JPH09113507A - Fractional concurrent measuring method for respiration of plant and photosynthesis and its device - Google Patents

Fractional concurrent measuring method for respiration of plant and photosynthesis and its device

Info

Publication number
JPH09113507A
JPH09113507A JP7273070A JP27307095A JPH09113507A JP H09113507 A JPH09113507 A JP H09113507A JP 7273070 A JP7273070 A JP 7273070A JP 27307095 A JP27307095 A JP 27307095A JP H09113507 A JPH09113507 A JP H09113507A
Authority
JP
Japan
Prior art keywords
gas
photosynthesis
respiration
plant
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7273070A
Other languages
Japanese (ja)
Inventor
Isao Nishi
功 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UESUTORON KK
Original Assignee
UESUTORON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UESUTORON KK filed Critical UESUTORON KK
Priority to JP7273070A priority Critical patent/JPH09113507A/en
Publication of JPH09113507A publication Critical patent/JPH09113507A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • G01N33/4977Metabolic gas from microbes, cell cultures or plant tissues

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Food Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Cultivation Of Plants (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To fractionally and concurrently measure respiration and photosynthesis by labeling the CO2 and O2 related to the photosynthesis and respiration with stable isotopes<13> C and<18> O. SOLUTION: The gas properly set and mixed from a feed gas control device 8 on the measuring conditions is fed to the gas chamber 2 of a chamber 1 storing a plant 1A to be measured through a gas inlet 4 while a solenoid valve 9 is opened and the gas flow is continuously measured by a gas flow meter 10. The gas exchanging action of the plant 1A is applied to the fed gas, and the gas mixing ratio in the gas chamber 2 is changed. The change quantity is analyzed by a detector 20, and the state of the gas exchanging action of the plant 1A is judged. The CO2 and O2 related to photosynthesis and respiration respectively are labeled by the stable isotopes<13> C and<18> O from the calibration gas 22, and the concentration and partial pressure change of<12> CO2 ,<13> CO2 ,<18> O2 ,<16> O2 , O2 are concurrently measured. The metabolism of the plant 1A can be accurately known, and stable measurement can be conducted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、植物の呼吸と光合
成の分別し同時測定する方法およびその装置に関し、特
に、呼吸と光合成に関するガスの変化を同時に分別測定
するための新規な改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for separately and simultaneously measuring respiration and photosynthesis of plants, and more particularly to a new improvement for simultaneously and separately measuring changes in gas related to respiration and photosynthesis. is there.

【0002】[0002]

【従来の技術】従来用いられている植物の呼吸と光合成
の測定方法および装置としては、例えば、図2に示す構
成が採用されている。すなわち、図2において符号1で
示されるものは被測定物である植物1Aを内包するチャ
ンバーであり、このチャンバー1は、被測定植物に給
水、給肥する水槽3aを留置する水槽室3と、ガスが充
満するガス室2とを有し、前記水槽室3と前記ガス室2
は、仕切り板50で2室に仕切られている。前記チャン
バー1は、前記ガス室2内にガスを流入するためのガス
入口4と、前記ガス室2よりガスが流出するためのガス
出口5が設けらている。前記ガス出口5には、ガス流出
を強制的に行うためのファン51と、ガス流量測定用の
フローメータ52とが直結されている。前記フローメー
タ52のガス流出部52aには、前記植物の呼吸や光合
成状態の測定のための検出器20が接続されている。前
記チャンバー1の上部には、前記植物1Aに光を照射す
るためのランプ15が設けられている。
2. Description of the Related Art As a conventionally used measuring method and apparatus for plant respiration and photosynthesis, for example, the configuration shown in FIG. 2 is adopted. That is, what is denoted by reference numeral 1 in FIG. 2 is a chamber that contains a plant 1A that is an object to be measured, and this chamber 1 is a water tank chamber 3 in which a water tank 3a for supplying water and fertilizing the plant to be measured is placed, A gas chamber 2 filled with gas, and the water tank chamber 3 and the gas chamber 2
Is partitioned into two chambers by a partition plate 50. The chamber 1 is provided with a gas inlet 4 for inflowing gas into the gas chamber 2 and a gas outlet 5 for outflowing gas from the gas chamber 2. A fan 51 for forcibly outflowing the gas and a flow meter 52 for measuring the gas flow rate are directly connected to the gas outlet 5. A detector 20 for measuring the respiration and photosynthetic state of the plant is connected to the gas outlet 52a of the flow meter 52. A lamp 15 for irradiating the plant 1A with light is provided above the chamber 1.

【0003】次に、呼吸および光合成の測定法について
説明する。前記植物1Aの呼吸量の測定は、前記ガス入
口4からO2(酸素)を前記チャンバー1内に流入さ
せ、前記チャンバー1内の前記植物がO2を吸入しCO2
を呼出するが、その時のガス交換量すなわちCO2量を
測定し呼吸状態を測定する。その時の反応式は、 C6122+6O2→6CO2+6H2O ・・・・・(1)式 で表される。一方、前記植物1Aの光合成の測定は、前
記ガス入口4からCO2(二酸化炭素)を前記チャンバ
ー1内に流入させ前記チャンバー1内の前記植物1Aへ
前記チャンバー1上部のランプ15を発光させその光を
照射する。そこで吸収されたCO2はO2として排気さ
れ、同時に糖類等の炭素化合物が生産される。いわゆる
光合成が行われる。その時の反応式は、 6CO2+6H2O→C6126+6O2 ・・・・・(2)式 で表される。よって、植物の呼吸や光合成によるネット
のガス交換量の測定は、 (1) 被測定植物を内包するチャンバーへのガスの出入
収支を出口と入口の一定圧力下フローガス濃度変化より
算出する方法。 (2) 密閉したチャンバーの容積とチャンバー内の環境
成分ガスの分圧変化より算出する方法。 等である。また、他の手段として放射性のCO2を用い
ることによって光合成と呼吸を分別的に測定することが
行われていた。さらに、呼吸と光合成の状態を同時に測
定しようとした場合は(1)式と(2)式の差分での測定とな
り光合成または呼吸のみに係るCO2の測定は不可能だ
った。
Next, a method for measuring respiration and photosynthesis will be described. To measure the respiration rate of the plant 1A, O 2 (oxygen) is caused to flow into the chamber 1 from the gas inlet 4, and the plant in the chamber 1 inhales O 2 to generate CO 2
The breathing state is measured by measuring the gas exchange amount, that is, the CO 2 amount at that time. Scheme at that time, C 6 H 12 O 2 + 6O 2 → 6CO 2 + 6H 2 O ····· (1) formula. On the other hand, the photosynthesis of the plant 1A is measured by flowing CO 2 (carbon dioxide) into the chamber 1 through the gas inlet 4 and causing the plant 1A in the chamber 1 to emit a lamp 15 above the chamber 1 to emit light. Irradiate with light. The CO 2 absorbed there is exhausted as O 2 , and at the same time carbon compounds such as sugars are produced. So-called photosynthesis is performed. The reaction formula at that time is represented by the formula 6CO 2 + 6H 2 O → C 6 H 12 O 6 + 6O 2 (2). Therefore, the amount of gas exchange in the net due to plant respiration and photosynthesis is measured by (1) calculating the balance of gas flow into and out of the chamber containing the plant to be measured from the change in flow gas concentration under constant pressure at the outlet and inlet. (2) A method of calculating from the volume of the closed chamber and the partial pressure change of the environmental component gas in the chamber. And so on. In addition, by using radioactive CO 2 as another means, photosynthesis and respiration have been differentially measured. Furthermore, when trying to measure the state of respiration and photosynthesis at the same time, the measurement was based on the difference between the equations (1) and (2), and the measurement of CO 2 related only to photosynthesis or respiration was impossible.

【0004】[0004]

【発明が解決しようとする課題】従来の植物の呼吸と光
合成の測定は、以上のような方法によって測定が行われ
ていたため次のような課題が存在していた。 (1) 光合成と呼吸に係わるO2とCO2の出入を区別し
て同時に測定することが出来なかった。 (2) 光照射下で呼吸と光合成のネットのガス交換を測
定し、呼吸によるガス交換は、遮光条件下で測定せざる
を得なかった。 (3) 放射性のCO2を用いる測定は、危険性があり、ま
た取扱いの難しさに加え半減期の問題もあり、測定方法
には限界があった。
The conventional measurement of respiration and photosynthesis of plants had the following problems because the measurement was performed by the above method. (1) It was not possible to simultaneously measure the inflow and outflow of O 2 and CO 2 related to photosynthesis and respiration. (2) The gas exchange between the respiratory and photosynthetic nets was measured under light irradiation, and the gas exchange due to respiration had to be measured under shaded conditions. (3) The measurement using radioactive CO 2 is dangerous, and in addition to the difficulty of handling and the problem of half-life, the measurement method is limited.

【0005】本発明は、以上のような課題を解決するた
めになされたもので、特に、正確な植物生理の解明のた
め与えられた環境条件下で呼吸や代謝および光合成に関
するガス交換を分別し、同時に測定する植物の呼吸と光
合成の分別同時測定を行うことができるようにした植物
の呼吸と光合成の分別同時測定方法およびその装置を提
供することを目的とする。
The present invention has been made to solve the above problems, and in particular, it separates gas exchanges related to respiration, metabolism and photosynthesis under given environmental conditions for accurate elucidation of plant physiology. An object of the present invention is to provide a method and apparatus for simultaneous and differential measurement of plant respiration and photosynthesis, which are capable of performing simultaneous and simultaneous differential measurement of plant respiration and photosynthesis.

【0006】[0006]

【課題を解決するための手段】本発明による植物の呼吸
と光合成の分別同時測定方法は、植物が設けられたチャ
ンバー内にガスを供給し、O2及びCO2の濃度を測定し
て植物の呼吸と光合成の測定を行うようにした植物の呼
吸と光合成の測定方法において、少なくとも前記O2
びCO2を有するガスを前記チャンバー内に同時に供給
し、前記チャンバーのガス入口及びガス出口からのガス
を採取すると共に、光合成及び呼吸に関わるCO2及び
2を安定同位体元素13Cと18Oでラベルすることによ
12CO21 3CO2182162及びO2の濃度及び
分圧変化を同時測定する方法である。
According to the method for simultaneously measuring the respiration and photosynthesis of plants according to the present invention, a gas is supplied into the chamber in which the plants are installed, and the concentrations of O 2 and CO 2 are measured to measure the concentration of the plants. In a method for measuring respiration and photosynthesis of a plant, which measures respiration and photosynthesis, a gas having at least the O 2 and CO 2 is simultaneously supplied into the chamber, and a gas from a gas inlet and a gas outlet of the chamber is supplied. with collecting, by a label with CO 2 and O 2 stable isotope 13 C and 18 O involved in photosynthesis and respiration 12 CO 2, 1 of 3 CO 2, 18 O 2, 16 O 2 and O 2 This is a method of simultaneously measuring changes in concentration and partial pressure.

【0007】本発明による植物の呼吸と光合成の分別同
時測定装置は、植物が設けられたチャンバー内にガスを
供給し、O2及びCO2の濃度を測定して植物の呼吸と光
合成の測定を行うようにした植物の呼吸と光合成の測定
装置において、前記チャンバーのガス入口に接続され少
なくともO2及びCO2を有するガスを同時に供給するた
めの供給ガス制御装置と、前記チャンバーのガス出口に
接続され前記チャンバー内のガス状態を一定とするため
の環境制御装置と、前記ガス入口及びガス出口に接続さ
れ前記植物のガス交換作用により生じたガスの変化量を
分析・解析するための検出器と、を備え、前記検出器に
より前記植物の呼吸と光合成に関する前記ガスの濃度を
同時測定する構成である。
A simultaneous and simultaneous measurement apparatus for respiration and photosynthesis of plants according to the present invention supplies gas into the chamber in which the plants are installed and measures the concentrations of O 2 and CO 2 to measure respiration and photosynthesis of the plants. In the apparatus for measuring respiration and photosynthesis of a plant to be performed, a supply gas control device connected to a gas inlet of the chamber for simultaneously supplying a gas having at least O 2 and CO 2 and connected to a gas outlet of the chamber And an environmental control device for keeping the gas state in the chamber constant, and a detector connected to the gas inlet and gas outlet for analyzing / analyzing the amount of change in gas generated by the gas exchange action of the plant. And, the concentration of the gas relating to respiration and photosynthesis of the plant is simultaneously measured by the detector.

【0008】さらに詳細には、前記検出器には前記ガス
の質量を分別して分析するための質量分析計が設けら
れ、前記供給ガス制御装置は測定条件に応じた混合ガス
を供給できるようにした構成である。従って、チャンバ
ーにおけるガス入口とガス出口におけるガスを用いて植
物の光合成及び呼吸に関わるCO2及びO2の濃度を同時
に分析することができる。
More specifically, the detector is provided with a mass spectrometer for separating and analyzing the mass of the gas, and the supply gas control device can supply a mixed gas according to the measurement conditions. It is a composition. Therefore, the concentrations of CO 2 and O 2 involved in photosynthesis and respiration of plants can be simultaneously analyzed using the gas at the gas inlet and gas at the chamber.

【0009】[0009]

【発明の実施の形態】以下、図面と共に本発明による植
物の呼吸と光合成の分別同時測定方法およびその装置の
好適な実施の形態について説明する。図1は本発明に係
る植物の呼吸と光合成分別同時計測システムを示す構成
図である。なお、従来例と同一または同等の部分につい
ては、同一符号を用いて説明する。図1において、符号
1で示されるものは、チャンバーであり、このチャンバ
ー1は、ガスを充満するガス室2と被測定物としての植
物1Aへ給水・給肥する水槽3aを留置する水槽室3と
から成り、ガス室2と水槽室3はガスカーテンシール6
により仕切られている。このガスカーテンシール6に
は、ガス環境器7により不活性ガスをガスカーテンシー
ル6に供給して循環させ、ガス室2内のガスと水槽室3
への供給ガスが混合しないようにシールしている。ガス
カーテンに用いるガスは、窒素やアルゴン等の不活性ガ
スが好ましい。また、前記チャンバー1には、ガス入口
4とガス出口5が設けられている。ガス入口4には、前
段に室外気をクリーン化するフィルター11と各種ガス
を混合してチャンバー1内に供給する供給ガス制御装置
8とガス供給量を計測する送気量計10と温度、湿度や
圧力を検出するセンサー16が設けられている。前記チ
ャンバー1のガス出口5から排気されたガスは、センサ
ー16および照光器15と電気信号的に連通する環境制
御装置12を介しガス室2を循環している。前記環境制
御装置12は、前記センサー16や照光器15からの電
気信号によって、ガス組成、気圧、温度、湿度、照度の
測定条件を一定に保つよう制御し、常にガス室2内の測
定環境が一定に保たれている。余剰ガスは、電磁弁13
が開のとき排気され、排気量計14により排気量を測定
し大気中へ排気される。前記検出器20では、ガス採取
装置21にて校正ガス22、室外気およびガス入口4の
ガス、ガス出口5からのガスを採取し、それぞれのガス
をマルチチャンネル型の質量分析計によってそれぞれの
ガス量の分析を行う。なお、この検出器20は、ガス入
口4及びガス出口5のガスと校正ガス22及び外気22
aを採取するガス換気装置21に接続された質量分析計
24と、このガス換気装置21に接続された燃焼換気装
置23及びI/Oインターフェース26と、前記質量分
析計24にA/Dインターフェース25を介して接続さ
れた温度・湿度・照度・制御環境因子計測器32と、デ
ィスプレー28、プリンター29及びハードディスク3
0を有する計測コンピュータ27と、この計測コンピュ
ータ27に計測・解析ソフトウェアー31を介して接続
した計測・解析部33とから構成されている。この計測
・解析部33においては、ガス組成、気圧、温度、湿
度、照度、波長等が周知の手段を用いて計測・解析でき
るように構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION A preferred embodiment of a method for simultaneously measuring the respiration and photosynthesis of a plant and its apparatus according to the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a simultaneous measurement system for respiration of plants and photosynthetic fractionation according to the present invention. The same or equivalent parts as those of the conventional example will be described using the same reference numerals. In FIG. 1, reference numeral 1 denotes a chamber, which is a water chamber 3 in which a gas chamber 2 filled with gas and a water tank 3a for supplying / fertilizing water to a plant 1A as an object to be measured are placed. And the gas chamber 2 and the water tank chamber 3 have a gas curtain seal 6
Is divided by In the gas curtain seal 6, an inert gas is supplied to the gas curtain seal 6 by the gas environment unit 7 and circulated, and the gas in the gas chamber 2 and the water tank chamber 3 are circulated.
It is sealed so that the gas supplied to it does not mix. The gas used for the gas curtain is preferably an inert gas such as nitrogen or argon. A gas inlet 4 and a gas outlet 5 are provided in the chamber 1. At the gas inlet 4, a filter 11 for cleaning the outdoor air in the previous stage and a supply gas control device 8 for supplying various gases to the inside of the chamber 1 and an air flow meter 10 for measuring the gas supply amount, temperature and humidity. A sensor 16 for detecting pressure and pressure is provided. The gas exhausted from the gas outlet 5 of the chamber 1 circulates in the gas chamber 2 through the environment control device 12 that communicates with the sensor 16 and the illuminator 15 in an electric signal manner. The environment control device 12 controls by electric signals from the sensor 16 and the illuminator 15 to keep the measurement conditions of gas composition, atmospheric pressure, temperature, humidity, and illuminance constant, so that the measurement environment in the gas chamber 2 is constantly maintained. It is kept constant. Excess gas is the solenoid valve 13
Is exhausted when is opened, the exhaust amount is measured by the exhaust gas meter 14, and the exhaust gas is exhausted to the atmosphere. In the detector 20, the gas sampling device 21 collects the calibration gas 22, the outdoor air, the gas at the gas inlet 4, and the gas at the gas outlet 5, and each gas is analyzed by a multi-channel mass spectrometer. Perform quantity analysis. The detector 20 includes a gas at the gas inlet 4 and the gas outlet 5, a calibration gas 22 and an outside air 22.
A mass spectrometer 24 connected to the gas ventilation device 21 for sampling a, a combustion ventilation device 23 and an I / O interface 26 connected to the gas ventilation device 21, and an A / D interface 25 to the mass spectrometer 24. Temperature / humidity / illuminance / controlled environment factor measuring instrument 32 connected via a display, display 28, printer 29 and hard disk 3
It comprises a measurement computer 27 having 0, and a measurement / analysis unit 33 connected to the measurement computer 27 via measurement / analysis software 31. The measuring / analyzing unit 33 is configured so that the gas composition, atmospheric pressure, temperature, humidity, illuminance, wavelength, etc. can be measured / analyzed using known means.

【0010】次に、植物・光合成分別同時計測法につい
て説明する。前記供給ガス制御装置8より測定条件に適
宜設定混合したガスを、電磁弁9を開き送気量計10に
より1分当たりの設定送気量を連続計測し、センサー1
6によりガス温度、湿度および圧力を連続監視しガス入
口4より被測定植物が内包されたチャンバー1のガス室
2へ供給する。供給ガスは、空気の成分である窒素7
8.1%酸素20.9%、アルゴン0.9%、二酸化炭素
0.03%およびネオン0.002%に供給ガスを空気成
分と同等に混合して供給したり、ガスの混合比を測定条
件に応じて設定変更して供給可能である。前記ガス室2
へ供給されたガスは、ガス室2に内包した被測定植物の
ガス交換作用によりガス室2内のガス混合比が変化す
る。その変化量を検出器20により分析・解析を行い被
測定植物のガス交換作用の状態を判断する。前記植物1
Aの呼吸作用を測定するには、照光器からは光を照射せ
ず測定を行う。その時の反応式は、 C6H126+6O2→6CO2+6H2O ・・・・・(3)式 である。前記植物の光合成の測定を行うには、照光器か
ら光を被測定植物に向けて照射を行う。その時の反応式
は、 6CO2+6H2O→C6126+6O2 ・・・・・(4)式 前記植物1Aの呼吸と光合成の同時測定において、光合
成が行われると二酸化炭素を吸収し、呼吸が行われると
二酸化炭素が放出される。よって、光合成と呼吸を、C
2の吸収とCO2の放出におきかえて考えることが出来
る。植物は光合成を行うために光を必要とするから、光
のない所では光合成を行わない。つまり、大局的に植物
は日中は光合成を行い、夜は呼吸を行っているといえ
る。しかし、厳密には常に光合成を行いながらも呼吸も
行っている。光がある、ないとではCO2の吸収とCO2
の放出の割合が変化するということであり、また、O2
の吸収とO2の放出の割合が変化するということでもあ
る。呼吸によって出されるCO2の量と、光合成によっ
て吸収されるCO2の量が全く同じに成ったとき、植物
は呼吸をしながら、光合成も行っており、CO2を排出
もしなければ吸収もしない状態、つまり、補償点とな
る。光が強くなればなるほど光合成がよく行われるよう
になる。しかるに、光合成によって大量のCO2が吸収
されるようになると呼吸によるCO2の排出はその中に
隠れてしまい、光が強い場合は、植物は、CO2の吸収
だけを行っているようにみえる。一方、光合成と呼吸の
関係において、重要な物質である糖などの炭素化合物に
注目すると、炭素化合物は光合成によって合成され、呼
吸によって分解される。したがって光合成と呼吸の両方
を行っている植物は、生産を行いながら消費している。
なお、植物が光合成を行っているときに見られる現象
は、 A 炭素化合物ができてくる。 B 二酸化炭素が吸収される。 C 酸素が出てくる。 などである。そこで、呼吸と光合成を分別同時測定する
方法として、光合成、呼吸それぞれに関わるCO2、O2
を校正ガス22からの安定同位体元素13C、18Oでラベ
ルすることにより、12CO213CO2182162
2の濃度、分圧変化を同時測定することが可能であ
る。その反応式は、光合成 613CO2+6H2O→136126+6O2 ・・・・・(5)式 または、 6CO2+6H2 18O→C6126+61816O ・・・・・(6)式 呼吸 C6126+6O2→6CO2+6H2O ・・・・・(7)式 また空気中のO2にO18,O16を添した場合は、光合成 6CO2+6H2O→C62O+6O2 呼吸 C626+6O18・O16→3(CO2+CO1816)+ 3(H218+H216) となる。
Next, the simultaneous measurement method of plant and photosynthetic fractionation will be described. The gas mixed appropriately set to the measurement conditions by the supply gas control device 8 is opened by opening the solenoid valve 9 to continuously measure the set air supply amount per minute by the air supply meter 10, and the sensor 1
The gas temperature, humidity and pressure are continuously monitored by 6 and supplied to the gas chamber 2 of the chamber 1 containing the plant to be measured from the gas inlet 4. The supply gas is nitrogen 7 which is a component of air.
8.1% Oxygen 20.9%, Argon 0.9%, Carbon Dioxide 0.03% and Neon 0.002% can be supplied by mixing the same supply gas as the air component and measuring the gas mixture ratio. It is possible to supply by changing the setting according to the conditions. The gas chamber 2
The gas supplied to the gas chamber 2 changes the gas mixing ratio in the gas chamber 2 due to the gas exchange action of the plant to be measured contained in the gas chamber 2. The amount of change is analyzed and analyzed by the detector 20 to determine the state of gas exchange action of the plant to be measured. The plant 1
In order to measure the respiratory action of A, the measurement is performed without irradiating light from the illuminator. Scheme at that time, C6H 12 O 6 + 6O 2 → 6CO 2 + 6H 2 O ····· (3) is a formula. In order to measure the photosynthesis of the plant, light is irradiated from an illuminator to the plant to be measured. The reaction formula at that time is as follows: 6CO 2 + 6H 2 O → C 6 H 12 O 6 + 6O 2 (4) Simultaneous measurement of respiration and photosynthesis of the plant 1A absorbs carbon dioxide when photosynthesis is performed. However, when breathing is performed, carbon dioxide is released. Therefore, photosynthesis and respiration
It can be considered in place of absorption of O 2 and emission of CO 2 . Since plants need light for photosynthesis, they do not perform photosynthesis in the absence of light. In other words, it can be said that the plants generally perform photosynthesis during the daytime and breathe at night. However, strictly speaking, he is always breathing while performing photosynthesis. With or without light CO 2 absorption and CO 2
Ratio of release is that it changes, also, O 2
It also means that the ratio of absorption of O 2 and emission of O 2 changes. The amount of CO 2 issued by respiration, when the amount of CO 2 absorbed by photosynthesis became exactly the same, while the plant respiration, photosynthesis also done, nor absorb unless the CO 2 to be discharged State, that is, the compensation point. The stronger the light, the better the photosynthesis. However, CO 2 emissions by respiration and CO 2 mass by photosynthesis is to be absorbed hides therein, if the light is strong, the plant appears to have done only absorption of CO 2 . On the other hand, in the relationship between photosynthesis and respiration, focusing on carbon compounds such as sugar, which is an important substance, carbon compounds are synthesized by photosynthesis and decomposed by respiration. Therefore, plants that perform both photosynthesis and respiration consume while producing.
The phenomenon observed when plants are performing photosynthesis is the formation of A A carbon compounds. B Carbon dioxide is absorbed. C Oxygen comes out. And so on. Therefore, as a method for separately measuring respiration and photosynthesis, CO 2 and O 2 related to photosynthesis and respiration respectively.
Is labeled with stable isotopes 13 C and 18 O from the calibration gas 22 to obtain 12 CO 2 , 13 CO 2 , 18 O 2 and 16 O 2 ,
It is possible to simultaneously measure the O 2 concentration and the partial pressure change. The reaction formula is photosynthetic 6 13 CO 2 + 6H 2 O → 13 C 6 H 12 O 6 + 6O 2 ····· (5) type or, 6CO 2 + 6H 2 18 O → C 6 H 12 O 6 +6 18 O 16 O ····· (6) breathing C 6 H 12 O 6 + 6O 2 → 6CO 2 + 6H 2 O ····· (7) formula the O 18 to O 2 in the air, and the O 16 was added In the case, photosynthesis 6CO 2 + 6H 2 O → C 6 H 2 O + 6O 2 breathing C 6 H 2 O 6 + 6O 18 · O 16 → 3 (CO 2 + CO 18 C 16 ) +3 (H 2 O 18 + H 2 O 16 ). Becomes

【0011】[0011]

【発明の効果】本発明による植物の呼吸と光合成の分別
同時測定方法およびその装置は、以上のように構成され
ているため、次のような効果を得ることができる。すな
わち、ガス入口及びガス出口からのガスを採取して光合
成及び呼吸に関わるCO2及びO2を同時に測定すること
ができ、植物の代謝を正確に知ることが可能となる。ま
た、危険性のない安定した計測を達成することができ
る。
EFFECTS OF THE INVENTION Since the plant simultaneous respiration and photosynthesis simultaneous measurement method and apparatus according to the present invention are configured as described above, the following effects can be obtained. That is, CO 2 and O 2 related to photosynthesis and respiration can be simultaneously measured by collecting gas from the gas inlet and the gas outlet, and it becomes possible to accurately know the metabolism of the plant. In addition, stable measurement without danger can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による植物の呼吸と光合成の分別同時測
定装置を示す構成図である。
FIG. 1 is a block diagram showing an apparatus for simultaneously measuring the respiration and photosynthesis of plants according to the present invention.

【図2】従来の装置を示す構成図である。FIG. 2 is a configuration diagram showing a conventional device.

【符号の説明】[Explanation of symbols]

1 チャンバー 1A 植物 4 ガス入口 5 ガス出口 8 供給ガス制御装置 20 検出器 24 質量分析計 1 Chamber 1A Plant 4 Gas Inlet 5 Gas Outlet 8 Supply Gas Control Device 20 Detector 24 Mass Spectrometer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 植物(1A)が設けられたチャンバー(1)内
にガスを供給し、O2及びCO2の濃度を測定して植物(1
A)の呼吸と光合成の測定を行うようにした植物の呼吸と
光合成の測定方法において、少なくとも前記O2及びC
2を有するガスを前記チャンバー(1)内に同時に供給
し、前記チャンバー(1)のガス入口(4)及びガス出口(5)
からのガスを採取すると共に、光合成及び呼吸に関わる
CO2及びO2を安定同位体元素13Cと18Oでラベルする
ことにより12CO213CO2182162及びO2
濃度及び分圧変化を同時測定することを特徴とする植物
の呼吸と光合成の分別同時測定方法。
1. A gas is supplied into a chamber (1) provided with a plant (1A), and the concentrations of O 2 and CO 2 are measured to measure the plant (1).
In the method of respiration and photosynthesis of plants so as to measure the respiration and photosynthesis A), at least the O 2 and C
A gas containing O 2 is simultaneously supplied into the chamber (1), and a gas inlet (4) and a gas outlet (5) of the chamber (1) are supplied.
12 CO 2 , 13 CO 2 , 18 O 2 , 16 O 2 and O by collecting CO 2 and O 2 related to photosynthesis and respiration and labeling them with stable isotopes 13 C and 18 O. A method for simultaneously measuring the respiration and photosynthesis of plants, which comprises simultaneously measuring changes in the concentration and partial pressure of 2 .
【請求項2】 植物(1A)が設けられたチャンバー(1)内
にガスを供給し、O2及びCO2の濃度を測定して植物(1
A)の呼吸と光合成の測定を行うようにした植物(1A)の呼
吸と光合成の測定装置において、前記チャンバー(1)の
ガス入口(4)に接続され少なくともO2及びCO2を有す
るガスを同時に供給するための供給ガス制御装置(8)
と、前記チャンバー(1)のガス出口(5)に接続され前記チ
ャンバー(1)内のガス状態を一定とするための環境制御
装置(12)と、前記ガス入口(4)及びガス出口(5)に接続さ
れ前記植物(1A)のガス交換作用により生じたガスの変化
量を分析・解析するための検出器(20)と、を備え、前記
検出器(20)により前記植物(1A)の呼吸と光合成に関する
前記ガスの濃度を同時測定することを特徴とする植物の
呼吸と光合成の分別同時測定装置。
2. A gas is supplied into a chamber (1) provided with a plant (1A), and the concentrations of O 2 and CO 2 are measured to measure the plant (1).
In a plant (1A) respiration and photosynthesis measuring device adapted to perform respiration and photosynthesis of (A), a gas having at least O 2 and CO 2 connected to a gas inlet (4) of the chamber (1) is supplied. Supply gas control device for simultaneous supply (8)
An environmental control device (12) connected to the gas outlet (5) of the chamber (1) for keeping the gas state in the chamber (1) constant, the gas inlet (4) and the gas outlet (5 ) Is connected to the above-mentioned plant (1A) a detector (20) for analyzing / analyzing the amount of change in the gas produced by the gas exchange action, and the plant (1A) of the detector (20). An apparatus for simultaneously measuring the respiration and photosynthesis of a plant, which simultaneously measures the concentration of the gas relating to respiration and photosynthesis.
【請求項3】 前記検出器(20)には前記ガスの質量を分
別して分析するための質量分析計(24)が設けられ、前記
供給ガス制御装置(8)は測定条件に応じた混合ガスを供
給できる構成であることを特徴とする請求項2記載の植
物の呼吸と光合成の分別同時測定方法。
3. The detector (20) is provided with a mass spectrometer (24) for classifying and analyzing the mass of the gas, and the supply gas control device (8) is a mixed gas according to the measurement conditions. The method for simultaneously determining the respiration and photosynthesis of a plant according to claim 2, wherein the method is capable of supplying the above.
JP7273070A 1995-10-20 1995-10-20 Fractional concurrent measuring method for respiration of plant and photosynthesis and its device Pending JPH09113507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7273070A JPH09113507A (en) 1995-10-20 1995-10-20 Fractional concurrent measuring method for respiration of plant and photosynthesis and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7273070A JPH09113507A (en) 1995-10-20 1995-10-20 Fractional concurrent measuring method for respiration of plant and photosynthesis and its device

Publications (1)

Publication Number Publication Date
JPH09113507A true JPH09113507A (en) 1997-05-02

Family

ID=17522733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7273070A Pending JPH09113507A (en) 1995-10-20 1995-10-20 Fractional concurrent measuring method for respiration of plant and photosynthesis and its device

Country Status (1)

Country Link
JP (1) JPH09113507A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333921A (en) * 2004-05-28 2005-12-08 Kansai Electric Power Co Inc:The Gas balance-measuring device
JP2007071758A (en) * 2005-09-08 2007-03-22 Horiba Ltd Evaluation device of photosynthesis or evaluation method of photosynthesis
JP2007079320A (en) * 2005-09-15 2007-03-29 Univ Waseda Plant carbon dioxide absorption experimental apparatus
CN100386626C (en) * 2003-07-29 2008-05-07 中国科学院沈阳应用生态研究所 Method for measuring tree stem respiratory
JP2010000010A (en) * 2008-06-18 2010-01-07 Horiba Ltd Apparatus for evaluating carbon dioxide absorption or emission function of plant
CN102440153A (en) * 2011-09-09 2012-05-09 中国科学院东北地理与农业生态研究所 Pulse type device for conducting quantitative marking on plant with <13>CO2, and method for marking plant by utilizing same
CN102589923A (en) * 2012-02-10 2012-07-18 浙江大学 Plant 13CO2 mark cultivation-root exudate collection integration device
WO2013006334A2 (en) 2011-07-07 2013-01-10 Dow Agrosciences Llc Variable gas source gas exchange system
CN103598025A (en) * 2013-10-28 2014-02-26 中国科学院东北地理与农业生态研究所 Field in-situ continuous low-abundance 13CO2 isotope labeling device and method
CN104221740A (en) * 2014-10-11 2014-12-24 中国环境科学研究院 Device and method for continuously and quantitatively labeling plants
CN111788991A (en) * 2020-07-31 2020-10-20 中国林业科学研究院林业研究所 Method and device for mutual reciprocal symbiosis of isotope C-N labeled endophytic fungi and host plants

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100386626C (en) * 2003-07-29 2008-05-07 中国科学院沈阳应用生态研究所 Method for measuring tree stem respiratory
JP4522749B2 (en) * 2004-05-28 2010-08-11 関西電力株式会社 Gas balance measuring device
JP2005333921A (en) * 2004-05-28 2005-12-08 Kansai Electric Power Co Inc:The Gas balance-measuring device
JP2007071758A (en) * 2005-09-08 2007-03-22 Horiba Ltd Evaluation device of photosynthesis or evaluation method of photosynthesis
JP2007079320A (en) * 2005-09-15 2007-03-29 Univ Waseda Plant carbon dioxide absorption experimental apparatus
JP2010000010A (en) * 2008-06-18 2010-01-07 Horiba Ltd Apparatus for evaluating carbon dioxide absorption or emission function of plant
EP2729795A4 (en) * 2011-07-07 2015-05-20 Dow Agrosciences Llc Variable gas source gas exchange system
AU2012279353B2 (en) * 2011-07-07 2016-07-21 Dow Agrosciences Llc Variable gas source gas exchange system
WO2013006334A2 (en) 2011-07-07 2013-01-10 Dow Agrosciences Llc Variable gas source gas exchange system
CN102440153A (en) * 2011-09-09 2012-05-09 中国科学院东北地理与农业生态研究所 Pulse type device for conducting quantitative marking on plant with <13>CO2, and method for marking plant by utilizing same
CN102589923A (en) * 2012-02-10 2012-07-18 浙江大学 Plant 13CO2 mark cultivation-root exudate collection integration device
CN103598025B (en) * 2013-10-28 2015-04-15 中国科学院东北地理与农业生态研究所 Field in-situ continuous low-abundance 13CO2 isotope labeling device and method
CN103598025A (en) * 2013-10-28 2014-02-26 中国科学院东北地理与农业生态研究所 Field in-situ continuous low-abundance 13CO2 isotope labeling device and method
CN104221740A (en) * 2014-10-11 2014-12-24 中国环境科学研究院 Device and method for continuously and quantitatively labeling plants
CN111788991A (en) * 2020-07-31 2020-10-20 中国林业科学研究院林业研究所 Method and device for mutual reciprocal symbiosis of isotope C-N labeled endophytic fungi and host plants

Similar Documents

Publication Publication Date Title
Horita et al. Automatic δD and δ18O analyses of multi-water samples using H2-and CO2-water equilibration methods with a common equilibration set-up
CN100416259C (en) Spectroscopic method and its instrument for detecting isotope gas
CN1217179C (en) Method and device for stably testing isotope using spectroscope
JPH09113507A (en) Fractional concurrent measuring method for respiration of plant and photosynthesis and its device
JP2761070B2 (en) Smog monitor and monitoring method
ATE174421T1 (en) CONTROL VENTILATION RATE AND INDOOR AIR QUALITY
US20040018630A1 (en) Method and apparatus to detect a gas by measuring ozone depletion
CN107228923A (en) A kind of preparation method of standard gaseous nitrous acid and generation system
Amman Using 13N as tracer in heterogeneous atmospheric chemistry experiments
Vohra et al. An experimental study of the role of radon and its daughter products in the conversion of sulphur dioxide into aerosol particles in the atmosphere
US3997296A (en) Primary standards
JPH11326314A (en) Method for separating and simultaneously measuring response of respiration and photosynthesis of plant and its device
Templeton et al. Comparative study of a new fluorometric assay mestranol ether in tablets with glc and colorimetric assays
Licki et al. Monitoring and control systems for an EB flue gas treatment pilot plant—Part I. Analytical system and methods
CN105136698A (en) Volatile compound determination method and apparatus thereof
JPH10339669A (en) Method for calibrating ndir spectrometer
EP0857301B1 (en) Ethene meter and method for determining the amount of ethene in a gas
JPH01176942A (en) Gas chromatograph
Paul et al. A multiplexing system for quantifying oxygen fractionation factors in closed chambers
JP2945050B2 (en) Method for determining performance degradation of zero gas generator in ozone concentration measurement device
CN221326411U (en) Atmospheric oxidizing property measuring device
US4404287A (en) Method and apparatus for determining chemical species
JP2003028852A (en) Analyzer for element in sample
JPH06201677A (en) Device and method for obtaining content of no
JPH0320666A (en) Method of detecting decomposable organic carbon compound