JP4512876B2 - Metal fine particles, method for producing metal fine particles, composition containing metal fine particles, etc. - Google Patents

Metal fine particles, method for producing metal fine particles, composition containing metal fine particles, etc. Download PDF

Info

Publication number
JP4512876B2
JP4512876B2 JP2004256783A JP2004256783A JP4512876B2 JP 4512876 B2 JP4512876 B2 JP 4512876B2 JP 2004256783 A JP2004256783 A JP 2004256783A JP 2004256783 A JP2004256783 A JP 2004256783A JP 4512876 B2 JP4512876 B2 JP 4512876B2
Authority
JP
Japan
Prior art keywords
fine particles
metal fine
gold
metal
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004256783A
Other languages
Japanese (ja)
Other versions
JP2005320616A (en
Inventor
佳明 高田
寛樹 平田
純悦 佐藤
大剛 溝口
昌憲 永井
聖人 室内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Mitsubishi Materials Corp
Original Assignee
Dai Nippon Toryo KK
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK, Mitsubishi Materials Corp filed Critical Dai Nippon Toryo KK
Priority to JP2004256783A priority Critical patent/JP4512876B2/en
Publication of JP2005320616A publication Critical patent/JP2005320616A/en
Application granted granted Critical
Publication of JP4512876B2 publication Critical patent/JP4512876B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Cosmetics (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、可視光から近赤外光の波長域において任意の特定波長に対して選択的な光吸収機能を有し、しかもその吸光度が高く、かつ吸光スペクトルの幅が狭く、シャープな吸光特性を有する金属微粒子、特に金微粒子とこれを含有する組成物等に関する。 The present invention has a light absorption function that is selective to any specific wavelength in the visible to near-infrared wavelength range, and has a high absorbance and a narrow absorption spectrum, and sharp absorption characteristics. In particular, the present invention relates to a fine metal particle, particularly a fine gold particle, and a composition containing the same.

金属の微粒子に光を照射するとプラズモン吸収と呼ばれる共鳴吸収現象が生じる。この吸収現象は金属の種類と形状によって吸収波長が異なる。例えば、球状の金微粒子が水に分散した金コロイドは530nm付近に吸収域を持ち、また微粒子の形状を短軸10nm程度のロッド状にすると、ロッドの短軸に起因する530nm付近の吸収の他に、ロッドの長軸に起因する長波長側の吸収を有することが知られている(非特許文献1)。 When a metal fine particle is irradiated with light, a resonance absorption phenomenon called plasmon absorption occurs. This absorption phenomenon has different absorption wavelengths depending on the type and shape of the metal. For example, a colloidal gold particle in which spherical gold fine particles are dispersed in water has an absorption region around 530 nm, and if the shape of the fine particles is made into a rod shape with a minor axis of about 10 nm, the absorption around 530 nm caused by the minor axis of the rod In addition, it is known to have absorption on the long wavelength side due to the long axis of the rod (Non-patent Document 1).

この貴金属微粒子を塗料や樹脂組成物の着色材として用いることが知られており、この着色材を含む樹脂組成物を光学フィルター等の光学材料として用いることが提案されている(特許文献1)。また、光学フィルター材料としては、特定の化学構造を有する染料を含有したカラーフィルター(特許文献2)や、特定の染料と金属錯体とを併せて含有する塗膜を有する光学フィルター(特許文献3)が知られている。前者のカラーフィルターについては、透明基板上に赤、緑、青の3色のスライプ状パターンを有するものが提示されており、後者の光学フィルターについては、750nm〜1100nmの波長域において光透過率が0.01〜30%のものが例示されている。 It is known to use the noble metal fine particles as a colorant for paints and resin compositions, and it has been proposed to use a resin composition containing the colorant as an optical material such as an optical filter (Patent Document 1). Moreover, as an optical filter material, a color filter containing a dye having a specific chemical structure (Patent Document 2), or an optical filter having a coating film containing a specific dye and a metal complex (Patent Document 3). It has been known. As for the former color filter, those having a three-color stripe pattern of red, green, and blue on a transparent substrate are presented. For the latter optical filter, the light transmittance is in a wavelength range of 750 nm to 1100 nm. Examples are 0.01 to 30%.

一方、金属微粒子のプラズモン励起を利用して金属細線パターンを形成する方法も知られている(特許文献4)。これは金属微粒子を平滑な半導体表面や固体金属表面に担持させ、金属微粒子がプラズモン励起に対応して線状に伸長することを利用した方法である。
S−S.Chang etal,Langmuir,1999,15,P701−709 特開平11−80647号公報 特開2001−108815号公報 特開2002−22935号公報 特開2001−64794号公報
On the other hand, a method of forming a fine metal wire pattern using plasmon excitation of metal fine particles is also known (Patent Document 4). This is a method utilizing the fact that metal fine particles are supported on a smooth semiconductor surface or solid metal surface, and the metal fine particles extend linearly in response to plasmon excitation.
S-S. Chang etal, Langmuir, 1999, 15, P701-709 Japanese Patent Laid-Open No. 11-80647 JP 2001-108815 A JP 2002-22935 A JP 2001-64794 A

以上のように、貴金属微粒子を塗料や樹脂組成物の着色材として用いることが知られているが、この貴金属微粒子は球状であり、例えば、金の球状微粒子の場合には得られるプラズモン発色は青、青紫、赤紫等の可視光線に限定されるため、球状金微粒子のプラズモン吸収を利用した組成物やこの組成物を塗布しあるいは練り込んだ基材は、青、青紫、赤紫等の色調に限られていた。 As described above, it is known to use noble metal fine particles as a colorant for paints and resin compositions. However, the noble metal fine particles are spherical, and, for example, in the case of gold spherical fine particles, the plasmon color obtained is blue. The composition utilizing the plasmon absorption of spherical gold fine particles and the base material on which this composition is applied or kneaded has a color tone such as blue, bluish purple, or reddish purple. It was limited to.

また、染料を用いたカラーフィルター等は染料は顔料や金属微粒子と比較して耐熱性、耐光性、および耐薬品性に劣り、長時間経過すると退色や吸収機能の低減を生じるものが多く、信頼性が低いと云う問題があった。一方、固体表面の金属微粒子を利用する方法は、この金属微粒子を固体表面に担持した状態で成長させるものであるため、各種溶媒、バインダーに分散させることができず、塗料化することができない。また、金属微粒子のプラズモン吸収は合成過程における金属微粒子の成長にのみ利用されており、金属微粒子の長軸に起因する特定波長の選択的な光吸収機能を利用したものではない。 In addition, color filters using dyes are inferior in heat resistance, light resistance, and chemical resistance compared to pigments and metal fine particles, and many dyes cause fading and a decrease in absorption function after a long time. There was a problem of low nature. On the other hand, the method using the metal fine particles on the solid surface grows with the metal fine particles supported on the solid surface, and therefore cannot be dispersed in various solvents and binders and cannot be made into a paint. The plasmon absorption of the metal fine particles is used only for the growth of the metal fine particles in the synthesis process, and does not use the selective light absorption function of a specific wavelength caused by the long axis of the metal fine particles.

本発明は、従来のカラーフィルターや金属微粒子の細線化方法などにおける上記問題を解決したものであり、金属微粒子を利用し、かつ金属微粒子をアスペクト比が1.1より大きいロッド状の微粒子(金属ナノロッドと云う)にすることによって、従来の球状金属微粒子では得られない色調を発揮できるようにし、しかもその波長吸収特性および耐熱性等に優れた着色材や光フィルター材料として好適な金属微粒子とその含有組成物および用途を提供する。 The present invention solves the above-mentioned problems in conventional color filters and thinning methods of metal fine particles, and uses metal fine particles, and the metal fine particles are rod-shaped fine particles (metal) having an aspect ratio larger than 1.1. By making it a nanorod), it is possible to exhibit a color tone that cannot be obtained with conventional spherical metal fine particles, and furthermore, metal fine particles suitable as coloring materials and optical filter materials having excellent wavelength absorption characteristics and heat resistance and the like. Provided compositions and uses are provided.

本発明によれば、以下の構成からなる金属微粒子とその含有組成物等が提供される。
〔1〕塩化金酸水溶液にCTAB、アセトン、シクロヘキサン、およびシクロヘキサノンを加えた反応溶液に、還元剤を添加して塩化金酸を還元することによって生成させた金微粒子であって、アスペクト比1.1〜8.0、プラズモン吸収の最大吸収波長550nm〜1200nmであり、最大吸収波長のピーク位置における吸光度が1.53〜3.2(測定濃度1.6×10-4mol/L、溶媒:水)である金微粒子からなることを特徴とする金属微粒子。
〔2〕最大吸収波長のピーク位置における吸光度が1.53〜3.2(測定濃度1.6×10-4mol/L、溶媒:水)であって最大吸収波長の吸光スペクトルの半値幅が200nm以下である金微粒子からなる上記[1]に記載する金属微粒子。
〔3〕塩化金酸水溶液にCTAB、アセトン、シクロヘキサン、およびシクロヘキサノンを加えた反応溶液に、還元剤を添加して塩化金酸を還元することによって、アスペクト比1.1〜8.0、プラズモン吸収の最大吸収波長550nm〜1200nmであり、最大吸収波長のピーク位置における吸光度が1.53〜3.2(測定濃度1.6×10-4mol/L、溶媒:水)、および最大吸収波長の吸光スペクトルの半値幅が200nm以下の金微粒子からなる金属微粒子を製造する方法。
〔4〕上記[1]または上記[2]に記載する金属微粒子を含有する組成物。
〔5〕上記[1]または上記[2]に記載する金属微粒子を、窒素原子および/またはイオウ原子を含有する分散剤と共にバインダーに配合した組成物。
〔6〕上記[4]または上記[5]の組成物によって形成されたコーティング組成物、塗膜、透明被膜、またはフィルム。
〔7〕上記[1]または上記[2]に記載する金属微粒子を含む光学フィルター材料、配線材料、電極材料、触媒、着色剤、化粧品、近赤外線吸収材、偽造防止インク、電磁波シールド材、表面増強蛍光センサー、生体マーカー、ナノ導波路、記録材料、記録素子、偏光材料、ドラッグデリバリーシステム(DDS)用薬物保持体、バイオセンサー、DNAチップ、または検査薬。
According to the present invention, metal fine particles having the following constitution and a composition containing the same are provided.
[1] Gold fine particles produced by adding a reducing agent to a reaction solution obtained by adding CTAB, acetone, cyclohexane, and cyclohexanone to a chloroauric acid aqueous solution to reduce chloroauric acid, and having an aspect ratio of 1. 1 to 8.0, the maximum absorption wavelength of plasmon absorption is 550 nm to 1200 nm, and the absorbance at the peak position of the maximum absorption wavelength is 1.53 to 3.2 (measurement concentration 1.6 × 10 −4 mol / L, solvent: water) Metal fine particles, characterized by comprising gold fine particles.
[2] The absorbance at the peak position of the maximum absorption wavelength is 1.53 to 3.2 (measured concentration 1.6 × 10 −4 mol / L, solvent: water), and the half width of the absorption spectrum at the maximum absorption wavelength is 200 nm or less. The metal fine particles according to the above [1], comprising the gold fine particles.
[3] Addition of a reducing agent to a reaction solution in which CTAB, acetone, cyclohexane, and cyclohexanone are added to an aqueous chloroauric acid solution to reduce chloroauric acid, thereby allowing an aspect ratio of 1.1 to 8.0 and plasmon absorption. The maximum absorption wavelength of 550 nm to 1200 nm, the absorbance at the peak position of the maximum absorption wavelength is 1.53 to 3.2 (measured concentration 1.6 × 10 −4 mol / L, solvent: water), and the absorption spectrum of the maximum absorption wavelength A method for producing metal fine particles comprising gold fine particles having a half width of 200 nm or less.
[4] A composition containing the fine metal particles according to [1] or [2].
[5] A composition in which the metal fine particles described in [1] or [2] above are blended in a binder together with a dispersant containing nitrogen atoms and / or sulfur atoms.
[6] A coating composition, a coating film, a transparent film, or a film formed from the composition according to [4] or [5] .
[7] Optical filter material, wiring material, electrode material, catalyst, colorant, cosmetics, near-infrared absorbing material, anti-counterfeit ink, electromagnetic wave shielding material, surface containing the metal fine particles described in [1] or [2] Enhanced fluorescence sensor, biomarker, nanowaveguide, recording material, recording element, polarizing material, drug delivery system for drug delivery system (DDS), biosensor, DNA chip, or test drug.

〔具体的な説明〕
以下、本発明を実施形態に基づいて具体的に説明する。
本発明の金属微粒子は、塩化金酸水溶液にCTAB、アセトン、シクロヘキサン、およびシクロヘキサノンを加えた反応溶液に、還元剤を添加して塩化金酸を還元することによって生成させた金微粒子であって、アスペクト比1.1〜8.0、プラズモン吸収の最大吸収波長550nm〜1200nmであり、最大吸収波長のピーク位置における吸光度が1.53〜3.2(測定濃度1.6×10-4mol/L、溶媒:水)である金微粒子からなる金属微粒子であり、好ましくは、最大吸収波長のピーク位置における吸光度が1.53〜3.2(測定濃度1.6×10-4mol/L、溶媒:水)であって最大吸収波長の吸光スペクトルの半値幅が200nm以下である金微粒子からなる金属微粒子である。


[Specific description]
Hereinafter, the present invention will be specifically described based on embodiments.
The metal fine particles of the present invention are gold fine particles generated by adding a reducing agent to a reaction solution in which CTAB, acetone, cyclohexane, and cyclohexanone are added to a chloroauric acid aqueous solution to reduce chloroauric acid, The aspect ratio is 1.1 to 8.0, the maximum absorption wavelength of plasmon absorption is 550 nm to 1200 nm, and the absorbance at the peak position of the maximum absorption wavelength is 1.53 to 3.2 (measured concentration 1.6 × 10 −4 mol / L, Solvent: water) is a metal fine particle composed of gold fine particles, and preferably the absorbance at the peak position of the maximum absorption wavelength is 1.53 to 3.2 (measurement concentration 1.6 × 10 −4 mol / L, solvent: water). The metal fine particles are gold fine particles having a half-value width of the absorption spectrum at the maximum absorption wavelength of 200 nm or less.


本発明に係る上記金属微粒子の代表的なものは、粒子の大きさがナノサイズのロッド状金微粒子(金ナノロッドと云う)である。この金ナノロッドは長軸の長さに基づく選択的な波長吸収機能を有しており、この吸光度は短軸に基づく530nm付近の吸光度よりも大きく、550nm〜1200nmの波長域において最大波長吸収効果を有する。アスペクト比が1.1未満であると球状粒子に近くなり、550nm以上の長波長域における波長吸収機能を得るのが難しい。一方、アスペクト比が8.0より大きいと、最大吸収波長の吸光スペクトルの半値幅が200nmよりも大きくなりやすく、シャープな吸光特性を得るのが難しくなる。 A typical example of the metal fine particles according to the present invention is rod-shaped gold fine particles (referred to as gold nanorods) having a nano-sized particle size. This gold nanorod has a selective wavelength absorption function based on the length of the major axis, and this absorbance is larger than the absorbance near 530 nm based on the minor axis, and exhibits a maximum wavelength absorption effect in the wavelength range of 550 nm to 1200 nm. Have. When the aspect ratio is less than 1.1, it is close to a spherical particle, and it is difficult to obtain a wavelength absorption function in a long wavelength region of 550 nm or more. On the other hand, if the aspect ratio is greater than 8.0, the half-value width of the absorption spectrum at the maximum absorption wavelength tends to be larger than 200 nm, and it becomes difficult to obtain sharp absorption characteristics.

一般に、吸光度Aは、光が透過する材料の吸光係数ε、この材料を入れる石英製測定セルの光路長L、材料濃度Cに基づいて、以下に示すLambert Beerの式〔1〕によって与えられる。この吸光係数εは光が通過する材料の特有の値であり、吸光係数εが大きいほど吸光度Aが大きく、ピーク値の高い吸光スペクトルが得られる。
A=εLC …〔1〕
In general, the absorbance A is given by the following Lambert Beer equation [1] based on the extinction coefficient ε of the material through which light passes, the optical path length L of the quartz measurement cell containing the material, and the material concentration C. This extinction coefficient ε is a characteristic value of the material through which light passes. As the extinction coefficient ε increases, the absorbance A increases and an absorption spectrum having a high peak value is obtained.
A = εLC [1]

本発明の金微粒子(金ナノロッド)は、測定試料溶液中の金微粒子濃度1.6×10-4mol/L(溶媒:水)、測定セルの光路長1cmにおいて、550nm〜1200nmの波長に対して、吸光係数が6000〜20000L/mol・cmであり、従って、最大吸収波長のピーク位置の吸光度は概ね0.96〜3.2であり、例えば、実施例1の金微粒子の吸光度は1.53である。


The gold fine particles (gold nanorods) of the present invention have a gold fine particle concentration of 1.6 × 10 −4 mol / L (solvent: water) in the measurement sample solution and a wavelength of 550 nm to 1200 nm at an optical path length of 1 cm. Thus, the extinction coefficient is 6000 to 20000 L / mol · cm. Therefore, the absorbance at the peak position of the maximum absorption wavelength is approximately 0.96 to 3.2 . For example, the absorbance of the gold fine particles of Example 1 is 1. 53.


本発明の金ナノロッドにおいて、最大吸収波長の吸光スペクトルの半値幅は200nm以下である。具体的には、例えば、図1に示す本発明の金微粒子では、最大吸収波長のピーク位置は822nm、ピーク位置の吸光度は約1.53であり、吸光度の半値位置はおのおの短波長側が約760nmおよび長波長側が約910nm、従って、吸光スペクトルの半値幅は約150nmである。 In the gold nanorod of the present invention, the half width of the absorption spectrum at the maximum absorption wavelength is 200 nm or less. Specifically, for example, in the gold fine particle of the present invention shown in FIG. 1, the peak position of the maximum absorption wavelength is 822 nm, the absorbance at the peak position is about 1.53, and the half-value position of the absorbance is about 760 nm on the short wavelength side. And the long wavelength side is about 910 nm, and therefore, the half width of the absorption spectrum is about 150 nm.

上記金ナノロッドは、溶液中の塩化金酸を化学的に還元した後に、光照射を行う合成法において、化学的還元工程および光照射工程の条件を調整することによって得ることができる。例えば、合成溶液として用いる塩化金酸水溶液に、ヘキサデシルトリメチルアンモニウムブロミド(CTAB)を加え、その濃度を0.24〜0.8mol/Lに調整し、これにアセトン、シクロヘキサンを添加し、これにアスコルビン酸等の還元剤を加えて塩化金酸を還元する。この化学的還元の後に光照射を行って、金ナノロッドを成長させる。この場合、CTABと共にシクロヘキサノンを0.01〜1.0wt%添加することによって、最大吸収波長のピーク位置を長波長側に移行させることができる。また、光照射の時間や強度を調整し、また照射後に光を遮断した環境下で静置することなどによって、金微粒子のアスペクト比等を制御することができ、これにより本発明の金微粒子を得ることができる。 The gold nanorod can be obtained by adjusting the conditions of the chemical reduction step and the light irradiation step in a synthesis method in which light irradiation is performed after chemically reducing chloroauric acid in the solution. For example, hexadecyltrimethylammonium bromide (CTAB) is added to an aqueous chloroauric acid solution used as a synthesis solution, the concentration is adjusted to 0.24 to 0.8 mol / L, and acetone and cyclohexane are added thereto. A reducing agent such as ascorbic acid is added to reduce chloroauric acid. This chemical reduction is followed by light irradiation to grow gold nanorods. In this case, the peak position of the maximum absorption wavelength can be shifted to the long wavelength side by adding 0.01 to 1.0 wt% of cyclohexanone together with CTAB. In addition, the aspect ratio of the gold fine particles can be controlled by adjusting the time and intensity of the light irradiation, and standing in an environment where the light is blocked after the irradiation. Obtainable.

本発明の金ナノロッド等の金属微粒子は、これを分散剤、分散媒などと共にバインダー(樹脂)に配合した組成物として利用することができる。この分散剤としては、例えば、数平均分子量が数千以上であって、金ナノロッドに対して吸着性の高い窒素原子およびイオウ原子などの吸着部位を主鎖中に有し、かつ、水、アルコール、その他の非水系有機溶媒などの溶媒に対して親和性のある複数の側鎖を有する塩基性高分子型分散剤が挙げられる。具体的には、市販されているものとして、例えば、ソルスパース13940、ソルスパース24000SC、ソルスパース28000、ソルスパース32000(以上、アビシア社製品)、フローレンDOPA-15B、フローレンDOPA―17(以上、共栄社化学社製品)、アジスパーPB814、アジスパーPB711(以上、味の素ファインテクノ社製品)などが挙げられる。 The metal fine particles such as gold nanorods of the present invention can be used as a composition in which this is blended in a binder (resin) together with a dispersant, a dispersion medium and the like. As this dispersant, for example, the number average molecular weight is several thousand or more, and it has adsorption sites such as nitrogen atoms and sulfur atoms that are highly adsorbable to gold nanorods in the main chain, and water, alcohol And basic polymer type dispersants having a plurality of side chains having affinity for other solvents such as non-aqueous organic solvents. Specifically, as commercially available products, for example, Solsperse 13940, Solsperse 24000SC, Solsperse 28000, Solsperse 32000 (above, Avicia products), Floren DOPA-15B, Floren DOPA-17 (above, Kyoeisha Chemical Co., Ltd. products) Ajisper PB814, Azisper PB711 (Ajinomoto Fine Techno Co., Ltd.) and the like.

塩化金酸を用いた上記製造方法によって合成された金ナノロッドのように、金ナノロッド表面にCTABなどが付着している場合には、上記分散剤を添加することによって金ナノロッド表面に吸着しているCTABが上記分散剤と置換するので、樹脂等に対する分散性を高めることができる。 When CTAB or the like is attached to the gold nanorod surface like the gold nanorod synthesized by the manufacturing method using chloroauric acid, it is adsorbed on the gold nanorod surface by adding the dispersant. Since CTAB replaces the dispersant, the dispersibility of the resin and the like can be improved.

バインダー(樹脂)としては、通常塗料用や成形用に利用されている可視光線から近赤外光領域の光に対して透過性を有する各種樹脂を特に制限無く使用できる。例えばアクリル樹脂、ポリエステル樹脂、アルキド樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂、エポキシ樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、ポリビニルアルコール、等の各種有機樹脂や、ラジカル重合性のオリゴマーやモノマー(場合により硬化剤やラジカル重合開始剤と併用する)が代表的なものとして挙げられる。 As the binder (resin), various resins having transparency to visible light to near-infrared light, which are usually used for paints and moldings, can be used without particular limitation. For example, various organic resins such as acrylic resin, polyester resin, alkyd resin, urethane resin, silicone resin, fluorine resin, epoxy resin, polycarbonate resin, polyvinyl chloride resin, polyvinyl alcohol, radical polymerizable oligomers and monomers (depending on the case A typical example is a combination of a curing agent and a radical polymerization initiator.

本発明の金属微粒子含有組成物において、必要に応じて配合する溶媒としては、バインダーが溶解もしくは安定に分散するような溶媒を適宜選択すればよく、具体的には、水の他に、メタノール、エタノール、プロパノール、ヘキサノール、エチレングリコール等のアルコール類、キシレンやトルエン等の芳香族炭化水素、シクロヘキサン等の脂環式炭化水素、アセトンやメチルエチルケトン等のケトン類、酢酸エチルや酢酸ブチル等のエステル類、エチレングリコールモノブチルエーテル等のエーテル等、あるいはこれらの混合物が代表的なものとして挙げられるが、これらに限定されるものではない。 In the metal fine particle-containing composition of the present invention, as a solvent to be blended as necessary, a solvent in which the binder is dissolved or stably dispersed may be appropriately selected. Specifically, in addition to water, methanol, Alcohols such as ethanol, propanol, hexanol and ethylene glycol; aromatic hydrocarbons such as xylene and toluene; alicyclic hydrocarbons such as cyclohexane; ketones such as acetone and methyl ethyl ketone; esters such as ethyl acetate and butyl acetate; Representative examples include ethers such as ethylene glycol monobutyl ether, and mixtures thereof, but are not limited thereto.

なお、本発明の金属微粒子含有組成物には色補正等の目的で染料や顔料を添加してもよい。例えば、金ナノロッド含有組成物において、金ナノロッドと波長吸収範囲がほぼ同一または異なる二種ないし三種以上の金ナノロッド、染料、顔料を組み合わせて用いることができる。 In addition, you may add dye and a pigment to the metal fine particle containing composition of this invention for the purpose of color correction. For example, in a gold nanorod-containing composition, a combination of two or more gold nanorods, dyes, and pigments having a wavelength absorption range substantially the same as or different from that of the gold nanorod can be used.

本発明の金属微粒子含有組成物は、例えば、金属微粒子を分散剤の存在下で分散媒に分散させ、この分散液をバインダー(樹脂)と混合することによって得ることができる。この金属微粒子をバインダー(樹脂)に配合した組成物は塗料などのコーティング材料として用いることができる。例えば、金ナノロッドを含む樹脂組成物を光学フィルターとして使用する場合には、このコーティング組成物の金ナノロッドの含有量は例えばバインダー(樹脂)100重量部に対して、0.01重量部〜90重量部が適当である。金ナノロッドの添加量が上記範囲より少ないと十分な所望の効果が得ることが難しくなる。一方、添加量が上記範囲よりも多いとコストの面で不利である。 The metal fine particle-containing composition of the present invention can be obtained, for example, by dispersing metal fine particles in a dispersion medium in the presence of a dispersant and mixing this dispersion with a binder (resin). A composition in which the metal fine particles are blended with a binder (resin) can be used as a coating material such as a paint. For example, when a resin composition containing gold nanorods is used as an optical filter, the content of gold nanorods in this coating composition is, for example, 0.01 to 90 parts by weight with respect to 100 parts by weight of a binder (resin). The part is appropriate. If the amount of gold nanorods added is less than the above range, it is difficult to obtain a sufficient desired effect. On the other hand, if the addition amount is larger than the above range, it is disadvantageous in terms of cost.

本発明の金属ナノロッド含有組成物はコーティング組成物ないし塗料組成物、塗膜、フィルム、または板材など多様な形態で用いることができる。さらに、この金属ナノロッド含有組成物によって形成されたフィルター層を有する光学フィルターを得ることができる。具体的には、例えば、(イ)可視光線および近赤外光を吸収したい透明基材に直接に本発明の組成物を塗布もしくは印刷し、可視光線・近赤外光吸収フィルターとしての硬化塗膜を形成させる。(ロ)本発明の組成物をフィルム状や板状等に形成し、その組成物を可視光線・近赤外光吸収フィルターとして可視光線・近赤外光を吸収したい透明基材に積層もしくは包囲する。(ハ)本発明の組成物によって形成した上記塗膜やフィルムなどの形成物を透明なガラス製もしくはプラスチック製基材に積層させ、その積層体を可視光線・近赤外光吸収フィルターとして可視光線・近赤外光を吸収したい基材に積層もしくは包囲して用いる。なお、上記各使用形態において、光学フィルターの厚さは概ね0.01μm〜1mmが適当であり、コストや光透過性等を考慮すると0.05μm〜300μmが好ましい。 The metal nanorod-containing composition of the present invention can be used in various forms such as a coating composition or a coating composition, a coating film, a film, or a plate material. Furthermore, an optical filter having a filter layer formed with the metal nanorod-containing composition can be obtained. Specifically, for example, (a) the composition of the present invention is directly applied or printed on a transparent base material that wants to absorb visible light and near infrared light, and a cured coating as a visible light / near infrared light absorbing filter is applied. A film is formed. (B) The composition of the present invention is formed into a film, plate, or the like, and the composition is laminated or surrounded as a visible light / near infrared light absorbing filter on a transparent base material to absorb visible light / near infrared light To do. (C) The above-mentioned coating film or film formed from the composition of the present invention is laminated on a transparent glass or plastic substrate, and the laminate is visible light as a visible light / near infrared light absorption filter.・ Used by laminating or surrounding a base material that wants to absorb near infrared light. In each of the above usage forms, the thickness of the optical filter is generally about 0.01 μm to 1 mm, and 0.05 μm to 300 μm is preferable in consideration of cost, light transmittance, and the like.

本発明の金属ナノロッド含有組成物は、この金属ナノロッドが分散した水分散液をその範囲に含む。この金属ナノロッド含有組成物の使用方法は限定されない。例えば、該金ナノロッド含有組成物は刷毛塗り、吹き付け、ロールコーティング、スピンコーティング、ディップコーティングなどの各種の塗布方法によって使用することができる。また、塗布のみならず、該金属ナノロッド含有組成物を鋳型に注入し成形する方法、射出成形する方法、金属ナノロッド含有組成物をバインダー(樹脂)に練りこみ成形する方法などによって使用することができる。なお、使用態様はこれらに限定されない。 The metal nanorod-containing composition of the present invention includes an aqueous dispersion in which the metal nanorods are dispersed. The method of using this metal nanorod-containing composition is not limited. For example, the gold nanorod-containing composition can be used by various application methods such as brushing, spraying, roll coating, spin coating, dip coating, and the like. Moreover, it can be used not only by coating but also by a method of injecting and molding the metal nanorod-containing composition into a mold, a method of injection molding, a method of kneading the metal nanorod-containing composition into a binder (resin), and the like. . In addition, a usage aspect is not limited to these.

また、基材が透明なガラスまたはプラスチックなどに本発明の金属ナノロッドを配合した組成物は透明基材として各種材料に利用することができる。例えば、金微粒子を樹脂に練り込んだ透明な高分子フィルムや、金微粒子が表面に分散した被覆層を有する透明基材は、波長800nm〜1200nmの近赤外線域の特定波長を吸収する光学フィルター材料として用いることができる。 Moreover, the composition which mix | blended the metal nanorod of this invention with the glass or plastics etc. with which a base material is transparent can be utilized for various materials as a transparent base material. For example, a transparent polymer film in which gold fine particles are kneaded into a resin, or a transparent base material having a coating layer in which gold fine particles are dispersed on the surface is an optical filter material that absorbs a specific wavelength in the near-infrared region of wavelengths from 800 nm to 1200 nm. Can be used as

さらに、本発明の金属ナノロッドないし金属ナノロッド含有組成物は、配線材料、電極材料、触媒、着色剤、化粧品、近赤外線吸収材、偽造防止インク、電磁波シールド材、表面増強蛍光センサー、生体マーカー、ナノ導波路、記録材料、記録素子、偏光材料、ドラッグデリバリーシステム(DDS)用薬物保持体、バイオセンサー、DNAチップ、または検査薬の材料として用いることができる。 Furthermore, the metal nanorods or metal nanorod-containing compositions of the present invention include wiring materials, electrode materials, catalysts, colorants, cosmetics, near-infrared absorbing materials, anti-counterfeiting inks, electromagnetic wave shielding materials, surface-enhanced fluorescent sensors, biomarkers, nano It can be used as a material for waveguides, recording materials, recording elements, polarizing materials, drug delivery systems (DDS), biosensors, DNA chips, or test drugs.

具体的には、本発明の金属ナノロッドを溶液中に分散させものを偽造防止インクの材料などに用いることができる。この偽造防止インクは金属ナノロッドの特定波長吸収能、散乱光、または蛍光を検出方法として利用する。例えば金ナノロッドは600〜1500nmの波長域で特定の波長を吸収する性質を有するので、この範囲に検出波長を設定する。特定吸収波長を760〜1500nmの近赤外線領域に設定することによって、可視光領域で透明なインビジブルインキが得られ、これは近赤外線領域では識別可能であるので、偽造防止インクとして用いることができる。このインクは金属ナノロッドを使用することによって、インクを塗布した膜は耐候性、耐熱性、耐薬品性に優れる。また、金属ナノロッドの表面処理に用いる分散剤は使用する溶媒に相溶するものを選択すればよく、従って偽装防止インクの溶媒は適宜選択可能である。 Specifically, the metal nanorods of the present invention dispersed in a solution can be used as a material for anti-counterfeit ink. This anti-counterfeit ink uses a specific wavelength absorption ability, scattered light, or fluorescence of a metal nanorod as a detection method. For example, a gold nanorod has a property of absorbing a specific wavelength in a wavelength range of 600 to 1500 nm, and thus a detection wavelength is set within this range. By setting the specific absorption wavelength in the near infrared region of 760 to 1500 nm, a transparent invisible ink is obtained in the visible light region, which can be identified in the near infrared region and can be used as an anti-counterfeit ink. By using metal nanorods for this ink, the film coated with the ink is excellent in weather resistance, heat resistance, and chemical resistance. Further, the dispersant used for the surface treatment of the metal nanorods may be selected from those that are compatible with the solvent to be used. Therefore, the solvent for the anti-fake ink can be selected as appropriate.

また、本発明の金属ナノロッドは着色剤として化粧品に用いることができる。本発明の金属ナノロッドは油性材料に分散させたときに、肉眼で粒子として認識し難く、塗布したときに透明性の高い塗膜が得られる。また、この化粧品は本発明の金属ナノロッドを少量添加することによって着色カが強く、高い彩度が得られる。 Moreover, the metal nanorod of this invention can be used for cosmetics as a coloring agent. When the metal nanorods of the present invention are dispersed in an oily material, they are difficult to recognize as particles with the naked eye, and when applied, a highly transparent coating film is obtained. In addition, this cosmetic product is strong in coloring by adding a small amount of the metal nanorods of the present invention, and high chroma is obtained.

さらに、金属ナノロッドを導電物質とする導電性ペーストを配線材料や電極材料に用いることができる。絶縁基材上にこの導電性ペーストを印刷などによって塗布し、乾燥(焼成)して形成した配線および電極は導電性および耐マイグレーション性に優れる。この導電性ペーストは、例えば、金属ナノロッド100重量部に対しバインダーを1〜20重量部含むものが用いられる。 Furthermore, a conductive paste using metal nanorods as a conductive substance can be used as a wiring material or an electrode material. Wirings and electrodes formed by applying this conductive paste on an insulating base material by printing or the like and drying (firing) are excellent in conductivity and migration resistance. As this conductive paste, for example, a paste containing 1 to 20 parts by weight of binder with respect to 100 parts by weight of metal nanorods is used.

金属ナノ粒子をガラス基板表面に高密度に固定することによって赤外線吸収や蛍光発光の現象が増幅されることが知られている。この現象を利用した分光法はそれぞれ表面増強赤外分光法(Surface Enhanced IR Spectroscopy:SEIRS)、表面増強蛍光分光法(Surface Enhanced Fluorecence Spectroscopy:SEFS)と呼ばれている。なかでもSEFSは簡便さに優れていると言われている。本発明の金属ナノロッドはこの表面増強赤外分光法や表面増強蛍光分光法に基づくセンサー材料として好適である。例えば、チオール末端を持つシラン処理剤(3-mercaptopropyltrimethylsilane等)で処理した金ナノロッドをガラス基板に高密度に固定したものは、金ナノロッドが550nm〜800nmの波長域において吸光度の小さい波長領域が存在することから、この領域に蛍光を発する蛍光物質(例えばローダミン系蛍光色素など)をマーカーとして用いるSEFS分光法センサーに適している。 It is known that infrared absorption and fluorescence emission phenomena are amplified by fixing metal nanoparticles on a glass substrate surface at high density. Spectroscopy using this phenomenon is called surface enhanced infrared spectroscopy (SEIRS) and surface enhanced fluorescence spectroscopy (SEFS), respectively. Among these, SEFS is said to be excellent in convenience. The metal nanorod of the present invention is suitable as a sensor material based on this surface enhanced infrared spectroscopy or surface enhanced fluorescence spectroscopy. For example, when gold nanorods treated with a thiol-terminated silane treating agent (3-mercaptopropyltrimethylsilane, etc.) are fixed to a glass substrate at a high density, the gold nanorods have a wavelength region with low absorbance in the wavelength range of 550 nm to 800 nm. Therefore, it is suitable for a SEFS spectroscopic sensor using a fluorescent substance (for example, rhodamine fluorescent dye) that emits fluorescence in this region as a marker.

さらに、本発明の金属ナノロッドは近赤外線に応答する生体マーカとして利用することができる。例えば750nm〜1100nmの近赤外線は有機物には殆ど吸収されないが、金ナノロッドはそのアスペクト比により750〜1100nmの波長域において特有の吸光特性を有することができる。従って、生体の特定部位が金ナノロッドで染色されると、近赤外線の照射によってその部位に近赤外線の吸収が生じるので、その位置を把握することができる。従って、これまでの方法では試料の懸濁や着色のために計測不能であった厚みのある生体材料についても、金ナノロッドで染色された任意の部分を観察することが可能になる。 Furthermore, the metal nanorod of the present invention can be used as a biomarker that responds to near infrared rays. For example, near-infrared rays of 750 nm to 1100 nm are hardly absorbed by organic substances, but gold nanorods can have specific light absorption characteristics in a wavelength region of 750 to 1100 nm depending on the aspect ratio. Therefore, when a specific part of a living body is stained with gold nanorods, near-infrared absorption occurs in the part due to near-infrared irradiation, so that the position can be grasped. Therefore, it is possible to observe an arbitrary portion stained with gold nanorods even for a thick biomaterial that has been impossible to measure due to suspension or coloring of the sample by the conventional methods.

具体的には、生体親和性の高い化合物、例えばポリエチレングリコール、リン脂質、糖鎖、抗体などによって被覆した本発明の金ナノロッドを用いて生体を染色する。ポリエチレングリコールやリン脂質で被覆した金ナノロッドは特定の臓器や組織に局在せずに均一に染色する目的に適している。特にポリエチレングリコールは生体の分解作用を受け難いうえに細胞透過性も高いため生体染色用被覆材として適している。一方、糖鎖や抗体は特定の臓器や組織に集積されるために特定の臓器や組織を染色する目的に適している。これらの材料によって被覆された金ナノロッドを用いることによって、従来は観察できなかった生体材料についても観察することが可能になる。 Specifically, the living body is stained using the gold nanorod of the present invention coated with a compound having high biocompatibility, such as polyethylene glycol, phospholipid, sugar chain, antibody, and the like. Gold nanorods coated with polyethylene glycol or phospholipid are suitable for the purpose of uniform staining without being localized in a specific organ or tissue. In particular, polyethylene glycol is less susceptible to biological degradation and has high cell permeability, so it is suitable as a coating material for biological staining. On the other hand, since sugar chains and antibodies accumulate in specific organs and tissues, they are suitable for the purpose of staining specific organs and tissues. By using gold nanorods coated with these materials, it is possible to observe biomaterials that could not be observed conventionally.

本発明の金属ナノロッドを一次元に密度高くかつ規則正しく配列すると、ナノ粒子近傍に生成する近接場光の相互作用によって粒子間の光の伝搬が可能になり、これにより一次元的な導波に適したナノ導波路を作成することができる。例えば、次のような方法でナノ導波路を作成することできる。まず原子間力顕微鏡(AFM)または走査トンネル顕微鏡(STM)をマニュピレーターとして用いて金属ナノロッドを一次元的に配列させる。次に、一次元的に配列させた金属ナノロッドの配列の末端に発光性ナノ粒子(酸化亜鉛、CdTeなど)を固定し、反対側の配列の末端に近接場顕微鏡の光ファイバーセンサーを位置させる。このような構造によってナノ導波路を作成することができる。本発明の金属ナノロッドはこのようなナノ導波路の材料として好適である。 When the metal nanorods of the present invention are densely and regularly arranged in one dimension, light can be propagated between the particles by the interaction of near-field light generated in the vicinity of the nanoparticles, which makes it suitable for one-dimensional waveguide. Nanowaveguides can be created. For example, a nanowaveguide can be created by the following method. First, metal nanorods are arranged one-dimensionally using an atomic force microscope (AFM) or a scanning tunneling microscope (STM) as a manipulator. Next, light emitting nanoparticles (zinc oxide, CdTe, etc.) are fixed to the end of the array of metal nanorods arranged one-dimensionally, and the optical fiber sensor of the near-field microscope is positioned at the end of the opposite array. A nano-waveguide can be created with such a structure. The metal nanorod of the present invention is suitable as a material for such a nanowaveguide.

本発明の金属微粒子(金属ナノロッド)は、アスペクト比が1.1〜8.0であり、ロッドの長軸に起因して、400nm〜1200nmの可視光から近赤外光の波長域において選択的な波長吸収機能を有し、従って各種の色調を発揮させることができる。また、本発明の金属微粒子は最大吸収波長のピーク位置における吸光係数が6000〜20000L/mol・cm(測定濃度1.6×10-4mol/L、溶媒:水)であって優れた吸光度を有し、さらには最大吸収波長の吸光スペクトルの半値幅が200nm以下であって吸光スペクトルの幅が狭く、従って、シャープな吸光特性を有するので、周囲の波長に対する影響が小さく、彩度が高い色調を得ることができる。また、本発明の金属微粒子は金属質であるので、耐熱性、耐光性、および耐薬品性に優れるので、これを含有する組成物は長期間の使用においても退色や吸収機能の低減を生じることがなく、信頼性が高い。 The metal fine particles (metal nanorods) of the present invention have an aspect ratio of 1.1 to 8.0, and are selectively in the wavelength range from 400 nm to 1200 nm from visible light to near infrared light due to the long axis of the rod. Therefore, various color tones can be exhibited. Further, the metal fine particles of the present invention have an excellent absorbance with an extinction coefficient of 6000 to 20000 L / mol · cm (measurement concentration 1.6 × 10 −4 mol / L, solvent: water) at the peak position of the maximum absorption wavelength. Furthermore, the half width of the absorption spectrum at the maximum absorption wavelength is 200 nm or less and the width of the absorption spectrum is narrow. Therefore, since it has a sharp absorption characteristic, it has a small influence on the surrounding wavelengths and obtains a color tone with high saturation. be able to. In addition, since the metal fine particles of the present invention are metallic, they are excellent in heat resistance, light resistance, and chemical resistance. Therefore, a composition containing the same may cause fading and a reduction in absorption function even in long-term use. There is no high reliability.

以下、本発明を実施例によって具体的に示す。なお、以下の実施例は主に金ナノロッドに関し、800nm〜900nmの波長域における光吸収機能を示しているが、金ナノロッドのアスペクト比を変更することによって550nm〜1200nmまでの波長域についても同様の光吸収機能を有することができる。分光特性は日本分光株式会社製品のV−570で測定を行った。また、他の金属においても同様の結果を得ることができる。 Hereinafter, the present invention will be specifically described by way of examples. In addition, although the following examples mainly show the light absorption function in the wavelength range of 800 nm to 900 nm with respect to the gold nanorod, the same applies to the wavelength range of 550 nm to 1200 nm by changing the aspect ratio of the gold nanorod. It can have a light absorption function. Spectral characteristics were measured with V-570 manufactured by JASCO Corporation. Similar results can be obtained with other metals.

[金微粒子の製造方法]
0.50mol/lのCTAB(Hexadecyltrimethylammonium Bromide)水溶液50mlに24mmol/lの塩化金酸水溶液5ml、アセトン1ml、シクロヘキサン1ml、シクロヘキサノン1ml、および10mmol/lの硝酸銀水溶液5mlを加えて反応溶液とした。この反応溶液に40mmol/lのアスコルビン酸(AS)水溶液を5ml添加して化学還元を行った。AS水溶液を添加した直後に反応溶液はオレンジ色から透明な溶液に変化した。透明になった溶液を容量100mlのビーカーに入れ、UV照射器(高圧水銀ランプ)の紫外線をビーカー上部より合成溶液に直接5分間照射した。光照射後、そのまま静置して1時間後に保存容器に移し、その溶液を水で10倍(体積比、金微粒子濃度1.6×10-4mol/l)に希釈し、吸光スペクトル測定試料溶液とした。この溶液の吸光スペクトルを図1に示した。
図示するように、この金微粒子(金ナノロッド)は、最大吸収波長のピーク位置は822nm、吸光度の半値位置はおのおの短波長側が約760nmおよび長波長側が約910nmであり、従って吸光スペクトルの半値幅は約150nmである。また、金微粒子濃度1.6×10-4mol/L、測定セルの長さ1cmにおいて、最大吸収波長のピーク位置の吸光度は1.53であり、従って、Lambert Beerの式〔1〕により、吸光係数は約9563L/mol・cmである。
[Production method of gold fine particles]
A reaction solution was prepared by adding 5 ml of a 24 mmol / l chloroauric acid aqueous solution, 1 ml of acetone, 1 ml of cyclohexane, 1 ml of cyclohexanone, and 5 ml of a 10 mmol / l aqueous silver nitrate solution to 50 ml of a 0.50 mol / l CTAB (Hexadecyltrimethylammonium Bromide) solution. To this reaction solution, 5 ml of 40 mmol / l ascorbic acid (AS) aqueous solution was added for chemical reduction. Immediately after the AS aqueous solution was added, the reaction solution changed from orange to a clear solution. The transparent solution was put into a beaker having a capacity of 100 ml, and the synthetic solution was directly irradiated from the upper part of the beaker for 5 minutes with UV light from a UV irradiator (high pressure mercury lamp). After light irradiation, the sample is left as it is and transferred to a storage container after 1 hour. The solution is diluted 10 times with water (volume ratio, gold fine particle concentration 1.6 × 10 −4 mol / l), and an absorption spectrum measurement sample. It was set as the solution. The absorption spectrum of this solution is shown in FIG.
As shown in the figure, this gold fine particle (gold nanorod) has a peak position of the maximum absorption wavelength of 822 nm, and the half-value position of absorbance is about 760 nm on the short wavelength side and about 910 nm on the long wavelength side. About 150 nm. Further, when the gold fine particle concentration is 1.6 × 10 −4 mol / L and the length of the measurement cell is 1 cm, the absorbance at the peak position of the maximum absorption wavelength is 1.53. Therefore, according to the Lambert Beer equation [1], The extinction coefficient is about 9563 L / mol · cm.

[分散剤で表面処理された金微粒子]
分散剤(アビシア社製品:ソルスパース24000SC)0.1gをトルエン10gで溶解し、この分散剤トルエン溶液中に、実施例1で合成した金ナノロッド(短軸の平均長さ10nm、長軸の平均長さ42nm、アスペクト比4.2)水分散液50gを入れ、撹拌機(回転数300rpm)で10分間攪拌した。この溶液中に、エタノールを30g添加し、24時間静置した。エタノールを添加することによってCTABの溶解度が高くなり、金ナノロッド表面に吸着していたCTABが脱離し、分散剤の窒素部位が金ナノロッドに吸着してCTABと置き換わることによって表面処理が行われる。
静置した混合液は無色透明の水相と鮮やかな赤色のトルエン相に分離した。その後、有機溶媒層のみを抽出し、さらにエバポレーターを用いて余剰のトルエンを除去して、トルエンの金ナノロッド濃縮液(金微粒子含有率10wt%、固形分40wt%)を得た。この濃縮液をトルエンで10000倍(体積比)に希釈したところ凝集を起こさず、金ナノロッドは安定に分散していた。この分散液の吸光スペクトルを図2に示した。
図2に示すように、上記分散剤の表面処理によって、吸収スペクトルは変化し、最大吸収波長のピーク位置は822nmから864nmに移動している。これは金ナノロッドの表面物質の屈折率変化によるものである。
[Gold fine particles surface-treated with dispersant]
Dispersant (Abyssia product: Solsperse 24000SC) 0.1 g was dissolved in 10 g of toluene, and gold nanorods synthesized in Example 1 (average length of short axis 10 nm, average length of long axis) were dissolved in toluene solution of this dispersant. 42 nm, aspect ratio 4.2) 50 g of an aqueous dispersion was added and stirred for 10 minutes with a stirrer (rotation speed 300 rpm). To this solution, 30 g of ethanol was added and allowed to stand for 24 hours. By adding ethanol, the solubility of CTAB increases, CTAB adsorbed on the gold nanorod surface is desorbed, and the nitrogen site of the dispersing agent is adsorbed on the gold nanorod and is replaced with CTAB.
The liquid mixture left still was separated into a colorless and transparent aqueous phase and a bright red toluene phase. Thereafter, only the organic solvent layer was extracted, and excess toluene was removed using an evaporator to obtain a toluene gold nanorod concentrate (gold fine particle content 10 wt%, solid content 40 wt%). When this concentrate was diluted 10,000 times (volume ratio) with toluene, no aggregation occurred and the gold nanorods were stably dispersed. The absorption spectrum of this dispersion is shown in FIG.
As shown in FIG. 2, the absorption spectrum is changed by the surface treatment of the dispersant, and the peak position of the maximum absorption wavelength is shifted from 822 nm to 864 nm. This is due to a change in the refractive index of the surface material of the gold nanorod.

[金微粒子含有組成物およびフィルム]
実施例2の金ナノロッド濃縮液5gをラジカル重合性のウレタン系オリゴマーとラジカル重合開始剤の混合物20gに混合して塗料化した。この塗料は光を遮蔽した状態で室温下に3ヶ月以上放置しても、変色や沈降を生成せず安定であった。
この塗料をガラス板に塗布し(金微粒子含有率1wt%、乾燥膜厚10μm)、透過スペクトルを測定した。この結果を図3に示した。図示するように、図2の最大吸収波長のピーク位置に相当する波長付近(870nm)の透過率が最も低く、金ナノロッドにより特定波長が吸収されていることが確認された。
[Composition and film containing gold fine particles]
5 g of the gold nanorod concentrate of Example 2 was mixed with 20 g of a mixture of a radical polymerizable urethane oligomer and a radical polymerization initiator to form a paint. Even when this paint was left at room temperature for 3 months or more in a light-shielded state, it was stable without causing discoloration or sedimentation.
This paint was applied to a glass plate (gold fine particle content 1 wt%, dry film thickness 10 μm), and the transmission spectrum was measured. The results are shown in FIG. As shown in the figure, the transmittance in the vicinity of the wavelength corresponding to the peak position of the maximum absorption wavelength in FIG. 2 (870 nm) was the lowest, and it was confirmed that the specific wavelength was absorbed by the gold nanorods.

実施例1の金微粒子(金ナノロッド)水分散液の吸光スペクトル図Absorption spectrum of gold fine particle (gold nanorod) aqueous dispersion of Example 1 実施例2の金ナノロッド濃縮液の吸光スペクトル図Absorption spectrum of gold nanorod concentrate of Example 2 実施例3の金ナノロッド含有塗料による塗膜の透過スペクトル図Transmission spectrum diagram of coating film with gold nanorod-containing paint of Example 3

Claims (7)

塩化金酸水溶液にCTAB、アセトン、シクロヘキサン、およびシクロヘキサノンを加えた反応溶液に、還元剤を添加して塩化金酸を還元することによって生成させた金微粒子であって、アスペクト比1.1〜8.0、プラズモン吸収の最大吸収波長550nm〜1200nmであり、最大吸収波長のピーク位置における吸光度が1.53〜3.2(測定濃度1.6×10 -4 mol/L、溶媒:水)である金微粒子からなることを特徴とする金属微粒子。 Gold fine particles produced by adding a reducing agent to a reaction solution obtained by adding CTAB, acetone, cyclohexane, and cyclohexanone to a chloroauric acid aqueous solution to reduce chloroauric acid, and having an aspect ratio of 1.1 to 8 0.0, gold having a maximum absorption wavelength of plasmon absorption of 550 nm to 1200 nm and an absorbance at the peak position of the maximum absorption wavelength of 1.53 to 3.2 (measurement concentration 1.6 × 10 −4 mol / L, solvent: water) fine metal particles, characterized in that it consists of fine particles. 最大吸収波長のピーク位置における吸光度が1.53〜3.2(測定濃度1.6×10The absorbance at the peak position of the maximum absorption wavelength is 1.53 to 3.2 (measured concentration 1.6 × 10 -4-Four mol/L、溶媒:水)であって最大吸収波長の吸光スペクトルの半値幅が200nm以下である金微粒子からなる請求項1に記載する金属微粒子。2. The metal fine particles according to claim 1, wherein the metal fine particles are made of gold fine particles having a half-value width of an absorption spectrum at a maximum absorption wavelength of 200 nm or less. 塩化金酸水溶液にCTAB、アセトン、シクロヘキサン、およびシクロヘキサノンを加えた反応溶液に、還元剤を添加して塩化金酸を還元することによって、アスペクト比1.1〜8.0、プラズモン吸収の最大吸収波長550nm〜1200nmであり、最大吸収波長のピーク位置における吸光度が1.53〜3.2(測定濃度1.6×10By adding a reducing agent to a reaction solution in which CTAB, acetone, cyclohexane, and cyclohexanone are added to an aqueous chloroauric acid solution, the chloroauric acid is reduced to reduce the aspect ratio to 1.1 to 8.0 and the maximum absorption of plasmon absorption. The wavelength is 550 nm to 1200 nm, and the absorbance at the peak position of the maximum absorption wavelength is 1.53 to 3.2 (measured concentration 1.6 × 10 -4-Four mol/L、溶媒:水)、および最大吸収波長の吸光スペクトルの半値幅が200nm以下の金微粒子からなる金属微粒子を製造する方法。mol / L, solvent: water), and a method of producing metal fine particles comprising gold fine particles having a half-value width of an absorption spectrum at the maximum absorption wavelength of 200 nm or less. 請求項1または請求項2に記載する金属微粒子を含有する組成物。 A composition containing the metal fine particles according to claim 1 or 2. 請求項1または請求項2に記載する金属微粒子を、窒素原子および/またはイオウ原子を含有する分散剤と共にバインダーに配合した組成物。 The composition which mix | blended the metal microparticles of Claim 1 or Claim 2 with the binder containing a nitrogen atom and / or a sulfur atom in the binder. 請求項4または請求項5の組成物によって形成されたコーティング組成物、塗膜、透明被膜、またはフィルム。
A coating composition, coating film, transparent film, or film formed by the composition of claim 4 or claim 5 .
請求項1または請求項2に記載する金属微粒子を含む光学フィルター材料、配線材料、電極材料、触媒、着色剤、化粧品、近赤外線吸収材、偽造防止インク、電磁波シールド材、表面増強蛍光センサー、生体マーカー、ナノ導波路、記録材料、記録素子、偏光材料、ドラッグデリバリーシステム(DDS)用薬物保持体、バイオセンサー、DNAチップ、または検査薬。 An optical filter material, a wiring material, an electrode material, a catalyst, a colorant, a cosmetic, a near-infrared absorbing material, an anti-counterfeit ink, an electromagnetic wave shielding material, a surface-enhanced fluorescent sensor, a living body containing the metal fine particles according to claim 1 or 2 Marker, nanowaveguide, recording material, recording element, polarizing material, drug carrier for drug delivery system (DDS), biosensor, DNA chip, or test drug.
JP2004256783A 2003-09-05 2004-09-03 Metal fine particles, method for producing metal fine particles, composition containing metal fine particles, etc. Expired - Fee Related JP4512876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004256783A JP4512876B2 (en) 2003-09-05 2004-09-03 Metal fine particles, method for producing metal fine particles, composition containing metal fine particles, etc.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003314208 2003-09-05
JP2004116253 2004-04-09
JP2004256783A JP4512876B2 (en) 2003-09-05 2004-09-03 Metal fine particles, method for producing metal fine particles, composition containing metal fine particles, etc.

Publications (2)

Publication Number Publication Date
JP2005320616A JP2005320616A (en) 2005-11-17
JP4512876B2 true JP4512876B2 (en) 2010-07-28

Family

ID=35468088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004256783A Expired - Fee Related JP4512876B2 (en) 2003-09-05 2004-09-03 Metal fine particles, method for producing metal fine particles, composition containing metal fine particles, etc.

Country Status (1)

Country Link
JP (1) JP4512876B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006025770A1 (en) * 2006-05-31 2007-12-13 Jürgen Dr. Dornseiffer Production of coating solutions together with manufactured products
JP5151097B2 (en) * 2006-09-01 2013-02-27 株式会社リコー Composite metal nanoparticles, multiphoton absorption reaction materials and reaction products containing composite metal nanoparticles, and multiphoton absorption reaction aids containing composite metal nanoparticles
JP5083685B2 (en) * 2007-11-22 2012-11-28 国立大学法人九州大学 Surface treatment method of metal fine particles and dried or dispersion of metal fine particles
WO2009084680A1 (en) 2007-12-28 2009-07-09 Shiga University Of Medical Science Gold nanoparticle composition, dna chip, near infrared absorbent, drug carrier for drug delivery system (dds), coloring agent, biosensor, cosmetic, composition for in vivo diagnosis and composition for therapeutic use
JP2009221140A (en) * 2008-03-14 2009-10-01 National Institute Of Advanced Industrial & Technology Colored nanoparticles for cosmetic and its manufacturing method
JP2009221563A (en) * 2008-03-18 2009-10-01 Ricoh Co Ltd Gold nanorod, method for producing the same, electromagnetic wave absorber using the nanorod, color material, optical recording material, and two photon reaction material
JP2010007169A (en) * 2008-06-30 2010-01-14 Kyushu Univ Gold fine particle and method for producing the same, and use thereof
US8029869B2 (en) * 2009-07-10 2011-10-04 Korea University Research And Business Foundation Structure fabrication using nanoparticles
JP5690058B2 (en) * 2009-08-28 2015-03-25 国立大学法人九州大学 Gold nanorod structure and manufacturing method thereof
KR101640986B1 (en) 2014-08-27 2016-07-19 원광대학교산학협력단 Gold nanorod-grafted titania nanotubes and preparation method thereof
CN108699368B (en) * 2016-02-29 2021-09-14 富士胶片株式会社 Ink composition and image forming method
KR101776140B1 (en) * 2016-10-19 2017-09-19 금오공과대학교 산학협력단 Cosmetic composition for near infrared ray block and near infrared ray blocker
KR102151740B1 (en) * 2019-03-08 2020-09-03 금오공과대학교 산학협력단 Cosmetics composition comprising gold nano rod and titanium dioxide for preventing near infrared ray and heat

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160581A (en) * 1997-08-21 1999-03-02 Mitsui Chem Inc Reaction reagent of gold ultrafine particle
JP2001335804A (en) * 2000-05-25 2001-12-04 Nobuo Kimizuka Silver colloid substance and silver colloid associated body substance
WO2002094953A1 (en) * 2001-05-21 2002-11-28 Nippon Paint Co., Ltd. Colloidal alcohol solution of noble metal or copper, process for producing the same, and coating composition
JP2005097718A (en) * 2003-05-13 2005-04-14 Yasuro Niitome Method for manufacturing metal nano-rod and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160581A (en) * 1997-08-21 1999-03-02 Mitsui Chem Inc Reaction reagent of gold ultrafine particle
JP2001335804A (en) * 2000-05-25 2001-12-04 Nobuo Kimizuka Silver colloid substance and silver colloid associated body substance
WO2002094953A1 (en) * 2001-05-21 2002-11-28 Nippon Paint Co., Ltd. Colloidal alcohol solution of noble metal or copper, process for producing the same, and coating composition
JP2005097718A (en) * 2003-05-13 2005-04-14 Yasuro Niitome Method for manufacturing metal nano-rod and use thereof

Also Published As

Publication number Publication date
JP2005320616A (en) 2005-11-17

Similar Documents

Publication Publication Date Title
JP4512876B2 (en) Metal fine particles, method for producing metal fine particles, composition containing metal fine particles, etc.
US8182574B2 (en) Metal fine particles, composition containing the same, and production method for producing metal fine particles
KR101125491B1 (en) Method for producing metal fine particle, metal fine particle produced thereby, composition containing same, light absorbing material, and application thereof
EP1937781B1 (en) Color effect pigment with a layer made of discrete metal particles, method for the production thereof and its use
KR100861899B1 (en) Metal microparticle, composition containing the same and process for producing metal microparticle
KR101346972B1 (en) Fine metal particle, process for producing the same, composition containing the same, and use thereof
JP2007154292A (en) Method for producing silver particle, silver particle-containing composition containing the silver particle and its use
WO2004101430A1 (en) Method for preparation of metal nano-rod and use thereof
JP4529160B2 (en) METAL PARTICLE, PROCESS FOR PRODUCING THE SAME, COMPOSITION CONTAINING THE SAME AND USE THEREOF
Sofiane et al. Surface enhanced Raman scattering (SERS) investigation and sensitive detection of zinc oxide nanorods (ZnO Nrds) deposited on silver nanoparticles (Ag NPs) substrate
CN100503093C (en) Metal microparticle, composition containing the same and process for producing metal microparticle
Andrade et al. Easy preparation of gold nanostructures supported on a thiolated silica-gel for catalysis and latent fingerprint detection
Al Dwayyan et al. Structural and spectral investigations of Rhodamine (Rh6G) dye-silica core–shell nanoparticles
Chang et al. Plasmonic Nanoparticles: Basics to Applications (I)
JP2004198665A (en) Light absorbing material and composition for forming same
KR101367165B1 (en) Full-Color Realization of Surface Plasmon Resonance by Compositional Variation of Core-Shell Nanostructures
CN111718705A (en) One-dimensional core-shell structure nano material with optimized metal fluorescence enhancement effect and preparation method thereof
JP2004238504A (en) Light absorption material and its formation composition
JP6974935B2 (en) Non-aqueous dispersion of metal nanoplates
DE102004039754A1 (en) Pigments based on cylinders or prisms
JP2024051684A (en) Nonaqueous dispersions, coatings, and laminates of metal nanoparticles
Tsukruk et al. Functional Nanomaterials with Tunable Plasmonic and Emittive Properties (Final Project Report)
JP2020164651A (en) Coating composition and use thereof
KR20190043093A (en) Color generating composition, and cosmetic composition or refractive index sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100422

R150 Certificate of patent or registration of utility model

Ref document number: 4512876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees