JP4522749B2 - Gas balance measuring device - Google Patents

Gas balance measuring device Download PDF

Info

Publication number
JP4522749B2
JP4522749B2 JP2004159489A JP2004159489A JP4522749B2 JP 4522749 B2 JP4522749 B2 JP 4522749B2 JP 2004159489 A JP2004159489 A JP 2004159489A JP 2004159489 A JP2004159489 A JP 2004159489A JP 4522749 B2 JP4522749 B2 JP 4522749B2
Authority
JP
Japan
Prior art keywords
gas
assimilation box
balance
plant body
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004159489A
Other languages
Japanese (ja)
Other versions
JP2005333921A (en
Inventor
明文 西宮
誠 野上
秀樹 菅
信 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2004159489A priority Critical patent/JP4522749B2/en
Publication of JP2005333921A publication Critical patent/JP2005333921A/en
Application granted granted Critical
Publication of JP4522749B2 publication Critical patent/JP4522749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Greenhouses (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は、植物体の光合成、呼吸及び蒸散や土壌呼吸等に伴うターゲットガスの収支を測定するガス収支測定装置に関するものである。   The present invention relates to a gas balance measuring apparatus for measuring a balance of a target gas accompanying plant photosynthesis, respiration and transpiration, soil respiration, and the like.

従来、植物体の葉の光合成、呼吸及び蒸散に伴うターゲットガスの収支や、植物根の呼吸や土壌中の微生物の呼吸等からなる土壌呼吸に伴うターゲットガスの収支を測定する装置として、同化箱法(チャンバー法)を用いたガス収支測定装置がある。ターゲットガスは、植物体の光合成、呼吸及び蒸散又は土壌呼吸に伴って、植物体又は土壌に吸収される気体、或いは植物体又は土壌から放出される気体であり、炭酸ガス、酸素、水蒸気、酸化窒素、メタンなどが代表的である。   Conventionally, assimilation boxes are used to measure the balance of target gas associated with photosynthesis, respiration and transpiration of plant leaves, and the balance of target gas associated with soil respiration, including respiration of plant roots and respiration of microorganisms in the soil. There is a gas balance measuring device using a method (chamber method). The target gas is a gas absorbed by the plant body or soil, or a gas released from the plant body or soil in association with photosynthesis, respiration and transpiration of the plant body, or soil respiration. Carbon dioxide, oxygen, water vapor, oxidation Nitrogen, methane, etc. are typical.

植物体の光合成呼吸に伴うターゲットガスの収支測定に使用される従来のガス収支測定装置は、測定対象である植物体の多数の葉のうち一枚の葉を格納する同化箱を有し、同化箱に空気を通気して同化箱の出入口における空気中のターゲットガスの濃度測定を行なうものである。このガス収支測定装置の測定結果から求められる同化箱の出入口におけるターゲットガスの収支(濃度差)を、空気が同化箱を通過するのに要する時間と同化箱に格納した一枚の葉の面積で割ることにより、1枚の葉の単位面積当りの光合成呼吸速度が求められる。この単位面積当りの光合成呼吸速度に測定対象である植物体全体の葉面積を掛けることにより、測定対象である植物体の光合成呼吸速度が求められる。なお、植物体の蒸散速度は、同化箱の出入口における空気中の水蒸気の収支(湿度差又は水蒸気の濃度差)から求められる。このようなガス収支測定装置としては、例えば特許文献1(特開平5−79980号公報)や非特許文献1(p.111−114参照)に開示されたものがある。   A conventional gas balance measuring device used for measuring the balance of target gas due to photosynthetic respiration of a plant body has an assimilation box that stores one leaf among many leaves of the plant body to be measured. The air is vented to the box, and the concentration of the target gas in the air at the entrance / exit of the assimilation box is measured. The target gas balance (concentration difference) at the entrance / exit of the assimilation box, which is obtained from the measurement results of this gas balance measuring device, is calculated by the time required for air to pass through the assimilation box and the area of one leaf stored in the assimilation box. By dividing, the photosynthetic respiration rate per unit area of one leaf is obtained. By multiplying the photosynthetic respiration rate per unit area by the leaf area of the whole plant to be measured, the photosynthetic respiration rate of the plant to be measured is obtained. In addition, the transpiration rate of a plant body is calculated | required from the balance (humidity difference or water vapor | steam density | concentration difference) of the water vapor | steam in the air in the entrance / exit of an assimilation box. Examples of such a gas balance measuring device include those disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 5-79980) and Non-Patent Document 1 (see pages 111-114).

他方、土壌呼吸に伴うターゲットガスの収支測定に使用される従来のガス収支測定装置には、閉鎖式と開放式の2種類がある。閉鎖式のガス収支測定装置は、測定対象である土壌表面に同化箱を被せて密閉空間を形成し、同化箱内のターゲットガス(例えば炭酸ガスや酸化窒素ガスなど)の濃度測定を行なうものである。閉鎖式のガス収支測定装置を使用した場合は、その測定値の経時変化に基づいて土壌呼吸速度が求められる。他方、開放式のガス収支測定装置は、測定対象である土壌表面に被せた同化箱に空気を通気して、同化箱の出入口における空気中のターゲットガスの濃度測定を行なうものである。開放式のガス収支測定装置を使用した場合は、同化箱の出入口におけるターゲットガスの収支に基づいて土壌呼吸速度が求められる。このようなガス収支測定装置としては、例えば特許文献2(特開平8−261892号公報)や非特許文献1(p.144−146参照)に開示されたものがある。   On the other hand, there are two types of conventional gas balance measuring apparatuses used for measuring the balance of target gas due to soil respiration, a closed type and an open type. A closed gas balance measuring device covers the soil surface to be measured and covers an assimilation box to form a sealed space, and measures the concentration of the target gas (for example, carbon dioxide gas or nitrogen oxide gas) in the assimilation box. is there. When a closed gas balance measuring device is used, the soil respiration rate is obtained based on the change over time of the measured value. On the other hand, the open type gas balance measuring apparatus measures the concentration of target gas in the air at the entrance / exit of the assimilation box by ventilating air into the assimilation box placed on the soil surface to be measured. When an open gas balance measuring device is used, the soil respiration rate is determined based on the balance of the target gas at the entrance / exit of the assimilation box. Examples of such a gas balance measuring apparatus include those disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 8-261892) and Non-Patent Document 1 (see pages 144-146).

特開平5−79980号公報JP-A-5-79980 特開平8−261892号公報JP-A-8-261892 大政謙次(ほか二名)編、「植物の計測と診断」、朝倉書店、1988年5月、p.111−114、p.144−146Omasa Kenji (and two others), “Plant Measurement and Diagnosis”, Asakura Shoten, May 1988, p. 111-114, p. 144-146

上述のように、従来は、1つの装置で、植物体の光合成、呼吸及び蒸散に伴うターゲットガスの収支測定と、当該植物体周辺の土壌呼吸に伴うターゲットガスの収支測定の両方を行なえるものがなかった。   As described above, conventionally, one apparatus can perform both target gas balance measurement accompanying plant photosynthesis, respiration and transpiration, and target gas balance measurement accompanying soil respiration around the plant body. There was no.

一方、植物体の光合成等に伴うターゲットガスの収支測定に使用される従来のガス収支測定装置は、植物体の多数の葉のうち一枚の葉の光合成呼吸速度等を測定するものである。しかし、植物体の多数の葉の中から選別された一枚の葉の測定結果を植物体全体に及ばせると、植物体の葉ごとに健康状態が相違することから、同化箱に格納する葉の選別基準によって、植物体全体の光合成呼吸速度等にばらつきが生じる。   On the other hand, a conventional gas balance measuring apparatus used for measuring the balance of target gas accompanying photosynthesis of a plant body measures the photosynthetic respiration rate of one leaf among many leaves of the plant body. However, if the measurement result of a single leaf selected from a large number of leaves of the plant body can be extended to the entire plant body, the health state differs for each leaf of the plant body, so the leaves stored in the assimilation box Depending on the selection criteria, the photosynthetic respiration rate of the whole plant varies.

他方、土壌呼吸に伴うターゲットガスの収支測定に使用される閉鎖式及び開放式のガス収支測定装置は、土壌表面に同化箱を被せることで、植物根の呼吸等に伴って土壌表面から放出されるターゲットガスを確実に捉えられる。しかし、同化箱を土壌表面に被せるに際しては、同化箱の下部と土壌表面との間から空気が漏れないように、同化箱の下部を土壌中に埋め込む必要がある。同化箱の下部を土壌中に埋め込むと、同化箱によって植物根が切断されるおそれがある。植物根が切断されてしまうと、土壌呼吸速度に植物根の呼吸速度を反映させ難くなり、土壌呼吸に伴うターゲットガスの収支測定の精度が低下する。   On the other hand, closed and open gas balance measuring devices used for measuring the balance of target gas due to soil respiration are covered with an assimilation box on the soil surface and released from the soil surface along with plant root respiration. The target gas is reliably captured. However, when covering the assimilation box on the soil surface, it is necessary to embed the lower part of the assimilation box in the soil so that air does not leak from between the lower part of the assimilation box and the soil surface. If the lower part of the assimilation box is embedded in the soil, the plant roots may be cut by the assimilation box. If the plant root is cut, it becomes difficult to reflect the respiration rate of the plant root in the soil respiration rate, and the accuracy of the target gas balance measurement accompanying the soil respiration is lowered.

このように、従来の各ガス収支測定装置はいずれも、測定精度が低いことから、これらを併用して植物体の光合成等に伴うターゲットガスの収支測定と、当該植物体周辺の土壌呼吸に伴うターゲットガスの収支測定とを同時に行なうことができなかった。このため、植物体の光合成等及び土壌呼吸に伴うターゲットガスの収支を総合的に評価検討することができなかった。   As described above, since each conventional gas balance measuring device has low measurement accuracy, it is used together with the target gas balance measurement accompanying the photosynthesis of the plant body and the soil respiration around the plant body. The target gas balance measurement could not be performed simultaneously. For this reason, it was not possible to comprehensively evaluate and examine the balance of target gas accompanying plant photosynthesis and soil respiration.

本発明は、斯かる実情に鑑み創案されたものであって、その目的は、植物体の光合成等及び土壌呼吸に伴うターゲットガスの収支を総合的に評価検討し得るガス収支測定装置を提供することにある。   The present invention was devised in view of such circumstances, and an object of the present invention is to provide a gas balance measuring apparatus capable of comprehensively evaluating and examining the balance of target gas associated with plant photosynthesis and soil respiration. There is.

本発明のガス収支測定装置は、上記目的を達成するため、植物体を格納する同化箱と、前記同化箱へ供給ガスを給気するガス供給手段と、前記ガス供給手段から前記同化箱へ給気される供給ガス及び前記同化箱から排出された排気ガスをサンプリングすると共に、供給ガス及び排気ガスに含まれるターゲットガスの濃度を測定するガス測定手段とを備え、前記同化箱におけるターゲットガスの収支を測定するガス収支測定装置において、前記同化箱が、前記植物体の地上部を格納する上室と、前記植物体の地下部を土壌と共に格納する下室とを有し、前記同化箱の上室及び下室の各々におけるターゲットガスの収支を測定するように構成したことを特徴としている。   In order to achieve the above object, a gas balance measuring apparatus according to the present invention provides an assimilation box for storing a plant body, a gas supply means for supplying a supply gas to the assimilation box, and a supply from the gas supply means to the assimilation box. Gas supply means for sampling the exhausted gas discharged from the assimilation box and gas concentration means for measuring the concentration of the target gas contained in the supply gas and the exhaust gas, and the balance of the target gas in the assimilation box In the gas balance measuring apparatus for measuring the assimilation box, the assimilation box has an upper chamber for storing the above-ground part of the plant body, and a lower chamber for storing the underground part of the plant body together with soil, The present invention is characterized in that the balance of the target gas in each of the chamber and the lower chamber is measured.

図1を参照して、上記のガス収支測定装置の作用について説明する。同化箱10の内部は、植物体1の地上部1aを格納する上室11と、植物体1の地下部1bを土壌2と共に格納する下室12に区画されている。同化箱10の上室11及び下室12の各々には、ガス供給手段20から供給ガスが給気されると共に、同化箱10の上室11及び下室12から排気ガスが排出される。同化箱10の上室11では、植物体1の地上部1aの光合成、呼吸及び蒸散に伴って供給ガス中のターゲットガスが植物体1に吸収され、或いは植物体1からターゲットガスが放出される。他方、同化箱10の下室12では、土壌呼吸に伴って供給ガス中のターゲットガスが土壌2中に吸収され、或いは土壌2からターゲットガスが放出される。ガス供給手段20から同化箱10の上室11及び下室12へ給気される供給ガスと、同化箱10の上室11及び下室12から排出される排気ガスとをサンプリングして、ガス測定手段30にて供給ガス及び各排気ガス中に含まれるターゲットガスの濃度を測定する。ガス供給手段20から同化箱10の上室11へ給気される供給ガスの測定値と、同化箱10の上室11から排出された排気ガスの測定値との差から、植物体1の葉全体の光合成、呼吸及び蒸散に伴うターゲットガスの収支が求められる。他方、ガス供給手段20から同化箱10の下室12へ給気される供給ガスの測定値と、同化箱10の下室12から排出された排気ガスの測定値との差から植物体1の植生箇所における土壌呼吸に伴うターゲットガスの収支が求められる。   With reference to FIG. 1, the operation of the gas balance measuring apparatus will be described. The inside of the assimilation box 10 is partitioned into an upper chamber 11 that stores the above-ground portion 1 a of the plant body 1 and a lower chamber 12 that stores the underground portion 1 b of the plant body 1 together with the soil 2. Supply gas is supplied from the gas supply means 20 to the upper chamber 11 and the lower chamber 12 of the assimilation box 10, and exhaust gas is discharged from the upper chamber 11 and the lower chamber 12 of the assimilation box 10. In the upper chamber 11 of the assimilation box 10, the target gas in the supply gas is absorbed by the plant body 1 or the target gas is released from the plant body 1 with the photosynthesis, respiration, and transpiration of the above-ground part 1 a of the plant body 1. . On the other hand, in the lower chamber 12 of the assimilation box 10, the target gas in the supply gas is absorbed into the soil 2 or the target gas is released from the soil 2 with the respiration of the soil. Sampling the supply gas supplied from the gas supply means 20 to the upper chamber 11 and the lower chamber 12 of the assimilation box 10 and the exhaust gas discharged from the upper chamber 11 and the lower chamber 12 of the assimilation box 10 to measure the gas The means 30 measures the concentration of the target gas contained in the supply gas and each exhaust gas. From the difference between the measured value of the supplied gas supplied from the gas supply means 20 to the upper chamber 11 of the assimilation box 10 and the measured value of the exhaust gas discharged from the upper chamber 11 of the assimilation box 10, the leaves of the plant body 1 The balance of the target gas accompanying the entire photosynthesis, respiration and transpiration is required. On the other hand, from the difference between the measured value of the supplied gas supplied from the gas supply means 20 to the lower chamber 12 of the assimilation box 10 and the measured value of the exhaust gas discharged from the lower chamber 12 of the assimilation box 10, The balance of the target gas accompanying soil respiration at the vegetation site is required.

なお、「供給ガス」は、収支測定の目的に応じた気体であればターゲットガスの有無に関わらず如何なるものでもよく、混合気体(例えば空気など)は勿論のこと、単一の気体であっても構わない。「植物体の地下部」は、土壌中の植物根のみならず植物体の土壌表面から突出した根元部分(例えば茎の一部)を含むものとし、「植物体の地上部」は、植物根及び植物体の土壌表面から突出した根元部分を除く他の部分をいい、好ましくは植物体の葉全体を含む部分である。また、本発明のガス収支測定装置は、1種類のターゲットガスに限らず、複数種類のターゲットガス(例えば炭酸ガス及び水蒸気など)を対象にして各ターゲットガスの収支を測定するものであっても構わない。   The “supply gas” may be any gas as long as it is a gas suitable for the purpose of balance measurement, regardless of the presence or absence of the target gas, and of course a mixed gas (such as air) is a single gas. It doesn't matter. The “underground part of the plant body” includes not only the plant root in the soil but also the root part (for example, a part of the stem) protruding from the soil surface of the plant body. The other part except the root part protruding from the soil surface of a plant body is said, Preferably it is the part containing the whole leaf of a plant body. The gas balance measuring apparatus of the present invention is not limited to one type of target gas, and may measure the balance of each target gas for a plurality of types of target gases (for example, carbon dioxide gas and water vapor). I do not care.

本発明のガス収支測定装置によれば、同化箱の上室に植物体の葉全体を含む植物体の地上部を格納し、植物体の葉全体の光合成、呼吸及び蒸散に伴うターゲットガスの収支を直接的に測定するようにしたから、かかる測定精度を向上させることができる。また、同化箱の下室に植物体の地下部を格納して植物体の植生箇所における土壌呼吸に伴うターゲットガスの収支を測定するようにしたから、土壌呼吸に植物根の呼吸を確実に反映させることができ、かかる測定精度を向上させることができる。さらに、同化箱の上室及び下室におけるターゲットガスの収支測定を同時に行なうことで、植物体の光合成等及び土壌呼吸に伴うターゲットガスの収支を総合的に評価検討することが可能になる。   According to the gas balance measuring apparatus of the present invention, the above-ground part of the plant body including the entire leaf of the plant body is stored in the upper chamber of the assimilation box, and the balance of the target gas accompanying the photosynthesis, respiration and transpiration of the entire plant body leaf Therefore, the measurement accuracy can be improved. In addition, because the basement of the plant body is stored in the lower chamber of the assimilation box and the balance of the target gas accompanying soil respiration at the plant vegetation site is measured, the respiration of the plant root is reliably reflected in the soil respiration. And the measurement accuracy can be improved. Furthermore, by simultaneously measuring the balance of target gas in the upper chamber and lower chamber of the assimilation box, it becomes possible to comprehensively evaluate and examine the balance of the target gas accompanying the photosynthesis of plants and soil respiration.

以下、図面を参照しつつ本発明に係るガス収支測定装置の一実施形態について説明する。   Hereinafter, an embodiment of a gas balance measuring apparatus according to the present invention will be described with reference to the drawings.

図2は、本発明に係るガス収支測定装置の一実施形態を示す概略図で、同図において、10は同化箱、20はガス供給手段、30はガス測定手段である。なお、この実施形態におけるガス収支測定装置は、同化箱10の上室11及び下室12へ供給ガスとして空気を給気し、かつ、同化箱10の上室11及び下室12における収支測定の対象であるターゲットガスを主として炭酸ガス及び水蒸気としたものである。   FIG. 2 is a schematic view showing an embodiment of a gas balance measuring apparatus according to the present invention, in which 10 is an assimilation box, 20 is a gas supply means, and 30 is a gas measurement means. The gas balance measuring apparatus in this embodiment supplies air as a supply gas to the upper chamber 11 and the lower chamber 12 of the assimilation box 10 and measures the balance in the upper chamber 11 and the lower chamber 12 of the assimilation box 10. The target gas that is the target is mainly carbon dioxide and water vapor.

同化箱10は、図2に示すように、植物体1全体を格納する容器である。同化箱10の内部は、植物体1の地上部1aを格納する上室11と、植物体1の地下部1bを格納する下室12に区画されている。この実施形態における同化箱10は、上室11を構成する上部容器13と、下室12を構成する下部容器14と、上部容器13及び下部容器14の相互間に介設して上室11及び下室12を気密に区画する仕切部材15とを主要な構成要素としており、植物体1を鉢植え3に植生させた状態で格納するように構成してある。   The assimilation box 10 is a container for storing the entire plant body 1 as shown in FIG. The inside of the assimilation box 10 is partitioned into an upper chamber 11 that stores the above-ground portion 1 a of the plant body 1 and a lower chamber 12 that stores the underground portion 1 b of the plant body 1. In this embodiment, the assimilation box 10 includes an upper container 13 that constitutes the upper chamber 11, a lower container 14 that constitutes the lower chamber 12, and the upper chamber 11 and the lower container 14 interposed between each other. A partition member 15 that hermetically divides the lower chamber 12 is a main component, and the plant body 1 is stored in a state where the plant body 1 is vegetated in the potted plant 3.

図3は、同化箱10の縦断面図であり、これを参照して上部容器13、下部容器14及び仕切部材15について説明する。   FIG. 3 is a longitudinal sectional view of the assimilation box 10, and the upper container 13, the lower container 14, and the partition member 15 will be described with reference to this.

上部容器13は、植物体1の地上部1aに覆い被せるように下方に開口したカバー状に形成したものである。この実施形態における上部容器13は、円筒状に形成し、かつ、底面中央部を開口させると共に、底面外周部を下部容器14の上端部に仕切部材15を介して載置するように構成してある。また、上部容器13は、透明な材料(例えばアクリル樹脂やガラスなど)で構成され、外部光(例えば太陽光や照明器具の光)を上室11内に採光し得るようになっている。   The upper container 13 is formed in a cover shape opened downward so as to cover the ground part 1 a of the plant body 1. The upper container 13 in this embodiment is formed in a cylindrical shape and is configured such that the bottom center part is opened and the bottom outer peripheral part is placed on the upper end part of the lower container 14 via the partition member 15. is there. Further, the upper container 13 is made of a transparent material (for example, acrylic resin or glass) so that external light (for example, sunlight or light from a lighting fixture) can be taken into the upper chamber 11.

上部容器13には、ガス供給手段20から空気を給気するための供給管20aと、上部容器13から空気を排出するための排気管30aとを接続してある。供給管20aは上部容器13の下部に接続し、排気管30aは上部容器13の上部に接続してある。また、供給管20aは、上部容器13の下部内周面に沿って環状に配設された給気管13aに連通している。給気管13aは、円周方向に所定の間隔で複数の給気口13a1,13a1,・・・を穿設してあり、上部容器13の下部からほぼ均一に空気を給気するようになっている。   A supply pipe 20 a for supplying air from the gas supply means 20 and an exhaust pipe 30 a for discharging air from the upper container 13 are connected to the upper container 13. The supply pipe 20 a is connected to the lower part of the upper container 13, and the exhaust pipe 30 a is connected to the upper part of the upper container 13. The supply pipe 20 a communicates with an air supply pipe 13 a that is annularly arranged along the lower inner peripheral surface of the upper container 13. The air supply pipe 13a is provided with a plurality of air supply ports 13a1, 13a1,... At predetermined intervals in the circumferential direction so as to supply air almost uniformly from the lower part of the upper container 13. Yes.

また、上部容器13の内部には、上室11内で空気を攪拌しつつ下方から上方へ流動させるための複数個のファン13b,13b,…を配設してある。より詳しくは、複数個のファン13b,13b,…を上部容器13の周方向及び上下方向に所定の間隔を隔てて螺旋状に配設すると共に、各ファン13b,13b,…を上部容器13の内壁面に沿って斜め上方へ送風するように傾けて設置してある。これにより上室11内の空気は、上室11の下方から上方へほぼ螺旋状に流動して攪拌され、植物体1の地上部1aの各葉に対してほぼ均一に供給される。   In addition, a plurality of fans 13b, 13b,... For allowing the air to flow from below to above while stirring in the upper chamber 11 are disposed inside the upper container 13. More specifically, a plurality of fans 13b, 13b,... Are arranged in a spiral shape at predetermined intervals in the circumferential direction and the vertical direction of the upper container 13, and the fans 13b, 13b,. It is installed so as to be inclined obliquely upward along the inner wall surface. As a result, the air in the upper chamber 11 flows and stirs almost spirally from the lower side to the upper side of the upper chamber 11, and is supplied substantially uniformly to each leaf of the above-ground part 1 a of the plant body 1.

下部容器14は、植物体1の地下部1b及び土壌2を鉢植え3に収容した状態で格納するように構成してある。下部容器14の内周面と鉢植え3との間に形成された隙間は、シール部材14aによって閉塞されている。シール部材14aは、ゴム等の弾性材料を環状に形成した部材であって、シール部材14aの外周部を下部容器14の内周面に密着させると共に、シール部材14aの底面部を鉢植え3の上端部に密着させてある。これにより鉢植え3内の土壌2の表面と仕切部材15との間に土壌呼吸用の空間14bが形成される。なお、下部容器14には、ガス供給手段20から土壌呼吸用の空間14bへ空気を給気するための供給管20bと、土壌呼吸用の空間14bから空気を排出するための排気管30bとを接続してある。また、下部容器14には、土壌呼吸用の空間14b内の空気を攪拌するためのファン14cを配設してある。   The lower container 14 is configured to store the underground portion 1b and the soil 2 of the plant body 1 in a state in which they are accommodated in the potted plant 3. A gap formed between the inner peripheral surface of the lower container 14 and the potted plant 3 is closed by a seal member 14a. The seal member 14a is a member in which an elastic material such as rubber is formed in an annular shape, and the outer peripheral portion of the seal member 14a is in close contact with the inner peripheral surface of the lower container 14, and the bottom surface portion of the seal member 14a is the upper end of the potted plant 3. It is in close contact with the part. Thus, a space 14b for soil respiration is formed between the surface of the soil 2 in the potted plant 3 and the partition member 15. The lower container 14 has a supply pipe 20b for supplying air from the gas supply means 20 to the space 14b for soil respiration, and an exhaust pipe 30b for discharging air from the space 14b for soil respiration. Connected. The lower container 14 is provided with a fan 14c for stirring the air in the soil respiration space 14b.

一方、鉢植え3は、カップ部材14dに気密に嵌合させた状態で下部容器14の内底部に設置してある。鉢植え3内の土壌2の表面は、カップ部材14dによって下部容器14内の所望の高さ位置に維持される。また、植物体1は鉢植え3に植えた状態で長期間生育させると鉢植え3の底部まで植物根を張るので、鉢植え3の水抜き孔3aを介した土壌呼吸が生じる。鉢植え3をカップ部材14dに嵌合して、鉢植え3内の土壌2が水抜き孔3aから露出される空間を狭くしておくと、鉢植え3とカップ部材14dで囲まれた空間の酸素は、鉢植え3の水抜き孔3aを介した土壌呼吸によって消費されて無くなる。このように鉢植え3とカップ部材14dで囲まれた空間の酸素を無くすことにより、鉢植え3の水抜き孔3aを介した土壌呼吸は止まる。これにより下室12における土壌呼吸は、土壌2と土壌呼吸用の空間14bとの間でのみ行なわれるようになる。   On the other hand, the potted plant 3 is installed on the inner bottom of the lower container 14 in a state of being airtightly fitted to the cup member 14d. The surface of the soil 2 in the potted plant 3 is maintained at a desired height position in the lower container 14 by the cup member 14d. Further, when the plant body 1 is grown for a long time in the state of being planted in the potted plant 3, the plant root is stretched to the bottom of the potted plant 3, so that soil respiration occurs through the drainage hole 3 a of the potted plant 3. When the potted plant 3 is fitted to the cup member 14d and the space in which the soil 2 in the potted plant 3 is exposed from the drain hole 3a is narrowed, oxygen in the space surrounded by the potted plant 3 and the cup member 14d is It is consumed by soil respiration through the drain hole 3a of the potted plant 3 and disappears. Thus, by eliminating oxygen in the space surrounded by the potted plant 3 and the cup member 14d, soil respiration through the drain hole 3a of the potted plant 3 stops. Thereby, soil respiration in the lower chamber 12 is performed only between the soil 2 and the space 14b for soil respiration.

このように、鉢植え3内にしっかりと植物根を張った植物体1の地下部1bを土壌2と共に下部容器14に格納し、かつ、下室12における土壌呼吸が土壌2と土壌呼吸用の空間14bとの間でのみ行なわれるように、下部容器14の内周面と鉢植え3との間をシールすると共に鉢植え3の水抜き孔3aを介した土壌呼吸を止めてあるから、下室12における土壌呼吸が自然に植生した植物周辺の土壌呼吸とほぼ同じ状況下で行なわれる。   Thus, the underground part 1b of the plant body 1 in which the plant root is firmly spread in the potted plant 3 is stored in the lower container 14 together with the soil 2, and the soil respiration in the lower chamber 12 is the soil 2 and the space for soil respiration. 14b, since the space between the inner peripheral surface of the lower container 14 and the potted plant 3 is sealed and the soil respiration through the drain hole 3a of the potted plant 3 is stopped. Soil respiration is carried out under almost the same conditions as soil respiration around naturally planted plants.

仕切部材15は、上部容器13の内部と下部容器14の内部を気密に区画するものである。この実施形態における仕切部材15は、上部容器13の底面部に密着させる上層のシート材15aと、下部容器14の上端部に密着させる下層のシート材15bと、上層のシート材15a及び下層のシート材15bの相互間に介在させる中層のシート材15cとを積層して構成してある。上層のシート材15a及び下層のシート材15bは、例えばビニル樹脂などの弾性材料で構成する一方、中層のシート材15cは、例えばフッ素樹脂(ポリテトラフルオロエチレン、「テフロン(登録商標)」)などの芯材で構成してある。各シート材15a,15b,15cは、図4に示すように、植物体1の茎1cを通す茎孔15a1,15b1,15c1を有し、かつ、植物体1の茎1cに嵌め付けるための切り込み部15a2,15b2,15c2を形成してある。各シート材15a,15b,15cの茎孔15a1,15b1,15c1と植物体1の茎1cとの間の隙間はシール剤15dで閉塞してある。また、各シート材15a,15b,15cは、各々の切り込み部15a2,15b2,15c2を接合し、切り込み部15a2,15b2,15c2をずらして積層してある。   The partition member 15 partitions the inside of the upper container 13 and the inside of the lower container 14 in an airtight manner. In this embodiment, the partition member 15 includes an upper sheet material 15a that is in close contact with the bottom surface of the upper container 13, a lower sheet material 15b that is in close contact with the upper end of the lower container 14, an upper sheet material 15a, and a lower sheet. An intermediate sheet material 15c interposed between the materials 15b is laminated. The upper layer sheet material 15a and the lower layer sheet material 15b are made of an elastic material such as vinyl resin, while the middle layer sheet material 15c is made of, for example, a fluororesin (polytetrafluoroethylene, “Teflon (registered trademark)”). It is comprised with the core material. As shown in FIG. 4, each sheet material 15 a, 15 b, 15 c has stem holes 15 a 1, 15 b 1, 15 c 1 through which the stem 1 c of the plant body 1 passes, and is cut for fitting into the stem 1 c of the plant body 1. Portions 15a2, 15b2, and 15c2 are formed. The gaps between the stem holes 15a1, 15b1, 15c1 of the sheet materials 15a, 15b, 15c and the stem 1c of the plant body 1 are closed with a sealing agent 15d. Each sheet material 15a, 15b, 15c is laminated by joining the cut portions 15a2, 15b2, 15c2 and shifting the cut portions 15a2, 15b2, 15c2.

なお、図2において、16はインキュベータで、同化箱10を収納する箱体であって、同化箱10の上室11の内部の光強度を調整すると共に、インキュベータ16に収納された同化箱10の外部の気温を調整するものである。この実施形態では、インキュベータ16の内壁面に多数の蛍光灯16a,16a,…を配設し、この蛍光灯で同化箱10の上室11に光を照射するようになっている。同化箱10の上室11に格納された植物体1の地上部1aにインキュベータ16によって光を照射すると、当該植物体1の地上部1aのほぼ全ての葉が光合成呼吸を行なう。一方、インキュベータ16による光の照射を停止して、インキュベータ16の内部を暗室状態にすると、同化箱10の上室11に格納された植物体1の地上部1aは、光合成を停止して呼吸のみを行なう。また、インキュベータ16は、同化箱10の外部の気温を調整する図示しない空調装置を備えており、蛍光灯16a,16a,…の熱によって同化箱10内の温度が上昇するのを防止している。なお、図示しない空調装置は、同化箱10の外部の気温を、同化箱10の内部の気温(ガス供給手段20から同化箱10へ供給される空気の温度とほぼ同じ温度である。)や地温よりも2〜5℃程度低い温度に維持している。   In FIG. 2, reference numeral 16 denotes an incubator, which is a box that houses the assimilation box 10. The light intensity inside the upper chamber 11 of the assimilation box 10 is adjusted, and the assimilation box 10 housed in the incubator 16 is adjusted. It adjusts the outside temperature. In this embodiment, a large number of fluorescent lamps 16 a, 16 a,... Are arranged on the inner wall surface of the incubator 16, and light is applied to the upper chamber 11 of the assimilation box 10 with this fluorescent lamp. When light is irradiated to the above-ground part 1a of the plant body 1 stored in the upper chamber 11 of the assimilation box 10 by the incubator 16, almost all leaves of the above-ground part 1a of the plant body 1 carry out photosynthesis respiration. On the other hand, when the irradiation of light by the incubator 16 is stopped and the inside of the incubator 16 is made into a dark room state, the above-ground part 1a of the plant body 1 stored in the upper chamber 11 of the assimilation box 10 stops photosynthesis and only breathes. To do. The incubator 16 includes an air conditioner (not shown) that adjusts the temperature outside the assimilation box 10, and prevents the temperature in the assimilation box 10 from rising due to the heat of the fluorescent lamps 16a, 16a,. . Note that an air conditioner (not shown) changes the temperature outside the assimilation box 10 to the temperature inside the assimilation box 10 (the temperature is substantially the same as the temperature of air supplied from the gas supply means 20 to the assimilation box 10) or the ground temperature. The temperature is maintained at a temperature lower by about 2 to 5 ° C.

図2に示すガス供給手段20は、同化箱10の上室11及び下室12の各々へ空気を所定の流量で給気するものである。この実施形態におけるガス供給手段20は、空気中の炭酸ガスを吸収する吸収部21と、吸収部21にて炭酸ガスが取り除かれ、吸収部21から所定の流量で供給される空気に対して炭酸ガスを所望の流量で混入する混入部22とを有し、同化箱10の上室11及び下室12の各々へ給気される空気中の炭酸ガスの濃度調整を行なえるようになっている。また、ガス供給手段20は、空気中の水分を吸収する除湿部23と、空気を加湿する加湿部24とを有する。加湿部24の上流側には、吸収部21及び混入部22と、除湿部23と、外気採取管25とが並列に配設されている。外気採取管25は、大気を同化箱10へ供給するためのものである。加湿部24の下流側には、同化箱10へ給気される空気の温度を調整する温度調整部26を配設してある。なお、図中、Pはポンプ、Fはフィルタである。   The gas supply means 20 shown in FIG. 2 supplies air to the upper chamber 11 and the lower chamber 12 of the assimilation box 10 at a predetermined flow rate. The gas supply means 20 in this embodiment includes an absorption unit 21 that absorbs carbon dioxide in the air, and carbon dioxide is removed by the absorption unit 21, and carbon dioxide is supplied to the air supplied from the absorption unit 21 at a predetermined flow rate. A mixing unit 22 for mixing gas at a desired flow rate, and the concentration of carbon dioxide in the air supplied to each of the upper chamber 11 and the lower chamber 12 of the assimilation box 10 can be adjusted. . The gas supply unit 20 includes a dehumidifying unit 23 that absorbs moisture in the air and a humidifying unit 24 that humidifies the air. On the upstream side of the humidifying unit 24, the absorbing unit 21 and the mixing unit 22, the dehumidifying unit 23, and the outside air collecting tube 25 are arranged in parallel. The outside air collecting tube 25 is for supplying air to the assimilation box 10. A temperature adjusting unit 26 that adjusts the temperature of the air supplied to the assimilation box 10 is disposed on the downstream side of the humidifying unit 24. In the figure, P is a pump and F is a filter.

上記のガス供給手段20は、炭酸ガスの濃度調整を行なった空気を同化箱10へ給気する場合、吸収部21及び混入部22にて空気中の炭酸ガスの濃度調整を行なったのち、当該空気をフィルタFに通して不純物の除去を行なう。次いで、加湿部24にて空気の加湿を行なうと共に、温度調整部26にて空気の温度を調整して同化箱10へ空気を給気する。また、水蒸気の濃度調整を行なった空気を同化箱10へ給気する場合は、除湿部23にて空気中の水蒸気を除去したのち、当該空気をフィルタFに通して不純物の除去を行なう。次いで、加湿部24にて空気の加湿を行なうと共に、温度調整部26にて空気の温度を調整して同化箱10へ空気を給気する。さらに、炭酸ガスの濃度調整を行なわずに大気を同化箱10へ給気する場合は、外気採取管25から採取した大気を同化箱10へ給気する。なお、炭酸ガス及び水蒸気の収支測定と共に、炭酸ガス及び水蒸気以外の他のターゲットガスの収支測定を行なう場合は、外気採取管25に、他のターゲットガスの吸収部(図示略)及び他のターゲットガスの混入部(図示略)を接続する。   The gas supply means 20, when supplying the carbon dioxide concentration adjusted air to the assimilation box 10, adjusts the concentration of carbon dioxide in the air at the absorption unit 21 and the mixing unit 22, and then Impurities are removed by passing air through the filter F. Next, the humidification unit 24 humidifies the air, and the temperature adjustment unit 26 adjusts the temperature of the air to supply air to the assimilation box 10. In addition, when the air whose water vapor concentration has been adjusted is supplied to the assimilation box 10, the moisture in the air is removed by the dehumidifying unit 23, and then the air is passed through the filter F to remove impurities. Next, the humidification unit 24 humidifies the air, and the temperature adjustment unit 26 adjusts the temperature of the air to supply air to the assimilation box 10. Further, when air is supplied to the assimilation box 10 without adjusting the concentration of carbon dioxide, the air collected from the outside air collecting pipe 25 is supplied to the assimilation box 10. When the balance of carbon dioxide and water vapor is measured and the balance of other target gases other than carbon dioxide and water vapor is measured, another target gas absorber (not shown) and other targets are provided in the outside air sampling tube 25. A gas mixing part (not shown) is connected.

また、同化箱10へ給気される空気等(炭酸ガス濃度や温度、湿度が調整された空気、及び、炭酸ガス濃度未調整の大気)は、湿度が概ね50%未満になると乾燥によるストレスを植物体1に与えて光合成呼吸が正常に行なわれなくなるので、加湿部24にて湿度を調整して概ね50%以上とする。また、同化箱10へ給気される空気等は、温度が概ね10℃未満になると配管や同化箱10の内部に結露が生じて蒸散の測定に影響を及ぼすので、温度調整部26にて温度を調整して概ね10℃以上とする。   In addition, the air supplied to the assimilation box 10 (air in which the carbon dioxide concentration, temperature, and humidity are adjusted, and air in which the carbon dioxide concentration is not adjusted) is subject to stress due to drying when the humidity is less than 50%. Since it is given to the plant body 1 and the photosynthetic respiration is not normally performed, the humidity is adjusted by the humidifying unit 24 to be approximately 50% or more. In addition, when the temperature of the air supplied to the assimilation box 10 is less than about 10 ° C., condensation occurs in the piping and the assimilation box 10 and affects the measurement of transpiration. Is adjusted to approximately 10 ° C. or higher.

図2に示すガス測定手段30は、ガス供給手段20から同化箱10へ給気される空気及び同化箱10の上室11及び下室12から排出された空気をサンプリングし、各空気に含まれる炭酸ガス及び水蒸気等の濃度を測定するものである。この実施形態では、同化箱10の上室11から排出された空気のサンプリングと、同化箱10の下室12から排出された空気のサンプリングとを三方弁31で切替えて行ない、各空気の測定をひとつのガス測定手段30で行なっている。ひとつのガス測定手段30で測定を行なうことにより測定結果に機械的誤差が生じない。この場合、各空気の測定に僅かな時間差が生じるが、インキュベータ16により上室11内の光強度を所定値に維持すると共に、炭酸ガス濃度、温度及び湿度が所定値に維持された空気を上室11及び下室12へ同時に供給している限り、同化箱10の上室11及び下室12から所期の空気が排出され、各空気の測定を複数のガス測定手段で同時に測定する場合とほぼ同じ測定結果が得られる。また、下室12から排出された空気は、大気へ放出されるものと、ガス測定手段30に供給されるものと、下室12に戻されるものに分流される。   2 samples the air supplied from the gas supply means 20 to the assimilation box 10 and the air discharged from the upper chamber 11 and the lower chamber 12 of the assimilation box 10, and is included in each air. The concentration of carbon dioxide gas and water vapor is measured. In this embodiment, sampling of air discharged from the upper chamber 11 of the assimilation box 10 and sampling of air discharged from the lower chamber 12 of the assimilation box 10 are switched by the three-way valve 31 to measure each air. One gas measuring means 30 is used. By measuring with one gas measuring means 30, no mechanical error occurs in the measurement result. In this case, although a slight time difference occurs in the measurement of each air, the light intensity in the upper chamber 11 is maintained at a predetermined value by the incubator 16 and the air whose carbon dioxide concentration, temperature, and humidity are maintained at the predetermined values is increased. As long as the chamber 11 and the lower chamber 12 are supplied simultaneously, the intended air is discharged from the upper chamber 11 and the lower chamber 12 of the assimilation box 10 and the measurement of each air is simultaneously performed by a plurality of gas measuring means. Almost the same measurement results can be obtained. Further, the air discharged from the lower chamber 12 is divided into one that is released to the atmosphere, one that is supplied to the gas measuring means 30, and one that is returned to the lower chamber 12.

以下、上記のガス収支測定装置による収支測定について説明する。ガス供給手段20にて炭酸ガス及び水蒸気の濃度が調整され、同化箱10へ給気される空気と、同化箱10の上室11及び下室12から排出された空気をサンプリングし、各空気に含まれる炭酸ガス及び水蒸気の濃度を測定する。同化箱10へ給気される空気中の炭酸ガスの濃度測定結果と、上室11から排出された空気中の炭酸ガスの濃度測定結果から、上室11に格納された植物体1の地上部1aの光合成呼吸に伴う炭酸ガスの収支が求められる。また、同化箱10へ給気される空気中の水蒸気の濃度測定結果と、上室11から排出された空気中の水蒸気の濃度測定結果から、上室11に格納された植物体1の地上部1aの蒸散に伴う水蒸気の収支が求められる。他方、同化箱10へ給気される空気中の炭酸ガスの濃度測定結果と、下室12から排出された空気中の炭酸ガスの濃度測定結果から、下室12における土壌呼吸に伴う炭酸ガスの収支が求められる。   Hereinafter, the balance measurement by the above gas balance measuring apparatus will be described. The gas supply means 20 adjusts the concentrations of carbon dioxide and water vapor, and samples the air supplied to the assimilation box 10 and the air discharged from the upper chamber 11 and the lower chamber 12 of the assimilation box 10. The concentration of carbon dioxide and water vapor contained is measured. From the measurement result of the concentration of carbon dioxide in the air supplied to the assimilation box 10 and the measurement result of the concentration of carbon dioxide in the air discharged from the upper chamber 11, the above-ground part of the plant body 1 stored in the upper chamber 11 The balance of the carbon dioxide gas accompanying the photosynthesis respiration of 1a is calculated | required. Further, from the measurement result of the concentration of water vapor in the air supplied to the assimilation box 10 and the measurement result of the concentration of water vapor in the air discharged from the upper chamber 11, the above-ground part of the plant body 1 stored in the upper chamber 11. The balance of water vapor accompanying the transpiration of 1a is required. On the other hand, from the measurement result of the concentration of carbon dioxide in the air supplied to the assimilation box 10 and the measurement result of the concentration of carbon dioxide in the air discharged from the lower chamber 12, the concentration of carbon dioxide accompanying soil respiration in the lower chamber 12 is determined. A balance is required.

上室11及び下室12における炭酸ガスの収支測定結果に基づき、上室11における植物体1の地上部1aの光合成呼吸速度と、下室12における土壌呼吸速度とが求められる。上室11における炭酸ガスの収支測定を、インキュベータ16で上室11内の光強度をゼロにして行なうと、植物体1の地上部1aの呼吸速度が求められる。かかる呼吸速度と光合成呼吸速度の速度差から植物体1の地上部1aの光合成速度が求められる。上室11における水蒸気の収支測定結果に基づき、植物体1の地上部1aの蒸散速度が求められる。   Based on the carbon dioxide balance measurement results in the upper chamber 11 and the lower chamber 12, the photosynthetic respiration rate of the ground portion 1 a of the plant body 1 in the upper chamber 11 and the soil respiration rate in the lower chamber 12 are obtained. When the balance of carbon dioxide gas in the upper chamber 11 is measured by the incubator 16 with the light intensity in the upper chamber 11 being zero, the respiration rate of the above-ground part 1a of the plant body 1 is obtained. From the speed difference between the respiration rate and the photosynthetic respiration rate, the photosynthesis rate of the above-ground part 1a of the plant body 1 is obtained. Based on the water vapor balance measurement result in the upper chamber 11, the transpiration rate of the above-ground part 1 a of the plant body 1 is obtained.

また、上室11及び下室12における炭酸ガスの収支測定や、上室11における水蒸気の収支測定を、上室11内の光強度、下室12に格納する土壌2の種類(例えば空隙率の相違する複数種類のものなど)、並びに同化箱10へ給気される空気等の温度及び湿度などの環境条件を変更して行なうと、植物体1の地上部1aの光合成や呼吸、蒸散、及び、土壌呼吸に対する各種環境条件の影響を評価することができる。   In addition, the carbon dioxide gas balance measurement in the upper chamber 11 and the lower chamber 12, and the water vapor balance measurement in the upper chamber 11, the light intensity in the upper chamber 11, the type of soil 2 stored in the lower chamber 12 (for example, the porosity) When different environmental conditions such as temperature and humidity of air supplied to the assimilation box 10 are changed, photosynthesis, respiration, transpiration, and the like of the ground part 1a of the plant 1 The effects of various environmental conditions on soil respiration can be evaluated.

さらに、上室11及び下室12における炭酸ガス及び水蒸気以外の他のターゲットガス(例えばメタンや酸化窒素など)の収支測定を行なうと、植物体1の地上部1aの光合成や呼吸に伴って他のターゲットガスが植物体1に吸収される速度又は他のターゲットガスが植物体1から放出される速度や、土壌呼吸に伴って他のターゲットガスが土壌2に吸収される速度又は他のターゲットガスが土壌2から放出される速度を求めることができる。かかる他のターゲットガスの収支測定を、環境条件を変更して行なうと、他のターゲットガスが植物体1又は土壌2に吸収される速度や他のターゲットガスが植物体1又は土壌2から放出される速度に対する各種環境条件の影響を評価することができる。   Further, when the balance of other target gases (for example, methane, nitric oxide, etc.) other than carbon dioxide and water vapor in the upper chamber 11 and the lower chamber 12 is measured, the other is accompanied by photosynthesis and respiration of the above-ground part 1a of the plant body 1. The rate at which the target gas is absorbed by the plant body 1 or the rate at which other target gas is released from the plant body 1, the rate at which other target gas is absorbed by the soil 2 with soil respiration, or other target gas The rate at which is released from the soil 2 can be determined. When the balance measurement of the other target gas is performed by changing the environmental conditions, the rate at which the other target gas is absorbed by the plant body 1 or the soil 2 or the other target gas is released from the plant body 1 or the soil 2. The effect of various environmental conditions on the speed of

以上、本発明の実施形態につき説明したが、本発明に係るガス収支測定装置は上記実施形態に限定されることなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得る。例えば、同化箱10の下室12には、図2に示すように、植物体1の地下部1b及び土壌2を鉢植え3に収容した状態で格納することに限らず、図1に示すように、同化箱10の下室12に直接格納した土壌2に植物体1を植えるようにしても構わない。   As mentioned above, although it demonstrated per embodiment of this invention, the gas balance measuring apparatus which concerns on this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the summary of this invention. For example, the lower chamber 12 of the assimilation box 10 is not limited to storing the underground portion 1b and the soil 2 of the plant body 1 in the potted plant 3 as shown in FIG. The plant body 1 may be planted in the soil 2 directly stored in the lower chamber 12 of the assimilation box 10.

また、上記実施形態では、上室11及び下室12へ給気される空気と、上室11及び下室12から排出された空気の測定をひとつのガス測定手段30で行なっているが、かかる測定は複数のガス測定手段で行なうようにしても構わない。   Moreover, in the said embodiment, although the air supplied to the upper chamber 11 and the lower chamber 12 and the air discharged | emitted from the upper chamber 11 and the lower chamber 12 are measured by one gas measurement means 30, this is taken. The measurement may be performed by a plurality of gas measuring means.

さらに、上記実施形態では、ターゲットガスとしての炭酸ガスの収支を測定することで、植物体1の地上部1aの光合成速度や呼吸速度、土壌呼吸速度を求めているが、ターゲットガスを酸素ガスとしても植物体1の地上部1aの光合成速度や呼吸速度、土壌呼吸速度を求めることは可能である。   Furthermore, in the said embodiment, although the balance of the carbon dioxide gas as target gas is measured, the photosynthesis rate of the above-ground part 1a of the plant body 1 and the respiration rate, and the soil respiration rate are calculated | required, but target gas is made into oxygen gas It is also possible to determine the photosynthetic rate, respiration rate, and soil respiration rate of the above-ground part 1a of the plant body 1.

本発明に係るガス収支測定装置の概念図である。It is a conceptual diagram of the gas balance measuring apparatus which concerns on this invention. 本発明に係るガス収支測定装置の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the gas balance measuring apparatus which concerns on this invention. 同化箱の一実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment of an assimilation box. 仕切部材の一実施形態を示す平面図である。It is a top view which shows one Embodiment of a partition member.

符号の説明Explanation of symbols

1 植物体
1a 地上部
1b 地下部
2 土壌
10 同化箱
11 上室
12 下室
20 ガス供給手段
30 ガス測定手段
DESCRIPTION OF SYMBOLS 1 Plant 1a Above-ground part 1b Underground part 2 Soil 10 Assimilation box 11 Upper chamber 12 Lower chamber 20 Gas supply means 30 Gas measurement means

Claims (2)

植物体を格納する同化箱と、前記同化箱へ供給ガスを給気するガス供給手段と、前記ガス供給手段から前記同化箱へ給気される供給ガス及び前記同化箱から排出された排気ガスをサンプリングすると共に、供給ガス及び排気ガスに含まれるターゲットガスの濃度を測定するガス測定手段とを備え、前記同化箱におけるターゲットガスの収支を測定するガス収支測定装置において、
前記同化箱が、前記植物体の地上部を格納する上室と、前記植物体の地下部を土壌と共に格納する下室とを有し、前記同化箱の上室及び下室の各々におけるターゲットガスの収支を測定するように構成したガス収支測定装置。
An assimilation box for storing a plant body, a gas supply means for supplying a supply gas to the assimilation box, a supply gas supplied from the gas supply means to the assimilation box, and an exhaust gas discharged from the assimilation box In the gas balance measuring device for sampling and measuring the balance of the target gas in the assimilation box, comprising gas measuring means for measuring the concentration of the target gas contained in the supply gas and the exhaust gas,
The assimilation box has an upper chamber that stores the above-ground part of the plant body, and a lower chamber that stores the underground part of the plant body together with soil, and the target gas in each of the upper chamber and the lower chamber of the assimilation box Gas balance measuring device configured to measure the balance of gas.
前記同化箱が、植物体の地上部を覆うように下方に開口したカバー状に形成して前記上室を構成する上部容器と、植物体の地下部を土壌と共に格納するように上方に開口した箱状に形成して前記下室を構成する下部容器と、前記上部容器及び前記下部容器の相互間に介設して前記上室及び前記下室を区画する仕切部材とを備えた請求項1に記載のガス収支測定装置。   The assimilation box is formed in a cover shape that opens downward to cover the above-ground part of the plant body, and is opened upward so as to store the upper part of the upper chamber and the underground part of the plant body together with soil. The lower container which comprises the said lower chamber and is formed in box shape, The partition member which interposes between the said upper container and the said lower container, and divides the said upper chamber and the said lower chamber was provided. The gas balance measuring device described in 1.
JP2004159489A 2004-05-28 2004-05-28 Gas balance measuring device Expired - Fee Related JP4522749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004159489A JP4522749B2 (en) 2004-05-28 2004-05-28 Gas balance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004159489A JP4522749B2 (en) 2004-05-28 2004-05-28 Gas balance measuring device

Publications (2)

Publication Number Publication Date
JP2005333921A JP2005333921A (en) 2005-12-08
JP4522749B2 true JP4522749B2 (en) 2010-08-11

Family

ID=35488150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004159489A Expired - Fee Related JP4522749B2 (en) 2004-05-28 2004-05-28 Gas balance measuring device

Country Status (1)

Country Link
JP (1) JP4522749B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103235102A (en) * 2013-04-09 2013-08-07 广西壮族自治区中国科学院广西植物研究所 Method and device for determining plant root system and hyphae respiration rates

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4791388B2 (en) * 2007-02-21 2011-10-12 日立協和エンジニアリング株式会社 Carbon dioxide leakage monitoring device, carbon dioxide leakage monitoring method, and carbon dioxide underground fixing method
CN101126753B (en) * 2007-09-29 2010-08-18 中国科学院华南植物园 Method for in situ determination of root system respiration
JP2009153459A (en) * 2007-12-27 2009-07-16 Nepon Inc Carbon dioxide applying device
CN101241117B (en) * 2008-03-12 2011-05-18 福建师范大学 Air cell for determining trunk respiration
KR101045826B1 (en) 2009-05-11 2011-07-05 대한민국 CO2 collection system for field crops
KR100992876B1 (en) 2009-12-03 2010-11-08 경기도 Apparatus for measuring greenhouse gases in farming and method for using the same
CN101782479B (en) * 2010-02-22 2011-06-15 中国科学院东北地理与农业生态研究所 Carbon dioxide collecting device for measuring respiratory rate of ridge culture soil
CN101915827A (en) * 2010-07-20 2010-12-15 浙江农林大学 Indirect determination method of forest soil respiration
JP5747324B2 (en) * 2011-05-09 2015-07-15 大起理化工業株式会社 Generated gas detector
CN102589923A (en) * 2012-02-10 2012-07-18 浙江大学 Plant 13CO2 mark cultivation-root exudate collection integration device
KR101348077B1 (en) 2012-08-14 2014-01-03 사단법인대기환경모델링센터 Automatic air collection chamber for the measurement of leaf respiration and photosynthesis rate of plants
CN103141320B (en) * 2013-03-27 2015-07-22 西北农林科技大学 Automatic plant root system monitoring system
CN103698330B (en) * 2014-01-16 2016-02-10 北京航空航天大学 A kind of experimental provision and method thereof measuring plant respiration
CN104569135B (en) * 2015-01-14 2017-06-13 浙江大学 Determine device and purposes that soil amino acid is contributed plant growth nutrition
CN105258982B (en) * 2015-09-21 2017-11-24 浙江省农业科学院 Nonirrigated farmland gas collector
CN105466870A (en) * 2015-12-16 2016-04-06 贵州大学 Cresol red colorimetric method for soil respiration measurement and measurement device
CA2981275C (en) * 2016-10-26 2021-09-21 Biochambers Incorporated Whole plant gas exchange chamber using pressurization and ventilation of separated canopy and root zones
CN107079725B (en) * 2017-04-24 2019-12-24 华南农业大学 Plant root layer oxidation-reduction potential regulation and control device, culture device and regulation and control method
CN107367585A (en) * 2017-08-10 2017-11-21 中国农业科学院特产研究所 A kind of value in measuring photosynthesis device and value in measuring photosynthesis system
KR20220122638A (en) * 2019-11-26 2022-09-02 홀티카 엘티디 Closed-loop, pressurized and sterilized, controlled micro-environment cultivation
CN114402866A (en) * 2022-01-11 2022-04-29 北京航空航天大学 Experimental device for short aromatic plant is applied to horticulture therapy
CN115219656A (en) * 2022-06-23 2022-10-21 海南大学 Device for marking in-situ collection of root exudates and rhizosphere soil

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428490U (en) * 1977-07-27 1979-02-24
JPS58186466U (en) * 1982-06-05 1983-12-10 小糸工業株式会社 Plant photosynthesis measuring device
JPS63132558U (en) * 1987-02-19 1988-08-30
JPH08172913A (en) * 1994-12-28 1996-07-09 Tokyo Gas Co Ltd Method for measuring rate of photosynthesis
JPH09113507A (en) * 1995-10-20 1997-05-02 Uesutoron Kk Fractional concurrent measuring method for respiration of plant and photosynthesis and its device
JP2002153127A (en) * 2000-11-21 2002-05-28 Toda Biosystem:Kk Growth controlling system for plant
JP2002153128A (en) * 2000-11-22 2002-05-28 Urban Front Kk Apparatus for measuring co2 consumption by tree and hermetically sealed space-forming body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428490U (en) * 1977-07-27 1979-02-24
JPS58186466U (en) * 1982-06-05 1983-12-10 小糸工業株式会社 Plant photosynthesis measuring device
JPS63132558U (en) * 1987-02-19 1988-08-30
JPH08172913A (en) * 1994-12-28 1996-07-09 Tokyo Gas Co Ltd Method for measuring rate of photosynthesis
JPH09113507A (en) * 1995-10-20 1997-05-02 Uesutoron Kk Fractional concurrent measuring method for respiration of plant and photosynthesis and its device
JP2002153127A (en) * 2000-11-21 2002-05-28 Toda Biosystem:Kk Growth controlling system for plant
JP2002153128A (en) * 2000-11-22 2002-05-28 Urban Front Kk Apparatus for measuring co2 consumption by tree and hermetically sealed space-forming body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103235102A (en) * 2013-04-09 2013-08-07 广西壮族自治区中国科学院广西植物研究所 Method and device for determining plant root system and hyphae respiration rates

Also Published As

Publication number Publication date
JP2005333921A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP4522749B2 (en) Gas balance measuring device
Niinemets et al. Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols
US20090301234A1 (en) Apparatus and method for measuring the surface flux of a soil gas component
Butterbach-Bahl et al. Measurements of biosphere–atmosphere exchange of CH4 in terrestrial ecosystems
Kellomäki et al. Controlled environment chambers for investigating tree response to elevated CO 2 and temperature under boreal conditions
CN111879577B (en) Portable vegetation source volatile organic compound sampling system and working method thereof
Wingate et al. Strong seasonal disequilibrium measured between the oxygen isotope signals of leaf and soil CO2 exchange
CN104535714B (en) By controlling the growth conditions assessment plant device to gray haze Air purification
Chen et al. A two-stage wood chip-based biofilter system to mitigate odors from a deep-pit swine building
JP2007071758A (en) Evaluation device of photosynthesis or evaluation method of photosynthesis
KR20150060443A (en) Biogenic volatile organic compounds collecting system
JP5726454B2 (en) Gas sensor unit and gas concentration measuring device for measuring gas concentration in soil
Ekberg et al. Isoprene emission from Sphagnum species occupying different growth positions above the water table
Koller et al. A null-point compensating system for simultaneous and continuous measurement of net photosynthesis and transpiration by controlled gas-stream analysis
Subke et al. Soil chamber measurements
KR101358869B1 (en) Odor gas absorption tower
CN207528702U (en) Closed intelligence smokes gas system
KR20180043967A (en) Apparatus for photosynthesis measure
JP3968728B1 (en) Buffer chamber type gas balance measuring device
Heyneke et al. Open-top chambers to study air pollution impacts in South Africa. Part I: microclimate in open-top chambers
Perez-Priego Plant chamber measurements
Ennis et al. A branch chamber system and techniques for simultaneous pollutant exposure experiments and gaseous flux determinations
Souza et al. Design and assembly of an experimental laboratory for the study of atmosphere–plant interactions in the system of fumigation chambers
Finér et al. The Joensuu dasotrons: a new facility for studying shoot, root, and soil processes
CN210269312U (en) Volatile organic compound gas sampling device of plant leaf

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees