WO2007004471A1 - Control device for diesel engine - Google Patents

Control device for diesel engine Download PDF

Info

Publication number
WO2007004471A1
WO2007004471A1 PCT/JP2006/312804 JP2006312804W WO2007004471A1 WO 2007004471 A1 WO2007004471 A1 WO 2007004471A1 JP 2006312804 W JP2006312804 W JP 2006312804W WO 2007004471 A1 WO2007004471 A1 WO 2007004471A1
Authority
WO
WIPO (PCT)
Prior art keywords
diesel engine
exhaust
exhaust gas
amount
fuel injection
Prior art date
Application number
PCT/JP2006/312804
Other languages
French (fr)
Japanese (ja)
Inventor
Michihiro Hata
Kei Shigahara
Noriyuki Koga
Kazuo Kurata
Original Assignee
Mitsubishi Jidosha Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Jidosha Kogyo Kabushiki Kaisha filed Critical Mitsubishi Jidosha Kogyo Kabushiki Kaisha
Publication of WO2007004471A1 publication Critical patent/WO2007004471A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0005Controlling intake air during deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/21Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system with EGR valves located at or near the connection to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a diesel engine control device, and more particularly to a technique for maintaining the temperature of an exhaust purification device at an activation temperature.
  • the DPF it is necessary to remove the PM when the accumulated amount of the captured PM exceeds an allowable amount.
  • a method for removing the accumulated PM for example, an oxidation catalyst is provided upstream of the DPF, post-injection in the expansion stroke or exhaust stroke is performed, and the unburned fuel (HC) is oxidized by the oxidation catalyst.
  • HC unburned fuel
  • the present invention has been made to solve such a problem, and an object of the present invention is to reduce the temperature of the exhaust purification means that does not deteriorate the vehicle operating state even in the fuel cut state. It is an object of the present invention to provide a control device for a diesel engine that can suppress the exhaust gas and can maintain the exhaust purification performance of the exhaust purification means satisfactorily.
  • a control device for a diesel engine is provided in a fuel injection means for directly injecting fuel into a combustion chamber, and an intake passage of the diesel engine, and the diesel engine Intake throttle means for adjusting the amount of intake air supplied to the engine, exhaust purification means provided in the exhaust passage of the diesel engine for purifying exhaust gas exhausted from the diesel engine, and the diesel engine
  • An exhaust gas recirculation adjusting means for adjusting the amount of exhaust gas recirculated into the combustion chamber; and a control means for controlling the fuel injection means, the intake throttling means, and the exhaust gas recirculation adjusting means.
  • control means controls the intake throttle means to reduce the intake air amount, and the control means controls the exhaust gas recirculation adjustment means to exhaust the exhaust gas. Increase air reflux.
  • the control means controls the intake throttle means to reduce the intake air amount and suppress the introduction of fresh air into the engine, thereby The removal of heat from the dredging means can be suppressed.
  • the control means force S exhaust gas recirculation control means it is possible to mitigate the increase in the engine's pumping loss due to the suppression of fresh air. Generation of braking force can be prevented.
  • the exhaust purification unit includes a particulate filter that captures particulate matter in exhaust exhausted by the diesel engine power, and an upstream of the particulate filter. And an acid catalyst disposed on the side.
  • the control device for the diesel engine performs the expansion stroke or exhaust stroke of the diesel engine by the fuel injection means when the particulate matter accumulation amount in the particulate filter reaches a predetermined amount.
  • the fuel cell further comprises forced regeneration means for forcibly regenerating the particulate filter by forcibly burning and removing the particulate matter captured by the particulate filter by performing the auxiliary fuel injection, and the control means comprises the fuel
  • the intake throttle means is controlled to reduce the intake air amount
  • the exhaust gas recirculation adjustment means is The exhaust gas recirculation amount is increased by control.
  • control means controls the intake throttle means to reduce the intake air amount and introduce fresh air.
  • Control and control the exhaust power recirculation control means By increasing the exhaust gas recirculation amount, the pressure increase in the intake system and exhaust system is reduced.
  • the control means increases the exhaust gas recirculation amount by the exhaust gas recirculation adjusting means in accordance with an increase in the rotational speed of the diesel engine. .
  • FIG. 1 is a schematic configuration diagram of a control device for a diesel engine according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a heat retention control routine of the exhaust gas purification device, which is executed by the ECU of the control device of FIG. 1, and
  • FIG. 3 is a time chart corresponding to the present embodiment, Comparative Example 1 and Comparative Example 2.
  • FIG. 1 there is shown a schematic configuration diagram of a diesel engine control device according to an embodiment of the present invention.
  • the engine 1 is a common rail type diesel engine having a plurality of cylinders. More specifically, the engine 1 supplies high-pressure fuel accumulated in the common rail 2a by the common rail system 2 to the fuel injection valve 4 (fuel injection means) of each cylinder, and the fuel injection valve at an arbitrary injection timing and injection amount. It is configured to be able to inject from 4 into the combustion chamber 6 of each cylinder.
  • FIG. 1 shows a cross section of one cylinder of the engine 1. The other cylinders have the same configuration and are not shown here.
  • Each cylinder is provided with a piston 8 that can slide up and down, and the piston 8 is connected to a crankshaft 12 via a connecting rod 10.
  • a flywheel 14 is provided at one end of the crankshaft 12, and a crank angle sensor 16 that detects the rotational speed of the crankshaft 12 is provided in the flywheel 14.
  • Each combustion chamber 6 communicates with an intake passage 20 and an exhaust passage 30.
  • Each intake passage 20 has an intake valve 22 that communicates and blocks the combustion chamber 6 and the intake passage 20.
  • Each exhaust passage 30 is provided with an exhaust valve 32 for communicating and blocking between the combustion chamber 6 and the exhaust passage 30.
  • the intake passages 20 are gathered together and integrated, and an air cleaner 24 is provided at an upstream end thereof.
  • a turbocharger 40 is provided downstream of the air cleaner 24 to supercharge intake air using exhaust airflow.
  • the turbocharger 40 also includes a turbine that rotates by exhaust and a compressor force that rotates in synchronization with the turbine, and the intake passage 20 is connected to a compressor housing that houses the compressor.
  • An intake air passage 20 on the downstream side of the turbocharger 40 is provided with an intercooler 26 that cools the supercharged intake air. Further, on the downstream side of the intercooler 26, there is provided an intake throttle valve 28 (intake throttle means) that adjusts the intake air amount by an electromagnetic butterfly rev force.
  • the intake passage 20 branches downstream of the intake throttle valve 28 and communicates with each combustion chamber 6 as described above.
  • exhaust passage 30 is assembled and integrated, it is connected to a turbine housing that houses the turbine of the turbocharger 40, and an exhaust purification device 50 is provided downstream of the turbocharger 40. (Exhaust gas purification means) is provided.
  • an oxidation catalyst 52 that oxidizes nitrogen monoxide (NO) in the exhaust gas to form nitrogen dioxide (NO) is disposed. Also downstream of the oxidation catalyst 52
  • DPF diesel particulate filter
  • PM particulate matter
  • an EGR passage is provided so that a portion of the intake passage 20 before branching downstream of the intake throttle valve 28 and a portion of the exhaust passage 30 after collecting upstream of the turbocharger 40 communicate with each other. 60 is provided. Part of the exhaust gas is recirculated as EGR gas from the EGR passage 60 through the intake passage 20 into the combustion chambers 6. [0031]
  • the EGR passage 60 is provided with an EGR cooler 62 that cools the EGR gas, and an electromagnetic EGR valve 64 (exhaust gas) that adjusts the recirculation amount of the EGR gas at the connection portion between the intake passage 20 and the EGR passage 60.
  • a reflux control means is provided.
  • Various devices and various sensors such as the fuel injection valve 4, the crank angle sensor 16, the intake throttle valve 28, the temperature sensor 56, and the EGR valve 64 are ECUs (electronic control units).
  • the ECU 70 (Control means) Electrically connected.
  • the ECU 70 controls the operation of various devices based on information from various sensors.
  • the ECU 70 is electrically connected to an accelerator sensor 72 that is provided in the vehicle and detects the accelerator opening of the accelerator pedal.
  • the temperature control routine of the exhaust purification device 50 at the time of fuel cut executed by the ECU 70 at a predetermined control cycle is shown. It is shown in the flowchart, and will be explained based on the flowchart below.
  • step S1 it is determined whether or not a fuel cut is in progress. That is, it is determined whether or not the main fuel injection for generating torque is stopped, and if the determination result is true (Yes), the process proceeds to step S2.
  • step S2 the rotational speed force of the crankshaft 12 detected by the crank angle sensor 16 is detected, and the engine speed is preset, and whether or not the engine speed is within a predetermined speed. Is determined. If the intake throttle valve is closed at a high speed where the engine speed is higher than the predetermined speed, the bombing loss increases rapidly and excessive engine braking force is generated. This determination is made to prevent the occurrence. If the determination result is true (Yes), the process proceeds to step S3.
  • step S3 it is determined whether or not the engine 1 is performing forced regeneration of the DPF 54.
  • the forced regeneration is performed when the PM accumulation amount exceeds a predetermined amount because PM collected by DPF54 gradually accumulates even if continuous regeneration is performed.
  • PM deposition amount is an example
  • forced regeneration secondary fuel injection is performed in the expansion stroke and exhaust stroke so as not to contribute to the torque generation of the engine 1.
  • the ECU 70 and the fuel injection valve 4 correspond to the forced regeneration means of the present invention.
  • step S3 If the determination result in step S3 is true (Yes), that is, if forced regeneration as described above is performed, the process proceeds to step S4.
  • step S4 the ECU 70 controls the intake throttle valve 28 to be fully closed, and the EGR valve 64 is fully opened to complete the routine in the control cycle.
  • step S5 the ECU 70 performs normal control on the intake throttle valve 28 and the EGR valve 64, and the routine in the control cycle ends.
  • FIG. 3 there is shown a time chart corresponding to the present embodiment in which the above-mentioned heat retention control is performed, Comparative Example 1 in which the above heat retention control is not performed, and Comparative Example 2 in which the EGR valve is not controlled. Has been.
  • the intake throttle valve 28 is fully closed to suppress the introduction of fresh air, thereby suppressing the fresh air flowing into the exhaust passage 30 as it is, and the exhaust purification device 50.
  • the removal of heat from can be suppressed.
  • the DPF54 inlet temperature does not fall below the catalyst activation temperature, and even when the fuel is cut, secondary fuel injection can be performed to forcibly regenerate the DPF54.
  • the temperature drop during the fuel cut is small.
  • the inlet temperature of the DPF 54 is sufficiently kept above the catalyst activation temperature! Therefore, it does not consume extra fuel by controlling the temperature rise.
  • the intake throttle valve 28 is fully closed and the EGR valve 64 is fully opened, so that the vehicle Therefore, it is possible to suppress the temperature reduction of the exhaust purification device 50 without deteriorating the operation state, and to maintain the exhaust purification performance of the exhaust purification device 50 satisfactorily.
  • an exhaust throttle valve may be provided in the exhaust passage 30 in the above embodiment, and the ECU 70 may be controlled to close the exhaust throttle valve together with the intake throttle valve 28 when in a fuel cut state. By closing the exhaust throttle valve in this way, the exhaust flow is suppressed, and the heat retention effect of the exhaust purification device 50 can be further improved.
  • the ECU 70 controls the intake throttle valve 28 to be fully closed and the EGR valve 64 to be fully open during the forced regeneration of the DPF 54 and the fuel cut state.
  • ECU 70 controls intake throttle valve 28 to be fully closed and EGR valve 64 to be fully open when the fuel cut state is reached. Also good.
  • the ECU 70 fully closes the intake throttle valve 28 and fully opens the EGR valve 64 when the fuel is cut. For example, each opening degree is varied according to the engine speed.
  • the ECU 70 may control the intake throttle valve 28 and the EGR valve 64, or the ECU 70 controls the intake throttle valve 28 and the EGR valve 64 so that a specific opening degree is set in advance and the specific opening degree is reached. May be. In this way, by changing the opening according to the engine speed, the bombing loss can be reduced more efficiently.
  • the acid purification catalyst 52 and the DPF 54 are used as the exhaust gas purification means, but the present invention is not limited to this. Furthermore, the method of forced regeneration is not limited to the method by sub fuel injection, and various known methods can be employed.
  • the exhaust gas recirculation adjusting means is not limited to the force in which the EGR valve 64 is provided in the EGR passage 60 that connects the intake passage 20 and the exhaust passage 30 as the exhaust gas recirculation adjusting means. Absent.
  • a variable valve mechanism is used to control the so-called internal EGR amount by controlling the opening timing of the intake valve and the closing timing of the exhaust valve and changing the overlap period of intake and exhaust. May be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

An exhaust gas purification device (50) for purifying exhaust gas from a diesel engine (1) is provided in an exhaust path (30) of the engine (1). In a fuel cutoff state where main fuel injection by a fuel injection valve (4) is stopped, an intake throttle valve (28) is controlled to reduce the amount of inlet air to the diesel engine (1) and an EGR valve (64) is controlled to increase the amount of exhaust gas recirculation to a combustion chamber (6) of the engine (1).

Description

明 細 書  Specification
ディーゼルエンジンの制御装置  Diesel engine control device
技術分野  Technical field
[0001] 本発明は、ディーゼルエンジンの制御装置に係り、詳しくは排気浄ィ匕装置の温度を 活性温度に維持する技術に関する。  TECHNICAL FIELD [0001] The present invention relates to a diesel engine control device, and more particularly to a technique for maintaining the temperature of an exhaust purification device at an activation temperature.
背景技術  Background art
[0002] ディーゼルエンジン力も排出される排ガスには、 HC (炭化水素)、 CO (一酸化炭素 )、 NOx (窒素酸化物)等のほかにパティキュレートマター(以下 PMと 、う)が含まれ ており、この PMを処理するための排気浄ィ匕手段として、 PMを捕捉するディーゼル パティキュレートフィルタ(以下 DPFと 、う)が提案されて!、る。  [0002] In addition to HC (hydrocarbon), CO (carbon monoxide), NOx (nitrogen oxide), etc., exhaust gas that also emits diesel engine power contains particulate matter (hereinafter referred to as PM). A diesel particulate filter (hereinafter referred to as DPF) that captures PM has been proposed as an exhaust purification means for treating this PM! RU
[0003] 当該 DPFでは、捕捉した PMの堆積量が許容量を越えたときに当該 PMを除去す る必要がある。この堆積した PMを除去する方法としては、例えば、 DPFの上流側に 酸化触媒を設け、膨張行程または排気行程でのポスト噴射を実施して未燃燃料 (H C)を酸化触媒によって酸化させ、当該酸化により生じた酸化反応熱を利用すること で PMを強制的に焼却除去する方法がある。  [0003] In the DPF, it is necessary to remove the PM when the accumulated amount of the captured PM exceeds an allowable amount. As a method for removing the accumulated PM, for example, an oxidation catalyst is provided upstream of the DPF, post-injection in the expansion stroke or exhaust stroke is performed, and the unburned fuel (HC) is oxidized by the oxidation catalyst. There is a method to forcibly remove PM by using the heat of oxidation reaction generated by oxidation.
[0004] このような方法で DPFの強制再生を行うには、酸化触媒入口の温度を触媒活性温 度以上に保つ必要がある。し力しながら、ディーゼルエンジンは排気温度が比較的 低!ヽため、アイドル運転時等には酸化触媒入口の温度が触媒活性温度を下回って しまうという問題がある。  [0004] In order to perform forced regeneration of DPF by such a method, it is necessary to keep the temperature of the oxidation catalyst inlet at or above the catalyst activation temperature. However, since the exhaust temperature of the diesel engine is relatively low, there is a problem that the temperature of the oxidation catalyst inlet becomes lower than the catalyst activation temperature during idling.
[0005] そこで、エンジンが冷機状態で且つアイドル運転中には排気絞り弁及び吸気絞り弁 を全閉とし、またエンジンが冷機状態で且つ非アイドル運転中には排気絞り弁を半開 とすると共に吸気絞り弁を全閉とすることにより、エンジンの冷機状態の車両走行の 際にエンジンの暖機を行うと 1、う技術が開発され、日本国特開平 11 - 236829号公 報 (以下特許文献 1と 、う)に開示されて!、る。  [0005] Therefore, the exhaust throttle valve and the intake throttle valve are fully closed when the engine is in a cold state and idle operation, and the exhaust throttle valve is half-opened and the intake air when the engine is in a cold state and non-idle operation. When the engine is warmed up while the vehicle is running with the engine cold, the technology has been developed, and published in Japanese Patent Laid-Open No. 11-236829 (hereinafter referred to as Patent Document 1). It is disclosed in!
[0006] 上記特許文献 1に開示された技術では、排気絞り弁を閉じる上、吸気絞り弁も閉じ るため、エンジンのポンビングロスが大幅に増加してしまい、過大なエンジンブレーキ 力によって車両運転状態の悪化を招くと!、う問題が生じる。 [0007] また、排気系に排気浄ィ匕装置を設けた車両においては、例えば下り坂での走行等 で、アクセルペダルの踏み込みが解除されることによって燃料噴射が停止され、燃焼 が生起されないいわゆる燃料カット状態にあるとき、燃焼は生起されてないがェンジ ンは回転しているために新気がそのまま排気通路へと流入してしまう。このため、酸 化触媒や DPFの熱が新気によって持ち去られ、アイドル運転時以上に酸化触媒や DPFの急激な温度低下が生じる。 [0006] In the technique disclosed in Patent Document 1 above, the exhaust throttle valve is closed and the intake throttle valve is also closed, so that the engine's pumping loss is greatly increased, and the vehicle operating state is not increased due to excessive engine braking force. If it gets worse! [0007] Further, in a vehicle in which an exhaust gas purification device is provided in the exhaust system, fuel injection is stopped when combustion of a downhill or the like is released, for example, so that fuel injection is stopped and combustion does not occur. In the fuel cut state, combustion is not occurring, but the engine is rotating, so fresh air flows directly into the exhaust passage. For this reason, the heat of the oxidation catalyst and DPF is carried away by fresh air, and the temperature of the oxidation catalyst and DPF decreases rapidly more than during idle operation.
[0008] このようして酸ィ匕触媒や DPFの温度が急激に低下すると、 DPFの強制再生を行う ことができなくなり排気浄ィ匕性能の悪ィ匕を招く上、燃焼が再開されたときには再び多 量の燃料を用いて酸ィ匕触媒を昇温させなければならないことから、燃費の悪化も招き 好ましくない。  [0008] If the temperature of the acid catalyst or DPF rapidly decreases in this way, forced regeneration of DPF cannot be performed, leading to poor exhaust purification performance, and when combustion is resumed. Since it is necessary to raise the temperature of the acid catalyst again using a large amount of fuel, fuel consumption is deteriorated, which is not preferable.
発明の開示  Disclosure of the invention
[0009] 本発明はこのような問題を解決するためになされたもので、その目的とするところは 、燃料カット状態であっても、車両運転状態を悪化させることなぐ排気浄化手段の温 度低下を抑制することができ、排気浄ィ匕手段の排気浄ィ匕性能を良好に維持すること ができるディーゼルエンジンの制御装置を提供することにある。  [0009] The present invention has been made to solve such a problem, and an object of the present invention is to reduce the temperature of the exhaust purification means that does not deteriorate the vehicle operating state even in the fuel cut state. It is an object of the present invention to provide a control device for a diesel engine that can suppress the exhaust gas and can maintain the exhaust purification performance of the exhaust purification means satisfactorily.
[0010] 上記した目的を達成するために、本発明のディーゼルエンジンの制御装置は、燃 焼室内に直接燃料を噴射する燃料噴射手段と、上記ディーゼルエンジンの吸気通 路に設けられ、上記ディーゼルエンジンに供給される吸入空気量を調節する吸気絞 り手段と、上記ディーゼルエンジンの排気通路に設けられ、上記ディーゼルエンジン 力 排出される排気を浄ィ匕する排気浄ィ匕手段と、上記ディーゼルエンジンの燃焼室 内に還流される排気の量を調節する排気還流調節手段と、上記燃料噴射手段、吸 気絞り手段、及び排気還流調節手段を制御する制御手段とを備え、上記制御手段 は、上記燃料噴射手段による主燃料噴射を停止する燃料カット状態にあるときに、上 記吸気絞り手段を制御して上記吸入空気量を減少させるとともに、上記排気還流調 節手段を制御して上記排気還流量を増加させることを特徴とする。  In order to achieve the above-described object, a control device for a diesel engine according to the present invention is provided in a fuel injection means for directly injecting fuel into a combustion chamber, and an intake passage of the diesel engine, and the diesel engine Intake throttle means for adjusting the amount of intake air supplied to the engine, exhaust purification means provided in the exhaust passage of the diesel engine for purifying exhaust gas exhausted from the diesel engine, and the diesel engine An exhaust gas recirculation adjusting means for adjusting the amount of exhaust gas recirculated into the combustion chamber; and a control means for controlling the fuel injection means, the intake throttling means, and the exhaust gas recirculation adjusting means. When in the fuel cut state in which the main fuel injection by the injection means is stopped, the intake throttle means is controlled to reduce the intake air amount and the exhaust gas. The exhaust gas recirculation amount is increased by controlling the air recirculation adjusting means.
[0011] つまり、吸気絞り手段と排気還流調節手段とを備えたディーゼルエンジンにおいて That is, in a diesel engine provided with an intake throttle means and an exhaust gas recirculation adjusting means
、エンジンが燃料カット状態にあるときは、制御手段が吸気絞り手段を制御することに より吸入空気量を減少させ、制御手段が排気還流調節手段を制御することにより排 気還流量を増加させる。 When the engine is in a fuel cut state, the control means controls the intake throttle means to reduce the intake air amount, and the control means controls the exhaust gas recirculation adjustment means to exhaust the exhaust gas. Increase air reflux.
[0012] 従って、エンジンが燃料カット状態にあるときに、制御手段が吸気絞り手段を制御し て吸入空気量を減少させエンジンへの新気の導入を抑制することにより、新気による 排気浄ィ匕手段からの熱の持ち去りを抑制することができる。このとき更に、制御手段 力 S排気還流調節手段を制御して排気還流量を増加させることにより、新気の抑制に 起因して生じるエンジンのポンビングロスの増加を軽減することができ、過大なェンジ ンブレーキ力の発生等を防止することができる。  [0012] Therefore, when the engine is in a fuel cut state, the control means controls the intake throttle means to reduce the intake air amount and suppress the introduction of fresh air into the engine, thereby The removal of heat from the dredging means can be suppressed. At this time, by further increasing the exhaust gas recirculation amount by controlling the control means force S exhaust gas recirculation control means, it is possible to mitigate the increase in the engine's pumping loss due to the suppression of fresh air. Generation of braking force can be prevented.
[0013] これにより、エンジンが燃料カット状態であっても、車両の運転状態を悪化させるこ となぐ排気浄化手段の温度低下を抑制することができ、排気浄化手段の排気浄ィ匕 性能を良好に維持することができる。  [0013] Thereby, even if the engine is in a fuel cut state, it is possible to suppress the temperature reduction of the exhaust purification means that would deteriorate the driving state of the vehicle, and the exhaust purification means has good exhaust purification performance. Can be maintained.
[0014] 具体的には、上記ディーゼルエンジンの制御装置において、上記排気浄化手段は 、上記ディーゼルエンジン力 排出される排気中のパティキュレートマターを捕捉す るパティキュレートフィルタと、該パティキュレートフィルタの上流側に配設される酸ィ匕 触媒とにより構成されることを特徴とする。  [0014] Specifically, in the control device for a diesel engine, the exhaust purification unit includes a particulate filter that captures particulate matter in exhaust exhausted by the diesel engine power, and an upstream of the particulate filter. And an acid catalyst disposed on the side.
[0015] これにより、連続再生式のディーゼルパティキュレートフィルタを備えたディーゼル エンジンの排気浄ィ匕性能の一時的な低下を効果的に抑制することができる。  [0015] Thereby, it is possible to effectively suppress a temporary decrease in the exhaust purification performance of the diesel engine provided with the continuously regenerating diesel particulate filter.
[0016] 好ましくは、上記ディーゼルエンジンの制御装置は、上記パティキュレートフィルタ におけるパティキュレートマター堆積量が所定量に達したときに、上記燃料噴射手段 により上記ディーゼルエンジンの膨張行程または排気行程で実施する副燃料噴射を 行うことで上記パティキュレートフィルタに捕捉された上記パティキュレートマターを強 制的に燃焼除去して上記パティキュレートフィルタを強制再生させる強制再生手段を 更に備え、上記制御手段は、上記燃料カット状態であって、上記強制再生手段によ る上記パティキュレートフィルタの強制再生を行っているときに、上記吸気絞り手段を 制御して上記吸入空気量を減少させるとともに、上記排気還流調節手段を制御して 上記排気還流量を増加させることを特徴とする。  [0016] Preferably, the control device for the diesel engine performs the expansion stroke or exhaust stroke of the diesel engine by the fuel injection means when the particulate matter accumulation amount in the particulate filter reaches a predetermined amount. The fuel cell further comprises forced regeneration means for forcibly regenerating the particulate filter by forcibly burning and removing the particulate matter captured by the particulate filter by performing the auxiliary fuel injection, and the control means comprises the fuel When the particulate filter is forcibly regenerated by the forced regeneration means in the cut state, the intake throttle means is controlled to reduce the intake air amount, and the exhaust gas recirculation adjustment means is The exhaust gas recirculation amount is increased by control.
[0017] つまり、エンジンが燃料カット状態にあり、パティキュレートフィルタの強制再生が行 われているときに、制御手段が吸気絞り手段を制御することにより吸入空気量を減少 させて新気の導入を抑制するとともに、制御手段力排気還流調節手段を制御するこ とにより排気還流量を増加させることで、吸気系及び排気系内の圧力の増加を軽減 する。 That is, when the engine is in a fuel cut state and the particulate filter is forcibly regenerated, the control means controls the intake throttle means to reduce the intake air amount and introduce fresh air. Control and control the exhaust power recirculation control means. By increasing the exhaust gas recirculation amount, the pressure increase in the intake system and exhaust system is reduced.
この結果、パティキュレートフィルタの強制再生を良好に行うことができる。  As a result, the forced regeneration of the particulate filter can be performed satisfactorily.
[0018] また好ましくは、上記ディーゼルエンジンの制御装置において、上記制御手段は、 上記ディーゼルエンジンの回転数の増加に応じて上記排気還流調節手段による上 記排気還流量を増加することを特徴とする。  [0018] Preferably, in the control device for the diesel engine, the control means increases the exhaust gas recirculation amount by the exhaust gas recirculation adjusting means in accordance with an increase in the rotational speed of the diesel engine. .
これにより、より効率よくボンビングロスを軽減することができる。  Thereby, a bombing loss can be reduced more efficiently.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]本発明の一実施形態によるディーゼルエンジンの制御装置の概略構成図、 FIG. 1 is a schematic configuration diagram of a control device for a diesel engine according to an embodiment of the present invention;
[図 2]図 1の制御装置の ECUが実行する、排気浄ィ匕装置の保温制御ルーチンのフロ 一チャート、及び FIG. 2 is a flowchart of a heat retention control routine of the exhaust gas purification device, which is executed by the ECU of the control device of FIG. 1, and
[図 3]本実施形態、比較例 1、及び比較例 2に対応するタイムチャートである。  FIG. 3 is a time chart corresponding to the present embodiment, Comparative Example 1 and Comparative Example 2.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、本発明の一実施形態を図面に基づき説明する。  Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
図 1を参照すると、本発明の一実施形態に係るディーゼルエンジンの制御装置の 概略構成図が示されている。  Referring to FIG. 1, there is shown a schematic configuration diagram of a diesel engine control device according to an embodiment of the present invention.
[0021] 図 1に示すように、エンジン 1は複数気筒を有するコモンレール式ディーゼルェンジ ンである。より詳しくは、エンジン 1は、コモンレールシステム 2によりコモンレール 2aに 蓄圧された高圧燃料を各気筒の燃料噴射弁 4 (燃料噴射手段)に供給し、任意の噴 射時期及び噴射量で当該燃料噴射弁 4から各気筒の燃焼室 6内に噴射可能に構成 されている。なお、図 1にはエンジン 1の 1つの気筒についての断面が示されている。 他の気筒も同様の構成を有しており、ここでは図示を省略する。  As shown in FIG. 1, the engine 1 is a common rail type diesel engine having a plurality of cylinders. More specifically, the engine 1 supplies high-pressure fuel accumulated in the common rail 2a by the common rail system 2 to the fuel injection valve 4 (fuel injection means) of each cylinder, and the fuel injection valve at an arbitrary injection timing and injection amount. It is configured to be able to inject from 4 into the combustion chamber 6 of each cylinder. FIG. 1 shows a cross section of one cylinder of the engine 1. The other cylinders have the same configuration and are not shown here.
[0022] 各気筒には上下摺動可能なピストン 8が設けられており、当該ピストン 8はコンロッド 10を介してクランクシャフト 12に連結されている。また、クランクシャフト 12の一端部 にはフライホイール 14が設けられており、当該フライホイール 14にはクランクシャフト 12の回転速度を検出するクランク角センサ 16が設けられている。  Each cylinder is provided with a piston 8 that can slide up and down, and the piston 8 is connected to a crankshaft 12 via a connecting rod 10. A flywheel 14 is provided at one end of the crankshaft 12, and a crank angle sensor 16 that detects the rotational speed of the crankshaft 12 is provided in the flywheel 14.
[0023] また、各燃焼室 6には吸気通路 20と排気通路 30とがそれぞれ連通している。  [0023] Each combustion chamber 6 communicates with an intake passage 20 and an exhaust passage 30.
[0024] 各吸気通路 20には、燃焼室 6と吸気通路 20との連通及び遮断を行う吸気弁 22が それぞれ設けられており、各排気通路 30には、燃焼室 6と排気通路 30との連通及び 遮断を行う排気弁 32がそれぞれ設けられて 、る。 Each intake passage 20 has an intake valve 22 that communicates and blocks the combustion chamber 6 and the intake passage 20. Each exhaust passage 30 is provided with an exhaust valve 32 for communicating and blocking between the combustion chamber 6 and the exhaust passage 30.
[0025] また、各吸気通路 20は集合して一体ィ匕し、その上流端にはエアクリーナ 24が設け られている。一体ィ匕した吸気通路 20において、このエアクリーナ 24の下流側には排 気流を利用して吸気を過給するターボチャージャ 40が設けられて 、る。当該ターボ チャージャ 40は、詳しくは、排気により回転するタービン及び当該タービンと同期回 転するコンプレッサ力も構成されており、吸気通路 20はコンプレッサを収納するコン プレッサハウジングに連結されて 、る。  [0025] The intake passages 20 are gathered together and integrated, and an air cleaner 24 is provided at an upstream end thereof. In the integrated intake passage 20, a turbocharger 40 is provided downstream of the air cleaner 24 to supercharge intake air using exhaust airflow. Specifically, the turbocharger 40 also includes a turbine that rotates by exhaust and a compressor force that rotates in synchronization with the turbine, and the intake passage 20 is connected to a compressor housing that houses the compressor.
[0026] そして、当該ターボチャージャ 40の下流側の吸気通路 20には、過給された吸気を 冷却するインタークーラ 26が設けられている。また、インタークーラ 26の下流側には 、電磁式のバタフライノ レブ力 なり吸入空気量を調節する吸気絞り弁 28 (吸気絞り 手段)が設けられている。  [0026] An intake air passage 20 on the downstream side of the turbocharger 40 is provided with an intercooler 26 that cools the supercharged intake air. Further, on the downstream side of the intercooler 26, there is provided an intake throttle valve 28 (intake throttle means) that adjusts the intake air amount by an electromagnetic butterfly rev force.
[0027] 吸気通路 20は吸気絞り弁 28の下流側で分岐し、前述したように各燃焼室 6に連通 している。  The intake passage 20 branches downstream of the intake throttle valve 28 and communicates with each combustion chamber 6 as described above.
[0028] 一方、排気通路 30は集合して一体ィ匕した後、上記ターボチャージャ 40のタービン を収納するタービンハウジングに連結されており、当該ターボチャージャ 40より下流 側には排気浄ィ匕装置 50 (排気浄ィ匕手段)が設けられている。  [0028] On the other hand, after the exhaust passage 30 is assembled and integrated, it is connected to a turbine housing that houses the turbine of the turbocharger 40, and an exhaust purification device 50 is provided downstream of the turbocharger 40. (Exhaust gas purification means) is provided.
[0029] 当該排気浄化装置 50内の上流側には、排気中の一酸化窒素 (NO)を酸化させて 二酸化窒素 (NO )とする酸化触媒 52が配設されている。また酸化触媒 52の下流側  [0029] On the upstream side in the exhaust purification apparatus 50, an oxidation catalyst 52 that oxidizes nitrogen monoxide (NO) in the exhaust gas to form nitrogen dioxide (NO) is disposed. Also downstream of the oxidation catalyst 52
2  2
には、排気中のパティキュレートマター(以下 PMという)を捕捉するディーゼルパティ キュレートフィルタ(以下 DPFという) 54が配設されている。即ち、酸化触媒 52と DPF 54とから連続再生式 DPFが構成されている。また、酸ィ匕触媒 52の出口部分には、 当該酸化触媒 52の出口温度、即ち DPF54の入口温度を検出する温度センサ 56が 設けられている。  Is equipped with a diesel particulate filter (hereinafter referred to as DPF) 54 that captures particulate matter (hereinafter referred to as PM) in the exhaust. That is, the oxidation catalyst 52 and the DPF 54 constitute a continuous regeneration type DPF. Further, a temperature sensor 56 for detecting the outlet temperature of the oxidation catalyst 52, that is, the inlet temperature of the DPF 54, is provided at the outlet portion of the acid catalyst 52.
[0030] また、吸気通路 20の吸気絞り弁 28よりも下流側で分岐する前の部分と、排気通路 30のターボチャージャ 40より上流側で集合した後の部分とを連通するように EGR通 路 60が設けられている。排気の一部が EGRガスとして当該 EGR通路 60から吸気通 路 20を経て各燃焼室 6内へと還流される。 [0031] EGR通路 60には、 EGRガスを冷却する EGRクーラ 62が設けられると共に、吸気 通路 20と EGR通路 60との接続部分に EGRガスの還流量を調節する電磁式の EGR バルブ 64 (排気還流調節手段)が設けられて 、る。 [0030] In addition, an EGR passage is provided so that a portion of the intake passage 20 before branching downstream of the intake throttle valve 28 and a portion of the exhaust passage 30 after collecting upstream of the turbocharger 40 communicate with each other. 60 is provided. Part of the exhaust gas is recirculated as EGR gas from the EGR passage 60 through the intake passage 20 into the combustion chambers 6. [0031] The EGR passage 60 is provided with an EGR cooler 62 that cools the EGR gas, and an electromagnetic EGR valve 64 (exhaust gas) that adjusts the recirculation amount of the EGR gas at the connection portion between the intake passage 20 and the EGR passage 60. A reflux control means) is provided.
[0032] そして、上記燃料噴射弁 4、クランク角センサ 16、吸気絞り弁 28、温度センサ 56及 び EGRバルブ 64等の各種装置や各種センサ類は ECU (電子コントロールユニット)[0032] Various devices and various sensors such as the fuel injection valve 4, the crank angle sensor 16, the intake throttle valve 28, the temperature sensor 56, and the EGR valve 64 are ECUs (electronic control units).
70 (制御手段)と電気的に接続されている。当該 ECU70は各種センサ類からの各情 報に基づき各種装置の作動を制御する。 70 (Control means) Electrically connected. The ECU 70 controls the operation of various devices based on information from various sensors.
[0033] さらに、 ECU70は車両に設けられてアクセルペダルのアクセル開度を検出するァ クセルセンサ 72とも電気的に接続されている。 [0033] Furthermore, the ECU 70 is electrically connected to an accelerator sensor 72 that is provided in the vehicle and detects the accelerator opening of the accelerator pedal.
[0034] 以下このように構成された本発明の一実施形態に係るディーゼルエンジンの制御 装置の作用につ 、て説明する。 The operation of the diesel engine control device according to one embodiment of the present invention configured as described above will be described below.
[0035] 図 2を参照すると、本発明の一実施形態に係るディーゼルエンジンの制御装置に おいて ECU70が所定の制御周期で実行する燃料カット時の排気浄ィ匕装置 50の保 温制御ルーチンがフローチャートで示されており、以下同フローチャートに基づき説 明する。 [0035] Referring to FIG. 2, in the diesel engine control device according to one embodiment of the present invention, the temperature control routine of the exhaust purification device 50 at the time of fuel cut executed by the ECU 70 at a predetermined control cycle is shown. It is shown in the flowchart, and will be explained based on the flowchart below.
[0036] まず、ステップ S1では、燃料カット中か否かが判別される。即ち、トルクを発生させる ための主燃料噴射が停止されて 、る力否かが判別され、判別結果が真 (Yes)の場 合は処理がステップ S 2に進む。  First, in step S1, it is determined whether or not a fuel cut is in progress. That is, it is determined whether or not the main fuel injection for generating torque is stopped, and if the determination result is true (Yes), the process proceeds to step S2.
[0037] ステップ S2では、上記クランク角センサ 16により検出されるクランクシャフト 12の回 転速度力 エンジン回転数が検出され、当該エンジン回転数が予め設定されて 、る 所定回転数内であるか否かが判別される。エンジン回転数が所定回転数よりも大で あるような高回転数時に吸気絞り弁が閉じられるとボンビングロスが急激に増加し過 大なエンジンブレーキ力が発生するため、このような過大なブレーキ力の発生を防止 するために当該判別が行われる。判別結果が真 (Yes)である場合には処理がステツ プ S3に進む。  [0037] In step S2, the rotational speed force of the crankshaft 12 detected by the crank angle sensor 16 is detected, and the engine speed is preset, and whether or not the engine speed is within a predetermined speed. Is determined. If the intake throttle valve is closed at a high speed where the engine speed is higher than the predetermined speed, the bombing loss increases rapidly and excessive engine braking force is generated. This determination is made to prevent the occurrence. If the determination result is true (Yes), the process proceeds to step S3.
[0038] ステップ S3では、エンジン 1が DPF54の強制再生を行っているか否かが判別され る。当該強制再生は、連続再生を行っても DPF54が捕集した PMが次第に堆積して いくので、当該 PM堆積量が所定量を超えた際に行われる。ここで PM堆積量は、例 えば DPF54の前後差圧、即ち DPF54の圧力損失、及び排気流量と相関することか ら、これら DPF54の前後差圧、排気流量と PM堆積量との関係を規定したマップに 基づいて推定される。また、強制再生では、エンジン 1のトルク発生に寄与しないよう 膨張行程や排気行程での副燃料噴射を行!ヽ、噴射された燃料が酸化触媒 52上で 酸化される際の酸化熱を利用して、 DPF54に堆積した PMの焼却除去が行われる。 従って、本実施形態では ECU70及び燃料噴射弁 4が本発明の強制再生手段に相 当する。 [0038] In step S3, it is determined whether or not the engine 1 is performing forced regeneration of the DPF 54. The forced regeneration is performed when the PM accumulation amount exceeds a predetermined amount because PM collected by DPF54 gradually accumulates even if continuous regeneration is performed. Here, PM deposition amount is an example For example, since it correlates with the differential pressure before and after DPF54, that is, the pressure loss of DPF54, and the exhaust flow rate, it is estimated based on a map that defines the relationship between the differential pressure before and after DPF54, the exhaust flow rate, and the PM deposition amount. In forced regeneration, secondary fuel injection is performed in the expansion stroke and exhaust stroke so as not to contribute to the torque generation of the engine 1. The oxidation heat generated when the injected fuel is oxidized on the oxidation catalyst 52 is used. Thus, PM deposited on DPF54 is removed by incineration. Therefore, in this embodiment, the ECU 70 and the fuel injection valve 4 correspond to the forced regeneration means of the present invention.
[0039] ステップ S3の判別結果が真 (Yes)である場合、即ち上記のような強制再生が行わ れている場合、処理はステップ S4に進む。  If the determination result in step S3 is true (Yes), that is, if forced regeneration as described above is performed, the process proceeds to step S4.
[0040] ステップ S4では、 ECU70が吸気絞り弁 28を制御して全閉とすると共に、 EGRバル ブ 64を制御して全開とし、当該制御周期でのルーチンが終了する。 [0040] In step S4, the ECU 70 controls the intake throttle valve 28 to be fully closed, and the EGR valve 64 is fully opened to complete the routine in the control cycle.
[0041] 一方、上記ステップ S1乃至 S3においていずれか一つでも判別結果が偽 (No)であ つた場合、処理はステップ S5に進む。ステップ S5では、 ECU70が吸気絞り弁 28及 び EGRバルブ 64に対して通常の制御を行い、当該制御周期におけるルーチンが終 了する。 On the other hand, if any one of the determination results in steps S1 to S3 is false (No), the process proceeds to step S5. In step S5, the ECU 70 performs normal control on the intake throttle valve 28 and the EGR valve 64, and the routine in the control cycle ends.
[0042] ここで、図 3を参照すると、上記保温制御を行う本実施形態、上記保温制御を行わ な 、比較例 1及び EGRバルブの制御を行わな 、比較例 2に対応するタイムチャート が示されている。  Here, referring to FIG. 3, there is shown a time chart corresponding to the present embodiment in which the above-mentioned heat retention control is performed, Comparative Example 1 in which the above heat retention control is not performed, and Comparative Example 2 in which the EGR valve is not controlled. Has been.
[0043] 同図に示すように、例えば車両が下り坂を走行しており、アクセルペダルの踏み込 みが解除されてアクセル開度が 0となると、主燃料噴射が停止されエンジン 1は燃料 カット状態となる。ここで、本実施形態の保温制御では、エンジン 1が燃料カット状態と なると吸気絞り弁 28が全閉されるとともに EGRバルブ 64が全開される。  [0043] As shown in the figure, for example, when the vehicle is traveling downhill and the accelerator pedal is released and the accelerator opening becomes 0, the main fuel injection is stopped and the engine 1 is fuel cut. It becomes a state. Here, in the heat retention control of the present embodiment, when the engine 1 is in the fuel cut state, the intake throttle valve 28 is fully closed and the EGR valve 64 is fully opened.
[0044] 燃料カット状態となってもエンジン 1は回転しているため、吸気絞り弁を全閉させな い比較例 1では、比較的低温である新気がそのまま排気通路へと流入していき排気 浄ィ匕装置の熱を持ち去ってしまう。このため、 DPF54の入口温度は鎖線で示すよう に大幅に低下して ヽき、一点鎖線で示されて ヽる触媒活性温度を早期に下回ってし まう。このように触媒活性温度を下回った状態で副燃料噴射を行うと、未燃 HCがそ のまま大気中へと排出されてしまうので、この触媒不活性期間においては副燃料噴 射を行うことができず、つまりは DPF54の強制再生を行うことができない。 [0044] In Comparative Example 1 where the intake throttle valve is not fully closed because the engine 1 is running even in the fuel cut state, relatively low temperature fresh air flows directly into the exhaust passage. The heat from the exhaust purification system is taken away. As a result, the inlet temperature of DPF54 drops significantly as shown by the chain line, and quickly falls below the catalyst activation temperature shown by the one-dot chain line. If the sub fuel injection is performed in a state where the temperature is below the catalyst activation temperature, unburned HC is discharged into the atmosphere as it is, so that the sub fuel injection is performed during this catalyst inactive period. Cannot shoot, that is, cannot perform forced regeneration of DPF54.
[0045] これに対して本実施形態のように吸気絞り弁 28を全閉として新気の導入を抑制す ることで、そのまま排気通路 30へと流入する新気が抑制され、排気浄化装置 50から の熱の持ち去りを抑制することができる。この結果、 DPF54入口温度は触媒活性温 度を下回ることがなくなり、燃料カット状態にあっても副燃料噴射を行って DPF54の 強制再生を行うことができる。  [0045] On the other hand, as in the present embodiment, the intake throttle valve 28 is fully closed to suppress the introduction of fresh air, thereby suppressing the fresh air flowing into the exhaust passage 30 as it is, and the exhaust purification device 50. The removal of heat from can be suppressed. As a result, the DPF54 inlet temperature does not fall below the catalyst activation temperature, and even when the fuel is cut, secondary fuel injection can be performed to forcibly regenerate the DPF54.
[0046] また、比較例 1ではアクセルペダルが再度踏み込まれエンジン 1が燃料カット状態 から燃料供給状態に復帰した場合、排気浄ィ匕装置の温度は大幅に低下して 、るた めに、 DPF54の入口温度が触媒活性温度以上となるまでは依然として副燃料噴射 を行うことはできない。従って、まずは排気浄ィ匕装置の昇温制御を行わなければなら ず、余分な燃料が消費されてしまう。  [0046] Further, in Comparative Example 1, when the accelerator pedal is depressed again and the engine 1 returns from the fuel cut state to the fuel supply state, the temperature of the exhaust gas purification device greatly decreases. Until the inlet temperature of the fuel becomes higher than the catalyst activation temperature, sub fuel injection cannot be performed. Therefore, first, the temperature raising control of the exhaust gas purification device must be performed, and extra fuel is consumed.
[0047] これに対して本実施形態では、燃料カット中の温度低下が少なぐ DPF54の入口 温度が十分に触媒活性温度以上に保たれて!/ヽるので、昇温制御を行って余分な燃 料を消費することもない。  [0047] On the other hand, in this embodiment, the temperature drop during the fuel cut is small. The inlet temperature of the DPF 54 is sufficiently kept above the catalyst activation temperature! Therefore, it does not consume extra fuel by controlling the temperature rise.
[0048] また、比較例 2では燃料カット状態で吸気絞り弁が全閉とされる力 EGRバルブの 制御は行われず EGRバルブは全閉である。このような比較例 2では、新気の導入を 抑制したことで吸気系の負圧が更に減圧され、ボンビングロスが増加して負のトルク、 即ちエンジンブレーキの作用が大きくなる。  [0048] In Comparative Example 2, the force that causes the intake throttle valve to be fully closed in the fuel cut state is not controlled, and the EGR valve is fully closed. In Comparative Example 2 as described above, by suppressing the introduction of fresh air, the negative pressure of the intake system is further reduced, the bombing loss is increased, and the negative torque, that is, the action of the engine brake increases.
[0049] ここで、本実施形態のように吸気絞り弁 28が全閉されると共に、 EGRバルブ 64が 全開とされると、 EGR通路 60を介して EGRガスが還流されることで吸気系の負圧の 更なる減圧が抑制される。この結果、過大なエンジンブレーキ力の発生を抑制するこ とがでさる。  Here, when the intake throttle valve 28 is fully closed and the EGR valve 64 is fully opened as in the present embodiment, the EGR gas is recirculated through the EGR passage 60, thereby Further decompression of negative pressure is suppressed. As a result, generation of excessive engine braking force can be suppressed.
[0050] 以上のように、本発明の一実施形態に係るディーゼルエンジンの制御装置では、 燃料カット状態であっても、吸気絞り弁 28を全閉し、 EGRバルブ 64を全開させること で、車両の運転状態を悪化させることなぐ排気浄化装置 50の温度低下を抑制する ことができ、排気浄ィ匕装置 50の排気浄ィ匕性能を良好に維持することができる。  [0050] As described above, in the control apparatus for a diesel engine according to an embodiment of the present invention, even in the fuel cut state, the intake throttle valve 28 is fully closed and the EGR valve 64 is fully opened, so that the vehicle Therefore, it is possible to suppress the temperature reduction of the exhaust purification device 50 without deteriorating the operation state, and to maintain the exhaust purification performance of the exhaust purification device 50 satisfactorily.
[0051] 以上で本発明の一実施形態に係るディーゼルエンジンの制御装置につ!/、ての説 明を終えるが、本発明の実施の態様は上記実施形態に限られるものではない。 [0052] 例えば、上記実施形態において排気通路 30に排気絞り弁を設け、燃料カット状態 にある時に、 ECU70が吸気絞り弁 28とともに当該排気絞り弁も閉じるよう制御しても 良い。このように排気絞り弁も閉じることで排気流動が抑制され、排気浄化装置 50の 保温効果をさらに向上させることができる。 [0051] This completes the description of the control device for a diesel engine according to one embodiment of the present invention. However, the embodiment of the present invention is not limited to the above embodiment. For example, an exhaust throttle valve may be provided in the exhaust passage 30 in the above embodiment, and the ECU 70 may be controlled to close the exhaust throttle valve together with the intake throttle valve 28 when in a fuel cut state. By closing the exhaust throttle valve in this way, the exhaust flow is suppressed, and the heat retention effect of the exhaust purification device 50 can be further improved.
[0053] また、上記実施形態では、 DPF54の強制再生中且つ燃料カット状態と 、う状況で 、 ECU70が吸気絞り弁 28を全閉に、 EGRバルブ 64を全開に制御している。しかし ながら、 DPF54の強制再生中に限らず、連続再生中であっても、燃料カット状態とな つたときに ECU70が吸気絞り弁 28を全閉に、 EGRバルブ 64を全開に制御するよう にしても良い。  Further, in the above embodiment, the ECU 70 controls the intake throttle valve 28 to be fully closed and the EGR valve 64 to be fully open during the forced regeneration of the DPF 54 and the fuel cut state. However, not only during forced regeneration of DPF54 but also during continuous regeneration, ECU 70 controls intake throttle valve 28 to be fully closed and EGR valve 64 to be fully open when the fuel cut state is reached. Also good.
[0054] また、上記実施形態では、燃料カット時に ECU70が吸気絞り弁 28を全閉、 EGRバ ルブ 64を全開としている力 例えばそれぞれの開度をエンジン回転数に応じて開度 を可変させるよう、 ECU70が吸気絞り弁 28及び EGRバルブ 64を制御してもよいし、 予め特定の開度を設定しておき当該特定開度になるよう ECU70が吸気絞り弁 28及 び EGRバルブ 64を制御してもよい。このように、エンジン回転数に応じて開度を可変 させることで、より効率よくボンビングロスを軽減することができる。  [0054] In the above embodiment, the ECU 70 fully closes the intake throttle valve 28 and fully opens the EGR valve 64 when the fuel is cut. For example, each opening degree is varied according to the engine speed. The ECU 70 may control the intake throttle valve 28 and the EGR valve 64, or the ECU 70 controls the intake throttle valve 28 and the EGR valve 64 so that a specific opening degree is set in advance and the specific opening degree is reached. May be. In this way, by changing the opening according to the engine speed, the bombing loss can be reduced more efficiently.
[0055] また、上記実施形態では、排気浄ィ匕手段として酸ィ匕触媒 52と DPF54とを用いて ヽ るがこれに限られるものではない。更に、強制再生の方法も副燃料噴射による方法に 限られるものではなぐ種々公知の方法を採用することができる。  [0055] In the above embodiment, the acid purification catalyst 52 and the DPF 54 are used as the exhaust gas purification means, but the present invention is not limited to this. Furthermore, the method of forced regeneration is not limited to the method by sub fuel injection, and various known methods can be employed.
[0056] また、上記実施形態では、排気還流調節手段として吸気通路 20と排気通路 30とを 連通する EGR通路 60に EGRバルブ 64が設けられている力 排気還流調節手段は これに限られるものではない。例えば、可変動弁機構を用いて吸気弁の開弁時期や 排気弁の閉弁時期を制御し、吸気と排気とのオーバーラップ期間を変化させることで 、いわゆる内部 EGR量を制御する方式であっても良い。  [0056] In the above embodiment, the exhaust gas recirculation adjusting means is not limited to the force in which the EGR valve 64 is provided in the EGR passage 60 that connects the intake passage 20 and the exhaust passage 30 as the exhaust gas recirculation adjusting means. Absent. For example, a variable valve mechanism is used to control the so-called internal EGR amount by controlling the opening timing of the intake valve and the closing timing of the exhaust valve and changing the overlap period of intake and exhaust. May be.

Claims

請求の範囲 The scope of the claims
[1] 燃焼室内に直接燃料を噴射する燃料噴射手段 (4)と、  [1] Fuel injection means (4) for directly injecting fuel into the combustion chamber;
上記ディーゼルエンジン(1)の吸気通路(20)に設けられ、上記ディーゼルェンジ ン(1)に供給される吸入空気量を調節する吸気絞り手段(28)と、  An intake throttle means (28) provided in the intake passage (20) of the diesel engine (1) for adjusting the amount of intake air supplied to the diesel engine (1);
上記ディーゼルエンジン(1)の排気通路(30)に設けられ、上記ディーゼルェンジ ン(1)から排出される排気を浄ィ匕する排気浄ィ匕手段 (50)と、  An exhaust purification means (50) provided in the exhaust passage (30) of the diesel engine (1) for purifying the exhaust discharged from the diesel engine (1);
上記ディーゼルエンジン(1)の燃焼室(6)内に還流される排気の量を調節する排 気還流調節手段(64)と、  Exhaust gas recirculation control means (64) for adjusting the amount of exhaust gas recirculated into the combustion chamber (6) of the diesel engine (1);
上記燃料噴射手段 (4)、吸気絞り手段 (28)、及び排気還流調節手段 (64)を制御 する制御手段 (70)とを備え、  Control means (70) for controlling the fuel injection means (4), the intake throttle means (28), and the exhaust gas recirculation adjustment means (64),
上記制御手段 (70)は、上記燃料噴射手段 (4)による主燃料噴射を停止する燃料 カット状態にあるときに、上記吸気絞り手段(28)を制御して上記吸入空気量を減少さ せるとともに、上記排気還流調節手段(64)を制御して上記排気還流量を増カロさせる ことを特徴とするディーゼルエンジンの制御装置。  The control means (70) controls the intake throttle means (28) to reduce the intake air amount when in a fuel cut state in which main fuel injection by the fuel injection means (4) is stopped. A diesel engine control device characterized in that the exhaust gas recirculation amount is increased by controlling the exhaust gas recirculation adjusting means (64).
[2] 上記排気浄化手段(50)は、上記ディーゼルエンジン(1)から排出される排気中の パティキュレートマターを捕捉するパティキュレートフィルタ(54)と、該パティキュレー トフィルタ(54)の上流側に配設される酸化触媒 (52)とにより構成されることを特徴と する請求項 1に記載のディーゼルエンジンの制御装置。 [2] The exhaust purification means (50) includes a particulate filter (54) for capturing particulate matter in exhaust exhausted from the diesel engine (1), and an upstream side of the particulate filter (54). The diesel engine control device according to claim 1, characterized by comprising an oxidation catalyst (52) disposed.
[3] 上記パティキュレートフィルタ(54)におけるパティキュレートマター堆積量が所定量 に達したときに、上記燃料噴射手段 (4)により上記ディーゼルエンジン(1)の膨張行 程または排気行程で実施する副燃料噴射を行うことで上記パティキュレートフィルタ( 54)に捕捉された上記パティキュレートマターを強制的に燃焼除去して上記パティキ ュレートフィルタ(54)を強制再生させる強制再生手段 (4, 70)を更に備え、 [3] When the accumulated amount of particulate matter in the particulate filter (54) reaches a predetermined amount, the fuel injection means (4) performs the auxiliary stroke performed in the expansion stroke or exhaust stroke of the diesel engine (1). Forced regeneration means (4, 70) for forcibly regenerating the particulate filter (54) by forcibly burning and removing the particulate matter captured by the particulate filter (54) by performing fuel injection In addition,
上記制御手段(70)は、上記燃料カット状態であって、上記強制再生手段 (4, 70) による上記パティキュレートフィルタ(54)の強制再生を行っているときに、上記吸気 絞り手段(28)を制御して上記吸入空気量を減少させるとともに、上記排気還流調節 手段(64)を制御して上記排気還流量を増加させることを特徴とする請求項 2に記載 のディーゼルエンジンの制御装置。 上記制御手段(70)は、上記ディーゼルエンジン(1)の回転数の増加に応じて上記 排気還流調節手段(64)による上記排気還流量を増加することを特徴とする請求項 1 乃至 3のいずれかに記載のディーゼルエンジンの制御装置。 The control means (70) is in the fuel cut state, and when the particulate filter (54) is forcibly regenerated by the forced regeneration means (4, 70), the intake throttle means (28) 3. The diesel engine control device according to claim 2, wherein the exhaust air recirculation amount is increased by controlling the exhaust air recirculation adjusting means (64) by controlling the exhaust air amount. The control means (70) increases the exhaust gas recirculation amount by the exhaust gas recirculation control means (64) according to an increase in the rotational speed of the diesel engine (1). A control device for a diesel engine according to claim 1.
PCT/JP2006/312804 2005-07-05 2006-06-27 Control device for diesel engine WO2007004471A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005195938A JP2007016611A (en) 2005-07-05 2005-07-05 Controller of diesel engine
JP2005-195938 2005-07-05

Publications (1)

Publication Number Publication Date
WO2007004471A1 true WO2007004471A1 (en) 2007-01-11

Family

ID=37604340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312804 WO2007004471A1 (en) 2005-07-05 2006-06-27 Control device for diesel engine

Country Status (2)

Country Link
JP (1) JP2007016611A (en)
WO (1) WO2007004471A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2931519A1 (en) * 2008-05-26 2009-11-27 Peugeot Citroen Automobiles Sa MOTOR CONTROL METHOD
WO2014027505A1 (en) * 2012-08-13 2014-02-20 日産自動車株式会社 Control device and control method for vehicle
FR3072726A3 (en) * 2017-10-19 2019-04-26 Renault S.A.S METHOD FOR CONTROLLING A COMPRESSED IGNITION INTERNAL COMBUSTION ENGINE IN THE UNLIMITED STATE
FR3095010A1 (en) * 2019-04-09 2020-10-16 Psa Automobiles Sa METHOD OF LIMITING THE COOLING OF A THERMAL ENGINE CATALYST

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4957343B2 (en) * 2007-04-11 2012-06-20 トヨタ自動車株式会社 EGR system for internal combustion engine
JP5012167B2 (en) * 2007-04-23 2012-08-29 マツダ株式会社 Engine exhaust purification system
JP5145789B2 (en) * 2007-06-22 2013-02-20 スズキ株式会社 Variable valve timing control device for internal combustion engine
KR20110002871A (en) * 2008-05-29 2011-01-10 가부시키가이샤 고마쓰 세이사쿠쇼 Exhaust gas purifying system for internal combustion engine and soot filter regenerating method
JP4995154B2 (en) * 2008-07-15 2012-08-08 本田技研工業株式会社 Control device for internal combustion engine
WO2013153654A1 (en) 2012-04-12 2013-10-17 トヨタ自動車株式会社 Device for controlling flow rate of internal combustion engine
JP6492881B2 (en) * 2015-03-31 2019-04-03 三菱自動車工業株式会社 Engine control device
JP6651845B2 (en) * 2015-12-28 2020-02-19 いすゞ自動車株式会社 Internal combustion engine and control method thereof
JP6436135B2 (en) 2016-07-14 2018-12-12 トヨタ自動車株式会社 Control device for naturally aspirated gasoline engine
JP6569710B2 (en) 2017-09-22 2019-09-04 マツダ株式会社 Engine exhaust purification system
FR3073896B3 (en) * 2017-11-17 2020-02-28 Renault Sas METHOD FOR CONTROLLING A COMBUSED IGNITION INTERNAL COMBUSTION COMBUSTION ENGINE
JP7505375B2 (en) 2020-11-06 2024-06-25 スズキ株式会社 Vehicle control system and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2582972B2 (en) * 1991-11-12 1997-02-19 日産自動車株式会社 Exhaust recirculation system for diesel engine
JPH11236829A (en) * 1998-02-23 1999-08-31 Isuzu Motors Ltd Method and device for warming up engine
JP2005002937A (en) * 2003-06-13 2005-01-06 Toyota Motor Corp Stop control method of internal combustion engine
JP2005113811A (en) * 2003-10-08 2005-04-28 Toyota Motor Corp Exhaust-emission control system of internal combustion engine
JP2006037857A (en) * 2004-07-28 2006-02-09 Hino Motors Ltd Exhaust emission control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2582972B2 (en) * 1991-11-12 1997-02-19 日産自動車株式会社 Exhaust recirculation system for diesel engine
JPH11236829A (en) * 1998-02-23 1999-08-31 Isuzu Motors Ltd Method and device for warming up engine
JP2005002937A (en) * 2003-06-13 2005-01-06 Toyota Motor Corp Stop control method of internal combustion engine
JP2005113811A (en) * 2003-10-08 2005-04-28 Toyota Motor Corp Exhaust-emission control system of internal combustion engine
JP2006037857A (en) * 2004-07-28 2006-02-09 Hino Motors Ltd Exhaust emission control device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2931519A1 (en) * 2008-05-26 2009-11-27 Peugeot Citroen Automobiles Sa MOTOR CONTROL METHOD
EP2128414A1 (en) * 2008-05-26 2009-12-02 Peugeot Citroën Automobiles S.A. Engine control method
WO2014027505A1 (en) * 2012-08-13 2014-02-20 日産自動車株式会社 Control device and control method for vehicle
JP5915752B2 (en) * 2012-08-13 2016-05-11 日産自動車株式会社 Vehicle control apparatus and control method
JPWO2014027505A1 (en) * 2012-08-13 2016-07-25 日産自動車株式会社 Vehicle control apparatus and control method
FR3072726A3 (en) * 2017-10-19 2019-04-26 Renault S.A.S METHOD FOR CONTROLLING A COMPRESSED IGNITION INTERNAL COMBUSTION ENGINE IN THE UNLIMITED STATE
FR3095010A1 (en) * 2019-04-09 2020-10-16 Psa Automobiles Sa METHOD OF LIMITING THE COOLING OF A THERMAL ENGINE CATALYST

Also Published As

Publication number Publication date
JP2007016611A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
WO2007004471A1 (en) Control device for diesel engine
JP4089396B2 (en) EGR system for internal combustion engine with turbocharger
JP5703599B2 (en) Exhaust gas purification system
JP4670592B2 (en) Exhaust gas recirculation system for internal combustion engines
JP2006200473A (en) Control device for engine with exhaust gas after-treating device
JP2008069648A (en) Regeneration control device of particulate filter
JP2008163794A (en) Exhaust gas recirculation device for internal combustion engine
WO2005003536A1 (en) Diesel engine exhaust gas purifier and control means
JP4012043B2 (en) Particulate filter regeneration method
JP4379314B2 (en) Exhaust gas purification device for internal combustion engine
WO2018088341A1 (en) Regeneration control device for exhaust purification device
EP1365125B1 (en) Method for controlling an exhaust gas temperature of a turbocharged internal combustion engine
JP6421797B2 (en) Engine control device
JP2004324454A (en) Exhaust emission control device of internal combustion engine
JP2009287515A (en) Controller of internal combustion engine
JP2010270715A (en) Internal combustion engine with sequential two-stage supercharger and method for controlling the same
JP2009235944A (en) Supercharging apparatus for engine
JP4709733B2 (en) Exhaust gas purification device for internal combustion engine
JP2006274979A (en) Exhaust emission control device
JP2005155500A (en) Exhaust gas control apparatus for internal combustion engine
JP5678484B2 (en) Exhaust pipe injection control device
JP6421796B2 (en) Engine control device
JP6421798B2 (en) Engine control device
JP2010116913A (en) Dpf regeneration processing device for vehicle
JP6073644B2 (en) Control device for exhaust pressure adjustment valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767421

Country of ref document: EP

Kind code of ref document: A1