WO2002094953A1 - Colloidal alcohol solution of noble metal or copper, process for producing the same, and coating composition - Google Patents

Colloidal alcohol solution of noble metal or copper, process for producing the same, and coating composition Download PDF

Info

Publication number
WO2002094953A1
WO2002094953A1 PCT/JP2001/004214 JP0104214W WO02094953A1 WO 2002094953 A1 WO2002094953 A1 WO 2002094953A1 JP 0104214 W JP0104214 W JP 0104214W WO 02094953 A1 WO02094953 A1 WO 02094953A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
noble metal
copper
colloid
alcohol
Prior art date
Application number
PCT/JP2001/004214
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Ishibashi
Taizou Nanke
Toshikatsu Kobayashi
Original Assignee
Nippon Paint Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co., Ltd. filed Critical Nippon Paint Co., Ltd.
Priority to PCT/JP2001/004214 priority Critical patent/WO2002094953A1/en
Priority to JP2002592416A priority patent/JPWO2002094953A1/en
Priority to CN01813038.0A priority patent/CN1443228A/en
Priority to TW091110472A priority patent/TW570963B/en
Publication of WO2002094953A1 publication Critical patent/WO2002094953A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0043Preparation of sols containing elemental metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • C09D17/006Metal

Definitions

  • the present invention relates to an alcohol solution of a noble metal or copper colloid which can be suitably used for a sol-gel method, a method for producing the same, a solution preparation method, a coating composition using the same, an inorganic coating using the same,
  • the present invention relates to a method for forming an inorganic film.
  • Precious metal and copper colloids are very stable chemically and develop a unique color for each colloid.
  • colloidal gold exhibits a color such as blue, bluish violet, or magenta depending on the particle size. Taking advantage of this property, it has been used for coloring Venetian glass and stained glass.
  • Such color development by the noble metal colloid is observed in so-called nanoparticles having a particle size of several nm to several tens nm, and it is advantageous that the colorant is a colloid having a narrow particle size distribution.
  • Japanese Patent Application Laid-Open No. 11-080647 discloses a precious metal or copper colloidal particle having high coloring properties, which includes a precious metal or copper colloidal particle and a high molecular weight pigment dispersant.
  • a copper colloid solution is disclosed. Since this material is not intended for use as an optical material, the necessary saturation may not be obtained in some cases.
  • the sol-gel method for producing glass and ceramics has been known for a long time.
  • an alcohol, water necessary for hydrolysis, an acid or a base as a catalyst are added to a metal alkoxide, and the mixture is subjected to polycondensation to form a sol in which particles of a metal oxide formed are dispersed in a colloidal state.
  • this is further gelled, it is processed into a coating film or the like, and an oxide solid is obtained by heating.
  • the sol-gel method has the advantage of obtaining a thin film gel or glass from a solution as described above.In addition, the thin film obtained by this method has good adhesion to a glass substrate and uniformity of the obtained thin film.
  • the present invention provides a colloidal alcohol solution of a noble metal or copper which has a high concentration, has sufficient coloring properties, and can be suitably used for a sol-gel method, and a method for producing the same, a method for preparing a solution, and It is an object of the present invention to provide a coating composition comprising the alcohol solution of a noble metal or copper colloid or a colloidal solution of a noble metal or copper, and an inorganic coating and an inorganic coating forming method using the same. It is a thing.
  • the present inventors have used an alcohol having 1 to 4 carbon atoms as a dispersion medium of a noble metal or copper colloid, and considered the affinity with the above alcohol as a protective colloid of the noble metal or copper colloid particles.
  • an alcohol solution of a precious metal or copper colloid having a narrow particle size distribution of the colloid particles can be obtained at a high concentration, and it can be suitably used for the sol-gel method.
  • the present invention has been completed.
  • the present invention is an alcohol solution of a noble metal or copper colloid comprising a noble metal or copper colloid particle and a high molecular weight pigment dispersant, wherein the alcohol has 1 to 4 carbon atoms, and the high molecular weight pigment dispersion agent is an alcohol solution of a colloid of a noble metal or copper, characterized in that those that meet the following formula (1) or (2) c
  • a and B are respectively the values of the above-mentioned acetone solution in which 0.5 g of the high molecular weight pigment dispersant is dissolved in 10 ml of acetone and water or hexane is added until the acetone solution becomes cloudy.
  • the alcohol is preferably a monoalcohol having 2 to 4 carbon atoms, and the above formula (1) is preferably the following formula (1 ′).
  • the present invention further provides a noble metal or copper colloid alcohol which is prepared by dissolving a noble metal or copper compound into an alcohol having 1 to 4 carbon atoms, adding a high molecular weight pigment dispersant, and then reducing the compound to a noble metal or copper.
  • a and B are respectively the same as above when water or hexane is added to an acetone solution obtained by dissolving 0.5 g of the polymer i pigment dispersant in 10 ml of acetone until the acetone solution becomes cloudy. The amount (ml) of the water added and the amount (ml) of the hexane added until the aceton solution became cloudy.
  • the present invention is also a colloidal alcohol solution of a noble metal or copper obtained by this method.
  • the present invention is characterized in that, after concentrating an alcohol solution of a colloid of a noble metal or copper obtained by the above-mentioned production method, a solution different from the above-mentioned alcohol is added to a solution obtained by concentrating the solution to dilute the noble metal or copper.
  • This is a method for preparing a colloid solution.
  • the present invention is also a colloidal solution of a noble metal or copper obtained by this preparation method.
  • the present invention is also a coating composition comprising the above alcohol solution of a noble metal or copper colloid and a metal alkoxide.
  • the present invention comprises the above colloidal solution of a noble metal or copper and a metal alkoxide. It is also a coating composition.
  • the present invention is also an inorganic coating obtained using the coating composition.
  • the present invention further provides a method for forming an inorganic film, comprising forming an inorganic film on a substrate using the coating composition.
  • the alcohol solution of the noble metal or copper colloid of the present invention contains noble metal or copper colloid particles and a high molecular weight pigment dispersant, and has a C 1-4 alcohol as a dispersion medium.
  • the alcohol has 1 to 4 carbon atoms, not only can noble metal or copper color particles be dispersed with high concentration and high stability, but also when used as an optical material, In addition, a high chroma can be realized, and a large amount of the colloidal alcohol solution of the noble metal or copper of the present invention can be used in the sol-gel method.
  • the noble metal or copper colloid solution using the alcohol as a solvent has insufficient compatibility with the metal alkoxide solution used in the sol-gel method, and a coating composition may be obtained. It may not be possible.
  • the alcohol used in the present invention is not particularly limited as long as it has 1 to 4 carbon atoms.
  • monoalcohols such as methanol, ethanol, propanol, and ptananol; ethylene glycol, diethylene glycol, and propylene glycol
  • alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl enoate ether, ethylene glycol monoethyl enolate ether, and propylene dalycol monomethynoole ether.
  • the colloidal alcohol solution of the noble metal or copper of the present invention is used in the sol-gel method, it is preferably one having 2 to 4 carbon atoms in consideration of the evaporability, and it does not progress cross-linking between metal alkoxides. Considering this, monoalcohols are preferred. Since ethyl silicate is preferably used as the metal alkoxide in the sol-gel method, the alcohol is more preferably ethanol. In addition, The above alcohols may be used alone or in combination of two or more.
  • a dispersion medium of the noble metal or copper colloid composed of only the alcohol.
  • a small amount of the above alcohol may be used as long as the stability is not impaired when added to the metal alkoxide solution used in the sol-gel method. Water may be added.
  • the noble metal or copper colloid particles are formed of a noble metal or copper compound.
  • the noble metal is not particularly limited, and examples thereof include gold, silver, ruthenium, rhodium, palladium, osmium, iridium, and platinum. Of these, gold, silver, platinum and palladium are preferred.
  • the noble metal or copper compound is preferably a compound which dissolves in the above alcohol having 1 to 4 carbon atoms.
  • examples thereof include tetrachlorobase (III) acid tetrahydrate, silver perchlorate, and hexachlorotoplatinum (IV). Acid hexahydrate, palladium (II) chloride dihydrate, rhodium (III) trichloride trihydrate, copper (II) chloride dihydrate, copper (II) acetate monohydrate and the like be able to.
  • the high molecular weight pigment dispersant is an amphiphilic copolymer in which a functional group having a high affinity for the pigment surface is introduced into the high molecular weight polymer.
  • This is suitable as a dispersant for organic pigments or inorganic pigments because it has sufficient compatibility with resin compositions for coatings, etc., and is usually used as a pigment dispersant in the production of pigment pastes. Is what it is.
  • the high-molecular weight pigment dispersant functions as a protective colloid when the noble metal or copper colloid particles are formed, and by using the same, a very high concentration alcohol solution of the noble metal or copper colloid is obtained.
  • the high molecular weight pigment dispersant satisfies the following formula (1) or (2).
  • (1) A ⁇ 3 m 1 and 3m 1 ⁇ B 4 Om 1
  • the formula (2) can be used as the high molecular weight pigment dispersant if the formula (2) is satisfied.
  • the high molecular weight pigment dispersant is an alcohol having 1 to 4 carbon atoms, which is a dispersion medium of an alcohol solution of a noble metal or copper colloid. As a result, no colloidal particles of noble metal or copper can be obtained.
  • the above formula (1) is preferably the following formula (1 ′).
  • the number average molecular weight of the high molecular weight pigment dispersant used in the present invention is preferably from 1,000 to 100,000. If it is less than 1000, the dispersion stability is not sufficient, and if it exceeds 1,000,000, the viscosity becomes too high to make handling difficult, and the particle size distribution of the colloid particles becomes wide and the chroma decreases. More preferably, it is 2000 to 500,000, and still more preferably 4000 to 500,000.
  • the high molecular weight pigment dispersant is a resin having a structure containing a pigment affinity group and a solvation portion, and examples thereof include those exemplified in JP-A-11-80647.
  • a commercially available pigment dispersant can also be used.
  • examples of the above commercially available products include Solsperse 27,000 and Solsperse 41 090 (above, manufactured by Abyssia), Dispervik 180, Dispervik 181, Dispervik 190, Dispervik 191, Dispervik 192 (above, manufactured by Big Chem), Polymer 450, Polymer 451, Polymer 452, Polymer 453, E FKA-1 501, EFKA-1 502, EFKA-4540, EFKA-4550 (all manufactured by EFKA Chemical), Floren TG-720 Floren_730W, Floren 740W, Floren 1
  • the content of the high molecular weight pigment dispersant is preferably 30 to 1000 parts by weight based on 100 parts by weight of the noble metal or copper.
  • the amount is less than 30 parts by weight, the dispersibility of the noble metal or copper colloid particles is insufficient.
  • the alcohol solution of the noble metal or copper colloid is used for the sol-gel method. In such a case, the physical properties of the obtained thin film may be poor. More preferably, it is 40 to 650 parts by weight.
  • the alcohol solution of a colloid of a noble metal or copper of the present invention is an organosol using the above-mentioned alcohol having 1 to 4 carbon atoms as a solvent, and the concentration of the noble metal or copper can be 1 Ommo 1/1 or more. If it is less than 1 Ommo 1/1, it is not possible to obtain a high-concentration alcohol solution of colloid. More preferably, it is 50 mmolZl or more.
  • the average particle size of the colloid particles is preferably 5 to 50 nm. If it is less than 5 nm, the coloring power is weak, and if it exceeds 50 nm, the saturation becomes low.
  • the solid content of the colloid particles and the polymer dispersant can be arbitrarily set, for example, 1 to 50% by weight. Further, the metal concentration in the solid content is preferably about 10% by weight or more. If it is less than this, the desired effect cannot be obtained because the metal content is too low.
  • the upper limit is not particularly specified, but can be, for example, 98% by weight or less. You.
  • the alcohol solution of a noble metal or copper colloid of the present invention is obtained by dissolving the above noble metal or copper compound in an alcohol having 1 to 4 carbon atoms and reducing the compound to noble metal or copper in the presence of a high molecular weight pigment dispersant. Obtainable.
  • the method for the reduction is not particularly limited, and examples thereof include a method of chemically reducing the compound by adding a reducing compound, a method of irradiating light with a high-pressure mercury lamp, and the like.
  • the addition of the compound in the chemical reduction method may be performed after the addition of the polymer pigment dispersant.
  • the polymer pigment dispersant and the compound may be mixed first, and the mixture may be used. In the form of addition to a solution of a noble metal or copper compound.
  • the reducing compound is preferably an alcohol-soluble compound, for example, an alkali metal borohydride salt such as sodium borohydride which has been conventionally used as a reducing agent; a hydrazine compound; a hydroxylamine compound; Acid salt; a sulfoxylate derivative; formaldehyde; an organic acid having 1 to 6 carbon atoms such as formic acid or a salt thereof, citric acid or a salt thereof, succinic acid or a salt thereof, tartaric acid or a salt thereof, L-ascorbic acid or a salt thereof, or Its salts and the like can be used.
  • an amine can be used in addition to the conventional reducing agent. One or more of these can be used.
  • the above-mentioned amine is not usually used as a reducing agent. However, by adding the amine to the above-mentioned solution of the noble metal or copper compound, stirring and mixing, the noble metal ion or copper ion becomes noble metal at around room temperature. It is reduced to copper.
  • the above-mentioned amine it is not necessary to use a dangerous reducing agent or a highly harmful reducing agent, and without heating or using a special light irradiation device, about 5 to 100 ° C, preferably The noble metal or copper compound can be reduced at a reaction temperature of about 20 to 80 ° C.
  • the above-mentioned amine is not particularly limited, and for example, those exemplified in JP-A-11-8647 can be used.
  • Alicyclic amines such as tilpiperidine, piperazine, pyrrolidine, morpholine and derivatives thereof; aromatic amines such as aniline, 1,izidine, anisidine, phenetidine and derivatives thereof; benzylamine, phenethylamine, xylylenediamine; And aralkylamines such as derivatives thereof.
  • Examples of the above amine include methylaminoethanol, dimethylaminoethanol, methylaminoethanol, triethanolamine, ethanolamine, diethanolamine, methylethanolanolamine, propanolanolamine, 2- (3-aminopropylamino) Alkanolamines such as ethanol, butanolamine, hexanolamine and dimethylaminopropanol can also be mentioned. Of these, alkanolamine is preferred, and 2-dimethylaminoethanol is more preferred.
  • the amount of the amine to be added is preferably 1 to 50 mol per 1 mol of the noble metal or copper compound. If it is less than lmo1, the reduction is not performed sufficiently, and if it exceeds 50mo1, the stability of the generated colloidal particles with respect to aggregation decreases. More preferably, it is 2 to 8 mol.
  • the amount of the sodium borohydride to be added is preferably 1 to 5 Omo 1, more preferably 1.5 to L Omol, per 1 mo 1 of the noble metal or copper compound.
  • citric acid or a salt thereof is used as the reducing agent, noble metal ions, copper ions, and the like can be reduced by heating and refluxing in the presence of an alcohol.
  • the above citric acid or its salt has the advantage that it is very inexpensive and easily available.
  • sodium citrate is preferable.
  • the reduction action is improved when iron (II) sulfate is used in combination, so that the reduction reaction can proceed under milder conditions.
  • iron (II) sulfate when sodium citrate and iron (II) sulfate are mixed, insoluble iron (II) citrate is formed when the stoichiometry of citrate and iron (II) ions is adjusted, and when sedimentation occurs, Trouble occurs.
  • iron (II) sulfate it is necessary to add iron (II) sulfate so that the amount of sodium citrate becomes excessive.
  • the reducing action can be improved by using it together with, for example, a sulfoxylate derivative in addition to citric acid.
  • salts of humic acid, tartaric acid and the like with the above-mentioned amines are also preferable because both the acid and the ammine have a reducing property.
  • the addition amount of the above citric acid or a salt thereof is preferably 1 to 50 mol per 1 mol of the noble metal or copper compound. If it is less than 1 m o 1, the reduction is not sufficiently performed, and if it exceeds 5 m o 1, the stability against aggregation decreases. More preferably, it is 1.5 to 1 Omo1.
  • the method for producing a noble metal or copper colloid alcohol solution of the present invention comprises dissolving the noble metal or copper compound in a solvent containing an alcohol having 1 to 4 carbon atoms to form a solution, and adding a high molecular weight pigment dispersant.
  • a colloidal solution of noble metal or copper with a concentration of 10 times or more higher than that of the conventional colloidal solution of noble metal. Can be manufactured.
  • alkanolamine it can be easily produced under mild conditions of about 20 to 80 ° C.
  • the high molecular weight pigment dispersant used in the method for producing a colloidal solution of a noble metal or copper colloid according to the present invention is the same as that described for the alcohol solution of a noble metal or copper colloid described above.
  • the solution after the reduction is, in addition to the metal colloid particles and the polymer pigment dispersant, miscellaneous ions such as chloride ions derived from the raw material of the noble metal or copper colloid solution, salts generated by reduction, and in some cases, It contains amines, and these miscellaneous ions and chlorides may adversely affect the stability of the resulting colloidal solution of noble metal or copper, so it is desirable to remove them.
  • miscellaneous ions such as chloride ions derived from the raw material of the noble metal or copper colloid solution, salts generated by reduction, and in some cases, It contains amines, and these miscellaneous ions and chlorides may adversely affect the stability of the resulting colloidal solution of noble metal or copper, so it is desirable to remove them.
  • electrodialysis, centrifugation, and ultrafiltration are used for the removal of these components. However, as described later, centrifugation and ultrafiltration are preferably used because concentration is performed.
  • the method of preparing a colloidal solution of a noble metal or copper colloid according to the present invention involves concentrating an alcohol solution of a colloidal noble metal or copper obtained earlier, and then adding the above-mentioned alcohol to the concentrated solution. It is characterized by adding and diluting a solvent different from coal.
  • concentration method centrifugal separation and ultrafiltration are preferable, since various methods can simultaneously remove foreign ions and saltamine.
  • a solvent different from the above alcohol is used, and by repeating this concentration and dilution, the solvent can be substantially replaced.
  • water is preferable from the viewpoint of workability and ease of handling.
  • the aqueous solution of the noble metal or copper colloid obtained in this way has a sharper absorption curve than that produced using water as a solvent.
  • the alcohol solution of the precious metal or copper colloid of the present invention and the precious metal or copper colloid solution obtained by the above solution preparation method can be suitably used for the sol-gel method.
  • the sol-gel method generally, an alcohol, water necessary for hydrolysis, and an acid or base as a catalyst are added to a metal alkoxide, and the mixture is stirred at room temperature to 80 ° C. to undergo hydrolysis and condensation polymerization. It is. By these reactions, a sol in which metal oxide particles are dispersed in a colloidal state is easily obtained.
  • the sol solution can be used as a coating composition.
  • a sol film can be formed on a substrate by a dipping method, a spin coating method, or the like. The coated sol film is dried at room temperature and then heated at an appropriate temperature to obtain a gel thin film or a glass thin film which is an inorganic coating.
  • the coating composition of the present invention comprises the above alcohol solution of a noble metal or copper colloid and a metal alkoxide.
  • Another coating composition of the present invention comprises the above-mentioned colloidal solution of a noble metal or copper and a metal alkoxide.
  • metal alkoxide those usually used in the sol-gel method can be used.
  • M (OR) n M is a metal atom, R is an alkyl group, and n is an acid number of a metal. ) Can be mentioned.
  • Si (OR) 4 is generally used.
  • the genus atoms M those of Zn, Zr, Ti, Al, Fe, Co, and Ni can be used according to the purpose.
  • the alkoxy group in the metal alkoxide include an alkoxy group having 1 to 5 carbon atoms such as methoxy, ethoxy, propoxy, butoxy, pentyloxy and the like. Among these, an ethoxy group is more preferable in that it has good reactivity.
  • tetraethoxysilane is particularly preferable in terms of easy handling.
  • Examples of the solvent for the metal alkoxide solution include those composed of alcohol and water.
  • the number of moles of alcohol per mole of water can be selected depending on the properties of the target thin film, but is usually preferably 1 to 30. If the number of moles of alcohol per mole of water is less than 1, hydrolysis of the metal alkoxide progresses too much and lacks stability.If it exceeds 25, hydrolysis of the metal alkoxide becomes insufficient and is not practical. Not a target.
  • the mole number of the alcohol per 1 mole of the water is more preferably from 10 to 25.
  • the alcohol in the metal alkoxide solution is not particularly limited, and for example, those exemplified as the alcohols contained in the alcohol solution of the noble metal or copper colloid of the present invention and alcohols having 5 carbon atoms can be used.
  • the metal alkoxide solution may contain an acid or a base as a catalyst, but preferably contains an acid when forming an inorganic coating.
  • the acid is not particularly limited, and examples thereof include hydrochloric acid and nitric acid.
  • the metal alkoxide solution may further contain, if necessary, additives such as a drying inhibitor, a colored transition metal compound other than the noble metal or copper, a silane coupling agent, and an organic dye.
  • a drying inhibitor is not particularly limited, and examples thereof include dimethylformamide and dimethylacetamide.
  • the coating composition of the present invention is obtained by adding a noble metal or copper colloidal alcohol solution or a noble metal or copper colloidal solution to the metal alkoxide solution and stirring the mixture.
  • a noble metal or copper colloidal alcohol solution or a noble metal or copper colloidal solution As the ratio of the above-mentioned addition, the above-mentioned noble metal or copper colloidal alcohol solution or the noble metal or copper It is preferable to add the colloidal particles of the noble metal or copper so that the concentration of the colloidal particles of the noble metal or copper in the state where the colloidal solution is added is 0.01 to 70% by weight.
  • a colloidal alcohol solution of a noble metal or copper it is preferable to use a colloidal alcohol solution of a noble metal or copper.
  • the substrate on which the coating composition used in the above sol-gel method is applied is not particularly limited, and examples thereof include metals such as aluminum and stainless steel, glass, and plastics. And / or both surfaces may be subjected to surface processing.
  • the coating method in addition to the above-described methods such as the dip method and the spin coating method, when the substrate is a metal such as aluminum, electrophoresis can be used. By baking the film thus obtained, an inorganic coating can be obtained.
  • the calcination can be preferably performed at 100 to 500 ° C.
  • the calcination can be preferably performed for 5 to 120 minutes.
  • the inorganic coating obtained by forming a film by the sol-gel method using the alcoholic solution of the noble metal or copper colloid of the present invention or the coating composition containing the noble metal or copper colloid solution contains metal. Higher concentrations can have a metallic luster.
  • the metallic luster mentioned here includes a state called a half mirror. Those having this metallic luster can be used not only as an electromagnetic wave shield but also as a design material.
  • inorganic coatings with a high color depth and high saturation can be used as optical materials, for example, optical materials such as heat-resistant optical filters and non-linear optical materials, and coloring materials with high heat resistance and high durability. In addition, it can be used for antibacterial materials and catalysts.
  • the thickness of the inorganic coating can be selected according to the application to be used, but when it is used as an optical material, the dry thickness is preferably 0.05 to 10 / xm. When the film thickness is less than 0.05 / im, coloring power or electromagnetic wave shielding power may be lacked. When the film thickness exceeds ⁇ , peeling or cracking due to heating tends to occur.
  • the thickness is preferably 0.1 to 5 ⁇ .
  • the inorganic coating as an optical material produced by the above method uses the above-mentioned alcohol solution of a noble metal or copper colloid or a solution of a noble metal or copper colloid as a coloring agent, the resulting thin film is vivid. Color is applied and the applied color is chemically stable and does not fade.
  • the optical material is not particularly limited, and examples thereof include an optical filter such as a colored coating on the surface of a CRT of a television.
  • the alcohol solution of the noble metal or copper colloid of the present invention or the solution of the noble metal or copper colloid can be added to the metal alkoxide solution used in the sol-gel method, and a stable coating composition can be obtained. Obtainable.
  • the noble metal or copper colloidal alcohol solution or the noble metal or copper colloidal solution of the present invention has a sharper absorption curve than conventional ones. Higher saturation can be realized.
  • alcohol is used in the production process, so that the molecular weight of the high molecular weight pigment dispersant The effect is small, the degree of freedom of each dispersant molecule is high, the kinetic rate is low, and it is easy to coordinate with each of the noble metal or copper particles to be dispersed, and the particle size of each colloid particle Acts as a protective colloid in a small state, the particle size distribution becomes narrow, and as a result, the absorption curve It is thought that it becomes a loop.
  • FIG. 1 is an absorbance curve showing the particle size distribution of gold colloid particles in an alcohol solution of gold colloid.
  • the solid line is for the toluene solution of gold colloid obtained in Production Example, and the broken line is for the ethanol solution of gold colloid obtained in Example 1.
  • the horizontal axis represents wavelength (nm), and the vertical axis represents absorbance.
  • Dispervik 190 Dispervik 191, Dispervik 192 and Dispervik 184 (all manufactured by Big Chemie), EF KA—450 and EF Place 0.5 g of KA-4450 (all manufactured by EF KA Chemikanole), Solsperse 2400 and Solsperse 2800 (all manufactured by Abyssia) in a container, and place in each container.
  • EF KA—450 and EF Place 0.5 g of KA-4450 all manufactured by EF KA Chemikanole
  • Solsperse 2400 and Solsperse 2800 all manufactured by Abyssia
  • Equation (1) was evaluated as follows. ⁇ : When the expression (1 ′) is satisfied.
  • Equation (2) was evaluated as follows. ⁇ : When equation (2) is satisfied.
  • Dispervik 190, Dispervik 191, Disparvik 192, EFKA-4550, EFKA-4540 are suitable.
  • the Desperbic 190 and the Despervik 191 were preferred.
  • a polymeric pigment dispersant 20 g of EF KA-450 550, 14 g of dimethylaminoethanol and 200 g of ethanol manufactured by EF KA Chemical Co., Ltd. were placed in a reaction vessel, and stirred. The polymer pigment dispersant was completely dissolved. On the other hand, tetrachloroethene mouthpiece (III) acid tetrahydrate (HA u C 1 4 ⁇ 4 H 2 0) was dissolved 1 2 g of ethanol 1 0 0 ml. While stirring the ethanol solution of the polymer pigment dispersant, an ethanol solution of tetraclo mouth (III) acid tetrahydrate was added thereto instantaneously.
  • Example 2 except that 20 g of EF KA-450 manufactured by EF KA Chemical was used instead of EF KA-450 manufactured by EF KA Chemical as a polymer pigment dispersant, the gold colloid was used. 37 g of a solution of gold colloid in ethanol having a solid content of 22% by weight and consisting of particles and a polymer pigment dispersant and exhibiting a bright and dense red color was obtained. As a result of T G—D T A measurement, the content of gold particles in the solid content was 65% by weight. /. Met.
  • the ethanol solution of the palladium colloid thus obtained was used with an ultrafiltration pencil type module AHP-0113 manufactured by Asahi Kasei Corporation. Then, a process of removing residual ions by filtration, adding ethanol to the obtained filtrate, and further filtering the mixture was repeated, and the palladium colloid particles and the polymer pigment dispersant from which the residual ion components were removed were removed. 30 g of a thick brown palladium colloid ethanol solution having a solid content of 40% by weight was obtained. As a result of TG-DTA measurement, the content of palladium particles in the solid content was 58 wt. /. Met.
  • Example 5 Preparation of a silver colloid ethanol solution was attempted according to Example 5 except that 240 g of Solsperse manufactured by Avicia was used as a high molecular weight pigment dispersant. A massive precipitate consisting of silver particles and Solsperse 2400 was formed, and a silver colloid ethanol solution was not obtained.
  • An ethanol solution of silver colloid was prepared in accordance with Example 5 except that 280.10 g of Solsperse manufactured by Avicia was used as a high molecular weight pigment dispersant. However, a massive precipitate composed of silver particles and Solsperse 2800 was formed, and a silver colloid ethanol solution was not obtained.
  • 4 g of Solsperse 280.000 and Aceton (60 g) manufactured by Avicia Co., Ltd. were placed in another container as a polymer pigment dispersant, and the polymer pigment dispersant was dissolved by stirring.
  • This polymer pigment dispersant solution was added to a reaction vessel containing an aqueous solution of tetrachlorobase (III) acid, and 13.0 g of 2-dimethylaminoethanol was added instantaneously with stirring.
  • the ethanol solution of gold colloid obtained in Example 1 was further greatly diluted with ethanol and transferred to a glass cell having a bottom surface of 1 cm X lcm, and a spectrophotometer MCPD—300 manufactured by Otsuka Electronics Co., Ltd. was used.
  • MCPD spectrophotometer
  • the toluene solution of colloidal gold obtained in Production Example was further greatly diluted with toluene, and the absorbance was measured in the same manner as in Example 7.
  • the absorption derived from the plasmon of the gold colloid having a maximum around 535 nm was found. I could observe it.
  • FIG. 1 shows an absorption curve in which the concentration of the gold colloid was adjusted so that the absorbance at the maximum of the absorption peak was 1.5.
  • Example 9 Preparation of Coating Composition Used for Sol-Gel Method
  • the alcohol solution of Examples 2 to 5 was used instead of the ethanol solution of colloidal gold obtained in Example 1 respectively. Except for the same procedure, Each of the compositions for inging was prepared. All of these coating compositions were stable at room temperature for 24 hours.
  • Example 8 a coating composition was prepared in the same procedure except that the toluene solution of colloidal gold obtained in Production Example was used instead of the ethanol solution of colloidal gold obtained in Example 1. However, they did not mix well, and a coating composition could not be obtained.
  • Example 8 The coating composition obtained in Example 8 was applied to a glass plate by spin coating, and then baked at 150 ° C. for 20 minutes to obtain a colored glass gel film having a thickness of 0.2 ⁇ . Was formed on a glass substrate.
  • the colored glass gel film was transparent and colored red. A rubbing test with a detergent was performed to evaluate the water resistance of the colored glass gel film, but no decolorization was observed. When the pencil hardness of the colored glass gel film was measured in accordance with JISK 540, it was 8 mm, and a sufficient hardness was obtained.
  • Example 11 The coating composition obtained in Example 11 was applied to a glass plate by a spin coating method, and then baked at 150 ° C. for 20 minutes to form a coating having a thickness of 0.2 ⁇ m. A colored glass gel film was formed on a glass substrate.
  • This colored glass gel film was transparent and colored yellow. A rubbing test with a detergent was performed to evaluate the water resistance of the colored glass gel film, but no decolorization was observed. When the pencil hardness of the colored glass gel film was measured in accordance with JISK 540, it was 8 mm, and a sufficient hardness was obtained.
  • the ethanol solution of the gold colloid obtained before the ultrafiltration obtained in Example 1 was subjected to the residual ion separation using an ultrafiltration pencil type module manufactured by Asahi Kasei Corporation. Was removed by filtration, and a step of adding water to the obtained filtrate and further performing filtration was repeated. By repeating this operation, the residual ion component is removed. In both cases, the solvent was replaced with water from ethanol to obtain 37 g of an aqueous solution of colloidal gold composed of colloidal gold particles and a polymer pigment dispersant with a solid content of 25% by weight. As a result of TG-DTA measurement, the content of gold particles in the solid content was 56% by weight.
  • Comparative Examples 1 to 3 when a high-molecular-weight pigment dispersant other than the above-described predetermined high-molecular-weight pigment dispersant was used, an alcohol solution of a metal colloid was not obtained. From the results of Comparative Example 5, the toluene solution of gold colloid prepared in the Production Example was not suitable for use in the coating composition used in the sol-gel method. From the results of FIG.
  • the absorption curve derived from the ethanol solution of the colloidal gold of Example 1 was sharper than the absorption curve derived from the toluene solution of the colloidal gold of Production Example, In particular, sharp particles were obtained on the long wavelength side, indicating that the particle size distribution of the colloidal gold particles was narrow.
  • the colloidal alcohol solution of a noble metal or copper of the present invention, and the colloidal solution of a noble metal or copper obtained by the solution preparation method of the present invention have the above-described configuration, and contain a high concentration of noble metal or copper colloid particles. And the absorption curve becomes sharper than before, so that it also has excellent coloring properties. it can. Furthermore, since it can be suitably used for the sol-gel method, the inorganic coating obtained by the sol-gel method can be used for optical materials such as optical filters and non-linear optical materials having excellent heat resistance, coloring materials, antibacterial materials, catalysts, and electromagnetic wave shielding. It can be suitably used for example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Colloid Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

An alcohol solution which contains colloidal particles of a noble metal or copper and a high-molecular pigment dispersant and which has a high concentration and sufficient colorability and is suitable for use in the sol-gel method, characterized in that the alcohol has one to four carbon atoms and the high-molecular pigment dispersant satisfies the following relationship (1) or (2): (1) A ≥ 3 ml and 3 ml ≤ B ≤ 40 ml (2) 0.25 ≤ A/B ≤ 4.5 wherein A and B are the amounts of water and hexane, respectively, necessary for making turbid an acetone solution obtained by dissolving 0.5 g of the high-molecular pigment dispersant in 10 ml of acetone.

Description

明細書  Specification
貴金属又は銅のコロイドのアルコール溶液及ぴその製造方法並びにコーティング 用組成物 技術分野 Alcohol solution of noble metal or copper colloid, method for producing the same, and composition for coating
本発明は、 ゾルーゲル法に好適に使用することができる貴金属又は銅のコロイ ドのアルコール溶液及びそれの製造方法、 溶液調整方法並びにそれを用いたコー ティング用組成物、 これを用いた無機被膜及び無機被膜形成方法に関する。 背景技術  The present invention relates to an alcohol solution of a noble metal or copper colloid which can be suitably used for a sol-gel method, a method for producing the same, a solution preparation method, a coating composition using the same, an inorganic coating using the same, The present invention relates to a method for forming an inorganic film. Background art
貴金属や銅のコロイドは、 化学的に非常に安定であり、 各コロイド特有の色を 発色する。 例えば、 金コロイドは、 粒径に応じて、 青、 青紫、 赤紫等の色を示す。 この特性を活かして、 従来より、 ベネチアガラスやステンドグラス等の着色に利 用されている。 このような貴金属コロイドによる発色は、 粒径が数 n m〜数十 n m程度のいわゆるナノ粒子において見られるものであり、 着色材としては、 粒径 分布が狭いコロイドであることが有利である。  Precious metal and copper colloids are very stable chemically and develop a unique color for each colloid. For example, colloidal gold exhibits a color such as blue, bluish violet, or magenta depending on the particle size. Taking advantage of this property, it has been used for coloring Venetian glass and stained glass. Such color development by the noble metal colloid is observed in so-called nanoparticles having a particle size of several nm to several tens nm, and it is advantageous that the colorant is a colloid having a narrow particle size distribution.
特開平 1 1— 8 0 6 4 7号公報には、 着色性の高い貴金属又は銅のコロイド粒 子として、 貴金属又は銅のコロイド粒子及び高分子量顔料分散剤を含むことを特 徴とする貴金属又は銅のコロイド溶液が開示されている。 し力、し、 このものは光 学材料としての使用を意図していないため、 そのために必要な彩度が得られない 場合があった。  Japanese Patent Application Laid-Open No. 11-080647 discloses a precious metal or copper colloidal particle having high coloring properties, which includes a precious metal or copper colloidal particle and a high molecular weight pigment dispersant. A copper colloid solution is disclosed. Since this material is not intended for use as an optical material, the necessary saturation may not be obtained in some cases.
一方、 ゾル一ゲル法という、 ガラスやセラミックスの作製法が、 古くから知ら れている。 ゾルーゲル法は、 通常、 金属アルコキシドにアルコール、 加水分解に 必要な水、 触媒としての酸又は塩基を添加し、 縮重合させて、 生成する金属酸ィ匕 物の粒子がコロイド状に分散したゾルとし、 これを更にゲル化する際にコ一ティ ング膜状等に加工し、 加熱によって酸化物の固体を得るものである。 ゾルーゲル 法は、 このように溶液から薄膜のゲルやガラスを得られる簡便性のほか、 この方 法により得られる薄膜は、 ガラス基板との良好な接着性、 得られる薄膜の均一性 を有し、 また、 基板の耐熱性、 耐食性、 耐薬品性、 機械的強度等の化学的 ·物理 的特性を向上する等の利点を有する。 近年は、 得られるコーティング膜に、 調光 -着色等の光学的機能や電気的機能等の機能特性を付与することも行われている。 このゾルーゲル法に用いられる金属アルコキシド溶液に、 先の貴金属又は銅の コロイド溶液を多量に添加した場合、 水に不溶な有機溶媒を分散媒とするもので は混合が十分なされず、 目的とするコーティング剤を得ることができない。 一方、 水を分散媒とするものでは水濃度が高くなりすぎて、 金属アルコキシドの加水分 解が必要以上に促進され、 コーティング剤の安定性が低下する。 発明の要約 On the other hand, the sol-gel method for producing glass and ceramics has been known for a long time. In the sol-gel method, usually, an alcohol, water necessary for hydrolysis, an acid or a base as a catalyst are added to a metal alkoxide, and the mixture is subjected to polycondensation to form a sol in which particles of a metal oxide formed are dispersed in a colloidal state. When this is further gelled, it is processed into a coating film or the like, and an oxide solid is obtained by heating. The sol-gel method has the advantage of obtaining a thin film gel or glass from a solution as described above.In addition, the thin film obtained by this method has good adhesion to a glass substrate and uniformity of the obtained thin film. It also has the advantage of improving chemical and physical properties such as heat resistance, corrosion resistance, chemical resistance and mechanical strength of the substrate. In recent years, functional properties such as optical functions such as dimming and coloring and electric functions have been imparted to the obtained coating film. If a large amount of the precious metal or copper colloidal solution is added to the metal alkoxide solution used in this sol-gel method, mixing with a water-insoluble organic solvent as a dispersion medium will not be sufficient, and the desired coating will not be achieved. Agent cannot be obtained. On the other hand, when water is used as the dispersion medium, the water concentration becomes too high, so that hydrolysis of the metal alkoxide is promoted more than necessary, and the stability of the coating agent decreases. Summary of the Invention
本発明は、 上記に鑑み、 高濃度で、 充分な着色性を有し、 ゾルーゲル法に好適 に使用することができる貴金属又は銅のコロイドのアルコール溶液、 及び、 その 製造方法、 溶液調整方法、 並びに、 この貴金属又は銅のコロイドのアルコール溶 液、 又は、 貴金属又は銅のコロイドの溶液を用いてなるコーティング用組成物並 びにこれを用いた無機被膜及び無機被膜形成方法を提供することを目的とするも のである。  In view of the above, the present invention provides a colloidal alcohol solution of a noble metal or copper which has a high concentration, has sufficient coloring properties, and can be suitably used for a sol-gel method, and a method for producing the same, a method for preparing a solution, and It is an object of the present invention to provide a coating composition comprising the alcohol solution of a noble metal or copper colloid or a colloidal solution of a noble metal or copper, and an inorganic coating and an inorganic coating forming method using the same. It is a thing.
本発明者らは、 貴金属又は銅のコロイドの分散媒として炭素数 1〜4のアルコ ールを使用し、 かつ、 貴金属又は銅のコロイド粒子の保護コロイドとして上記ァ ルコールとの親和性を考慮した特定の高分子量顔料分散剤を選択することにより、 高濃度で、 上記コロイド粒子の粒径分布が狭い貴金属又は銅のコロイドのアルコ ール溶液が得られ、 ゾルーゲル法に好適に利用できることを見出し、 本発明を完 成した。  The present inventors have used an alcohol having 1 to 4 carbon atoms as a dispersion medium of a noble metal or copper colloid, and considered the affinity with the above alcohol as a protective colloid of the noble metal or copper colloid particles. By selecting a specific high molecular weight pigment dispersant, an alcohol solution of a precious metal or copper colloid having a narrow particle size distribution of the colloid particles can be obtained at a high concentration, and it can be suitably used for the sol-gel method. The present invention has been completed.
即ち、 本発明は、 貴金属又は銅のコロイド粒子及び高分子量顔料分散剤を含む 貴金属又は銅のコロイドのアルコール溶液であって、 上記アルコールの炭素数は、 1〜4であり、 上記高分子量顔料分散剤は、 下記式 (1 ) 若しくは (2 ) を満た すものであることを特徴とする貴金属又は銅のコロイドのアルコール溶液である c That is, the present invention is an alcohol solution of a noble metal or copper colloid comprising a noble metal or copper colloid particle and a high molecular weight pigment dispersant, wherein the alcohol has 1 to 4 carbon atoms, and the high molecular weight pigment dispersion agent is an alcohol solution of a colloid of a noble metal or copper, characterized in that those that meet the following formula (1) or (2) c
( 1 ) A 3 m 1かつ 3 m 1≤B≤ 4 O m 1 (1) A 3 m 1 and 3 m 1≤B≤ 4 O m 1
( 2 ) 0 . 2 5≤A/ B≤4 . 5 〔式中、 A及び Bはそれぞれ、 上記高分子量顔料分散剤 0. 5 gをアセトン 10 m 1に溶解したアセトン溶液に水又はへキサンをそれぞれ添加する場合における、 上記アセトン溶液が白濁するまでの上記水の添加量 (m l ) 、 及び、 上記ァセト ン溶液が白濁するまでの上記へキサンの添加量 (m l ) である。 〕 (2) 0.25≤A / B≤4.5 (Wherein A and B are respectively the values of the above-mentioned acetone solution in which 0.5 g of the high molecular weight pigment dispersant is dissolved in 10 ml of acetone and water or hexane is added until the acetone solution becomes cloudy. The addition amount (ml) of the water and the addition amount (ml) of the hexane until the aceton solution becomes cloudy. ]
上記アルコールは、 炭素数 2〜4のモノアルコールであることが好ましく、 ま た、 上記式 (1) は、 下記式 (1' ) であることが好ましい。  The alcohol is preferably a monoalcohol having 2 to 4 carbon atoms, and the above formula (1) is preferably the following formula (1 ′).
( 1 ' ) A≥ 10m 1かつ 4 m 1 2 Ora 1  (1 ') A≥ 10m 1 and 4 m 1 2 Ora 1
本発明は、 更に、 貴金属又は銅の化合物を、 炭素数 1〜 4のアルコールに溶角军 し、 高分子量顔料分散剤を加えた後、 貴金属又は銅に還元する貴金属又は銅のコ ロイドのアルコール溶液の製造方法であり、 上記高分子量顔料分散剤は、 下記式 (1) 若しくは (2) を満たすものであることを特徴とする貴金属又は銅のコロ ィドのアルコール溶液の製造方法である。  The present invention further provides a noble metal or copper colloid alcohol which is prepared by dissolving a noble metal or copper compound into an alcohol having 1 to 4 carbon atoms, adding a high molecular weight pigment dispersant, and then reducing the compound to a noble metal or copper. A method for producing a solution, wherein the high molecular weight pigment dispersant satisfies the following formula (1) or (2): a method for producing an alcohol solution of a noble metal or copper colloid.
(1) A≥ 3 m 1かつ 3 1 B≤ 40 m 1  (1) A≥ 3 m 1 and 3 1 B≤ 40 m 1
(2) 0. 25≤A/B≤ 4. 5  (2) 0.25≤A / B≤4.5
〔式中、 A及び Bはそれぞれ、 上記高分子 i顔料分散剤 0. 5 gをアセトン 10 m 1に溶解したアセトン溶液に水又はへキサンをそれぞれ添加する場合における、 上記アセトン溶液が白濁するまでの上記水の添加量 (m l) 、 及び、 上記ァセト ン溶液が白濁するまでの上記へキサンの添加量 (m l ) である。 〕  (In the formula, A and B are respectively the same as above when water or hexane is added to an acetone solution obtained by dissolving 0.5 g of the polymer i pigment dispersant in 10 ml of acetone until the acetone solution becomes cloudy. The amount (ml) of the water added and the amount (ml) of the hexane added until the aceton solution became cloudy. ]
本発明は、 また、 この方法で得られる貴金属又は銅のコロイドのアルコール溶 液でもある。  The present invention is also a colloidal alcohol solution of a noble metal or copper obtained by this method.
本発明は、 上記製造方法で得られる貴金属又は銅のコロイドのアルコール溶液 を濃縮した後、 上記濃縮して得られた溶液に上記アルコールと異なる溶剤を加え て希釈することを特徴とする貴金属又は銅のコロイドの溶液調整方法である。 本発明は、 また、 この調整方法で得られる貴金属又は銅のコロイドの溶液でも ある。  The present invention is characterized in that, after concentrating an alcohol solution of a colloid of a noble metal or copper obtained by the above-mentioned production method, a solution different from the above-mentioned alcohol is added to a solution obtained by concentrating the solution to dilute the noble metal or copper. This is a method for preparing a colloid solution. The present invention is also a colloidal solution of a noble metal or copper obtained by this preparation method.
本発明は、 上記貴金属又は銅のコロイドのアルコール溶液と金属アルコキシド とからなるコーティング用組成物でもある。  The present invention is also a coating composition comprising the above alcohol solution of a noble metal or copper colloid and a metal alkoxide.
本発明は、 上記貴金属又は銅のコロイドの溶液と金属アルコキシドとからなる コーティング用組成物でもある。 The present invention comprises the above colloidal solution of a noble metal or copper and a metal alkoxide. It is also a coating composition.
本発明は、 また、 上記コーティング用組成物を用いて得られる無機被膜である。 本発明は、 更に、 上記コーティング用組成物を用いて基材上に無機被膜を形成 することを特徴とする無機被膜形成方法である。 発明の詳細な開示  The present invention is also an inorganic coating obtained using the coating composition. The present invention further provides a method for forming an inorganic film, comprising forming an inorganic film on a substrate using the coating composition. Detailed Disclosure of the Invention
以下に本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明の貴金属又は銅のコロイドのアルコール溶液は、 貴金属又は銅のコロイ ド粒子及び高分子量顔料分散剤を含み、 炭素数 1〜4のアルコールを分散媒とし ている。 上記アルコールの炭素数が 1〜4である場合には、 貴金属又は銅のコロ ィド粒子を高濃度かつ高い安定性で分散することができるのみならず、 光学材料 として使用する場合に、 従来よりも高い彩度を実現できるとともに、 本発明の貴 金属又は銅のコロイドのアルコール溶液をゾルーゲル法において多量使用するこ とができる。  The alcohol solution of the noble metal or copper colloid of the present invention contains noble metal or copper colloid particles and a high molecular weight pigment dispersant, and has a C 1-4 alcohol as a dispersion medium. When the alcohol has 1 to 4 carbon atoms, not only can noble metal or copper color particles be dispersed with high concentration and high stability, but also when used as an optical material, In addition, a high chroma can be realized, and a large amount of the colloidal alcohol solution of the noble metal or copper of the present invention can be used in the sol-gel method.
上記炭素数が 5以上である場合には、 上記アルコールを溶媒とする貴金属又は 銅のコロイド溶液は、 ゾルーゲル法に用いる金属アルコキシド溶液との相溶性が 不充分となり、 コーティング用組成物を得ることができないおそれがある。 本発明で使用するアルコールとしては、 炭素数 1〜4のものであれば特に限定 されず、 例えば、 メタノール、 エタノール、 プロパノール、 プタノーノレ等のモノ アルコーノレ ; エチレングリコーノレ、 ジエチレングリコーノレ、 プロピレングリコ一 ノレ等のァノレキレングリコ一ル ;エチレングリ コーノレモノメチノレエーテノレ、 ェチレ ングリコールモノェチノレエーテル、 プロピレンダリコールモノメチノレエーテノレ等 のアルキレングリコールモノアルキルエーテル等を挙げることができる。  When the carbon number is 5 or more, the noble metal or copper colloid solution using the alcohol as a solvent has insufficient compatibility with the metal alkoxide solution used in the sol-gel method, and a coating composition may be obtained. It may not be possible. The alcohol used in the present invention is not particularly limited as long as it has 1 to 4 carbon atoms. For example, monoalcohols such as methanol, ethanol, propanol, and ptananol; ethylene glycol, diethylene glycol, and propylene glycol And alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl enoate ether, ethylene glycol monoethyl enolate ether, and propylene dalycol monomethynoole ether.
本発明の貴金属又は銅のコロイドのアルコール溶液をゾル一ゲル法において使 用する場合、 蒸発性を考慮すると、 炭素数 2〜4のものが好ましく、 また金属ァ ルコキシド間の架橋が進行しないことを考慮すると、 モノアルコールが好ましい。 上記ゾル一ゲル法の金属アルコキシドとしてはェチルシリケートが好適に使用さ れることから、 上記アルコールはエタノールであることがより好ましい。 なお、 上記アルコールは単独で使用してもよく、 2種以上を併用してもよい。 When the colloidal alcohol solution of the noble metal or copper of the present invention is used in the sol-gel method, it is preferably one having 2 to 4 carbon atoms in consideration of the evaporability, and it does not progress cross-linking between metal alkoxides. Considering this, monoalcohols are preferred. Since ethyl silicate is preferably used as the metal alkoxide in the sol-gel method, the alcohol is more preferably ethanol. In addition, The above alcohols may be used alone or in combination of two or more.
また、 このゾル一ゲル法での多量の使用を考慮すると、 貴金属又は銅のコロイ ドの分散媒は、 上記アルコールのみからなるものを使用することが好ましい。 た だし、 アルコール単独では原材料の溶解性が不充分である場合には、 ゾル—ゲル 法に使用される金属アルコキシド溶液に添加した際にその安定性を阻害しない範 囲内で、 上記アルコールに少量の水を加えてもよい。  Considering the use of a large amount in the sol-gel method, it is preferable to use a dispersion medium of the noble metal or copper colloid composed of only the alcohol. However, if the solubility of the raw material is not sufficient with the alcohol alone, a small amount of the above alcohol may be used as long as the stability is not impaired when added to the metal alkoxide solution used in the sol-gel method. Water may be added.
本発明において、 上記貴金属又は銅のコロイド粒子は、 貴金属又は銅の化合物 から形成される。  In the present invention, the noble metal or copper colloid particles are formed of a noble metal or copper compound.
上記貴金属としては特に限定されず、 例えば、 金、 銀、 ルテニウム、 ロジウム、 パラジウム、 オスミウム、 イリジウム、 白金等を挙げることができる。 なかでも、 金、 銀、 白金、 パラジウムが好ましい。  The noble metal is not particularly limited, and examples thereof include gold, silver, ruthenium, rhodium, palladium, osmium, iridium, and platinum. Of these, gold, silver, platinum and palladium are preferred.
上記貴金属又は銅の化合物としては、 上記炭素数 1〜4のアルコールに溶解す るものが好ましく、 例えば、 テトラクロ口金 (I I I ) 酸四水和物、 過塩素酸銀、 へキサクロ口白金 (I V) 酸六水和物、 塩化パラジウム (I I ) 二水和物、 三塩 化ロジウム (I I I ) 三水和物、 塩化銅 (I I ) 二水和物、 酢酸銅 (I I ) 一水 和物等を挙げることができる。 テトラクロ口金 (I I I ) 酸カリウム二水和物や 硫酸銅 (I I ) 等のように、 少量の水を添カ卩した炭素数 1〜4のアルコールに溶 解するものも使用することができる。 これらは、 1種又は 2種以上を使用するこ とができる。  The noble metal or copper compound is preferably a compound which dissolves in the above alcohol having 1 to 4 carbon atoms. Examples thereof include tetrachlorobase (III) acid tetrahydrate, silver perchlorate, and hexachlorotoplatinum (IV). Acid hexahydrate, palladium (II) chloride dihydrate, rhodium (III) trichloride trihydrate, copper (II) chloride dihydrate, copper (II) acetate monohydrate and the like be able to. It is also possible to use those which can be dissolved in an alcohol having 1 to 4 carbon atoms to which a small amount of water has been added, such as potassium tetrachloride (III) potassium dihydrate and copper sulfate (II). One or more of these can be used.
本発明において、 上記高分子量顔料分散剤は、 高分子量重合体に顔料表面に対 する親和性の高い官能基が導入されている両親媒性の共重合体である。 このもの は、 塗料用樹脂組成物等に対して充分な相溶性を有することから、 有機顔料又は 無機顔料の分散剤として好適であり、 通常は、 顔料ペース トの製造時に顔料分散 剤として使用されているものである。  In the present invention, the high molecular weight pigment dispersant is an amphiphilic copolymer in which a functional group having a high affinity for the pigment surface is introduced into the high molecular weight polymer. This is suitable as a dispersant for organic pigments or inorganic pigments because it has sufficient compatibility with resin compositions for coatings, etc., and is usually used as a pigment dispersant in the production of pigment pastes. Is what it is.
本発明においては、 上記高分子量顔料分散剤は、 貴金属又は銅のコロイド粒子 が生成する際の保護コロイドとして機能し、 その使用により、 非常に高濃度の貴 金属又は銅のコロイドのアルコール溶液が得られる。  In the present invention, the high-molecular weight pigment dispersant functions as a protective colloid when the noble metal or copper colloid particles are formed, and by using the same, a very high concentration alcohol solution of the noble metal or copper colloid is obtained. Can be
上記高分子量顔料分散剤は、 下記式 (1 ) 又は (2 ) を満たすものである。 (1) A≥ 3 m 1かつ 3m 1≤B 4 Om 1 The high molecular weight pigment dispersant satisfies the following formula (1) or (2). (1) A≥ 3 m 1 and 3m 1≤B 4 Om 1
(2) 0. 2 5≤ A/B≤ 4. 5  (2) 0.2 5 ≤ A / B ≤ 4.5
〔式中、 A及び Bはそれぞれ、 上記高分子量顔料分散剤 0. 5 gをァセトン 10 m 1に溶解したアセトン溶液に水又はへキサンをそれぞれ添加する場合における、 上記アセトン溶液が白濁するまでの上記水の添加量 (m l) 、 及び、 上記ァセト ン溶液が白濁するまでの上記へキサンの添加量 (m l ) である。 〕  (Wherein A and B are respectively the same as above until the acetone solution becomes cloudy when water or hexane is added to an acetone solution in which 0.5 g of the high molecular weight pigment dispersant is dissolved in 10 ml of acetone. The addition amount (ml) of the water and the addition amount (ml) of the hexane until the aceton solution becomes cloudy. ]
本発明においては、 式 (1) を満たさない場合であっても式 (2) を満たす場 合には、 上記高分子量顔料分散剤として使用することができる。 上記 A及び上記 Bが式 (1) 又は (2) のどちらにも含まれないと、 上記高分子量顔料分散剤が 貴金属又は銅のコロイドのアルコール溶液の分散媒である炭素数 1〜4のアルコ ールに十分に溶解しないものである結果、 貴金属又は銅のコロイド粒子を得るこ とができない。  In the present invention, even if the formula (1) is not satisfied, the formula (2) can be used as the high molecular weight pigment dispersant if the formula (2) is satisfied. If the above A and B are not included in either of the formulas (1) and (2), the high molecular weight pigment dispersant is an alcohol having 1 to 4 carbon atoms, which is a dispersion medium of an alcohol solution of a noble metal or copper colloid. As a result, no colloidal particles of noble metal or copper can be obtained.
ここで上記式 (1) は、 下記式 (1' ) であることが好ましい。  Here, the above formula (1) is preferably the following formula (1 ′).
(1' ) A 1 Om 1かつ 4m 1≤B≤ 2 Om 1  (1 ') A 1 Om 1 and 4m 1≤B≤ 2 Om 1
上記式 (1) 又は式 (2) を満たす高分子量顔料分散剤を用いることにより、 貴金属又は銅のコロイド粒子を安定に且つ高濃度に分散させることができる。 ま た、 貴金属又は銅のコロイド粒子のアルコール溶液の吸光曲線がこれまでのもの に比べてシャープになるため、 光学特性に優れた材料として利用可能である。 本発明において使用する高分子量顔料分散剤の数平均分子量は、 1000〜 1 00万であることが好ましい。 1000未満であると、 分散安定性が充分ではな く、 100万を超えると、 粘度が高すぎて取り扱いが困難となり、 また、 コロイ ド粒子の粒度分布が広くなり、 彩度が低下する。 より好ましくは、 2000〜 5 0万であり、 更に好ましくは、 4000〜50万である。  By using a high molecular weight pigment dispersant satisfying the above formula (1) or formula (2), it is possible to disperse the noble metal or copper colloid particles stably and at a high concentration. In addition, since the absorption curve of the alcohol solution of colloidal particles of noble metal or copper is sharper than before, it can be used as a material with excellent optical properties. The number average molecular weight of the high molecular weight pigment dispersant used in the present invention is preferably from 1,000 to 100,000. If it is less than 1000, the dispersion stability is not sufficient, and if it exceeds 1,000,000, the viscosity becomes too high to make handling difficult, and the particle size distribution of the colloid particles becomes wide and the chroma decreases. More preferably, it is 2000 to 500,000, and still more preferably 4000 to 500,000.
上記高分子量顔料分散剤は、 顔料親和性基及び溶媒和部分を含む構造を有する 樹脂であり、 例えば、 特開平 1 1—80647号公報に例示したものを挙げるこ とができる。  The high molecular weight pigment dispersant is a resin having a structure containing a pigment affinity group and a solvation portion, and examples thereof include those exemplified in JP-A-11-80647.
上記高分子量顔料分散剤としては、 市販されているものを使用することもでき る。 上記市販品としては、 例えば、 ソルスパース 27000、 ソルスパース 41 090 (以上、 アビシァ社製) 、 デイスパービック 180、 デイスパービック 1 81、 ディスパービック 190、 ディスパービック 1 9 1、 ディスパービック 1 92 (以上、 ビックケミ一社製) 、 ポリマー 450、 ポリマー 451、 ポリマー 452、 ポリマ一 453、 E FKA- 1 501、 EFKA— 1 502、 EFKA —4540、 EFKA-4550 (以上、 EFKAケミカル社製) 、 フローレン TG - 720 フロ—レン _ 730W、 フローレン一 740W、 フローレン一As the high molecular weight pigment dispersant, a commercially available pigment dispersant can also be used. Examples of the above commercially available products include Solsperse 27,000 and Solsperse 41 090 (above, manufactured by Abyssia), Dispervik 180, Dispervik 181, Dispervik 190, Dispervik 191, Dispervik 192 (above, manufactured by Big Chem), Polymer 450, Polymer 451, Polymer 452, Polymer 453, E FKA-1 501, EFKA-1 502, EFKA-4540, EFKA-4550 (all manufactured by EFKA Chemical), Floren TG-720 Floren_730W, Floren 740W, Floren 1
745W、 (以上、 共栄社化学社製) 、 ァジスパー PW9 1 1、 ァジスパー PB745W, (Kyoeisha Chemical Co., Ltd.), Azispar PW911, Azispar PB
821 (以上、 味の素社製) 、 ジョンクリル 678、 ジョンクリル 679、 ジョ ンクリル 6 2 (以上、 ジョンソンポリマー社製) 等を挙げることができる。 これ らは単独で使用してもよく、 2種以上を併用してもよい。 821 (above, manufactured by Ajinomoto Co.), Joncryl 678, Joncryl 679, Joncryl 62 (all, manufactured by Johnson Polymer). These may be used alone or in combination of two or more.
上記高分子量顔料分散剤の含有量は、 上記貴金属又は銅 100重量部に対して 30〜 1000重量部が好ましい。 30重量部未満であると、 上記貴金属又は銅 のコロイド粒子の分散性が不充分であり、 1000重量部を超えると、 上記貴金 属又は銅のコロイドのアルコール溶液をゾル一ゲル法に利用する場合に、 得られ る薄膜の物性が劣る場合がある。 より好ましくは、 40〜650重量部である。 本発明の貴金属又は銅のコロイドのアルコール溶液は、 上記炭素数 1〜4のァ ルコールを溶媒とするオルガノゾルであり、 貴金属又は銅の濃度は 1 Omm o 1 / 1以上とすることができる。 1 Ommo 1 / 1未満であると、 高濃度のコロイ ドのアルコール溶液を得ることができない。 より好ましくは、 50mmo lZl 以上である。  The content of the high molecular weight pigment dispersant is preferably 30 to 1000 parts by weight based on 100 parts by weight of the noble metal or copper. When the amount is less than 30 parts by weight, the dispersibility of the noble metal or copper colloid particles is insufficient. When the amount exceeds 1000 parts by weight, the alcohol solution of the noble metal or copper colloid is used for the sol-gel method. In such a case, the physical properties of the obtained thin film may be poor. More preferably, it is 40 to 650 parts by weight. The alcohol solution of a colloid of a noble metal or copper of the present invention is an organosol using the above-mentioned alcohol having 1 to 4 carbon atoms as a solvent, and the concentration of the noble metal or copper can be 1 Ommo 1/1 or more. If it is less than 1 Ommo 1/1, it is not possible to obtain a high-concentration alcohol solution of colloid. More preferably, it is 50 mmolZl or more.
本発明の貴金属又は銅のコロイドのアルコール溶液において、 コロイド粒子の 平均粒径は、 5〜50 nmであることが好ましい。 5 n m未満であると、 着色力 が弱く、 50 nmを超えると、 彩度が低くなる。  In the alcohol solution of the noble metal or copper colloid of the present invention, the average particle size of the colloid particles is preferably 5 to 50 nm. If it is less than 5 nm, the coloring power is weak, and if it exceeds 50 nm, the saturation becomes low.
本発明の貴金属又は銅のコロイドのアルコール溶液において、 コロイド粒子と 高分子分散剤とからなる固形分は、 任意に設定でき、 例えば、 1〜50重量%と することができる。 また、 上記固形分中の金属濃度は、 約 10重量%以上である ことが好ましい。 これ未満では、 金属の含有率が低すぎて目的とする効果が得ら れない。 上限は特に規定されないが、 例えば、 98重量%以下とすることができ る。 In the alcoholic solution of the noble metal or copper colloid of the present invention, the solid content of the colloid particles and the polymer dispersant can be arbitrarily set, for example, 1 to 50% by weight. Further, the metal concentration in the solid content is preferably about 10% by weight or more. If it is less than this, the desired effect cannot be obtained because the metal content is too low. The upper limit is not particularly specified, but can be, for example, 98% by weight or less. You.
本発明の貴金属又は銅のコロイドのアルコール溶液は、 上記の貴金属又は銅の 化合物を、 炭素数 1〜4のアルコールに溶解し、 高分子量顔料分散剤の存在下で 貴金属又は銅に還元する方法によって得ることができる。  The alcohol solution of a noble metal or copper colloid of the present invention is obtained by dissolving the above noble metal or copper compound in an alcohol having 1 to 4 carbon atoms and reducing the compound to noble metal or copper in the presence of a high molecular weight pigment dispersant. Obtainable.
上記還元の方法としては特に限定されず、 例えば、 還元性化合物を添加して化 学的に還元する方法、 高圧水銀灯を用いて光照射する方法等を挙げることができ る。 化学的に還元する方法における化合物の添加は、 上記高分子顔料分散剤の添 加後に行われてもよく、 また先に高分子顔料分散剤と上記化合物とを混合してお き、 この混合物を貴金属または銅の化合物の溶液に加える形態をとつてもょレ、。 上記還元性化合物としては、 アルコール可溶性のものが好ましく、 例えば、 従 来より還元剤として使用されている水素化ホウ素ナトリゥム等のアルカリ金属水 素化ホウ素塩; ヒドラジン化合物;ヒドロキシルァミン化合物;亜ニチオン酸塩 ;スルホキシル酸塩誘導体;ホルムアルデヒド;蟻酸又はその塩、 クェン酸又は その塩、 コハク酸又はその塩、 酒石酸又はその塩、 L—ァスコルビン酸又はその 塩等の炭素数 1〜6の有機酸又はその塩等を使用することができる。 また、 本発 明においては、 上記従来からの還元剤のほかに、 アミンを使用することができる。 これらは、 1種又は 2種以上を使用することができる。  The method for the reduction is not particularly limited, and examples thereof include a method of chemically reducing the compound by adding a reducing compound, a method of irradiating light with a high-pressure mercury lamp, and the like. The addition of the compound in the chemical reduction method may be performed after the addition of the polymer pigment dispersant. Alternatively, the polymer pigment dispersant and the compound may be mixed first, and the mixture may be used. In the form of addition to a solution of a noble metal or copper compound. The reducing compound is preferably an alcohol-soluble compound, for example, an alkali metal borohydride salt such as sodium borohydride which has been conventionally used as a reducing agent; a hydrazine compound; a hydroxylamine compound; Acid salt; a sulfoxylate derivative; formaldehyde; an organic acid having 1 to 6 carbon atoms such as formic acid or a salt thereof, citric acid or a salt thereof, succinic acid or a salt thereof, tartaric acid or a salt thereof, L-ascorbic acid or a salt thereof, or Its salts and the like can be used. In the present invention, an amine can be used in addition to the conventional reducing agent. One or more of these can be used.
上記アミンは、 通常は還元剤として使用されないものであるが、 上記貴金属又 は銅の化合物の溶液にアミンを添加して攪拌、 混合することによって、 貴金属ィ オンや銅イオン等が常温付近で貴金属、 銅に還元される。 上記アミンを使用する ことにより、 危険†生や有害性の高い還元剤を使用する必要がなく、 加熱や特別な 光照射装置を使用することなしに、 5〜1 0 0 °C程度、 好ましくは 2 0〜8 0 °C 程度の反応温度で、 貴金属又は銅の化合物を還元することができる。  The above-mentioned amine is not usually used as a reducing agent. However, by adding the amine to the above-mentioned solution of the noble metal or copper compound, stirring and mixing, the noble metal ion or copper ion becomes noble metal at around room temperature. It is reduced to copper. By using the above-mentioned amine, it is not necessary to use a dangerous reducing agent or a highly harmful reducing agent, and without heating or using a special light irradiation device, about 5 to 100 ° C, preferably The noble metal or copper compound can be reduced at a reaction temperature of about 20 to 80 ° C.
上記ァミンとしては特に限定されず、 例えば、 特開平 1 1— 8 0 6 4 7号公報 に例示されているものを使用することができ、 プロピルァミン、 ブチルァミン、 へキシルァミン、 ジェチルァミン、 ジプロピルァミン、 ジェチルメチノレアミン、 トリエチノレアミン、 エチレンジァミン、 N, N , Ν' , N' —テトラメチノレエチ レンジァミン、 トリエチレンテトラミン等の脂肪族ァミン; ピぺリジン、 Ν—メ チルピペリジン、 ピぺラジン、 ピロリジン、 モルホリン、 これらの誘導体等の脂 環式ァミン;ァニリン、 1、ルイジン、 ァニシジン、 フエネチジン、 これらの誘導 体等の芳香族ァミン; ベンジルァミン、 フエネチルァミン、 キシリレンジァミン、 これらの誘導体等のァラルキルアミン等を挙げることができる。 また、 上記アミ ンとして、 例えば、 メチルアミノエタノール、 ジメチルァミノエタノーノレ、 ジェ チルァミノエタノーノレ、 トリエタノールアミン、 エタノールァミン、 ジエタノー ルァミン、 メチルジェタノールァミン、 プロパノーノレアミン、 2— (3—ァミノ プロピルァミノ) エタノール、 ブタノールァミン、 へキサノールァミン、 ジメチ ルァミノプロパノール等のアルカノールァミンも挙げることができる。 これらの うち、 アル力ノールァミンが好ましく、 2—ジメチルァミノエタノールがより好 ましい。 The above-mentioned amine is not particularly limited, and for example, those exemplified in JP-A-11-8647 can be used. Propamine, butyramine, hexylamine, getylamine, dipropylamine, getylmethy Noreamine, triethynoleamine, ethylenediamine, N, N, Ν ', N'-aliphatic amines such as tetramethinoleethylenediamine, triethylenetetramine; piperidine, dimethylamine Alicyclic amines such as tilpiperidine, piperazine, pyrrolidine, morpholine and derivatives thereof; aromatic amines such as aniline, 1, luidine, anisidine, phenetidine and derivatives thereof; benzylamine, phenethylamine, xylylenediamine; And aralkylamines such as derivatives thereof. Examples of the above amine include methylaminoethanol, dimethylaminoethanol, methylaminoethanol, triethanolamine, ethanolamine, diethanolamine, methylethanolanolamine, propanolanolamine, 2- (3-aminopropylamino) Alkanolamines such as ethanol, butanolamine, hexanolamine and dimethylaminopropanol can also be mentioned. Of these, alkanolamine is preferred, and 2-dimethylaminoethanol is more preferred.
上記ァミンの添加量は、 上記貴金属又は銅の化合物 1 m o 1に対して 1〜 50 mo 1が好ましい。 lmo 1未満であると、 還元が充分に行われず、 50mo 1 を超えると、 生成したコロイド粒子の対凝集安定性が低下する。 より好ましくは、 2~8mo 1である。  The amount of the amine to be added is preferably 1 to 50 mol per 1 mol of the noble metal or copper compound. If it is less than lmo1, the reduction is not performed sufficiently, and if it exceeds 50mo1, the stability of the generated colloidal particles with respect to aggregation decreases. More preferably, it is 2 to 8 mol.
また、 上記還元剤として水素化ホウ素ナトリウムを使用する場合、 上記水素化 ホウ素ナトリウムは、 高価であり、 取り扱いにも留意しなければならないが、 常 温で還元することができるので、 加熱や特別な光照射装置を用意する必要がない。 上記水素化ホウ素ナトリゥムの添加量は、 上記貴金属又は銅の化合物 1 mo 1に 対して 1〜5 Omo 1が好ましく、 より好ましくは、 1. 5〜 ; L Omo lである。 上記還元剤としてクェン酸又はその塩を使用する場合、 アルコールの存在下で 加熱還流することによって貴金属イオンや銅イオン等を還元することができる。 上記クェン酸又はその塩は、 非常に安価であり、 入手が容易である利点がある。 上記クェン酸又はその塩としては、 クェン酸ナトリウムが好ましい。 なお、 タエ ン酸ナトリウムを使用する場合、 硫酸鉄 (I I) とを併用すると還元作用が向上 するのでより温和な条件で還元反応を進行させることができる。 ただし、 クェン 酸ナトリウムと硫酸鉄 (I I) を混合させるとき、 クェン酸と鉄 (I I) イオン の化学論量を合わせると不溶性のクェン酸鉄 (I I) が生成し、 沈降するといつ た不具合が生じる。 このために、 クェン酸ナトリウムの量が過剰となるように硫 酸鉄 (I I ) を添加する必要がある。 また、 硫酸鉄 (I I ) は、 クェン酸以外に も、 例えば、 スルホキシル酸塩誘導体と併用することによつても還元作用を向上 できる。 When sodium borohydride is used as the reducing agent, the sodium borohydride is expensive and must be handled with care. There is no need to prepare a light irradiation device. The amount of the sodium borohydride to be added is preferably 1 to 5 Omo 1, more preferably 1.5 to L Omol, per 1 mo 1 of the noble metal or copper compound. When citric acid or a salt thereof is used as the reducing agent, noble metal ions, copper ions, and the like can be reduced by heating and refluxing in the presence of an alcohol. The above citric acid or its salt has the advantage that it is very inexpensive and easily available. As the citric acid or a salt thereof, sodium citrate is preferable. In the case of using sodium catenate, the reduction action is improved when iron (II) sulfate is used in combination, so that the reduction reaction can proceed under milder conditions. However, when sodium citrate and iron (II) sulfate are mixed, insoluble iron (II) citrate is formed when the stoichiometry of citrate and iron (II) ions is adjusted, and when sedimentation occurs, Trouble occurs. For this purpose, it is necessary to add iron (II) sulfate so that the amount of sodium citrate becomes excessive. In addition to iron (II) sulfate, the reducing action can be improved by using it together with, for example, a sulfoxylate derivative in addition to citric acid.
更に、 クェン酸、 酒石酸等と上記ァミンとの塩も、 酸とァミンとの双方が還元 性を有することとなるので好ましい。  Further, salts of humic acid, tartaric acid and the like with the above-mentioned amines are also preferable because both the acid and the ammine have a reducing property.
上記クェン酸又はその塩の添加量は、 上記貴金属又は銅の化合物 1 m o 1に対 して l〜5 0 m o 1が好ましい。 l m o 1未満であると、 還元が充分に行われず、 5 O m o 1を超えると、 対凝集安定性が低下する。 より好ましくは、 1 . 5〜1 O m o 1である。  The addition amount of the above citric acid or a salt thereof is preferably 1 to 50 mol per 1 mol of the noble metal or copper compound. If it is less than 1 m o 1, the reduction is not sufficiently performed, and if it exceeds 5 m o 1, the stability against aggregation decreases. More preferably, it is 1.5 to 1 Omo1.
本発明の貴金属又は銅のコロイドのアルコール溶液の製造方法は、 上記貴金属 又は銅の化合物を炭素数 1〜4のアルコールを含有する溶媒に溶解して溶液とし、 高分子量顔料分散剤を加えた後、 貴金属又は銅に還元するといつた少ない工程で 簡便に行うことができ、 しかも、 彩度が高く、 従来の貴金属のコロイド溶液と比 較して 1 0倍以上高濃度の貴金属又は銅のコロイド溶液を製造することができる。 特に、 アルカノールァミンを使用することにより、 2 0〜8 0 °C程度の温和な条 件で簡便に製造することができる。 本発明の貴金属又は銅のコロイドのアルコー ル溶液の製造方法において使用する高分子量顔料分散剤は、 上述の貴金属又は銅 のコロイドのアルコール溶液のところで説明したものである。  The method for producing a noble metal or copper colloid alcohol solution of the present invention comprises dissolving the noble metal or copper compound in a solvent containing an alcohol having 1 to 4 carbon atoms to form a solution, and adding a high molecular weight pigment dispersant. When reduced to noble metal or copper, it can be carried out simply and with few steps, and has high color saturation, and a colloidal solution of noble metal or copper with a concentration of 10 times or more higher than that of the conventional colloidal solution of noble metal. Can be manufactured. Particularly, by using alkanolamine, it can be easily produced under mild conditions of about 20 to 80 ° C. The high molecular weight pigment dispersant used in the method for producing a colloidal solution of a noble metal or copper colloid according to the present invention is the same as that described for the alcohol solution of a noble metal or copper colloid described above.
上記還元後の溶液は、 上記金属コロイド粒子及び上記高分子顔料分散剤のほか に、 貴金属又は銅のコロイド溶液の原料に由来する塩化物イオン等の雑イオン、 還元で生じた塩や、 場合によりアミンを含むものであり、 これらの雑イオン、 塩 ゃァミンは、 得られる貴金属又は銅のコロイド溶液の安定性に悪影響を及ぼすお それがあるので、 除去しておくことが望ましい。 これらの成分の除去には、 電気 透析、 遠心分離、 限外濾過の方法が用いられるが、 後述するように、 遠心分離及 び限外濾過の方法を用いた場合、 濃縮が行われるので好ましい。  The solution after the reduction is, in addition to the metal colloid particles and the polymer pigment dispersant, miscellaneous ions such as chloride ions derived from the raw material of the noble metal or copper colloid solution, salts generated by reduction, and in some cases, It contains amines, and these miscellaneous ions and chlorides may adversely affect the stability of the resulting colloidal solution of noble metal or copper, so it is desirable to remove them. For the removal of these components, electrodialysis, centrifugation, and ultrafiltration are used. However, as described later, centrifugation and ultrafiltration are preferably used because concentration is performed.
本努明の貴金属又は銅のコロイドの溶液調整方法は、 先に得られた貴金属又は 銅のコロイドのアルコール溶液を濃縮した後、 濃縮して得られた溶液に上記アル コールと異なる溶剤を加えて希釈することを特徴とするものである。 上記濃縮の 方法としては種々の方法がある力 先の雑イオン、 塩ゃァミンの除去を同時に行 えることから、 遠心分離及び限外濾過が好ましい。 濃縮を行った後の希釈には先 のアルコールとは異なる溶剤を用い、 さらにこの濃縮および希釈を繰り返して行 うことによって、 実質的に溶剤を置換することができる。 上記異なる溶剤として は、 作業性や取り扱い易さの点から、 水が好ましい。 このようにして得られる貴 金属又は銅のコロイドの水溶液は、 溶剤として水を用いて製造したものに比べて、 吸光曲線がシャープである。 The method of preparing a colloidal solution of a noble metal or copper colloid according to the present invention involves concentrating an alcohol solution of a colloidal noble metal or copper obtained earlier, and then adding the above-mentioned alcohol to the concentrated solution. It is characterized by adding and diluting a solvent different from coal. As the above-mentioned concentration method, centrifugal separation and ultrafiltration are preferable, since various methods can simultaneously remove foreign ions and saltamine. For dilution after concentration, a solvent different from the above alcohol is used, and by repeating this concentration and dilution, the solvent can be substantially replaced. As the above different solvent, water is preferable from the viewpoint of workability and ease of handling. The aqueous solution of the noble metal or copper colloid obtained in this way has a sharper absorption curve than that produced using water as a solvent.
本発明の貴金属又は銅のコロイ ドのアルコール溶液、 及び、 上記溶液調整方法 により得られる貴金属又は銅のコロイドの溶液は、 ゾルーゲル法に好適に使用す ることができる。  The alcohol solution of the precious metal or copper colloid of the present invention and the precious metal or copper colloid solution obtained by the above solution preparation method can be suitably used for the sol-gel method.
ゾルーゲル法は、 一般には、 金属アルコキシドに、 アルコール、 加水分解に必 要な水、 及び、 触媒としての酸又は塩基を添加し、 室温〜 8 0 °Cで攪拌し、 加水 分解、 縮重合させるものである。 これらの反応により容易に金属酸化物の粒子が コロイド状に分散したゾルが得られる。 このゾルをゲルへ状態変化したものを膜 状にする場合には、 このゾル溶液をコーティング用組成物とすることができる。 上記ゾル溶液を用いて、 ディップ法やスピンコート法等により、 基材上にゾル膜 を形成させることができる。 上記コーティングされたゾル膜を室温で乾燥した後、 適当な温度で加熱することにより、 無機被膜であるゲル薄膜又はガラス薄膜が得 られる。  In the sol-gel method, generally, an alcohol, water necessary for hydrolysis, and an acid or base as a catalyst are added to a metal alkoxide, and the mixture is stirred at room temperature to 80 ° C. to undergo hydrolysis and condensation polymerization. It is. By these reactions, a sol in which metal oxide particles are dispersed in a colloidal state is easily obtained. When the sol is transformed into a gel to form a film, the sol solution can be used as a coating composition. Using the above sol solution, a sol film can be formed on a substrate by a dipping method, a spin coating method, or the like. The coated sol film is dried at room temperature and then heated at an appropriate temperature to obtain a gel thin film or a glass thin film which is an inorganic coating.
本発明のコーティング用組成物は、 上記貴金属又は銅のコロイドのアルコール 溶液と金属アルコキシドからなるものである。 本発明のもう一つのコーティング 用組成物は、 上記貴金属又は銅のコロイドの溶液と金属アルコキシドからなるも のである。  The coating composition of the present invention comprises the above alcohol solution of a noble metal or copper colloid and a metal alkoxide. Another coating composition of the present invention comprises the above-mentioned colloidal solution of a noble metal or copper and a metal alkoxide.
上記金属アルコキシドとしては、 ゾルーゲル法に通常用いられるものを使用す ることができ、 例えば、 M ( O R ) n (Mは金属原子、 Rはアルキル基、 nは金 属の酸価数を表す。 ) で表されるものを挙げることができる。 As the metal alkoxide, those usually used in the sol-gel method can be used. For example, M (OR) n (M is a metal atom, R is an alkyl group, and n is an acid number of a metal. ) Can be mentioned.
上記金属アルコキシドとしては S i ( O R) 4が一般的であるが、 この他に金 属原子 Mとして、 Z n、 Z r、 T i、 A l、 F e、 C o、 N iのものを目的に応 じて用いることができる。 また、 上記金属アルコキシドにおけるアルコキシ基と しては、 例えば、 メトキシ、 ェトキシ、 プロポキシ、 ブトキシ、 ペンチルォキシ 等の炭素数 1〜 5のアルコキシ基等を挙げることができる。 これらのうち、 良好 な反応性を有する点で、 エトキシ基がより好ましい。 As the above metal alkoxide, Si (OR) 4 is generally used. As the genus atoms M, those of Zn, Zr, Ti, Al, Fe, Co, and Ni can be used according to the purpose. Examples of the alkoxy group in the metal alkoxide include an alkoxy group having 1 to 5 carbon atoms such as methoxy, ethoxy, propoxy, butoxy, pentyloxy and the like. Among these, an ethoxy group is more preferable in that it has good reactivity.
上記金属アルコキシドとしては、 取り扱いが容易である点で、 テトラエトキシ シランが特に好ましい。  As the above-mentioned metal alkoxide, tetraethoxysilane is particularly preferable in terms of easy handling.
上記金属アルコキシド溶液の溶媒は、 アルコール及ぴ水からなるものが挙げら れる。 水 1モルに対するアルコールのモル数は、 目的とする薄膜の性質に応じて、 選択することができるが、 通常、 1〜3 0であることが好ましい。 上記水 1モル に対するアルコールのモル数が、 1未満では、 金属アルコキシドの加水分解が進 みすぎて、 安定性に欠け、 2 5を超えると、 金属アルコキシドの加水分解が不充 分となり、 あまり実用的ではない。 上記水 1モルに対するアルコールのモル数は、 より好ましくは、 1 0〜2 5である。  Examples of the solvent for the metal alkoxide solution include those composed of alcohol and water. The number of moles of alcohol per mole of water can be selected depending on the properties of the target thin film, but is usually preferably 1 to 30. If the number of moles of alcohol per mole of water is less than 1, hydrolysis of the metal alkoxide progresses too much and lacks stability.If it exceeds 25, hydrolysis of the metal alkoxide becomes insufficient and is not practical. Not a target. The mole number of the alcohol per 1 mole of the water is more preferably from 10 to 25.
上記金属アルコキシド溶液のアルコールとしては特に限定されず、 例えば、 本 発明の貴金属又は銅のコロイドのアルコール溶液に含まれるアルコールとして例 示したものおよび炭素数 5のアルコールを用いることができる。  The alcohol in the metal alkoxide solution is not particularly limited, and for example, those exemplified as the alcohols contained in the alcohol solution of the noble metal or copper colloid of the present invention and alcohols having 5 carbon atoms can be used.
上記金属アルコキシド溶液には、 触媒として酸又は塩基を含むことができるが、 無機被膜を作製する場合には、 酸を含むことが好ましい。 上記酸としては特に限 定されず、 例えば、 塩酸や硝酸を挙げることができる。  The metal alkoxide solution may contain an acid or a base as a catalyst, but preferably contains an acid when forming an inorganic coating. The acid is not particularly limited, and examples thereof include hydrochloric acid and nitric acid.
上記金属アルコキシド溶液は、 更に、 必要に応じ、 乾燥抑制剤、 上記貴金属又 は銅以外の有色の遷移金属化合物、 シランカップリング剤、 有機色素等の添加剤 を含むものであってもよい。 上記乾燥抑制剤としては特に限定されず、 例えば、 ジメチルホルムアミ ド、 ジメチルァセトアミ ド等を挙げることができる。  The metal alkoxide solution may further contain, if necessary, additives such as a drying inhibitor, a colored transition metal compound other than the noble metal or copper, a silane coupling agent, and an organic dye. The drying inhibitor is not particularly limited, and examples thereof include dimethylformamide and dimethylacetamide.
本発明のコーティング用組成物は、 貴金属又は銅のコロイドのアルコール溶液、 又は、 貴金属又は銅のコロイドの溶液を上記金属アルコキシド溶液に添力卩して攪 拌されることにより得られる。 上記添加する割合としては、 上記金属アルコキシ ド溶液に上記貴金属又は銅のコロイドのアルコール溶液、 又は、 貴金属又は銅の コロイドの溶液を加えた状態での貴金属又は銅のコロイド粒子の濃度が、 0 . 0 1 ~ 7 0重量%となるように添加することが好ましい。 有機溶媒を分散媒とする ものに対しての添加や水を分散媒とするもので安定性に問題がある場合には、 貴 金属又は銅のコロイドのアルコール溶液を用いることが好ましい。 0 . 0 1重量 %未満では、 添加効果が十分に得られず、 7 0重量%を超えると、 コーティング 用組成物の安定 ¾Ξが悪くなる場合がある。 なお、 後述するように本発明のコーテ ィング用組成物を用いて得られる無機被膜に金属光沢を得たい場合には、 そうで ない場合に比べて、 貴金属又は銅のコロイド粒子の濃度は高くなる傾向がある。 上記ゾル一ゲル法に使用されるコーティング用組成物を塗布する基材としては 特に限定されず、 例えば、 アルミニウム、 ステンレス等の金属、 ガラス、 プラス チック等を挙げることができ、 これらは、 その片面及び 又は両面に表面加工を 施したものであってもよい。 The coating composition of the present invention is obtained by adding a noble metal or copper colloidal alcohol solution or a noble metal or copper colloidal solution to the metal alkoxide solution and stirring the mixture. As the ratio of the above-mentioned addition, the above-mentioned noble metal or copper colloidal alcohol solution or the noble metal or copper It is preferable to add the colloidal particles of the noble metal or copper so that the concentration of the colloidal particles of the noble metal or copper in the state where the colloidal solution is added is 0.01 to 70% by weight. In the case where addition to an organic solvent is used as a dispersion medium or when water is used as a dispersion medium and there is a problem in stability, it is preferable to use a colloidal alcohol solution of a noble metal or copper. If the amount is less than 0.01% by weight, the effect of the addition cannot be sufficiently obtained. If the amount exceeds 70% by weight, the stability of the coating composition may be poor. As will be described later, when it is desired to obtain a metallic luster on the inorganic coating obtained using the coating composition of the present invention, the concentration of the noble metal or copper colloid particles is higher than in the case where it is not so. Tend. The substrate on which the coating composition used in the above sol-gel method is applied is not particularly limited, and examples thereof include metals such as aluminum and stainless steel, glass, and plastics. And / or both surfaces may be subjected to surface processing.
上記塗布方法としては、 上述のディップ法やスピンコート法等の方法のほか、 基材がアルミニウム等の金属である場合には、 電気泳動を利用することもできる。 このようにして得られた膜を焼成することにより、 無機被膜が得られる。 上記焼 成は、 好ましくは 1 0 0〜 5 0 0 °Cで行うことができる。 上記焼成は、 好ましく は 5〜 1 2 0分間行うことができる。  As the coating method, in addition to the above-described methods such as the dip method and the spin coating method, when the substrate is a metal such as aluminum, electrophoresis can be used. By baking the film thus obtained, an inorganic coating can be obtained. The calcination can be preferably performed at 100 to 500 ° C. The calcination can be preferably performed for 5 to 120 minutes.
本発明の貴金属又は銅のコロイドのアルコール溶液、 又は、 貴金属又は銅のコ ロイドの溶液を含むコーティング用組成物を使用してゾルーゲル法により製膜す ることにより得られる無機被膜は、 金属の含有濃度が高いものは金属光沢を有す ることができる。 ここでいう金属光沢とは、 ハーフミラーと呼ばれる状態を含ん でいる。 この金属光沢を有するものは、 電磁波シールドとしても利用できる他に、 意匠材料として使用することができる。 一方、 濃色かつ彩度の高い無機被膜は、 光学材料、 例えば、 耐熱性光学フィルターや非線形光学材料といった光学材料や 高耐熱 ·高耐久性の色材として利用できる。 また、 この他抗菌材ゃ触媒等に用い ることも可能である。  The inorganic coating obtained by forming a film by the sol-gel method using the alcoholic solution of the noble metal or copper colloid of the present invention or the coating composition containing the noble metal or copper colloid solution contains metal. Higher concentrations can have a metallic luster. The metallic luster mentioned here includes a state called a half mirror. Those having this metallic luster can be used not only as an electromagnetic wave shield but also as a design material. On the other hand, inorganic coatings with a high color depth and high saturation can be used as optical materials, for example, optical materials such as heat-resistant optical filters and non-linear optical materials, and coloring materials with high heat resistance and high durability. In addition, it can be used for antibacterial materials and catalysts.
上記無機被膜の膜厚は、 使用する用途に応じて選択することができるが、 光学 材料とする場合には、 乾燥膜厚として 0 . 0 5〜1 0 /x mであることが好ましい。 上記膜厚が、 0 . 0 5 /i m未満では、 着色力や電磁波遮蔽力に欠ける場合があり、 Ι Ο μ πιを超えると、 加熱による剥離やクラックが生じやすい。 上記膜厚は、 好 ましくは 0 . 1〜5 μ ΐηである。 The thickness of the inorganic coating can be selected according to the application to be used, but when it is used as an optical material, the dry thickness is preferably 0.05 to 10 / xm. When the film thickness is less than 0.05 / im, coloring power or electromagnetic wave shielding power may be lacked. When the film thickness exceeds Ομππ, peeling or cracking due to heating tends to occur. The thickness is preferably 0.1 to 5 μΐη.
以上の方法により製造される光学材料としての無機被膜は、 上述した貴金属又 は銅のコロイドのアルコール溶液、 又は、 貴金属又は銅のコロイドの溶液を着色 剤として用いているので、 得られる薄膜に鮮やかな色が付与されており、 付与さ れた色は化学的に安定であるので、 退色しない。 上記光学材料としては特に限定 されず、 例えば、 テレビのブラウン管表面の着色コーティング等の光学フィルタ 一等を挙げることができる。  Since the inorganic coating as an optical material produced by the above method uses the above-mentioned alcohol solution of a noble metal or copper colloid or a solution of a noble metal or copper colloid as a coloring agent, the resulting thin film is vivid. Color is applied and the applied color is chemically stable and does not fade. The optical material is not particularly limited, and examples thereof include an optical filter such as a colored coating on the surface of a CRT of a television.
本発明の貴金属又は銅のコロイドのアルコール溶液、 又は、 貴金属又は銅のコ 口ィドの溶液は、 ゾルーゲル法に使用する金属アルコキシド溶液に添加すること が可能であり、 安定なコーティング用組成物を得ることができる。 また、 本発明 の貴金属又は銅のコロイドのアルコール溶液、 又は、 貴金属又は銅のコロイドの 溶液は、 吸光曲線がこれまでのものに比べてシャープになるため、 特に光学材料 として使用する場合に、 従来よりも高い彩度を実現することができる。  The alcohol solution of the noble metal or copper colloid of the present invention or the solution of the noble metal or copper colloid can be added to the metal alkoxide solution used in the sol-gel method, and a stable coating composition can be obtained. Obtainable. In addition, the noble metal or copper colloidal alcohol solution or the noble metal or copper colloidal solution of the present invention has a sharper absorption curve than conventional ones. Higher saturation can be realized.
本発明において、 吸光曲線がこれまでのものに比べてシャープになる理由は明 確ではないが、 以下のことが考えられる。  In the present invention, the reason why the absorption curve becomes sharper than the conventional one is not clear, but the following may be considered.
特開平 1 1— 8 0 6 4 7号公報等の記載の従来の貴金属又は銅のコロイド水溶 液は、 高分子量顔料分散剤の分子同士の間に相互作用が働くため、 各分散剤分子 同士が絡み合い、 分散対象物である個々のコロイド粒子に配位して保護コロイド として機能する効率があまり高くない結果、 上記コロイド粒子を一様に細かく分 散して粒径分布を狭くすることに一定の限界があるものと思われる。  In the conventional aqueous colloidal solution of a noble metal or copper described in Japanese Patent Application Laid-Open No. 11-080647, etc., an interaction acts between the molecules of the high-molecular-weight pigment dispersant. Entangling and coordinating with the individual colloidal particles to be dispersed and the function as a protective colloid is not very high.As a result, the colloidal particles are uniformly and finely dispersed to narrow the particle size distribution. Seems to have limitations.
しかしながら、 本発明の貴金属又は銅のコロイドのアルコール溶液、 又は、 貴 金属又は銅のコロイドの溶液においては、 製造する過程においてアルコールが使 用されているため、 高分子量顔料分散剤の分子相互間の作用が小さく、 各分散剤 分子の自由度が高まつて運動率が增し、 分散対象物である貴金属又は銅の各コ口 ィド粒子に配位しやすくなつて、 各コロイド粒子の粒径が小さい状態で保護コロ イドとして作用するため、 粒径分布が狭くなり、 その結果として吸光曲線がシャ ープになるものと考えられる。 また、 本発明の貴金属又は銅のコロイドのアルコ —ル溶液を製造する際に、 これまでに比べ反応温度を高くすることができるが、 これもまた、 粒径分布を狭いものとすることができる一因と考えられる。 図面の簡単な説明 図 1は、 金コロイドのアルコール溶液における金コロイド粒子の粒径分布を示 す吸光度曲線である。 実線は、 製造例で得られた金コロイ ドのトルエン溶液、 破 線は、 実施例 1で得られた金コロイドのエタノール溶液について測定したもので ある。 横軸は波長 (n m) 、 縦軸は吸光度を表す。 発明を実施するための最良の形態 However, in the alcohol solution of the noble metal or copper colloid or the noble metal or copper colloid solution of the present invention, alcohol is used in the production process, so that the molecular weight of the high molecular weight pigment dispersant The effect is small, the degree of freedom of each dispersant molecule is high, the kinetic rate is low, and it is easy to coordinate with each of the noble metal or copper particles to be dispersed, and the particle size of each colloid particle Acts as a protective colloid in a small state, the particle size distribution becomes narrow, and as a result, the absorption curve It is thought that it becomes a loop. In addition, when the alcohol solution of the noble metal or copper colloid of the present invention is produced, the reaction temperature can be increased as compared with the prior art, but this can also narrow the particle size distribution. It is considered to be one factor. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an absorbance curve showing the particle size distribution of gold colloid particles in an alcohol solution of gold colloid. The solid line is for the toluene solution of gold colloid obtained in Production Example, and the broken line is for the ethanol solution of gold colloid obtained in Example 1. The horizontal axis represents wavelength (nm), and the vertical axis represents absorbance. BEST MODE FOR CARRYING OUT THE INVENTION
以下に実施例を掲げて本発明を更に詳細に説明するが、 本発明はこれら実施例 のみに限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to only these Examples.
参考例 高分子量顔料分散剤の選択  Reference example Selection of high molecular weight pigment dispersant
高分子量顔料分散剤として、 デイスパービック 1 9 0、 デイスパービック 1 9 1、 デイスパービック 1 9 2及びディスパービック 1 8 4 (以上、 ビックケミー 社製) 、 E F KA— 4 5 5 0及び E F KA— 4 5 4 0 (以上、 E F KAケミカノレ 社製) 並びにソルスパース 2 4 0 0 0及びソルスパース 2 8 0 0 0 (以上、 アビ シァ社製) をそれぞれ 0 . 5 gを容器に取り、 これらにアセトン 1 O m 1を加え て撹拌し、 高分子顔料分散剤を溶解した。 これに撹拌しながらビュレッ トを用い て水を 1滴〜数滴ずつ滴下し、 白濁した時点の滴下量 Aを記録した。 これとは別 に上記水に代えてへキサンを使用し、 白濁した時点のへキサン滴下量 Bを求めた。 検討は、 まず式 (1 ) について行い、 評価が下記の基準により Xであったもの について式 (2 ) を検討した。 式 (1 ) については、 以下のように評価した。 ◎:式 ( 1 ' ) を満たす場合。  As high molecular weight pigment dispersants, there are Dispervik 190, Dispervik 191, Dispervik 192 and Dispervik 184 (all manufactured by Big Chemie), EF KA—450 and EF Place 0.5 g of KA-4450 (all manufactured by EF KA Chemikanole), Solsperse 2400 and Solsperse 2800 (all manufactured by Abyssia) in a container, and place in each container. 1 Om1 of acetone was added and stirred to dissolve the polymer pigment dispersant. One to several drops of water were added dropwise to the mixture with a burette while stirring, and the amount of drop A at the time of clouding was recorded. Separately from this, hexane was used in place of the water, and the amount of hexane dropped B at the time of cloudiness was determined. The study was first performed with respect to equation (1), and when the evaluation was X based on the following criteria, equation (2) was examined. Equation (1) was evaluated as follows. ◎: When the expression (1 ′) is satisfied.
〇:式 (1 ' ) を満たさないが、 式 (1 ) を満たす場合。  〇: When expression (1 ′) is not satisfied, but expression (1) is satisfied.
X :式 (1 ) を満たさない場合。  X: when formula (1) is not satisfied.
式 (2 ) については、 以下のように評価した。 〇:式 (2) を満たす場合。 Equation (2) was evaluated as follows. 〇: When equation (2) is satisfied.
X :式 (2) を満たさない場合。  X: when the formula (2) is not satisfied.
なお、 白濁しない場合の滴下量は 5 Om 1で計算した。 結果を表 1に示す c In addition, the amount of dripping in the case of no cloudiness was calculated at 5 Om1. The results are shown in Table 1c
Figure imgf000018_0001
表 1の結果から、 ディスパービック 1 90、 ディスパービック 19 1、 デイス パービック 1 92、 EFKA-4550, E F KA— 4540が適合していると いえる。 この中では、 デイスパービック 1 90、 デイスパービック 1 9 1力 よ り好ましいものであった。
Figure imgf000018_0001
From the results in Table 1, it can be said that Dispervik 190, Dispervik 191, Disparvik 192, EFKA-4550, EFKA-4540 are suitable. Of these, the Desperbic 190 and the Despervik 191 were preferred.
実施例 1 金コロイドのェタノール溶液の調製  Example 1 Preparation of colloidal gold solution in ethanol
テトラクロ口金 ( I I I ) 酸四水和物 (HAu C 14■ 4H20) 1 2 gをエタ ノール 230 gを入れた反応容器にとり、 撹拌して溶解した。 さらに高分子顔料 分散剤として、 ビックケミ一社製のディスパービック 1 9 1を 9 gを加え、 撹拌 した。 高分子顔料分散剤が溶解した後、 液温が 50°Cになるまでウォーターバス を用いて加熱した。 撹拌しながら 2—ジメチルァミノエタノール 13 gを瞬時に 添加した。 添加後、 液温を 50°Cに保ちながら 2時間撹拌を行い、 鮮やかで濃厚 な赤色を呈する金コロイドのエタノール溶液を得た。 得られた金コロイドのエタ ノール溶液を旭化成社製の限外濾過ペンシル型モジュール AHP—00 13を用 いて、 残留イオンを濾過で除き、 得られた濾液にエタノールを添加してさらに濾 過を行うといった工程を繰り返し行い、 残留イオン成分の除去された、 金コロイ ド粒子と高分子顔料分散剤とからなる固形分 20重量 °/oの金コロイドのエタノー ル溶液 37 gを得た。 TG— DTA (セイコーインストウルメント社製) 測定の 結果、 固形分中の金粒子の含有率は 70重量。 /。であった。 実施例 2 金コロイ ドのエタノール溶液の調製 Taken tetrachloroethene mouthpiece (III) acid tetrahydrate (HAu C 14 ■ 4H 2 0 ) 1 2 g to a reaction vessel containing ethanol 230 g, and dissolved by stirring. Further, 9 g of Dispervic 191, manufactured by Vic Chem Inc., was added as a polymer pigment dispersant, and the mixture was stirred. After the polymer pigment dispersant was dissolved, the mixture was heated using a water bath until the liquid temperature reached 50 ° C. With stirring, 13 g of 2-dimethylaminoethanol was added instantaneously. After the addition, the mixture was stirred for 2 hours while maintaining the liquid temperature at 50 ° C, to obtain a vivid and thick red colloidal ethanol solution of gold colloid. The ethanol solution of the obtained colloidal gold is removed by filtration using an ultrafiltration pencil-type module AHP-0113 manufactured by Asahi Kasei Corporation, and ethanol is added to the obtained filtrate, followed by further filtration. By repeating the above steps, 37 g of a colloidal gold ethanol solution having a solid content of 20% by weight / o and comprising gold colloid particles and a polymer pigment dispersant, from which residual ion components were removed, were obtained. As a result of TG-DTA (manufactured by Seiko Instrument), the content of gold particles in the solid content was 70% by weight. /. Met. Example 2 Preparation of gold colloid in ethanol
高分子顔料分散剤として E F KAケミカル社製の E F KA— 4 5 5 0を 2 0 g、 ジメチルァミノエタノールを 1 4 g及ぴエタノールを 2 0 0 g、 それぞれ反応容 器にとり、 撹拌して、 高分子顔料分散剤を完全に溶解させた。 一方、 テトラクロ 口金 ( I I I ) 酸四水和物 (HA u C 1 4■ 4 H20) 1 2 gをエタノール 1 0 0 m lに溶解した。 高分子顔料分散剤のエタノール溶液を撹拌しながら、 これにテ トラクロ口金 (I I I ) 酸四水和物のエタノール溶液を瞬時に加えた。 そのまま 室温で 1時間撹拌を続け、 鮮やかで濃厚な赤色を呈する金コロイドのエタノール 溶液を得た。 得られた金コロイドのエタノール溶液を旭化成社製の限外濾過ペン シル型モジュール AH P— 0 0 1 3を用いて、 残留イオンを濾過で除き、 得られ た濾液にエタノールを添加してさらに濾過を行うといった工程を繰り返し行い、 残留イオン成分の除去された、 金コロイド粒子と高分子顔料分散剤とからなる固 形分 2 2重量%の金コロイドのエタノール溶液 3 7 gを得た。 As a polymeric pigment dispersant, 20 g of EF KA-450 550, 14 g of dimethylaminoethanol and 200 g of ethanol manufactured by EF KA Chemical Co., Ltd. were placed in a reaction vessel, and stirred. The polymer pigment dispersant was completely dissolved. On the other hand, tetrachloroethene mouthpiece (III) acid tetrahydrate (HA u C 1 4 ■ 4 H 2 0) was dissolved 1 2 g of ethanol 1 0 0 ml. While stirring the ethanol solution of the polymer pigment dispersant, an ethanol solution of tetraclo mouth (III) acid tetrahydrate was added thereto instantaneously. Stirring was continued for 1 hour at room temperature to obtain a vivid, thick red ethanol solution of colloidal gold. The ethanol solution of the obtained colloidal gold was removed by filtration using an ultrafiltration pencil type module AHP-001, manufactured by Asahi Kasei Corporation, and ethanol was added to the obtained filtrate, followed by further filtration. This step was repeated to obtain 37 g of a 22% by weight solid solution of a gold colloidal ethanol solution containing colloidal gold particles and a polymeric pigment dispersant, from which residual ion components had been removed.
丁0— 0丁 測定の結果から、 この固形分中の金の含有率は 6 5重量%である ことが確認された。  From the results of the measurement, it was confirmed that the gold content in the solid content was 65% by weight.
実施例 3 金コロイ ドのェタノール溶液  Example 3 Ethanol solution of gold colloid
高分子顔料分散剤として E F KAケミカル社製の E F KA— 4 5 5 0の代わり に E F KAケミカル社製の E F KA— 4 5 4 0を 2 0 g用いる以外は実施例 2に 従って、 金コロイド粒子と高分子顔料分散剤とからなる固形分 2 2重量%の鮮ゃ かで濃厚な赤色を呈する金コロイ ドのエタノール溶液 3 7 gを得た。 T G— D T A測定の結果、 固形分中の金粒子の含有率は 6 5重量。/。であった。  According to Example 2, except that 20 g of EF KA-450 manufactured by EF KA Chemical was used instead of EF KA-450 manufactured by EF KA Chemical as a polymer pigment dispersant, the gold colloid was used. 37 g of a solution of gold colloid in ethanol having a solid content of 22% by weight and consisting of particles and a polymer pigment dispersant and exhibiting a bright and dense red color was obtained. As a result of T G—D T A measurement, the content of gold particles in the solid content was 65% by weight. /. Met.
実施例 4 銀コロイ ドのメタノール溶液  Example 4 Methanol solution of silver colloid
過塩素酸銀 1 1 gを反応容器に取り、 これに高分子顔料分散剤としてビックケ ミ一社製のディスパービック 1 9 2 1 0 gとメタノール 3 0 0 gを取り、 樹脂 成分が溶解するまで撹拌した。 この樹脂成分の溶解した水溶液を先の過塩素酸銀 水溶液に加え、 液温が 5 0 °Cになるようにウォーターバスを用いて加熱した。 こ こに、 撹拌しながら 2—ジメチルァミノエタノール 2 4 gを瞬時に添加した。 2 ージメチルァミノエタノール添加後、 さらに 5 0 °Cで 6時間撹拌し、 その後 5 0 °Cで一晚静置した。 次に旭化成社製の限外濾過ペンシル型モジュール AH P— 0 0 1 3を用いて、 残留イオンを濾過で除き、 得られた濾液にメタノールを添加し てさらに濾過を行うといった工程を繰り返し行い、 残留イオン成分の除去された、 銀コロイド粒子と高分子顔料分散剤とからなる固形分 4 0重量%の鮮やかで濃厚 な黄色を呈する銀コロイドのメタノール溶液 2 0 gを得た。 T G— D T A測定の 結果、 固形分中の銀粒子の含有率は 5 3重量%であった。 Take 11 g of silver perchlorate into a reaction vessel, take 192.10 g of Dispervic (manufactured by Big Chemical Co., Ltd.) and 300 g of methanol as polymer pigment dispersants, and dissolve the resin component until it dissolves. Stirred. The aqueous solution in which the resin component was dissolved was added to the above-mentioned aqueous solution of silver perchlorate, and heated using a water bath so that the temperature of the solution became 50 ° C. Here, 24 g of 2-dimethylaminoethanol was added instantaneously with stirring. After addition of 2-dimethylaminoethanol, the mixture was further stirred at 50 ° C for 6 hours, and then It was left still at ° C. Next, using an ultrafiltration pencil-type module AHP-001 made by Asahi Kasei Corporation, a process of removing residual ions by filtration, adding methanol to the obtained filtrate, and performing further filtration, was repeated. 20 g of a viscous and thick yellow colloidal methanol solution having a solid content of 40% by weight and comprising silver colloid particles and a polymer pigment dispersant, from which residual ion components had been removed, were obtained. As a result of TG-DTA measurement, the content of silver particles in the solid was 53% by weight.
実施例 5 銀コロイ ドのェタノール溶液  Example 5 Ethanol solution of silver colloid
過塩素酸銀 1 1 gを反応容器に取り、 これに高分子顔料分散剤としてビックケ ミー社製のディスパービック 1 9 0を 2 0 g及びエタノールを 3 0 0 gとり、 樹 脂成分が溶解するまで撹拌した。 この樹脂成分の溶解した水溶液を先の過塩素酸 銀水溶液に加え、 液温が 5 0 °Cになるようにウォーターパスを用いて加熱した。 ここに、 撹拌しながら 2—ジメチルァミノエタノール 2 4 gを瞬時に添カ卩した。 2—ジメチルァミノエタノール添加後、 さらに 5 0 °Cで 6時間撹拌し、 その後 5 0 °Cで一晚静置した。 次に旭化成社製の限外濾過べンシル型モジュ一ル A H P— 0 0 1 3を用いて、 残留イオンを濾過で除き、 得られた濾液にエタノールを添カロ してさらに濾過を行うといった工程を繰り返し行い、 残留イオン成分の除去され た、 銀コロイド粒子と高分子顔料分散剤とからなる固形分 4 0重量%の鮮やかで 濃厚な黄色を呈する銀コロイ ドのェタノール溶液 2 0 gを得た。 T G— D T A測 定の結果、 固形分中の銀粒子の含有率は 5 5重量%であった。  Take 11 g of silver perchlorate into a reaction vessel, take 20 g of Dispervic 190 manufactured by BYK-Chemie as a polymeric pigment dispersant and 300 g of ethanol, and dissolve the resin component And stirred. The aqueous solution in which the resin component was dissolved was added to the above-mentioned aqueous solution of silver perchlorate, and heated using a water path so that the temperature of the solution became 50 ° C. Here, 24 g of 2-dimethylaminoethanol was added instantaneously while stirring. After the addition of 2-dimethylaminoethanol, the mixture was further stirred at 50 ° C for 6 hours, and then left at 50 ° C for a while. Next, a process of removing residual ions by filtration using Asahi Kasei's ultrafiltration vencil type module AHP-0113, and adding ethanol to the obtained filtrate to carry out further filtration. This process was repeated to obtain 20 g of a vivid, thick yellow ethanol solution of silver colloid having a solid content of 40% by weight and comprising silver colloid particles and a polymer pigment dispersant, from which residual ion components had been removed. As a result of TG-DTA measurement, the content of silver particles in the solid was 55% by weight.
実施例 6 パラジウムコロイドのェタノール溶液の調製  Example 6 Preparation of Ethanol Solution of Palladium Colloid
塩化パラジウム (I I ) 二水和物 1 4 . 5 gを、 エタノール 3 0 0 gとともに 容器にとり、 撹拌して溶解した。 さらに高分子顔料分散剤として、 ビックケミー 社製のディスパービック 1 9 0を 2 2 g加え、 高分子顔料分散剤が溶解するまで 撹拌した。 別の容器にクェン酸 3 6 g、 2—ジメチルァミノエタノール 2 3 gと エタノール 1 0 0 gとを取り、 クェン酸が溶解するまで撹拌した。 このエタノー ル溶液を塩化パラジウム溶液に撹拌しながら瞬時に加え、 室温で 2時間撹拌し、 パラジウムコロイド水溶液を得た。 こうして得られたパラジウムコロイドのエタ ノール溶液を旭化成社製の限外濾過ペンシル型モジュール A H P— 0 0 1 3を用 いて、 残留イオンを濾過で除き、 得られた濾液にエタノールを添カ卩してさらに濾 過を行うといった工程を繰り返し行い、 残留イオン成分の除去された、 パラジゥ ムコロイド粒子と高分子顔料分散剤とからなる固形分 4 0重量%の濃厚な褐色の パラジウムコロイドのェタノール溶液 3 0 gを得た。 T G— D T A測定の結果、 固形分中のパラジウム粒子の含有率は 5 8重量。/。であった。 14.5 g of palladium (II) chloride dihydrate was placed in a container together with 300 g of ethanol, and stirred to dissolve. Further, 22 g of Dispervic 190 manufactured by BYK Chemie was added as a polymer pigment dispersant, and the mixture was stirred until the polymer pigment dispersant was dissolved. 36 g of citric acid, 23 g of 2-dimethylaminoethanol and 100 g of ethanol were placed in another container, and stirred until the citric acid was dissolved. This ethanol solution was instantaneously added to the palladium chloride solution with stirring, and the mixture was stirred at room temperature for 2 hours to obtain a palladium colloid aqueous solution. The ethanol solution of the palladium colloid thus obtained was used with an ultrafiltration pencil type module AHP-0113 manufactured by Asahi Kasei Corporation. Then, a process of removing residual ions by filtration, adding ethanol to the obtained filtrate, and further filtering the mixture was repeated, and the palladium colloid particles and the polymer pigment dispersant from which the residual ion components were removed were removed. 30 g of a thick brown palladium colloid ethanol solution having a solid content of 40% by weight was obtained. As a result of TG-DTA measurement, the content of palladium particles in the solid content was 58 wt. /. Met.
比較例 1 金コロイドのェタノール溶液  Comparative Example 1 Ethanol solution of colloidal gold
高分子量顔料分散剤としてビックケミ一社製のディスパービック 1 8 4を 1 8 g用いる以外には実施例 1に従って金コロイドのエタノール溶液の調製を試みた c しかし、 金粒子とデイスパービック 1 8 4とからなる塊状の沈殿物が生じ、 金コ ロイ ドのエタノール溶液は得られなかった。 However c was tried the preparation of ethanol solution of gold colloid according to Example 1 in addition to using Bikkukemi one company made of Disperbyk 1 8 4 1 8 g as a high-molecular weight pigment dispersant, gold particles and disperser big 1 8 4 A massive precipitate consisting of the following was formed, and an ethanol solution of gold colloid was not obtained.
比較例 2 銀コロイ ドのェタノール溶液  Comparative Example 2 Ethanol solution of silver colloid
高分子量顔料分散剤としてァビシァ社製のソルスパース 2 4 0 0 0 1 0 gを 用いる以外には実施例 5に従って銀コロイ ドのェタノール溶液の調製を試みた。 し力、し、 銀粒子とソルスパース 2 4 0 0 0とからなる塊状の沈殿物が生じ、 銀コ ロイドのエタノール溶液は得られなかった。  Preparation of a silver colloid ethanol solution was attempted according to Example 5 except that 240 g of Solsperse manufactured by Avicia was used as a high molecular weight pigment dispersant. A massive precipitate consisting of silver particles and Solsperse 2400 was formed, and a silver colloid ethanol solution was not obtained.
比較例 3 銀コロイ ドのェタノール溶液  Comparative Example 3 Ethanol solution of silver colloid
高分子量顔料分散剤としてアビシァ社製のソルスパース 2 8 0 0 0 1 0 gを 用いる以外には実施例 5に従って銀コロイドのエタノール溶液の調製を試みた。 しかし、 銀粒子とソルスパース 2 8 0 0 0とからなる塊状の沈殿物が生じ、 銀コ ロイ ドのエタノール溶液は得られなかった。  An ethanol solution of silver colloid was prepared in accordance with Example 5 except that 280.10 g of Solsperse manufactured by Avicia was used as a high molecular weight pigment dispersant. However, a massive precipitate composed of silver particles and Solsperse 2800 was formed, and a silver colloid ethanol solution was not obtained.
製造例 金コロイドのトルエン溶液の調製  Production example Preparation of toluene solution of colloidal gold
テトラクロ口金 (I I I ) 酸四水和物 (HA u C 1 4■ 4 H20 ) 1 2 gを、 水 4 0 gとともに反応容器にとり、 撹拌して溶解した。 一方、 別の容器に高分子顔 料分散剤としてアビシァ社製のソルスパース 2 8 0 0 0を 4 g及びァセトンを 6 0 gとり、 撹袢して高分子顔料分散剤を溶解した。 この高分子顔料分散剤溶液を テトラクロ口金 (I I I ) 酸水溶液の入った反応容器に加えて、 撹拌しながら 2 ージメチルァミノエタノール 1 3 . 0 gを瞬時に加えた。 その後、 さらに室温で 1時間撹拌を行った後、 ァセトンを乾燥 ·除去した。 ァセトン量の減少に伴い、 高分子顔料分散剤に保護された金コロイドが析出し、 沈殿した。 上澄みの水層を デカンテーシヨンして除去し、 さらに蒸留水で金コ口ィドを洗浄した後、 完全に 乾燥させて金の非極性溶媒可溶性固体ゾル 8 gを得た。 T G— D T A測定の結果、 固形分中の金粒子の含有率は 7 0重量%であった。 Tetrachloroethene mouthpiece (III) acid tetrahydrate (HA u C 1 4 ■ 4 H 2 0) 1 2 g, together with the water 4 0 g taken in a reaction vessel and stirred to dissolve. On the other hand, 4 g of Solsperse 280.000 and Aceton (60 g) manufactured by Avicia Co., Ltd. were placed in another container as a polymer pigment dispersant, and the polymer pigment dispersant was dissolved by stirring. This polymer pigment dispersant solution was added to a reaction vessel containing an aqueous solution of tetrachlorobase (III) acid, and 13.0 g of 2-dimethylaminoethanol was added instantaneously with stirring. Then, after further stirring at room temperature for 1 hour, acetone was dried and removed. With the decrease in the amount of acetone, Gold colloid protected by the polymeric pigment dispersant precipitated and precipitated. The supernatant aqueous layer was removed by decantation, and the gold mouth was further washed with distilled water and completely dried to obtain 8 g of a gold non-polar solvent-soluble solid sol. As a result of TG-DTA measurement, the content of gold particles in the solid content was 70% by weight.
得られた金の固体ゾル 8 gを容器に取り、 これにトルエン 1 2 gを加えて撹拌 して金固体ゾルを溶解したところ、 濃厚な赤色を呈する金コロイドのトルエン溶 液を得た。  8 g of the obtained solid sol of gold was placed in a container, and 12 g of toluene was added thereto, followed by stirring to dissolve the solid sol of gold. As a result, a thick red colloidal toluene solution of gold colloid was obtained.
実施例 7 吸光度の測定  Example 7 Measurement of absorbance
実施例 1で得られた金コ口ィドのエタノール溶液をさらにェタノ一ルで大希釈 し、 底面が 1 c m X l c mのガラスセルに移し、 大塚電子社製の分光光度計 M C P D— 3 0 0 0により 3 8 0 n m〜 7 8 0 n mの範囲の吸光度を測定したところ 5 3 0 n mの波長にて極大を有する金コロイドのプラズモンに由来する吸収を観 察できた。 吸収ピークの極大の部分の吸光度が 1 . 5となるように金コロイドの 濃度を調製した吸光曲線を図 1に示した。  The ethanol solution of gold colloid obtained in Example 1 was further greatly diluted with ethanol and transferred to a glass cell having a bottom surface of 1 cm X lcm, and a spectrophotometer MCPD—300 manufactured by Otsuka Electronics Co., Ltd. was used. When the absorbance was measured in the range of 380 nm to 780 nm according to 0, the absorption derived from the plasmon of the colloidal gold having a maximum at the wavelength of 530 nm could be observed. FIG. 1 shows an absorption curve in which the concentration of colloidal gold was adjusted so that the absorbance at the maximum of the absorption peak was 1.5.
比較例 4 吸光度の測定  Comparative Example 4 Measurement of Absorbance
製造例で得られた金コロイドのトルエン溶液をさらにトルエンで大希釈し、 実 施例 7と同様に吸光度を測定したところ 5 3 5 n m近傍に極大を有する金コロイ ドのプラズモンに由来する吸収を観察できた。 吸収ピークの極大の部分の吸光度 が 1 . 5となるように金コロイドの濃度を調製した吸光曲線を図 1に示した。  The toluene solution of colloidal gold obtained in Production Example was further greatly diluted with toluene, and the absorbance was measured in the same manner as in Example 7.The absorption derived from the plasmon of the gold colloid having a maximum around 535 nm was found. I could observe it. FIG. 1 shows an absorption curve in which the concentration of the gold colloid was adjusted so that the absorbance at the maximum of the absorption peak was 1.5.
実施例 8 ゾルーゲル法に使用するコーティング用組成物の調製  Example 8 Preparation of composition for coating used in sol-gel method
テトラエトキシシラン 7 . 0重量%、 硝酸 1 . 3重量%、 水 1 . 5重量%、 ィ ソプロパノール 8 9 . 7重量0 /0を混合し、 攪拌してテトラエトキシシラン溶液を 得た。 上記テトラエトキシシラン溶液に、 実施例 1で得られた金コロイ ドのエタ ノール溶液を 0 . 5重量%加えて攪拌し、 コーティング用組成物を調製した。 こ のコーティング用組成物は、 室温下で 2 4時間安定であつた。 Tetraethoxysilane 7.0 wt% nitric acid 1.3 wt% water 1.5 wt%, I isopropanol 8 9. 7 mixture by weight 0/0, to obtain a tetraethoxysilane solution was stirred. 0.5% by weight of the ethanol solution of gold colloid obtained in Example 1 was added to the above tetraethoxysilane solution, followed by stirring to prepare a coating composition. This coating composition was stable for 24 hours at room temperature.
実施例 9〜 1 2 ゾルーゲル法に使用するコーティング用組成物の調製 実施例 8において、 実施例 1で得られた金コロイドのエタノール溶液の代わり に、 実施例 2〜 5のアルコール溶液をそれぞれ用いた以外は同様の手順でコーテ イング用組成物をそれぞれ調製した。 これらのコーティング用組成物は、 いずれ も室温下で 2 4時間安定であつた。 Examples 9 to 12 Preparation of Coating Composition Used for Sol-Gel Method In Example 8, the alcohol solution of Examples 2 to 5 was used instead of the ethanol solution of colloidal gold obtained in Example 1 respectively. Except for the same procedure, Each of the compositions for inging was prepared. All of these coating compositions were stable at room temperature for 24 hours.
比較例 5 ゾルーゲル法に使用するコーティング用組成物の調製  Comparative Example 5 Preparation of coating composition used for sol-gel method
実施例 8において、 実施例 1で得られた金コロイドのエタノール溶液の代わり に、 製造例で得られた金コロイドのトルエン溶液を用いた以外は同様の手順でコ 一ティング用組成物を調製しょうとしたが、 うまく混合せず、 コーティング用組 成物を得ることができなかった。  In Example 8, a coating composition was prepared in the same procedure except that the toluene solution of colloidal gold obtained in Production Example was used instead of the ethanol solution of colloidal gold obtained in Example 1. However, they did not mix well, and a coating composition could not be obtained.
実施例 1 3 ゾルーゲル法による着色ガラスゲル膜の調製  Example 13 Preparation of Colored Glass Gel Film by Sol-Gel Method
実施例 8で得られたコーティング用組成物をスピンコーティング法によりガラ ス板状に塗布した後、 1 5 0 °Cで 2 0分間焼成を行い、 膜厚が 0 . 2 μ ιηの着色 ガラスゲル膜をガラス基板上に形成した。  The coating composition obtained in Example 8 was applied to a glass plate by spin coating, and then baked at 150 ° C. for 20 minutes to obtain a colored glass gel film having a thickness of 0.2 μιη. Was formed on a glass substrate.
上記着色ガラスゲル膜は、 透明で赤く着色されていた。 この着色ガラスゲル膜 の耐水性の評価として洗剤によるこすり試験を行ったが、 脱色は認められなかつ た。 また J I S K 5 4 0 0に準じて、 着色ガラスゲル膜の鉛筆硬度を測定し たところ 8 Ηとなり、 充分な硬度が得られた。  The colored glass gel film was transparent and colored red. A rubbing test with a detergent was performed to evaluate the water resistance of the colored glass gel film, but no decolorization was observed. When the pencil hardness of the colored glass gel film was measured in accordance with JISK 540, it was 8 mm, and a sufficient hardness was obtained.
実施例 1 4 ゾルーゲル法による着色ガラスゲル膜の調製  Example 14 Preparation of Colored Glass Gel Film by Sol-Gel Method
実施例 1 1で得られたコーティング用組成物をスビンコ一ティング法によりガ ラス板状に塗布した後、 1 5 0 °Cで 2 0分間焼成を行い、 膜厚が 0 . 2 μ mの着 色ガラスゲル膜をガラス基板上に形成した。  The coating composition obtained in Example 11 was applied to a glass plate by a spin coating method, and then baked at 150 ° C. for 20 minutes to form a coating having a thickness of 0.2 μm. A colored glass gel film was formed on a glass substrate.
この着色ガラスゲル膜は透明で黄色に着色されていた。 この着色ガラスゲル膜 の耐水性の評価として洗剤によるこすり試験を行ったが、 脱色は認められなかつ た。 また J I S K 5 4 0 0に準じて、 着色ガラスゲル膜の鉛筆硬度を測定し たところ 8 Ηとなり、 充分な硬度が得られた。  This colored glass gel film was transparent and colored yellow. A rubbing test with a detergent was performed to evaluate the water resistance of the colored glass gel film, but no decolorization was observed. When the pencil hardness of the colored glass gel film was measured in accordance with JISK 540, it was 8 mm, and a sufficient hardness was obtained.
実施例 1 5 金コロイドの水溶液の調製  Example 15 Preparation of aqueous solution of 5 colloidal gold
実施例 1で得られた、 限外濾過を行う前の金コ口ィドのエタノール溶液を旭化 成社製の限外濾過ペンシル型モジュール Α Η Ρ— 0 0 1 3を用いて、 残留イオン を濾過で除き、 得られた濾液に水を添加してさらに濾過を行うといった工程を繰 り返した。 この操作を繰り返し行うことにより、 残留イオン成分の除去を行うと 共に溶媒をエタノールから水への置換を行い、 金コロイド粒子と高分子顔料分散 剤とからなる固形分 2 5重量%の金コロイドの水溶液 3 7 gを得た。 T G— D T A測定の結果、 固形分中の金粒子の含有率は 5 6重量%であった。 The ethanol solution of the gold colloid obtained before the ultrafiltration obtained in Example 1 was subjected to the residual ion separation using an ultrafiltration pencil type module manufactured by Asahi Kasei Corporation. Was removed by filtration, and a step of adding water to the obtained filtrate and further performing filtration was repeated. By repeating this operation, the residual ion component is removed. In both cases, the solvent was replaced with water from ethanol to obtain 37 g of an aqueous solution of colloidal gold composed of colloidal gold particles and a polymer pigment dispersant with a solid content of 25% by weight. As a result of TG-DTA measurement, the content of gold particles in the solid content was 56% by weight.
実施例 7と同様にして分光光度計により吸光度を測定したところ、 実施例 1で 得られた金コロイドのエタノール溶液と同等のシャープさを有する吸光曲線が得 られた。  When the absorbance was measured by a spectrophotometer in the same manner as in Example 7, an absorption curve having a sharpness equivalent to that of the ethanol solution of colloidal gold obtained in Example 1 was obtained.
実施例 1〜 6において所定の高分子量顔料分散剤を使用した場合には、 金属コ ロイドのアルコーノレ溶液が得られた。 実施例 8〜1 2の結果より、 これらの金属 コロイドのアルコール溶液は、 ゾルーゲル法に使用するコーティング用組成物中 に加えても問題なく混合でき、 安定な状態を示した。 また、 実施例 1 3及び 1 4 の結果より、 優れた着色性を有するとともに、 耐水性及び塗膜硬度に優れたコー ティングゲル膜を得ることができた。  When a predetermined high molecular weight pigment dispersant was used in Examples 1 to 6, an alcoholic solution of metal colloid was obtained. From the results of Examples 8 to 12, these alcohol solutions of metal colloids could be mixed without any problem even when added to the coating composition used in the sol-gel method, and showed a stable state. Further, from the results of Examples 13 and 14, it was possible to obtain a coating gel film having excellent coloring properties and excellent water resistance and coating film hardness.
—方、 比較例 1 ~ 3において、 上記所定の高分子量顔料分散剤以外の高分子量 顔料分散剤を使用した場合には、 金属コロイドのアルコール溶液は得られなかつ た。 製造例により調製した金コ口ィドのトルエン溶液は、 比較例 5の結果より、 ゾルーゲル法に使用するコーティング用組成物に使用することには適さなかった。 実施例 7及び比較例 4における図 1の結果から、 製造例の金コロイドのトルェ ン溶液由来の吸光曲線に比べて、 実施例 1の金コロイドのエタノール溶液由来の 吸光曲線はよりシャープであり、 特に長波長側においてシャープなものが得られ たので、 金コロイド粒子の粒径分布が狭いことがわかった。  On the other hand, in Comparative Examples 1 to 3, when a high-molecular-weight pigment dispersant other than the above-described predetermined high-molecular-weight pigment dispersant was used, an alcohol solution of a metal colloid was not obtained. From the results of Comparative Example 5, the toluene solution of gold colloid prepared in the Production Example was not suitable for use in the coating composition used in the sol-gel method. From the results of FIG. 1 in Example 7 and Comparative Example 4, the absorption curve derived from the ethanol solution of the colloidal gold of Example 1 was sharper than the absorption curve derived from the toluene solution of the colloidal gold of Production Example, In particular, sharp particles were obtained on the long wavelength side, indicating that the particle size distribution of the colloidal gold particles was narrow.
また、 実施例 1 5で溶剤をアルコールから水に置換しても、 粒径分布の特性が 維持されることが確認できた。 産業上の利用可能性  In addition, it was confirmed that the characteristics of the particle size distribution were maintained even when the solvent was replaced with water in Example 15 in Example 15. Industrial applicability
本発明の貴金属又は銅のコロイドのアルコール溶液、 及び、 本発明の溶液調整 方法により得られる貴金属又は銅のコロイドの溶液は、 上述の構成を有するので、 貴金属又は銅のコロイド粒子を高濃度に含有することができるともに、 吸光曲線 がこれまでのものに比べてシャープになるため、 優れた着色性をも有することが できる。 更に、 ゾルーゲル法に好適に使用することができるので、 ゾルーゲル法 により得られる無機被膜は、 耐熱性に優れた光学フィルターや非線形光学材料と いった光学材料、 色材、 抗菌材、 触媒、 電磁波シールド等に好適に使用すること ができる。 The colloidal alcohol solution of a noble metal or copper of the present invention, and the colloidal solution of a noble metal or copper obtained by the solution preparation method of the present invention have the above-described configuration, and contain a high concentration of noble metal or copper colloid particles. And the absorption curve becomes sharper than before, so that it also has excellent coloring properties. it can. Furthermore, since it can be suitably used for the sol-gel method, the inorganic coating obtained by the sol-gel method can be used for optical materials such as optical filters and non-linear optical materials having excellent heat resistance, coloring materials, antibacterial materials, catalysts, and electromagnetic wave shielding. It can be suitably used for example.

Claims

請求の範囲 The scope of the claims
1. 貴金属又は銅のコロイド粒子及び高分子量顔料分散剤を含む貴金属又は銅の コロイ ドのアルコーノレ溶液であって、 前記アルコールの炭素数は、 1〜4であり、 前記高分子量顔料分散剤は、 下記式 (1) 若しくは (2) を満たすものであるこ とを特徴とする貴金属又は銅のコロイ ドのアルコール溶液。 1. An alcoholic solution of a noble metal or copper colloid comprising a noble metal or copper colloid particle and a high molecular weight pigment dispersant, wherein the alcohol has 1 to 4 carbon atoms, and the high molecular weight pigment dispersant is An alcohol solution of a noble metal or copper colloid, which satisfies the following formula (1) or (2).
(1) A≥ 3m 1かつ 3m 1≤B≤4 Om 1  (1) A≥3m1 and 3m1≤B≤4 Om1
(2) 0. 25≤A/B≤ 4. 5  (2) 0.25≤A / B≤4.5
〔式中、 A及ぴ Bはそれぞれ、 前記高分子量顔料分散剤 0. 5 gをァセトン 10 m 1に溶解したァセトン溶液に水又はへキサンをそれぞれ添加する場合における、 前記アセトン溶液が白濁するまでの前記水の添加量 (m l) 、 及び、 前記ァセト ン溶液が白濁するまでの前記へキサンの添加量 (m l ) である。 〕  [Wherein A and B each represent a solution of 0.5 g of the high molecular weight pigment dispersant in an acetone solution containing 10 g of acetone dissolved in water or hexane, until the acetone solution becomes cloudy. Of the water (ml) and the amount of the hexane added (ml) until the acetate solution becomes cloudy. ]
2. アルコールは、 炭素数 2〜4のモノアルコールである請求の範囲第 1項記載 の貴金属又は銅のコロイドのアルコール溶液。 2. The alcohol solution of a noble metal or copper colloid according to claim 1, wherein the alcohol is a monoalcohol having 2 to 4 carbon atoms.
3. 式 (1) は、 下記式 (1' ) である請求の範囲第 1又は 2項記載の貴金属又 は銅のコロイドのアルコール溶液。 3. The alcohol solution of a colloid of a noble metal or copper according to claim 1 or 2, wherein the formula (1) is the following formula (1 ').
(1' ) A≥ 1 Om 1かつ 4 m 1≤B≤ 2 Om 1  (1 ') A≥ 1 Om 1 and 4 m 1≤B≤ 2 Om 1
4. 貴金属又は銅の化合物を、 炭素数 1〜4のアルコールに溶解し、 高分子量顔 料分散剤の存在下で貴金属又は銅に還元する貴金属又は銅のコロイドのアルコー ル溶液の製造方法であり、 前記高分子量顔料分散剤は、 下記式 (1) 若しくは ( 2) を満たすものであることを特徴とする貴金属又は銅のコロイドのアルコール 溶液の製造方法。 4. A method for producing an alcohol solution of a colloid of a noble metal or copper, in which a compound of a noble metal or copper is dissolved in an alcohol having 1 to 4 carbon atoms and reduced to a noble metal or copper in the presence of a high molecular weight pigment dispersant. A method for producing a colloidal alcohol solution of a noble metal or copper, wherein the high molecular weight pigment dispersant satisfies the following formula (1) or (2).
(1) A 3m 1かつ 3m 1≤B≤4 Om 1  (1) A 3m 1 and 3m 1≤B≤4 Om 1
(2) 0. 25≤A/B≤4. 5  (2) 0.25≤A / B≤4.5
〔式中、 A及ぴ Bはそれぞれ、 前記高分子量顔料分散剤 0.  Wherein A and B are the high-molecular weight pigment dispersants 0.
5 gをァセトン 10 m 1に溶解したアセトン溶液に水又はへキサンをそれぞれ添加する場合における、 前記アセトン溶液が白濁するまでの前記水の添加量 (m l ) 、 及び、 前記ァセト ン溶液が白濁するまでの前記へキサンの添加量 (m l ) である。 〕 5 . 請求の範囲第 4項記載の製造方法で得られる貴金属又は銅のコロイドのアル コール溶液。 5 g Acetone 10 the amount of water added (ml) until the acetone solution becomes turbid when water or hexane is added to the acetone solution dissolved in m1, and the hexane until the acetone solution becomes turbid. (Ml). 5. An alcohol solution of a noble metal or copper colloid obtained by the production method according to claim 4.
6 . 請求の範囲第 4項記載の製造方法で得られる貴金属又は銅のコロイドのアル コール溶液を濃縮した後、 前記濃縮して得られた溶液に前記アルコールと異なる 溶剤を加えて希釈することを特徴とする貴金属又は銅のコロイドの溶液調整方法。 6. After concentrating an alcohol solution of a noble metal or copper colloid obtained by the production method according to claim 4, diluting the concentrated solution by adding a solvent different from the alcohol. A method for preparing a colloidal solution of a noble metal or copper, which is characterized by the following.
7 . 異なる溶剤が水である請求の範囲第 6項記載の貴金属又は銅のコロイドの溶 液調整方法。 7. The method for preparing a solution of a colloid of a noble metal or copper according to claim 6, wherein the different solvent is water.
8 . 請求の範囲第 6又は 7項記載の溶液調整方法で得られる貴金属又は銅のコロ ィドの溶液。 8. A solution of a noble metal or copper colloid obtained by the solution preparation method according to claim 6 or 7.
9 . 請求の範囲第 1、 2、 3又は 5項記載の貴金属又は銅のコロイドのアルコー ル溶液と金属アルコキシドとからなるコーティング用組成物。 9. A coating composition comprising a noble metal or copper colloid alcohol solution according to claim 1, 2, 3, or 5, and a metal alkoxide.
1 0 . 請求の範囲第 8項記載の貴金属又は銅のコロイドの溶液と金属アルコキシ ドとからなるコーティング用組成物。 10. A coating composition comprising the colloidal solution of a noble metal or copper according to claim 8 and a metal alkoxide.
1 1 . 請求の範囲第 9又は 1 0項記載のコーティング用組成物を用いて得られる 無機被膜。 11. An inorganic coating obtained by using the coating composition according to claim 9 or 10.
1 2 . 請求の範囲第 9又は 1 0項記載のコーティング用組成物を用いて基材上に 無機被膜を形成することを特徴とする無機被膜形成方法。 12. A method for forming an inorganic film, comprising forming an inorganic film on a substrate using the coating composition according to claim 9 or 10.
PCT/JP2001/004214 2001-05-21 2001-05-21 Colloidal alcohol solution of noble metal or copper, process for producing the same, and coating composition WO2002094953A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2001/004214 WO2002094953A1 (en) 2001-05-21 2001-05-21 Colloidal alcohol solution of noble metal or copper, process for producing the same, and coating composition
JP2002592416A JPWO2002094953A1 (en) 2001-05-21 2001-05-21 Alcohol solution of noble metal or copper colloid, method for producing the same, and coating composition
CN01813038.0A CN1443228A (en) 2001-05-21 2001-05-21 Colloidal alcohol solution of noble metal or copper, process for producing same, and coating composition
TW091110472A TW570963B (en) 2001-05-21 2002-05-20 Alcohol solution of noble metal or copper colloids, method of producing the same, and coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/004214 WO2002094953A1 (en) 2001-05-21 2001-05-21 Colloidal alcohol solution of noble metal or copper, process for producing the same, and coating composition

Publications (1)

Publication Number Publication Date
WO2002094953A1 true WO2002094953A1 (en) 2002-11-28

Family

ID=11737331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004214 WO2002094953A1 (en) 2001-05-21 2001-05-21 Colloidal alcohol solution of noble metal or copper, process for producing the same, and coating composition

Country Status (4)

Country Link
JP (1) JPWO2002094953A1 (en)
CN (1) CN1443228A (en)
TW (1) TW570963B (en)
WO (1) WO2002094953A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060824A (en) * 2003-07-28 2005-03-10 Mitsuboshi Belting Ltd Method for producing alloy particulate, and method for producing alloy thin film
JP2005120074A (en) * 2003-08-11 2005-05-12 L'oreal Sa Stabilized cosmetic composition containing covered metal particles as the case may be
JP2005270957A (en) * 2004-02-26 2005-10-06 Mitsubishi Materials Corp Extraction method and use of metal fine particle
WO2005092519A1 (en) * 2004-03-29 2005-10-06 Nippon Paint Co., Ltd. Method of forming bright coating film, and bright coated article
JP2005320616A (en) * 2003-09-05 2005-11-17 Mitsubishi Materials Corp Metal microparticle, composition containing the same or the like
JP2006089786A (en) * 2004-09-22 2006-04-06 Mitsuboshi Belting Ltd Method for producing metallic nano-particle dispersed in polar solvent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897726A (en) * 2015-05-22 2015-09-09 兰州大学 High-sensitivity gas sensor prepared by utilizing sol-gel method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176800A (en) * 1997-07-17 1999-03-23 Nippon Paint Co Ltd Solid sol of noble metal or copper, its production, coating material composition and resin formed product
JPH1180647A (en) * 1997-07-17 1999-03-26 Nippon Paint Co Ltd Colloidal solution of noble metal or copper and production thereof with paint composition and resin molded material
JPH11236521A (en) * 1998-02-23 1999-08-31 Nippon Paint Co Ltd Bright coating composition, method for forming bright coating film, and coated article
JPH11319538A (en) * 1998-05-20 1999-11-24 Nippon Paint Co Ltd Production for colloid of noble metal or copper
JP2000239853A (en) * 1999-02-25 2000-09-05 Nippon Paint Co Ltd Method for formation of metal thin film and production of reflector plate for reflection type liquid crystal display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176800A (en) * 1997-07-17 1999-03-23 Nippon Paint Co Ltd Solid sol of noble metal or copper, its production, coating material composition and resin formed product
JPH1180647A (en) * 1997-07-17 1999-03-26 Nippon Paint Co Ltd Colloidal solution of noble metal or copper and production thereof with paint composition and resin molded material
JPH11236521A (en) * 1998-02-23 1999-08-31 Nippon Paint Co Ltd Bright coating composition, method for forming bright coating film, and coated article
JPH11319538A (en) * 1998-05-20 1999-11-24 Nippon Paint Co Ltd Production for colloid of noble metal or copper
JP2000239853A (en) * 1999-02-25 2000-09-05 Nippon Paint Co Ltd Method for formation of metal thin film and production of reflector plate for reflection type liquid crystal display

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060824A (en) * 2003-07-28 2005-03-10 Mitsuboshi Belting Ltd Method for producing alloy particulate, and method for producing alloy thin film
JP2005120074A (en) * 2003-08-11 2005-05-12 L'oreal Sa Stabilized cosmetic composition containing covered metal particles as the case may be
JP2005320616A (en) * 2003-09-05 2005-11-17 Mitsubishi Materials Corp Metal microparticle, composition containing the same or the like
JP4512876B2 (en) * 2003-09-05 2010-07-28 三菱マテリアル株式会社 Metal fine particles, method for producing metal fine particles, composition containing metal fine particles, etc.
JP2005270957A (en) * 2004-02-26 2005-10-06 Mitsubishi Materials Corp Extraction method and use of metal fine particle
WO2005092519A1 (en) * 2004-03-29 2005-10-06 Nippon Paint Co., Ltd. Method of forming bright coating film, and bright coated article
US7166330B2 (en) 2004-03-29 2007-01-23 Nippon Paint Co., Ltd. Method for forming a glittering coating film
GB2429665A (en) * 2004-03-29 2007-03-07 Nippon Paint Co Ltd Method of forming bright coating film and bright coated article
GB2429665B (en) * 2004-03-29 2009-07-08 Nippon Paint Co Ltd Method of forming bright coating film and bright coated article
JP2006089786A (en) * 2004-09-22 2006-04-06 Mitsuboshi Belting Ltd Method for producing metallic nano-particle dispersed in polar solvent

Also Published As

Publication number Publication date
JPWO2002094953A1 (en) 2004-10-07
TW570963B (en) 2004-01-11
CN1443228A (en) 2003-09-17

Similar Documents

Publication Publication Date Title
JP3594803B2 (en) Noble metal or copper colloid solution, method for producing the same, coating composition and resin molded product
US20090283726A1 (en) Metallic fine particles, process for producing the same, composition containing the same, and use thereof
KR101698230B1 (en) Method of producing reinforced antireflection glass
US7682443B2 (en) Organic-pigment aqueous dispersion, method of producing the same, and colored coating composition and coated article using the same
JPH11319538A (en) Production for colloid of noble metal or copper
JP5163715B2 (en) Electromagnetic wave transmissive coating film having glitter, electromagnetic wave transmissive coating composition for forming the same, and electromagnetic wave transmissive film forming method using the same
JP3594069B2 (en) Solid sol of noble metal or copper, method for producing the same, coating composition and molded resin
JP4529160B2 (en) METAL PARTICLE, PROCESS FOR PRODUCING THE SAME, COMPOSITION CONTAINING THE SAME AND USE THEREOF
WO2021200135A1 (en) Method for producing zirconia-coated titanium oxide microparticles, zirconia-coated titanium oxide microparticles and use thereof
CN107922198A (en) The dispersion containing SiO2 with high salt-stable
WO2002094953A1 (en) Colloidal alcohol solution of noble metal or copper, process for producing the same, and coating composition
TWI492965B (en) Polymer and dispersion
JP2012233148A (en) Pigment for aqueous ink
JP4346510B2 (en) Colloidal solution of noble metal or copper, method for producing the same, coating composition and resin molding
WO2012133296A1 (en) Composite of organic compound and silver core/copper shell nanoparticles and method for producing same
CN104011148B (en) Oligomer modified particles and its manufacture method and coating
JP6140634B2 (en) Alloy fine particle dispersion and method for producing the same
JP4482343B2 (en) Composite metal colloidal particles and solution, and method for producing the same
WO2010027124A1 (en) Metal nanoparticles of various sizes and shapes having functional groups and method for preparing the same
KR101905282B1 (en) Metal nanoparticle-protecting polymer and metal colloidal solution, and method for producing same
KR20030022660A (en) Colloidal Alcohol Solution of Noble Metal or Copper, Preparing Method thereof and Coating Composition
JP4236182B2 (en) Process for producing organic solvent-dispersed oxalic acid / citric acid stable niobium oxide sol
JP2006052238A (en) Method for producing silver core-gold shell fine particle protected by non-water-soluble polymeric pigment-dispersing agent
JP5938705B2 (en) COMPOSITE NANOPARTICLE AND METHOD FOR PRODUCING SAME, METHOD FOR PRODUCING glazing and metal nanoparticle
CN108250373B (en) Diblock copolymers and dispersions

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020017011140

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN ID IN JP KR MX US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 018130380

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002592416

Country of ref document: JP

122 Ep: pct application non-entry in european phase