently made rich when fuel is intermittently injected from the fuel addition valve during the regeneration process of the particulate filter. 2. An exhaust gas purification apparatus for an internal combustion engine according to 1. 第1の排気通路および第2の排気通路は上記燃料添加期間中に開通又は閉鎖され、上記燃料添加休止期間中は開通又は閉鎖され続ける請求項8に記載の内燃機関の排気浄化装置。 9. The exhaust emission control device for an internal combustion engine according to claim 8 , wherein the first exhaust passage and the second exhaust passage are opened or closed during the fuel addition period and kept open or closed during the fuel addition suspension period . 第1の排気通路および第2の排気通路は上記燃料添加期間の初期に開通又は閉鎖される請求項11に記載の内燃機関の排気浄化装置。 The exhaust emission control device for an internal combustion engine according to claim 11 , wherein the first exhaust passage and the second exhaust passage are opened or closed at an initial stage of the fuel addition period . パティキュレートフィルタの温度は上記燃料添加期間を制御することによって制御され、パティキュレートフィルタの温度が上記再生目標温度範囲の下限温度まで低下したときには燃料添加期間が長くされ、パティキュレートフィルタの温度が上記再生目標温度範囲の上限温度まで上昇したときには燃料添加期間が短かくされる請求項8に記載の内燃機関の排気浄化装置。 The temperature of the particulate filter is controlled by controlling the fuel addition period. When the temperature of the particulate filter decreases to the lower limit temperature of the regeneration target temperature range, the fuel addition period is lengthened, and the temperature of the particulate filter is The exhaust purification device of an internal combustion engine according to claim 8 , wherein the fuel addition period is shortened when the temperature rises to the upper limit temperature of the regeneration target temperature range . 上記燃料添加休止期間中に燃料添加弁から燃料添加期間中よりも少量の燃料が間欠的に噴射される請求項8に記載の内燃機関の排気浄化装置。 The exhaust emission control device for an internal combustion engine according to claim 8 , wherein a smaller amount of fuel is intermittently injected from the fuel addition valve during the fuel addition suspension period than during the fuel addition period . 燃料添加弁から間欠的に噴射される燃料量を制御することによってパティキュレートフィルタの温度がパティキュレートフィルタの再生目標温度範囲内に維持される請求項8に記載の内燃機関の排気浄化装置。 The exhaust emission control device for an internal combustion engine according to claim 8 , wherein the temperature of the particulate filter is maintained within the regeneration target temperature range of the particulate filter by controlling the amount of fuel injected intermittently from the fuel addition valve . パティキュレートフィルタの温度が上記再生目標温度範囲の下限温度まで低下したときには燃料添加量が増大せしめられ、パティキュレートフィルタの温度が上記再生目標温度範囲の上限温度まで上昇したときには燃料添加量が減少せしめられる請求項15に記載の内燃機関の排気浄化装置。 When the temperature of the particulate filter falls to the lower limit temperature of the regeneration target temperature range, the fuel addition amount is increased. When the temperature of the particulate filter rises to the upper limit temperature of the regeneration target temperature range, the fuel addition amount is decreased. 16. An exhaust emission control device for an internal combustion engine according to claim 15 , wherein the exhaust gas purification device is an internal combustion engine. 燃料添加弁が第1の燃料添加弁と第2の燃料添加弁からなり、第1の燃料添加弁がNOx吸蔵還元触媒上流の第1の排気通路内に配置され、第2の燃料添加弁がNOx吸蔵還元触媒上流の第2の排気通路内に配置されている請求項8に記載の内燃機関の排気浄化装置。 The fuel addition valve includes a first fuel addition valve and a second fuel addition valve, the first fuel addition valve is disposed in the first exhaust passage upstream of the NOx storage reduction catalyst, and the second fuel addition valve is The exhaust emission control device for an internal combustion engine according to claim 8 , which is disposed in the second exhaust passage upstream of the NOx storage reduction catalyst . 第1の排気通路および第2の排気通路を閉鎖又は開通させるために少くとも一つの排気制御弁を備えている請求項8に記載の内燃機関の排気浄化装置。 The exhaust emission control device for an internal combustion engine according to claim 8 , further comprising at least one exhaust control valve for closing or opening the first exhaust passage and the second exhaust passage .
JP2005134222A 2005-05-02 2005-05-02 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4609178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005134222A JP4609178B2 (en) 2005-05-02 2005-05-02 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005134222A JP4609178B2 (en) 2005-05-02 2005-05-02 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006307801A JP2006307801A (en) 2006-11-09
JP4609178B2 true JP4609178B2 (en) 2011-01-12

Family

ID=37474962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005134222A Expired - Fee Related JP4609178B2 (en) 2005-05-02 2005-05-02 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4609178B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4780002B2 (en) * 2007-03-09 2011-09-28 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP2008261264A (en) * 2007-04-11 2008-10-30 Toyota Motor Corp Fuel injecting device
JP5061861B2 (en) * 2007-11-21 2012-10-31 トヨタ自動車株式会社 Control device for internal combustion engine
JP4893711B2 (en) * 2008-08-20 2012-03-07 トヨタ自動車株式会社 Control device for internal combustion engine
US8327628B2 (en) * 2009-09-29 2012-12-11 Ford Global Technologies, Llc Gasoline particulate filter regeneration and diagnostics
JP5708806B2 (en) * 2011-07-28 2015-04-30 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097254A (en) * 2001-09-21 2003-04-03 Toyota Motor Corp Exhaust gas purifier of internal combustion engine
JP2003117030A (en) * 2001-10-12 2003-04-22 Sumitomo Rubber Ind Ltd Golf club head
JP2004324455A (en) * 2003-04-22 2004-11-18 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
JP2005256715A (en) * 2004-03-11 2005-09-22 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097254A (en) * 2001-09-21 2003-04-03 Toyota Motor Corp Exhaust gas purifier of internal combustion engine
JP2003117030A (en) * 2001-10-12 2003-04-22 Sumitomo Rubber Ind Ltd Golf club head
JP2004324455A (en) * 2003-04-22 2004-11-18 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
JP2005256715A (en) * 2004-03-11 2005-09-22 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Also Published As

Publication number Publication date
JP2006307801A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
KR100662313B1 (en) Exhaust emission purification apparatus of compression ignition internal combustion engine
JP4613962B2 (en) Exhaust gas purification device for internal combustion engine
JP3938136B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP4270201B2 (en) Internal combustion engine
JP4419907B2 (en) Exhaust gas purification device for internal combustion engine
JP4404073B2 (en) Exhaust gas purification device for internal combustion engine
JP2009114879A (en) Exhaust emission control device for internal combustion engine
JP2007297918A (en) Exhaust emission control device for internal combustion engine
JP4609178B2 (en) Exhaust gas purification device for internal combustion engine
JPWO2010116535A1 (en) Exhaust gas purification device for internal combustion engine
JP4107320B2 (en) Exhaust gas purification device for internal combustion engine
US6837043B2 (en) Device for purifying the exhaust gas of an internal combustion engine
JP3514218B2 (en) Exhaust gas purification device for internal combustion engine
WO2010134204A1 (en) Exhaust emission control device for internal combustion engine
JP4747885B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP2009299572A (en) Exhaust emission control device for compression self-ignition type internal combustion engine
JP4357917B2 (en) Exhaust gas purification device for internal combustion engine
JP4506545B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP2007162532A (en) Exhaust emission control device for internal combustion engine
JP4577249B2 (en) Exhaust gas purification device for internal combustion engine
JP4556760B2 (en) Exhaust gas purification device for internal combustion engine
JP4665746B2 (en) Exhaust gas purification device for internal combustion engine
JP2010106775A (en) Exhaust emission purifier of internal-combustion engine
JP2008101565A (en) Exhaust emission control device of internal combustion engine
JP2006299896A (en) Exhaust emission control device of compression ignition type internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees