JP4529160B2 - METAL PARTICLE, PROCESS FOR PRODUCING THE SAME, COMPOSITION CONTAINING THE SAME AND USE THEREOF - Google Patents

METAL PARTICLE, PROCESS FOR PRODUCING THE SAME, COMPOSITION CONTAINING THE SAME AND USE THEREOF Download PDF

Info

Publication number
JP4529160B2
JP4529160B2 JP2005148350A JP2005148350A JP4529160B2 JP 4529160 B2 JP4529160 B2 JP 4529160B2 JP 2005148350 A JP2005148350 A JP 2005148350A JP 2005148350 A JP2005148350 A JP 2005148350A JP 4529160 B2 JP4529160 B2 JP 4529160B2
Authority
JP
Japan
Prior art keywords
metal
fine particles
ammonium salt
producing
metal fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005148350A
Other languages
Japanese (ja)
Other versions
JP2006118036A (en
Inventor
寛樹 平田
佳明 高田
純悦 佐藤
大剛 溝口
聖人 室内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Mitsubishi Materials Corp
Original Assignee
Dai Nippon Toryo KK
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK, Mitsubishi Materials Corp filed Critical Dai Nippon Toryo KK
Priority to JP2005148350A priority Critical patent/JP4529160B2/en
Publication of JP2006118036A publication Critical patent/JP2006118036A/en
Application granted granted Critical
Publication of JP4529160B2 publication Critical patent/JP4529160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、長軸が400nm以下、短軸が15nm以下であって、アスペクト比が1より大きいロッド状の金属微粒子(以下、金属ナノロッドと云う)と、その新規製造方法、およびその含有組成物、並びにその用途に関する。 The present invention relates to rod-shaped metal fine particles (hereinafter referred to as metal nanorods) having a major axis of 400 nm or less and a minor axis of 15 nm or less and an aspect ratio of greater than 1, a novel production method thereof, and a composition containing the same As well as its use.

金属の微粒子に光を照射するとプラズモン吸収と呼ばれる共鳴吸収現象が生じる。この吸収現象は金属の種類と形状によって吸収波長が異なる。例えば、球状の金微粒子が水に分散した金コロイドは530nm付近に吸収域を持つが、微粒子の形状を短軸10nmのロッド状にすると、ロッドの短軸に起因する530nm付近の吸収の他に、ロッドの長軸に起因する長波長側の吸収を有することが知られている(非特許文献1)。 When a metal fine particle is irradiated with light, a resonance absorption phenomenon called plasmon absorption occurs. This absorption phenomenon has different absorption wavelengths depending on the type and shape of the metal. For example, a colloidal gold particle in which spherical gold fine particles are dispersed in water has an absorption region around 530 nm. If the shape of the fine particles is made into a rod shape with a short axis of 10 nm, in addition to absorption around 530 nm caused by the short axis of the rod. It is known to have absorption on the long wavelength side due to the long axis of the rod (Non-Patent Document 1).

金属ナノロッドの合成方法として、電気化学的方法(非特許文献2)、化学的方法(非特許文献3)光化学的方法(非特許文献4)が従来から知られている。また、塗料や樹脂組成物の着色材として形状が球状の貴金属微粒子を作製する方法として、貴金属の化合物を溶媒に溶解し、高分子量分散剤を添加後、還元する方法が知られている(特許文献1)。さらに、金属配線パターンを形成することを目的として、固体表面に担持させたプラズモン吸収する無機微粒子を直径100nm未満およびアスペクト比1以上に成長させた微細ロッドにして使用することが知られている(特許文献2)。 As methods for synthesizing metal nanorods, an electrochemical method (Non-Patent Document 2), a chemical method (Non-Patent Document 3), and a photochemical method (Non-Patent Document 4) are conventionally known. Further, as a method for producing noble metal fine particles having a spherical shape as a coloring material for paints and resin compositions, a method is known in which a noble metal compound is dissolved in a solvent, a high molecular weight dispersant is added, and then reduced (patent) Reference 1). Furthermore, for the purpose of forming a metal wiring pattern, it is known that plasmon-absorbing inorganic fine particles supported on a solid surface are used as fine rods grown to a diameter of less than 100 nm and an aspect ratio of 1 or more ( Patent Document 2).

電気化学的方法は、アノードより溶出する金属イオンをカソードで還元し、界面活性剤の作用でロッド状微粒子に成長させる方法であり、電解装置、金板、白金板、銀板等の高価な通電用電極、超音波照射器などを必要とし、製造できる量は装置の大きさによって制限されるため、大量生産には不向きである。また、超音波照射器の劣化や、銀の溶出量によって金属ナノロッドのアスペクト比が左右され、再現性が不調な傾向がある。 The electrochemical method is a method in which metal ions eluted from the anode are reduced at the cathode and grown into rod-shaped fine particles by the action of a surfactant. Electrolytic devices, gold plates, platinum plates, silver plates, etc. This is not suitable for mass production because it requires a working electrode, an ultrasonic irradiator, and the like, and the amount that can be manufactured is limited by the size of the apparatus. In addition, the aspect ratio of the metal nanorods depends on the deterioration of the ultrasonic irradiator and the amount of elution of silver, and the reproducibility tends to be poor.

化学的方法は、まず成長核となる微細な金属種を調整し、別に調整した成長液に金属種を添加してロッド形状に成長させる方法であり、種の可使時間が数時間単位と短く、2段階ないし3段階と段階的に金属微粒子を成長させる煩雑な操作を必要とし、さらに再現性が得られ難く、製造できる金属ナノロッドの濃度も低いと云う問題がある。 The chemical method is a method that first adjusts the fine metal species as the growth nucleus, adds the metal species to a separately prepared growth solution, and grows it into a rod shape. The working life of the seed is as short as several hours. There is a problem that a complicated operation for growing metal fine particles in two steps to three steps is required, reproducibility is difficult to obtain, and the concentration of metal nanorods that can be produced is low.

光化学的方法は界面活性剤含有溶液中の金属イオンに紫外線を長時間照射し、金属ナノロッドを生成させる方法であり、紫外線露光器などの高価な機器を必要とし、また製造できるのは光照射している範囲に限定されるため、製造量に制限があり大量生産に向かない。 The photochemical method is a method of generating metal nanorods by irradiating metal ions in a surfactant-containing solution with ultraviolet rays for a long period of time, and requires expensive equipment such as an ultraviolet exposure device. Since the production range is limited, the production amount is limited and not suitable for mass production.

特許文献1の製造方法では、還元剤としてアミン類を使用する例が示されているが、界面活性剤と併用するものではなく、また高分子量型の分散剤を添加しているが、これは生成した貴金属微粒子の保護コロイドとして使用しており、貴金属微粒子を形成するときの軸方向の成長を制御するものではない。従って、製造される貴金属微粒子は球状微粒子であり、ロッド状の金属微粒子は得られない。そして、この製造方法によって得られる球状金微粒子のプラズモン発色は青、青紫、赤紫等であり、また球状銀微粒子の場合は黄色であり、これらの吸収は金の場合530nm付近、銀の場合400nm付近に限定され、使用可能な色は限られている。 In the production method of Patent Document 1, an example of using an amine as a reducing agent is shown, but it is not used in combination with a surfactant and a high molecular weight type dispersant is added. It is used as a protective colloid for the produced noble metal fine particles, and does not control the axial growth when forming the noble metal fine particles. Therefore, the noble metal fine particles produced are spherical fine particles, and rod-shaped metal fine particles cannot be obtained. The plasmon coloration of the spherical gold fine particles obtained by this production method is blue, blue purple, red purple, etc., and the spherical silver fine particles are yellow, and their absorption is around 530 nm for gold and 400 nm for silver. It is limited to the vicinity and the usable colors are limited.

さらに、従来の製造方法において、固体表面で金属微粒子を成長させるものは、この金属微粒子が固体表面に担持された状態であるため各種溶媒、バインダーに分散させることができず、塗料化することができない。
S-S.Chang et al,Langmuir,1999,15,p701-709 Y.-Y. Yu, S.-S. Chang, C.-L. Lee, C. R. C. Wang, J. Phys. Chem. B, 101, 6661 (1997) N.R.Jana, L.Gearheart, C.J.Murphy, J. Phys. Chem. B, 105, 4065 (2001) F.Kim, J.H.Song, P.Yang, J. Am. Chem. Soc., 124, 14316 (2002) 特開平11−80647号公報 特開2001−064794号公報
Furthermore, in the conventional manufacturing method, the metal fine particles grown on the solid surface cannot be dispersed in various solvents and binders because the metal fine particles are supported on the solid surface, and can be made into a paint. Can not.
SS.Chang et al, Langmuir, 1999,15, p701-709 Y.-Y. Yu, S.-S. Chang, C.-L. Lee, CRC Wang, J. Phys. Chem. B, 101, 6661 (1997) NRJana, L. Gearheart, CJMurphy, J. Phys. Chem. B, 105, 4065 (2001) F. Kim, JHSong, P. Yang, J. Am. Chem. Soc., 124, 14316 (2002) Japanese Patent Laid-Open No. 11-80647 Japanese Patent Laid-Open No. 2001-064794

本発明は、従来の製造方法における上記問題を解決したものであって、金属ナノロッドを簡易にかつ大量に製造することができ、しかも粒径の調整が容易な製造方法と、この製造方法によって得た金属微粒子を提供する。 The present invention solves the above-mentioned problems in the conventional production method, and can produce metal nanorods easily and in large quantities, and is easy to adjust the particle size, and is obtained by this production method. Provide fine metal particles.

本発明によれば以下の構成からなる金属微粒子の製造方法が提供される。
〔1〕水溶液中で金属イオンを化学的に還元することによってロッド状の金属微粒子を製造する方法において、還元能を有するアミン類と、実質的に還元能を有さないアンモニウム塩とを含有する水溶液を用い、該アンモニウム塩の存在下で上記アミン類によって金属イオンを還元することを特徴とする金属微粒子の製造方法。
〔2〕上記(1)の方法において、アミン類と併用するアンモニウム塩として次式(1)で示す4級アンモニウム塩を用いる金属微粒子の製造方法。
CH3(CH3)n+(CH3)3Br- (n=1〜17の整数) …式(1)
〔3〕上記(1)または(2)の方法において、アンモニウム塩と併用するアミン類として次式(2)〜(3)によって示される1種または2種以上のアルキルアミンまたはアルカノールアミンを用いる金属微粒子の製造方法。
NR3 (R:Cn2n+1 n=1〜8の整数) …式(2)
N(ROH)3 (R:Cn2n n=1〜8の整数) …式(3)
〔4〕上記(3)の方法において、アミン類として、トリエチルアミン、トリブチルアミン、トリペンチルアミン、または2,2',2''−ニトリロトリエタノールを用いる金属微粒子の製造方法。
〔5〕上記(1)または(2)の方法において、アンモニウム塩と併用するアミン類として次式(4)〜(5)によって示される1種または2種以上のアルキルアミンを用いる金属微粒子の製造方法。
2NR (R:Cn2n+1 n=1〜8の整数) …式(4)
HNR2 (R:Cn2n+1 n=1〜8の整数) …式(5)
〔6〕式(1)によって示されるアンモニウム塩の水溶液中の濃度が0.01〜1.0mol/Lである上記[2]〜[5]の何れかに記載する金属微粒子の製造方法。
〔7〕式(2)〜(5)によって示されるアミン類の水溶液中の濃度が0.001〜10wt%である上記[2]〜[6]の何れかに記載する金属微粒子の製造方法。
〔8〕式(2)〜(5)によって示されるアミン類の電離指数(pka値)が7.0〜12.5である上記[2]〜[7]の何れかに記載する金属微粒子の製造方法。
〔9〕 アミン類とアンモニウム塩の濃度を調整することによって粒子径を制御する上記[1]〜[6]の何れかに記載する金属微粒子の製造方法。
〔10〕 上記アミン類およびアンモニウム塩を含有する水溶液にケトン類を添加し、金属微粒子のアスペクト比を調整する上記[1]〜[8]の何れかに記載する金属微粒子の製造方法。
According to the present invention, a method for producing fine metal particles having the following constitution is provided.
[1] A method for producing rod-shaped metal fine particles by chemically reducing metal ions in an aqueous solution, containing amines having a reducing ability and ammonium salts having substantially no reducing ability A method for producing metal fine particles, characterized in that an aqueous solution is used to reduce metal ions with the amines in the presence of the ammonium salt.
[2] A method for producing fine metal particles using the quaternary ammonium salt represented by the following formula (1) as an ammonium salt used in combination with an amine in the method (1).
CH 3 (CH 3 ) n N + (CH 3 ) 3 Br (n = 1 to 17 integer) (1)
[3] Metals using one or more alkylamines or alkanolamines represented by the following formulas (2) to (3) as amines used in combination with ammonium salts in the method of (1) or (2) above A method for producing fine particles.
NR 3 (R: C n H 2n + 1 n = 1-8 integer) (2)
N (ROH) 3 (R: C n H 2n n = 1~8 integer) Equation (3)
[4] A method for producing fine metal particles in the method (3) above, wherein triethylamine, tributylamine, tripentylamine, or 2,2 ′, 2 ″ -nitrilotriethanol is used as the amine.
[5] Production of metal fine particles using one or more alkylamines represented by the following formulas (4) to (5) as amines used in combination with ammonium salts in the method (1) or (2) Method.
H 2 NR (R: C n H 2n + 1 n = 1 to 8 integer) (4)
HNR 2 (R: C n H 2n + 1 n = 1 to 8 integer) (5)
[6] The method for producing fine metal particles according to any one of [2] to [5] above, wherein the concentration of the ammonium salt represented by the formula (1) in the aqueous solution is 0.01 to 1.0 mol / L.
[7] The method for producing fine metal particles according to any one of the above [2] to [6], wherein the concentration of the amines represented by the formulas (2) to (5) in the aqueous solution is 0.001 to 10 wt%.
[8] The fine metal particles according to any one of [2] to [7], wherein the amines represented by formulas (2) to (5) have an ionization index (pka value) of 7.0 to 12.5. Production method.
[9] The method for producing metal fine particles according to any one of the above [1] to [6], wherein the particle diameter is controlled by adjusting the concentration of amines and ammonium salt.
[10] The method for producing metal fine particles according to any one of the above [1] to [8], wherein a ketone is added to an aqueous solution containing the amines and ammonium salt to adjust the aspect ratio of the metal fine particles.

また、本発明によれば以下の構成からなる金属微粒子とその用途が提供される。
〔11〕上記[1]〜[10]の何れかの方法によって製造された、長軸が400nm以下、短軸が15nm以下であってアスペクト比が1より大きいロッド状の金属微粒子。
〔12〕上記[1]〜[10]の何れかの方法によって製造され、かつ非水溶媒に親和性のある側鎖を有する非水分散剤によって表面処理された金属微粒子。
〔13〕上記[1]〜[10]の何れかの方法によって製造され、かつ金属微粒子表面のアンモニウム塩残留量が、金属微粒子100重量部に対して15重量部以下に除去ないし低減された金属微粒子。
〔14〕上記[1]〜[10]の何れかの方法によって製造された金属微粒子、または上記[11]〜[13]の何れかに記載された金属微粒子を含有する組成物。
〔15〕金属微粒子と共にバインダー(樹脂)、および分散媒を含有する上記[14]の金属微粒子含有組成物。
〔16〕金属微粒子と共に、染料、顔料、蛍光体、金属酸化物、金属ナノ繊維の1種または2種以上を含有する上記[14]または[15]の金属微粒子含有組成物。
〔17〕上記[14]〜[16]の何れかに記載した金属微粒子含有組成物によって形成された塗料組成物、塗膜、フィルム、または板材の形態を有する光吸収材。
〔18〕上記[1]〜[10]の何れかの方法によって製造された金属微粒子、または上記[11]〜[13]の何れかに記載された金属微粒子を含有する光学フィルター材料、配線材料、電極材料、触媒、着色剤、化粧品、近赤外吸収剤、偽造防止インク、電磁波シールド材、表面増強蛍光センサー、生体マーカー、ナノ導波路、記録材料、記録素子、偏光材料、薬物送達システム(DDS)用薬物保持体、バイオセンサー、DNAチップ、検査薬。
Moreover, according to this invention, the metal fine particle which consists of the following structures and its use are provided.
[11] Rod-shaped metal fine particles produced by any one of the above [1] to [10], having a major axis of 400 nm or less, a minor axis of 15 nm or less, and an aspect ratio larger than 1.
[12] Metal fine particles produced by the method of any one of [1] to [10] above and surface-treated with a non-aqueous dispersant having a side chain having affinity for a non-aqueous solvent.
[13] A metal produced by the method of any one of [1] to [10] above, wherein the residual amount of ammonium salt on the surface of the metal fine particles is removed or reduced to 15 parts by weight or less with respect to 100 parts by weight of the metal fine particles. Fine particles.
[14] A composition containing metal fine particles produced by any one of the methods [1] to [10] or metal fine particles described in any one of the above [11] to [13].
[15] The metal fine particle-containing composition according to [14], which contains a binder (resin) and a dispersion medium together with the metal fine particles.
[16] The metal fine particle-containing composition according to [14] or [15] above, which contains one or more of dyes, pigments, phosphors, metal oxides, and metal nanofibers together with metal fine particles.
[17] A light-absorbing material having the form of a coating composition, a coating film, a film, or a plate formed by the metal fine particle-containing composition according to any one of [14] to [16].
[18] Optical filter material and wiring material containing metal fine particles produced by any one of the methods [1] to [10], or metal fine particles described in any one of the above [11] to [13] , Electrode materials, catalysts, colorants, cosmetics, near-infrared absorbers, anti-counterfeit inks, electromagnetic shielding materials, surface-enhanced fluorescent sensors, biomarkers, nanowaveguides, recording materials, recording elements, polarizing materials, drug delivery systems ( DDS) drug holder, biosensor, DNA chip, test drug.

〔具体的な説明〕
以下、本発明を実施形態に基づいて具体的に説明する。
本発明の製造方法は、水溶液中で金属イオンを化学的に還元することによってロッド状の金属微粒子を製造する方法において、還元能を有するアミン類と、実質的に還元能を有さないアンモニウム塩とを含有する水溶液を用い、該アンモニウム塩の存在下で上記アミン類によって金属イオンを還元することを特徴とする金属微粒子の製造方法である。
[Specific description]
Hereinafter, the present invention will be specifically described based on embodiments.
The production method of the present invention is a method for producing rod-shaped fine metal particles by chemically reducing metal ions in an aqueous solution, an amine having a reducing ability, and an ammonium salt having substantially no reducing ability. And a metal ion is reduced by the amines in the presence of the ammonium salt.

一般にアミン類は弱い還元力を有するが、本発明はアミン類の弱い還元力をアンモニウム塩の界面活性作用の存在下で利用することによって、金属ナノロッドが緩やかに生成する好適な反応場を提供し、従来報告されている粒子径よりも微細な金属ナノロッドを製造できるようにしたものである。 In general, amines have a weak reducing power, but the present invention provides a suitable reaction field in which metal nanorods are slowly generated by utilizing the weak reducing power of amines in the presence of the surfactant action of an ammonium salt. Thus, metal nanorods finer than conventionally reported particle diameters can be produced.

アミン類と併用するアンモニウム塩は、例えば、次式(1)で示す4級アンモニウム塩が用いられる。
CH3(CH3)n+(CH3)3Br- (n=1〜17の整数) …式(1)
この4級アンモニウム塩は水溶性の陽イオン性界面活性剤であり、水に溶解した場合、その濃度によって様々な会合体(ミセル)を形成することが知られている。一般に、このアンモニウム塩の濃度が上昇するのに比例して、球状ミセル、棒状ミセル、板状ミセルと変化する。本発明の製造方法では、このアンモニウム塩濃度を調整し、上記ミセル構造の規則性を利用することによって、ロッド状の金属微粒子を球状の金属微粒子よりも優先的に製造する。
As the ammonium salt used in combination with amines, for example, a quaternary ammonium salt represented by the following formula (1) is used.
CH 3 (CH 3 ) n N + (CH 3 ) 3 Br (n = 1 to 17 integer) (1)
This quaternary ammonium salt is a water-soluble cationic surfactant and is known to form various aggregates (micelles) depending on its concentration when dissolved in water. In general, the concentration changes to spherical micelles, rod-like micelles, and plate-like micelles in proportion to the increase in the concentration of the ammonium salt. In the production method of the present invention, rod-shaped metal fine particles are preferentially produced over spherical metal fine particles by adjusting the ammonium salt concentration and utilizing the regularity of the micelle structure.

上記式(1)で示すアンモニウム塩の中では、n=16のヘキサデシルトリメチルアンモニウムブロミド(CT16AB)が好ましい。CT16AB以外のアンモニウム塩を用いるとCT16ABを用いた場合よりも球状微粒子の生成量が多くなる傾向がある。CT16ABの水溶液濃度は、0.01〜1.0mol/Lが適当であり、好ましくは0.08〜0.80mol/Lの濃度範囲がよい。CT16AB濃度が0.01mol/Lよりも低いと球状微粒子の生成量が多くなり、また併用するアミン類の溶解量が低下する傾向がある。一方、CT16AB濃度が1.0mol/Lよりも大きいと、溶液の粘度が高いため、反応が長時間かかる傾向があり、またコスト的に不利である。 Among the ammonium salts represented by the above formula (1), n = 16 hexadecyltrimethylammonium bromide (CT 16 AB) is preferable. Tends to be often the amount of spherical fine particles than with CT 16 AB Using ammonium salt other than CT 16 AB. The concentration of CT 16 AB in aqueous solution is suitably from 0.01 to 1.0 mol / L, and preferably from 0.08 to 0.80 mol / L. If the CT 16 AB concentration is lower than 0.01 mol / L, the amount of spherical fine particles produced increases, and the amount of amines used in combination tends to decrease. On the other hand, if the CT 16 AB concentration is higher than 1.0 mol / L, the solution tends to be high in viscosity, and the reaction tends to take a long time, which is disadvantageous in cost.

アンモニウム塩と併用するアミン類は、例えば、次式(2)〜(5)によって示される1種または2種以上のアルキルアミンまたはアルカノールアミンが用いられる。
NR3 (R:Cn2n+1 n=1〜8の整数) …式(2)
N(ROH)3 (R:Cn2n n=1〜8の整数) …式(3)
2NR (R:Cn2n+1 n=1〜8の整数) …式(4)
HNR2 (R:Cn2n+1 n=1〜8の整数) …式(5)
As the amine used in combination with the ammonium salt, for example, one or more alkylamines or alkanolamines represented by the following formulas (2) to (5) are used.
NR 3 (R: C n H 2n + 1 n = 1-8 integer) (2)
N (ROH) 3 (R: C n H 2n n = 1~8 integer) Equation (3)
H 2 NR (R: C n H 2n + 1 n = 1 to 8 integer) (4)
HNR 2 (R: C n H 2n + 1 n = 1 to 8 integer) (5)

上記アルキルアミンないしアルカノールアミンは、アルキル鎖長が長くなるにつれ疎水性の性質が強くなり、水に溶け難い性質を示すが、上記アンモニウム塩と併用し、このアンモニウム塩の乳化作用を利用して反応水溶液に混合することができる。なお、これらのアミン類は電離指数(pka)が7.0〜12.5の範囲のものが好ましい。 The alkylamine or alkanolamine has a hydrophobic property that becomes stronger as the alkyl chain length becomes longer, and is difficult to dissolve in water. However, the alkylamine or alkanolamine is used in combination with the ammonium salt and reacts by utilizing the emulsifying action of the ammonium salt. Can be mixed in an aqueous solution. These amines preferably have an ionization index (pka) in the range of 7.0 to 12.5.

上記アルキルアミンないしアルカノールアミンの好ましい例としては、式(2)で示されるpka値が10.0付近のトリアルキルアミン、式(3)で示されるpka値が約7.8の2,2',2''−ニトリロトリエタノールなどが挙げられる。これらのアミン類はその還元速度が球状微粒子の生成を低減し、ロッド状微粒子を優先的に生成するのに適する。 Preferred examples of the alkylamine or alkanolamine include a trialkylamine having a pka value of about 10.0 represented by the formula (2), and a 2,2 ′ having a pka value of about 7.8 represented by the formula (3). , 2 ″ -nitrilotriethanol and the like. These amines are suitable for reducing the production of spherical fine particles and preferentially producing rod-shaped fine particles because of their reduction rate.

上記トリアルキルアミンの具体例としては、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミンが好ましい。特にこれらのうち、トリエチルアミンは短軸が細く長軸の短いロッド状の金属微粒子を得るのに有利である。また、トリブチルアミンおよびトリペンチルアミンは球状微粒子の生成を抑制してロッド状金属微粒子の収率を高める効果がある。なお、アルキル鎖長がこれ以上大きいと、反応水溶液中への溶解性が低下する傾向がある。また、アルカノールアミンの2,2',2''−ニトリロトリエタノールも球状微粒子の生成を抑制してロッド状金属微粒子の収率を高める効果がある。 As specific examples of the trialkylamine, trimethylamine, triethylamine, tripropylamine, tributylamine, tripentylamine, and trihexylamine are preferable. Of these, triethylamine is particularly advantageous for obtaining rod-shaped metal fine particles having a short minor axis and a short major axis. Tributylamine and tripentylamine have the effect of suppressing the formation of spherical fine particles and increasing the yield of rod-shaped metal fine particles. When the alkyl chain length is longer than this, the solubility in the reaction aqueous solution tends to decrease. The alkanolamine 2,2 ′, 2 ″ -nitrilotriethanol also has the effect of suppressing the formation of spherical fine particles and increasing the yield of rod-shaped metal fine particles.

なお、水素化ホウ素ナトリウム、ヒドラジン、アスコルビン酸などの従来使用されている還元剤は比較的強い還元力を有するために金属イオンの還元が急速であり、粒子径が比較的大きな球状金属微粒子になる傾向が強く、金属ナノロッドを得ることは難しい。 In addition, conventionally used reducing agents such as sodium borohydride, hydrazine, and ascorbic acid have a relatively strong reducing power, so that reduction of metal ions is rapid, resulting in spherical metal fine particles having a relatively large particle size. The tendency is strong and it is difficult to obtain metal nanorods.

これらアミン類の反応水溶液中の濃度は0.001〜10wt%が適当であり、好ましくは0.01〜5.0wt%の濃度がよい。この濃度が10wt%よりも多いと、アンモニウム塩を含む反応水溶液中にアミン類が完全に溶解しないばかりでなく、金属イオンの還元反応が急激に起こり、球状微粒子の生成が多くなる傾向がある。一方、この濃度が0.001wt%よりも少ないと、金属イオンを完全に還元できず、また金属イオンを還元できても長時間を要する傾向がある。 The concentration of these amines in the reaction aqueous solution is suitably from 0.001 to 10 wt%, preferably from 0.01 to 5.0 wt%. When the concentration is higher than 10 wt%, not only the amines are not completely dissolved in the reaction aqueous solution containing an ammonium salt, but also a reduction reaction of metal ions occurs rapidly and the production of spherical fine particles tends to increase. On the other hand, if this concentration is less than 0.001 wt%, metal ions cannot be completely reduced, and even if metal ions can be reduced, a long time tends to be required.

アミン類とアンモニウム塩の濃度を調整することによって、金属微粒子の粒子径を制御することができ、従来の粒子径よりも微細な金属ナノロッドを得ることができる。具体的には、アミン類とアンモニウム塩はおのおの上記濃度範囲になるように混合されている。この濃度範囲内で、例えばアミン類の濃度を高めることによって還元力が高まり、合成初期の段階で金ナノロッドへ成長する種微粒子の数が増加し、種微粒子が成長するにつれて合成溶液中の金属イオンが消費されるため、粒子径が微細な段階で成長が停止し、粒子径の微細な金属ナノロッドになる傾向がある。一方、例えばアンモニウム塩の濃度を高めることによって、合成溶液の粘度が高まり、金属イオンの還元反応や金属ナノロッドの成長反応が遅くなるため、大きな粒子径が生成しやすい急激な反応を抑制でき、粒子径の微細な金属ナノロッドになる傾向がある。 By adjusting the concentration of amines and ammonium salt, the particle diameter of the metal fine particles can be controlled, and metal nanorods finer than the conventional particle diameter can be obtained. Specifically, amines and ammonium salts are mixed so as to be in the above-mentioned concentration range. Within this concentration range, for example, the reducing power is increased by increasing the concentration of amines, the number of seed fine particles growing on the gold nanorods increases in the initial stage of synthesis, and the metal ions in the synthesis solution as the seed fine particles grow. Therefore, the growth stops at a stage where the particle diameter is fine, and there is a tendency to become a metal nanorod having a fine particle diameter. On the other hand, for example, by increasing the concentration of the ammonium salt, the viscosity of the synthesis solution is increased, and the reduction reaction of metal ions and the growth reaction of metal nanorods are slowed. There is a tendency to become a metal nanorod with a fine diameter.

アミン類とアンモニウム塩を含む反応水溶液には必要に応じて各種添加剤を添加してもよく、特にケトン類の添加により、金属微粒子のアスペクト比を調整することができる。ケトン類の中でもアセトンが最適であり、その添加量は水溶液中で0〜2wt%が好ましい。この添加量が少ないとアスペクト比は小さく、球状微粒子の生成は増える傾向がある。一方、この添加量が多いとアスペクト比は大きくなる。なお、上記添加量が2wt%よりも多いと、アスペクト比は大きくなるが、金属ナノロッドの長軸長さが一定にならない傾向があり、金属ナノロッドの粒子径分布が広くなり、シャープな吸収が得られないばかりでなく、球状微粒子の生成量が増える傾向がある。この他に、銀を添加することによって金属ナノロッドのアスペクト比を調整することができる。 Various additives may be added as necessary to the reaction aqueous solution containing amines and ammonium salts. In particular, the aspect ratio of the metal fine particles can be adjusted by adding ketones. Among the ketones, acetone is optimal, and the amount added is preferably 0 to 2 wt% in the aqueous solution. When this addition amount is small, the aspect ratio is small and the production of spherical fine particles tends to increase. On the other hand, when this addition amount is large, the aspect ratio increases. If the amount added is more than 2 wt%, the aspect ratio increases, but the major axis length of the metal nanorods tends not to be constant, the particle size distribution of the metal nanorods becomes wider, and sharp absorption is obtained. Not only is it not possible, but the amount of spherical fine particles produced tends to increase. In addition to this, the aspect ratio of the metal nanorods can be adjusted by adding silver.

本発明の製造方法は、アミン類とアンモニウム塩とを含む水溶液中で金属ナノロッドを製造するので、得られる金属ナノロッドの表面にはアンモニウム塩が吸着している。このアンモニウム塩は親水性であるので、アンモニウム塩が表面に吸着した状態の金属ナノロッドは有機溶媒(非水溶媒)に抽出することが難しい。 In the production method of the present invention, metal nanorods are produced in an aqueous solution containing amines and ammonium salts, so that ammonium salts are adsorbed on the surface of the obtained metal nanorods. Since this ammonium salt is hydrophilic, it is difficult to extract the metal nanorod having the ammonium salt adsorbed on the surface thereof into an organic solvent (non-aqueous solvent).

このアンモニウム塩が表面に吸着した状態の金属ナノロッドを、非水溶媒に親和性のある側鎖を有する分散剤(非水分散剤と云う)で表面処理することによって、非水溶媒中で安定に分散させることができる。このような非水分散剤としては、数平均分子量が100〜10000、好ましくは1000〜3000であって金属ナノロッドに対して吸着性の高い元素、例えば、金属が金、銀、銅の場合、窒素、硫黄の何れかを吸着部位として主鎖中に有し、非水溶媒に親和性のある複数の側鎖を有する高分子化合物が用いられる。なお、数平均分子量が1000未満であると、非水溶媒中での分散安定性が充分ではなく、10000を超えると非水溶媒中への溶解性が低下して安定性が損なわれ、また分散剤自体が不純物となり金属ナノロッドの性能(例えば、電気特性)が低下する。 The metal nanorods in which the ammonium salt is adsorbed on the surface are stably dispersed in a non-aqueous solvent by surface treatment with a dispersant having a side chain having affinity for the non-aqueous solvent (referred to as a non-aqueous dispersant). Can be made. As such a non-aqueous dispersant, an element having a number average molecular weight of 100 to 10,000, preferably 1000 to 3,000 and having high adsorptivity to metal nanorods, for example, when the metal is gold, silver or copper, nitrogen, A high molecular compound having a plurality of side chains having one of sulfur as an adsorption site in the main chain and having affinity for a non-aqueous solvent is used. When the number average molecular weight is less than 1000, the dispersion stability in the non-aqueous solvent is not sufficient, and when it exceeds 10,000, the solubility in the non-aqueous solvent is lowered and the stability is impaired. The agent itself becomes an impurity, and the performance (for example, electrical characteristics) of the metal nanorod is reduced.

非水分散剤の具体的な市販品の例としては、ソルスパース13940、ソルスパース24000SC、ソルスパース28000、ソルスパース32000(以上、アビシア社製品の商品名)、フローレンDOPA-15B、フローレンDOPA―17(以上、共栄社化学社製品の商品名)、アジスパーPB814、アジスパーPB711(以上、味の素ファインテクノ社製品の商品名)、ディスパービック160、ディスパービック161、ディスパービック162、ディスパービック163、ディスパービック183、ディスパービック184、ディスパービック185(以上、ビックケミー・ジャパン社製品の商品名)などを用いることができる。例えば、ソルスパース24000SCは金属ナノロッドに対して吸着性の高い元素である窒素を吸着部位として主鎖中に多数有し、側鎖は芳香族類、ケトン類、エステル類などの非水溶媒に対して高い溶解性を有するいわゆる〔櫛型構造〕の分散剤であり、この分散剤が金属ナノロッド表面に窒素部位で吸着した状態を形成することによって、金属微粒子が非水溶媒中に安定分散することができる。 Specific examples of non-aqueous dispersants are Solsperse 134000, Solsperse 24000SC, Solsperse 28000, Solsperse 32000 (above, product names of Avicia products), Floren DOPA-15B, Floren DOPA-17 (above, Kyoeisha Chemical) Product name), Ajisper PB814, Ajisper PB711 (above, Ajinomoto Finetechno product name), Dispersic 160, Dispersic 161, Dispersic 162, Dispersic 163, Dispersic 183, Dispersic 184, Dispers Big 185 (above, the trade name of the product of Big Chemie Japan) can be used. For example, Solsperse 24000SC has a large amount of nitrogen, which is an element highly adsorbing to metal nanorods, in the main chain as an adsorption site, and the side chain is against non-aqueous solvents such as aromatics, ketones and esters. It is a so-called [comb structure] dispersant having high solubility, and this dispersant forms a state of being adsorbed on the surface of the metal nanorods at the nitrogen site, whereby the metal fine particles can be stably dispersed in the non-aqueous solvent it can.

硫黄を含有する非水分散剤としては、硫黄を含み非水溶媒中に溶解可能なものであればよく、ブタンチオール、ヘキサンチオール、オクタンチオール、デカンチオール、ドデカンチオールなどが用いられる。 Any non-aqueous dispersant containing sulfur may be used as long as it contains sulfur and can be dissolved in a non-aqueous solvent, and butanethiol, hexanethiol, octanethiol, decanethiol, dodecanethiol, and the like are used.

金属微粒子を非水分散剤で表面処理する方法としては、非水分散剤を非水溶媒に溶解した液を用い、この液を金属ナノロッド水分散液中に添加し、さらに金属ナノロッド表面に吸着しているCTnAB等のアンモニウム塩を溶解ないし脱離させる溶液(脱離液)を添加し、表面のアンモニウム塩を非水分散剤によって置換する方法を適用することができ、この表面処理によって、反応水溶液中で製造した金属ナノロッドを非水溶媒中に抽出することができる。 As a method of surface-treating metal fine particles with a non-aqueous dispersant, a solution obtained by dissolving a non-aqueous dispersant in a non-aqueous solvent is used, and this solution is added to the metal nanorod aqueous dispersion and further adsorbed on the surface of the metal nanorods. It is possible to apply a method of adding a solution (desorption liquid) for dissolving or desorbing an ammonium salt such as CT n AB and replacing the surface ammonium salt with a non-aqueous dispersant. The metal nanorods produced in (1) can be extracted into a non-aqueous solvent.

なお、CTnAB等のアンモニウム塩を溶解ないし脱離させる脱離液としては、親水性であってアンモニウム塩の溶解度を高めるものであればよい。このような溶液としては、メタノール、エタノールといったアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類を用いることができる。 Note that any desorbing solution for dissolving or desorbing an ammonium salt such as CT n AB may be used as long as it is hydrophilic and increases the solubility of the ammonium salt. As such a solution, alcohols such as methanol and ethanol, and ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone can be used.

非水分散剤の使用量は、非水溶媒100重量部に対して0.00001〜20重量部が適当であり、好ましくは0.0001〜10重量部が適当である。この添加量が多過ぎるとコスト的に不利であり、さらに非水分散剤自体が不純物となって金属ナノロッドの性能が低下する。一方、この添加量が少な過ぎると十分な表面処理効果が得られず、金属ナノロッドが非水溶媒中で安定に分散せず、凝集しやすくなる。 The amount of the non-aqueous dispersant used is suitably 0.0001 to 20 parts by weight, preferably 0.0001 to 10 parts by weight per 100 parts by weight of the non-aqueous solvent. If the amount added is too large, it is disadvantageous in terms of cost, and the non-aqueous dispersant itself becomes an impurity and the performance of the metal nanorods decreases. On the other hand, when the addition amount is too small, a sufficient surface treatment effect cannot be obtained, and the metal nanorods are not stably dispersed in the non-aqueous solvent and are likely to aggregate.

また、非水溶媒に対する金属ナノロッド水分散液(金属ナノロッド0.3重量部含有)の容量は非水溶媒の0.01〜10倍量が適当であり、0.1〜1倍量が好ましい。金属ナノロッド水分散液の容量が上記範囲内を外れると金属ナノロッドが非水溶媒中に安定に抽出されない。 The volume of the metal nanorod aqueous dispersion (containing 0.3 parts by weight of metal nanorods) with respect to the non-aqueous solvent is suitably 0.01 to 10 times the amount of the non-aqueous solvent, and preferably 0.1 to 1 times. If the volume of the metal nanorod aqueous dispersion is out of the above range, the metal nanorods are not stably extracted into the non-aqueous solvent.

金属ナノロッド表面のアンモニウム塩を低減ないし除去する方法として、上記表面処理のほかに、(イ)貧溶媒添加による沈降法、(ロ)遠心分離等を適用することができる。貧溶媒添加による沈降法は、金属ナノロッドの表面に吸着しているアンモニウム塩の貧溶媒を金属ナノロッド分散液中に添加し、金属ナノロッドを沈降させ、上澄みに抽出されるアンモニウム塩を除去する方法である。遠心分離法は金属ナノロッド分散液を遠心分離機にかけて沈降させ、上澄みに抽出されるアンモニウム塩を除去する方法である。 As a method for reducing or removing the ammonium salt on the surface of the metal nanorod, in addition to the above surface treatment, (b) sedimentation method by addition of a poor solvent, (b) centrifugation, etc. can be applied. The precipitation method by adding a poor solvent is a method in which a poor solvent of ammonium salt adsorbed on the surface of the metal nanorods is added to the metal nanorod dispersion, the metal nanorods are precipitated, and the ammonium salt extracted in the supernatant is removed. is there. Centrifugation is a method in which a metal nanorod dispersion is precipitated using a centrifuge and the ammonium salt extracted in the supernatant is removed.

上記表面処理法、貧溶媒による沈降法、遠心分離法を組み合わせることによって、金属ナノロッド表面のアンモニウム塩を効率的に除去することができる。例えば、非水溶媒トルエンに親和性のある非水分散剤を使用して金属ナノロッドの表面処理を行い、少量のトルエン中に金属ナノロッドを抽出し、金属ナノロッドトルエンペーストにすると同時にアンモニウム塩の大部分を除去する。得られたペーストに貧溶媒であるエタノールを添加し、トルエンに親和性のある非水分散剤で被覆された金属ナノロッドを凝集させる。この凝集物の沈降スピードを加速するため遠心分離を行い、金属ナノロッド凝集物を短時間で沈降させる。上記アンモニウム塩はエタノールに溶解するため、上澄みのエタノール層(一部トルエン)にアンモニウム塩が抽出される。この上澄み液を分離して金属ナノロッドを回収する。 By combining the surface treatment method, the sedimentation method using a poor solvent, and the centrifugal separation method, the ammonium salt on the surface of the metal nanorods can be efficiently removed. For example, the surface treatment of metal nanorods is performed using a non-aqueous dispersant having an affinity for non-aqueous solvent toluene, and the metal nanorods are extracted into a small amount of toluene to form a metal nanorod toluene paste, and at the same time, most of the ammonium salt is removed. Remove. Ethanol, which is a poor solvent, is added to the obtained paste, and metal nanorods coated with a non-aqueous dispersant having an affinity for toluene are aggregated. Centrifugation is performed to accelerate the sedimentation speed of the aggregate, and the metal nanorod aggregate is settled in a short time. Since the ammonium salt is dissolved in ethanol, the ammonium salt is extracted into the supernatant ethanol layer (partially toluene). The supernatant is separated to recover the metal nanorods.

なお、沈降したトルエンに親和性のある分散剤で被覆された金属ナノロッドは少量のトルエンで再分散するので、有機分を低減したペーストを作製することが可能である。上記処理操作を繰り返すことによって、アンモニウム塩を除去ないし低減した金属ナノロッドを得ることができる。金属ナノロッド100重量部に対し、アンモニウム塩を15重量部以下、好ましくは5重量部以下まで低減させたものが導電性材料として好適である。 Note that since the metal nanorods coated with a dispersant having affinity for precipitated toluene are redispersed with a small amount of toluene, it is possible to produce a paste with reduced organic content. By repeating the above treatment operation, a metal nanorod from which ammonium salt has been removed or reduced can be obtained. What reduced ammonium salt to 15 weight part or less, Preferably to 5 weight part or less with respect to 100 weight part of metal nanorods is suitable as an electroconductive material.

本発明の上記製造方法によって、例えば、短軸が15nm以下、好ましくは5nm以下の金属ナノロッドを容易にかつ効率よく製造することができる。金属ナノロッドはそのアスペクト比を調整することによって吸収波長域が変化し、金属種が金の場合、可視光(530nm付近)から近赤外域までの幅広い特定吸収波長を示す。 By the above production method of the present invention, for example, metal nanorods having a minor axis of 15 nm or less, preferably 5 nm or less can be produced easily and efficiently. Metal nanorods change the absorption wavelength range by adjusting the aspect ratio, and when the metal species is gold, they exhibit a wide range of specific absorption wavelengths from visible light (around 530 nm) to the near infrared range.

本発明の金属ナノロッドは長軸が400nm以下、好ましくは200nm以下である。金属ナノロッドの長軸が400nm以下であると、肉眼で粒子として認識し難く、フィルター用途等で塗布したとき透明性の高い塗膜が得られる。さらに、本発明の金属ナノロッドはアスペクト比(長軸長さ/短軸長さ)が1より大きいロッド状のものである。なお、アスペクト比が1の金属微粒子は球状粒子であり、光吸収域が金の場合は530nm付近、銀の場合は400nm付近に限られ、可視光および近赤外光の任意の波長に対する選択的な吸収効果が得られない。 The major axis of the metal nanorod of the present invention is 400 nm or less, preferably 200 nm or less. When the long axis of the metal nanorod is 400 nm or less, it is difficult to recognize as a particle with the naked eye, and a highly transparent coating film can be obtained when applied for filter applications or the like. Furthermore, the metal nanorod of the present invention is in the form of a rod having an aspect ratio (major axis length / minor axis length) greater than 1. The metal fine particles having an aspect ratio of 1 are spherical particles, and the light absorption region is limited to around 530 nm when gold is used, and is limited to around 400 nm when silver is used, and is selective to any wavelength of visible light and near infrared light. A good absorption effect cannot be obtained.

本発明の金属微粒子(金属ナノロッド)を、例えば分散媒と共にバインダー(樹脂)に混合することによって金属ナノロッド含有組成物を得ることができる。バインダー(樹脂)としては、通常塗料用や成型用に利用されている可視光線から近赤外光領域の光に対して透過性がある各種樹脂が特に制限無く使用できる。例えばアクリル樹脂、ポリエステル樹脂、アルキド樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂、エポキシ樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、ポリビニルアルコール、等の各種有機樹脂や、ラジカル重合性のオリゴマーやモノマー(場合により硬化剤やラジカル重合剤開始剤と併用する)、アルコキシシランを樹脂骨格に用いたゾルゲル溶液、などが代表的なものとして挙げられる。 A metal nanorod-containing composition can be obtained by mixing the metal fine particles (metal nanorods) of the present invention with a binder (resin) together with a dispersion medium, for example. As the binder (resin), various resins that are transmissive to light in the visible to near-infrared region, which are usually used for paints and moldings, can be used without particular limitation. For example, various organic resins such as acrylic resin, polyester resin, alkyd resin, urethane resin, silicone resin, fluorine resin, epoxy resin, polycarbonate resin, polyvinyl chloride resin, polyvinyl alcohol, radical polymerizable oligomers and monomers (depending on the case Typical examples thereof include a sol-gel solution using an alkoxysilane as a resin skeleton, and the like in combination with a curing agent and a radical polymerization initiator.

本発明の金属ナノロッド含有組成物において、必要に応じて配合する溶媒としては、バインダー(樹脂)が溶解もしくは安定に分散するような溶媒を適宜選択すればよく、具体的には、水、メタノール、エタノール、プロパノール、ヘキサノール、エチレングリコール等のアルコール、エチレングリコール等のアルコール、キシレン、トルエン等の芳香族炭化水素、シクロヘキサン等の脂環式炭化水素、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン、酢酸エチル、酢酸ブチル等のエステル、エチレングリコールモノブチルエーテル等のエーテル等、あるいはこれらの混合物が代表的なものとして挙げられるが、これらに限定されるものではない。 In the metal nanorod-containing composition of the present invention, as a solvent to be blended as necessary, a solvent in which a binder (resin) is dissolved or stably dispersed may be appropriately selected. Specifically, water, methanol, Alcohols such as ethanol, propanol, hexanol and ethylene glycol, alcohols such as ethylene glycol, aromatic hydrocarbons such as xylene and toluene, alicyclic hydrocarbons such as cyclohexane, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ethyl acetate Typical examples thereof include, but are not limited to, esters such as butyl acetate, ethers such as ethylene glycol monobutyl ether, and mixtures thereof.

金属ナノロッドの添加量は、バインダー100重量部に対して、0.01〜1900重量部が適当であり、好ましくは、光学用途ではバインダー100重量部に対して0.1〜50重量部、導電性用途ではバインダー100重量部に対して566〜1900重量部がよい。光学用途の場合、添加量がそれより少ないと吸収が少なく、目的の着色(近赤外域の場合は透過率の低減)が得られない。また添加量がそれより多いと金属ナノロッドどうしが凝集してシャープな吸収が得られない。導電性用途の場合は、金属ナノロッドの添加量がそれより少ないとバインダーの絶縁効果の影響が大きくなるので高い導電特性が得られにくい。また、添加量が多いと金属ナノロッドどうしの凝集が起こりやすく、塗料組成物としての保存安定性が悪くなる。 The addition amount of the metal nanorods is suitably from 0.01 to 1900 parts by weight with respect to 100 parts by weight of the binder, and preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the binder for optical applications. In use, 566 to 1900 parts by weight is preferable with respect to 100 parts by weight of the binder. In the case of optical use, if the addition amount is less than that, there is little absorption, and the desired coloring (reduction of transmittance in the case of the near infrared region) cannot be obtained. If the amount added is larger than that, the metal nanorods aggregate and sharp absorption cannot be obtained. In the case of conductive use, if the amount of metal nanorods added is less than that, the influence of the insulating effect of the binder is increased, so that it is difficult to obtain high conductive properties. Moreover, when there is much addition amount, aggregation of metal nanorods will occur easily and the storage stability as a coating composition will worsen.

バインダー(樹脂)に配合する金属ナノロッドは、非水溶媒に親和性のある側鎖を有する非水分散剤によって表面処理、あるいは貧溶媒沈降法や遠心分離法などによってアンモニウム塩残留量を低減したものが好ましい。非水分散剤によって表面処理したものは、光学用途の場合、非水分散剤の量は金属ナノロッドに対して5〜50wt%、好ましくは8〜30wt%がよい。この範囲以外では、金属ナノロッドどうしが凝集しやすくなる。また、導電材の用途の場合には、非水分散剤の量は金属ナノロッドに対して8〜15wt%が好ましい。添加量がそれ以上であると導電性が悪くなる。 Metal nanorods blended in the binder (resin) have a reduced amount of residual ammonium salt by surface treatment with a non-aqueous dispersant having a side chain that has affinity for the non-aqueous solvent, or by poor solvent precipitation or centrifugation. preferable. In the case of an optical application, the surface treated with a non-aqueous dispersant is 5 to 50 wt%, preferably 8 to 30 wt% with respect to the metal nanorods. Outside this range, metal nanorods tend to aggregate. Moreover, in the case of the use of a conductive material, the amount of the non-aqueous dispersant is preferably 8 to 15 wt% with respect to the metal nanorods. If the amount added is more than that, the conductivity will deteriorate.

金属ナノロッド含有組成物は、目的に応じて、染料、顔料、蛍光体、金属酸化物、金属ナノ繊維の1種、または2種以上を添加してもよい。さらに必要に応じて、レべリング剤、消泡剤、その他の各種添加剤などを添加してもよい。なお、金属ナノロッドは同一種、または異なる二種ないし三種以上のものを組み合わせて用いることができる。 Depending on the purpose, the metal nanorod-containing composition may contain one or more of dyes, pigments, phosphors, metal oxides, and metal nanofibers. Furthermore, you may add a leveling agent, an antifoamer, and other various additives as needed. In addition, metal nanorods can be used in combination of the same type or two or more different types.

本発明の金属ナノロッド含有組成物は、塗料組成物、塗膜、フィルム、または板材など多様な形態で用いることができ、この光吸収材形成用組成物によって形成されたフィルター層を有する光吸収材を得ることができる。具体的には、例えば、(イ)可視光線・近赤外光を吸収したい基材に直接に塗布もしくは印刷し、可視光線・近赤外光吸収フィルターとしての硬化塗膜を形成させる。(ロ)本発明の組成物をフィルム状や板状等に形成し、その組成物を可視光線・近赤外光吸収フィルターとして可視光線・近赤外光を吸収したい基材に積層もしくは包囲する。(ハ)本発明の組成物によって形成した上記塗膜やフィルムなどの形成物を透明なガラス製もしくはプラスチック製の基材に積層させ、その積層体を可視光線・近赤外光吸収フィルターとして可視光線・近赤外光を吸収したい基材に積層もしくは包囲して用いる。上記各使用形態において、光吸収フィルターの厚さは概ね0.01μm〜1mmが適当であり、コストや光透過性等を考慮すると0.1μm〜100μmが好ましい。 The metal nanorod-containing composition of the present invention can be used in various forms such as a coating composition, a coating film, a film, or a plate material, and has a filter layer formed by the composition for forming a light absorbing material. Can be obtained. Specifically, for example, (i) a cured coating film is formed as a visible light / near-infrared light absorbing filter by directly applying or printing on a substrate that wants to absorb visible light / near-infrared light. (B) The composition of the present invention is formed into a film shape, a plate shape or the like, and the composition is laminated or surrounded as a visible light / near infrared light absorption filter on a base material to absorb visible light / near infrared light. . (C) The formed film or film formed by the composition of the present invention is laminated on a transparent glass or plastic substrate, and the laminate is visible as a visible light / near infrared light absorbing filter. It is used by laminating or surrounding a base material that wants to absorb light and near infrared light. In each of the above usage forms, the thickness of the light absorption filter is suitably about 0.01 μm to 1 mm, and preferably 0.1 μm to 100 μm in view of cost, light transmittance, and the like.

本発明の上記組成物によって形成した塗膜やフィルム、板材などをフィルター層として有するものは、例えば、可視光・近赤外光カットフィルム、可視光・近赤外光カットフィルター、または可視光・近赤外光カットガラスなどの耐熱性に優れた光吸収材として用いることができる。 What has a coating film, a film, a board | plate material, etc. which were formed with the said composition of this invention as a filter layer is, for example, visible light / near infrared light cut film, visible light / near infrared light cut filter, or visible light / It can be used as a light absorbing material excellent in heat resistance such as near infrared light cut glass.

本発明の金属ナノロッドは、金属種、粒子形、アスペクト比に応じた波長吸収特性を有する。例えば、金属種が金の場合、アスペクト比によって530nm付近より高い波長でプラズモン吸収特性を有し、また金に基づく高い耐熱性、耐候性、耐薬品性を有するので、光学フィルター材料、高級着色剤、近赤外吸収剤、偽造防止インク用吸収剤、バイオセンサー、DNAチップ、表面増強蛍光センサー用増感剤などの材料として好適である。また、金は生体に安全な材料であることから、食品添加用着色剤、化粧品用着色剤、生体マーカー、薬物送達システム(DDS)用薬物保持体、検査薬などの材料として使用することができる。また、金は高い導電性を示すことから、配線材料、電極材料、電磁波シールド材として使用可能である。この他に、ナノロッドの形状異方性に基づいて偏光材料、記録材料、記録素子、ナノ導波路として使用可能である。さらに、微粒子で表面積が大きいので触媒反応の場を提供する材料として好適である。 The metal nanorods of the present invention have wavelength absorption characteristics corresponding to the metal species, particle shape, and aspect ratio. For example, when the metal species is gold, it has plasmon absorption characteristics at a wavelength higher than around 530 nm depending on the aspect ratio, and has high heat resistance, weather resistance, and chemical resistance based on gold. It is suitable as a material such as a near infrared absorber, an anti-counterfeit ink absorber, a biosensor, a DNA chip, and a sensitizer for a surface-enhanced fluorescent sensor. In addition, since gold is a material that is safe for the living body, it can be used as a material for food additives, cosmetics, biomarkers, drug carriers for drug delivery systems (DDS), testing agents, and the like. . Further, since gold exhibits high conductivity, it can be used as a wiring material, an electrode material, and an electromagnetic shielding material. In addition, it can be used as a polarizing material, a recording material, a recording element, and a nano waveguide based on the shape anisotropy of the nanorod. Furthermore, since it is a fine particle and has a large surface area, it is suitable as a material for providing a field for catalytic reaction.

本発明の製造方法は、先に述べたように、アミン類の弱い還元力をアンモニウム塩の界面活性作用の存在下で利用することによって、金属ナノロッドが緩やかに生成する反応場が形成され、従来のものより微細な金属ナノロッドを製造することができ、短軸に起因するプラズモン吸収を格段に抑制することができる。また、本発明の製造方法は、併用するアミン類とアンモニウム塩の混合比を調整することによって金属ナノロッドのアスペクト比を制御することができるので、目的の光吸収特性を有する金属ナノロッドを容易に得ることができる。さらに、本発明の製造方法によれば、金属ナノロッドを簡易にかつ大量に製造することができるので実用に適する。 As described above, the production method of the present invention uses a weak reducing power of amines in the presence of a surface-active action of an ammonium salt to form a reaction field in which metal nanorods are slowly generated. It is possible to manufacture metal nanorods that are finer than those of the present invention, and to significantly suppress plasmon absorption due to the short axis. In addition, since the production method of the present invention can control the aspect ratio of the metal nanorods by adjusting the mixing ratio of the amines and ammonium salts used together, the metal nanorods having the desired light absorption characteristics can be easily obtained. be able to. Furthermore, according to the production method of the present invention, metal nanorods can be produced easily and in large quantities, which is suitable for practical use.

本発明を実施例および比較例によって以下に具体的に示す。なお、各例は金ナノロッドに関するものであり、主に530nm〜1150nmの波長域における光吸収機能を示しているが、金属ナノロッドの種類や長さ、組成等の条件などを変更することによってそれ以上の高波長の波長域についても同様の光吸収機能を有することができる。なお、分光特性は日本分光株式会社製品のV−570で測定した。比抵抗値は三菱化学株式会社製品のロレスタ−GPで測定した。各例の製造条件と結果を表1〜表3に示した。また、各例で得た金属ナノロッドの光学特性を図1〜図2示した。 The present invention is specifically shown below by examples and comparative examples. Each example relates to a gold nanorod and mainly shows a light absorption function in a wavelength range of 530 nm to 1150 nm, but it can be further increased by changing conditions such as the type, length, and composition of the metal nanorod. The same light absorption function can be provided for the high wavelength region. Spectral characteristics were measured with V-570 manufactured by JASCO Corporation. The specific resistance value was measured by Loresta GP, a product of Mitsubishi Chemical Corporation. The production conditions and results of each example are shown in Tables 1 to 3. Moreover, the optical characteristic of the metal nanorod obtained in each example was shown in FIGS.

0.08mol/Lのヘキサデシルトリメチルアンモニウムブロミド(CT16AB)水溶液10mlにトリエチルアミン(pka=10.7)0.05mlを添加して溶解した。これにアスペクト比の調整剤として0.01mol/L硝酸銀水溶液0.6mlを添加した。この水溶液に0.024mol/L塩化金酸水溶液を0.8ml添加し、直後にアセトン0.2mlを添加し、30℃で4時間保持した。この結果、短軸約4nm、長軸約20nm、アスペクト比約5、吸収波長ピーク810nm付近の金ナノロッドを得た。 To 10 ml of 0.08 mol / L hexadecyltrimethylammonium bromide (CT 16 AB) aqueous solution, 0.05 ml of triethylamine (pka = 10.7) was added and dissolved. To this, 0.6 ml of 0.01 mol / L silver nitrate aqueous solution was added as an aspect ratio adjuster. To this aqueous solution was added 0.8 ml of 0.024 mol / L chloroauric acid aqueous solution, immediately after that 0.2 ml of acetone was added and kept at 30 ° C. for 4 hours. As a result, a gold nanorod having a minor axis of about 4 nm, a major axis of about 20 nm, an aspect ratio of about 5, and an absorption wavelength peak of about 810 nm was obtained.

0.56mol/Lのヘキサデシルトリメチルアンモニウムブロミド(CT16AB)水溶液10mlに、2、2’、2”−ニトリロトリエタノール(pka=7.8)0.10mlを添加して溶解した。これに0.01mol/L硝酸銀水溶液0.42mlを添加した。この水溶液に0.024mol/L塩化金酸水溶液を0.8ml添加し、直後にアセトン0.2mlを添加し、30℃で48時間保持した。この結果、短軸約8nm、長軸約88nm、アスペクト比約11、吸収波長ピーク1150nm付近の金ナノロッドを得た。 To 10 ml of 0.56 mol / L hexadecyltrimethylammonium bromide (CT 16 AB) aqueous solution, 0.10 ml of 2,2 ′, 2 ″ -nitrilotriethanol (pka = 7.8) was added and dissolved. 0.42 ml of an aqueous solution of silver nitrate / L was added, 0.8 ml of 0.024 mol / L aqueous solution of chloroauric acid was added to this aqueous solution, and 0.2 ml of acetone was added immediately thereafter, and the mixture was kept at 30 ° C. for 48 hours. A gold nanorod having a short axis of about 8 nm, a long axis of about 88 nm, an aspect ratio of about 11, and an absorption wavelength peak of about 1150 nm was obtained.

0.08mol/Lのヘキサデシルトリメチルアンモニウムブロミド(CT16AB)水溶液10mlにトリエチルアミン(pka=10.7)0.05mlを添加して溶解した。これに0.01mol/L硝酸銀水溶液0.6mlを添加した。この水溶液に0.024mol/L塩化金酸水溶液を0.8ml添加し、アセトンは添加しなかった。30℃で4時間保持した。この結果、短軸約3.4nm、長軸約6.8nm、アスペクト比約2、吸収波長ピーク658nm付近の金ナノロッドを得た。 To 10 ml of 0.08 mol / L hexadecyltrimethylammonium bromide (CT 16 AB) aqueous solution, 0.05 ml of triethylamine (pka = 10.7) was added and dissolved. To this was added 0.6 ml of a 0.01 mol / L silver nitrate aqueous solution. To this aqueous solution, 0.8 ml of 0.024 mol / L chloroauric acid aqueous solution was added, and acetone was not added. Hold at 30 ° C. for 4 hours. As a result, a gold nanorod having a minor axis of about 3.4 nm, a major axis of about 6.8 nm, an aspect ratio of about 2, and an absorption wavelength peak of about 658 nm was obtained.

0.56mol/Lのヘキサデシルトリメチルアンモニウムブロミド(CT16AB)水溶液10mlにトリ-n-ブチルアミン0.09mlを添加して溶解した。これにアスペクト比の調整剤として0.01mol/L硝酸銀水溶液0.6mlを添加した。この水溶液に0.024mol/L塩化金酸水溶液を0.8ml添加し、直後にアセトン0.2mlを添加し、30℃で24時間保持した。この結果、短軸約8nm、長軸約49nm、アスペクト比約6、吸収波長ピーク980nm付近の金ナノロッドを得た。 To 10 ml of a 0.56 mol / L hexadecyltrimethylammonium bromide (CT 16 AB) aqueous solution, 0.09 ml of tri-n-butylamine was added and dissolved. To this, 0.6 ml of 0.01 mol / L silver nitrate aqueous solution was added as an aspect ratio adjuster. To this aqueous solution, 0.8 ml of 0.024 mol / L chloroauric acid aqueous solution was added, and immediately after that, 0.2 ml of acetone was added and kept at 30 ° C. for 24 hours. As a result, a gold nanorod having a short axis of about 8 nm, a long axis of about 49 nm, an aspect ratio of about 6, and an absorption wavelength peak of about 980 nm was obtained.

0.56mol/Lのヘキサデシルトリメチルアンモニウムブロミド(CT16AB)水溶液10mlにトリ-n-ペンチルアミン0.1mlを添加して溶解した。これにアスペクト比の調整剤として0.01mol/L硝酸銀水溶液0.6mlを添加した。この水溶液に0.024mol/L塩化金酸水溶液を0.8ml添加し、直後にアセトン0.2mlを添加し、30℃で48時間保持した。この結果、短軸約8nm、長軸約88nm、アスペクト比約11、吸収波長ピーク1200nm付近の金ナノロッドを得た。 To 10 ml of a 0.56 mol / L hexadecyltrimethylammonium bromide (CT 16 AB) aqueous solution, 0.1 ml of tri-n-pentylamine was added and dissolved. To this, 0.6 ml of 0.01 mol / L silver nitrate aqueous solution was added as an aspect ratio adjuster. To this aqueous solution, 0.8 ml of 0.024 mol / L chloroauric acid aqueous solution was added, and immediately after that, 0.2 ml of acetone was added and kept at 30 ° C. for 48 hours. As a result, a gold nanorod having a minor axis of about 8 nm, a major axis of about 88 nm, an aspect ratio of about 11, and an absorption wavelength peak of about 1200 nm was obtained.

実施例1で製造した金ナノロッド水分散液250重量部に、含窒素分散剤ソルスパース24000SCを1wt%溶解したトルエン100重量部を添加し、3分間攪拌した。この混合液中にエタノール500重量部を添加し、さらに5分間攪拌し、攪拌終了後、24時間静置した。混合液は、下層が透明な水層、上層が金ナノロッドの分散したトルエン層と明確に2層分離した。上層を回収しICPにて金含有量を測定したところ、分散剤で表面処理された金属ナノロッドは非水溶媒中へほぼ抽出されていた。また、保存安定性を確認したところ、90日以上分散安定であった。 To 250 parts by weight of the gold nanorod aqueous dispersion produced in Example 1, 100 parts by weight of toluene in which 1 wt% of the nitrogen-containing dispersant Solsperse 24000SC was dissolved was added and stirred for 3 minutes. 500 parts by weight of ethanol was added to the mixture, and the mixture was further stirred for 5 minutes. After the stirring was completed, the mixture was allowed to stand for 24 hours. The mixed solution was clearly separated into two layers from a transparent aqueous layer in the lower layer and a toluene layer in which the gold nanorods were dispersed in the upper layer. When the upper layer was collected and the gold content was measured by ICP, the metal nanorods surface-treated with the dispersant were almost extracted into the non-aqueous solvent. Further, when the storage stability was confirmed, the dispersion was stable for 90 days or more.

実施例1で製造した金ナノロッド水分散液250重量部に、含硫黄分散剤のドデカンチオールを1wt%溶解したn−ヘキサン100重量部を添加し、3分間攪拌した。この混合液中にアセトン500重量部を添加し、さらに5分間攪拌し、攪拌終了後、24時間静置した。混合液は、下層が透明な水層、上層が金ナノロッドの分散したn−ヘキサン層と明確に2層分離した。上層を回収しICPにて金含有量を測定したところ、分散剤で表面処理された金属ナノロッドは非水溶媒中へほぼ抽出されていた。また、保存安定性を確認したところ、90日以上分散安定であった。 To 250 parts by weight of the gold nanorod aqueous dispersion produced in Example 1, 100 parts by weight of n-hexane in which 1 wt% of dodecanethiol as a sulfur-containing dispersant was dissolved was added and stirred for 3 minutes. 500 parts by weight of acetone was added to the mixture, and the mixture was further stirred for 5 minutes. After the stirring was completed, the mixture was allowed to stand for 24 hours. The mixed solution was clearly separated into two layers from an aqueous layer having a transparent lower layer and an n-hexane layer having gold nanorods dispersed in an upper layer. When the upper layer was collected and the gold content was measured by ICP, the metal nanorods surface-treated with the dispersant were almost extracted into the non-aqueous solvent. Further, when the storage stability was confirmed, the dispersion was stable for 90 days or more.

実施例4で抽出した金ナノロッドトルエン分散液をエバポレーターでトルエンを除去し、金ナノロッドを5wt%含有するトルエンペーストを作製した。これをTg−DTAで加熱残分を測定したところ、このペーストは25wt%の有機分(CT16AB、ソルスパース24000SC、トリエチルアミン)を含有していた。ペースト100重量部にソルスパース24000SCの貧溶媒であるエタノール100重量部を添加すると、ソルスパース24000SCと金ナノロッドの凝集物が発生した。この溶液を40000Gで30分間遠心分離を行い、凝集物を沈降させ、CT16ABとトリエチルアミンを含有した上澄みのエタノール溶液を除去した。この沈降物をトルエンで再分散し、金ナノロッドを5wt%含有するトルエン分散液を得た。これをTg−DTAで加熱残分を測定したところ、このペーストは0.5wt%まで有機分が減少していた。この金ナノロッドトルエンペーストをバーコーター#40で塗布し、300℃で30分間過熱し、加熱後の塗膜の比抵抗を測定したところ、比抵抗は1×10-5Ω・cmであった。 Toluene was removed from the gold nanorod toluene dispersion extracted in Example 4 with an evaporator to prepare a toluene paste containing 5 wt% of gold nanorods. When this residue was measured with Tg-DTA, this paste contained 25 wt% of organic components (CT 16 AB, Solsperse 24000SC, triethylamine). When 100 parts by weight of ethanol, which is a poor solvent for Solsperse 24000SC, was added to 100 parts by weight of the paste, aggregates of Solsperse 24000SC and gold nanorods were generated. This solution was centrifuged at 40,000 G for 30 minutes to precipitate the aggregates, and the supernatant ethanol solution containing CT 16 AB and triethylamine was removed. This sediment was redispersed with toluene to obtain a toluene dispersion containing 5 wt% of gold nanorods. When the heating residue was measured with Tg-DTA, the organic content of this paste was reduced to 0.5 wt%. This gold nanorod toluene paste was applied with a bar coater # 40, heated at 300 ° C. for 30 minutes, and the specific resistance of the coated film after heating was measured. The specific resistance was 1 × 10 −5 Ω · cm.

実施例3で製造した金ナノロッドについて、実施例4と同様の表面処理を行い、さらに、実施例6と同様にペースト化、有機分の除去を行なって残存有機分を0.5wt%にし、この金ナノロッドを5wt%含む金ナノロッドトルエン分散液を得た。この金ナノロッドトルエンペーストをバーコーター#40で塗布し、300℃で30分過熱し、加熱後の塗膜の比抵抗を測定したところ比抵抗は1×10-4Ω・cmであった。 The gold nanorods produced in Example 3 were subjected to the same surface treatment as in Example 4, and were further made into a paste in the same manner as in Example 6 to remove the organic content so that the residual organic content was 0.5 wt%. A gold nanorod toluene dispersion containing 5 wt% of gold nanorods was obtained. This gold nanorod toluene paste was applied with a bar coater # 40, heated at 300 ° C. for 30 minutes, and the specific resistance of the coating film after heating was measured. The specific resistance was 1 × 10 −4 Ω · cm.

短軸5nm、長軸35nm(アスペクト比7.0、吸収波長ピーク950nm)の金ナノロッド、バインダー、溶媒を表4に示す割合で混合して塗料化し、光吸収形成用組成物を調製した。この塗料をスピンコーターでガラス基板に塗布し、5分間静置後、高圧水銀ランプにて紫外線を照射し硬化させ、光吸収材フィルターを形成した。このフィルターについて透過率を測定した。この結果を表4に示した。また、分光特性を図2に示した。可視光域の透過率は60%と高い透過性を示し、金ナノロッドのプラズモン吸収ピークである950nm付近の透過率は11%と優れたカット率を示した。 Gold nanorods having a minor axis of 5 nm and a major axis of 35 nm (aspect ratio: 7.0, absorption wavelength peak: 950 nm), a binder, and a solvent were mixed at a ratio shown in Table 4 to prepare a coating composition. This paint was applied to a glass substrate with a spin coater, allowed to stand for 5 minutes, and then cured by irradiating with ultraviolet rays with a high-pressure mercury lamp to form a light absorbing material filter. The transmittance of this filter was measured. The results are shown in Table 4. The spectral characteristics are shown in FIG. The transmittance in the visible light region was as high as 60%, and the transmittance in the vicinity of 950 nm, which is the plasmon absorption peak of the gold nanorods, was as excellent as 11%.

比較例Comparative example

〔比較例1〕
0.08mol/Lのドデシル硫酸ナトリウム水溶液10mlにトリエチルアミン(pka=10.7)0.05mlを添加して溶解した。これに0.01mol/L硝酸銀水溶液0.6mlを添加した。この水溶液に0.024mol/L塩化金酸水溶液を0.8ml添加し、直後にアセトン0.2mlを添加し、30℃で保持した状態で4時間保管した。この結果、得られた金微粒子はアスペクト比約1の球状金微粒子であり、ロッド状の微粒子は得られなかった。
[Comparative Example 1]
To 10 ml of 0.08 mol / L aqueous sodium dodecyl sulfate solution, 0.05 ml of triethylamine (pka = 10.7) was added and dissolved. To this was added 0.6 ml of a 0.01 mol / L silver nitrate aqueous solution. To this aqueous solution, 0.8 ml of 0.024 mol / L chloroauric acid aqueous solution was added, and immediately after that, 0.2 ml of acetone was added and stored at 30 ° C. for 4 hours. As a result, the obtained gold fine particles were spherical gold fine particles having an aspect ratio of about 1, and rod-shaped fine particles were not obtained.

〔比較例2〕
実施例1で製造した金ナノロッド水分散液250重量部に、トルエン100重量部を添加し、3分間攪拌した。この混合液にエタノール500重量部を添加し、5分間攪拌し、攪拌終了後、24時間静置した。生成した金属ナノロッドは非水溶媒中へ殆ど抽出されず、金ナノロッドに吸着していたCT16ABがエタノールによって、金ナノロッド表面から脱離し溶解したため、金ナノロッドどうしが凝集し、容器底に塊状に沈降し、水、非水溶媒中へは再分散しなかった。
[Comparative Example 2]
To 250 parts by weight of the gold nanorod aqueous dispersion prepared in Example 1, 100 parts by weight of toluene was added and stirred for 3 minutes. To this mixed solution, 500 parts by weight of ethanol was added, stirred for 5 minutes, and allowed to stand for 24 hours after completion of stirring. The produced metal nanorods were hardly extracted into the non-aqueous solvent, and the CT 16 AB adsorbed on the gold nanorods was desorbed from the gold nanorod surface and dissolved by ethanol. It settled and did not redisperse in water or a non-aqueous solvent.

〔比較例3〕
実施例4で抽出した金ナノロッドトルエン分散液からエバポレータでトルエンを除去し、金ナノロッドを5wt%含むトルエンペーストを作製した。これをTg−DTAで加熱残分を測定したところ、このペーストは25wt%の有機分(CT16AB、ソルスパース24000SC、トリエチルアミン)を含有していた。この金ナノロッドトルエンペーストをバーコーター#40で塗布し、300℃で30分過熱し、加熱後の塗膜の比抵抗を測定したところ導電性は確認されなかった。
[Comparative Example 3]
Toluene was removed from the gold nanorod toluene dispersion extracted in Example 4 with an evaporator to prepare a toluene paste containing 5 wt% of gold nanorods. When this residue was measured with Tg-DTA, this paste contained 25 wt% of organic components (CT 16 AB, Solsperse 24000SC, triethylamine). When this gold nanorod toluene paste was applied with a bar coater # 40, heated at 300 ° C. for 30 minutes, and the specific resistance of the coating film after heating was measured, conductivity was not confirmed.

Figure 0004529160
Figure 0004529160

Figure 0004529160
Figure 0004529160

Figure 0004529160
Figure 0004529160

Figure 0004529160
Figure 0004529160

実施例1〜3、比較例1の金微粒子の波長吸収グラフWavelength absorption graph of gold fine particles of Examples 1 to 3 and Comparative Example 1 実施例8の金微粒子の波長吸収グラフWavelength absorption graph of gold fine particles of Example 8

Claims (18)

水溶液中で金属イオンを化学的に還元することによってロッド状の金属微粒子を製造する方法において、還元能を有するアミン類と、実質的に還元能を有さないアンモニウム塩とを含有する水溶液を用い、該アンモニウム塩の存在下で上記アミン類によって金属イオンを還元することを特徴とする金属微粒子の製造方法。
In a method for producing rod-shaped fine metal particles by chemically reducing metal ions in an aqueous solution, an aqueous solution containing an amine having a reducing ability and an ammonium salt having substantially no reducing ability is used. A method for producing fine metal particles, wherein metal ions are reduced by the amines in the presence of the ammonium salt.
請求項1の方法において、アミン類と併用するアンモニウム塩として次式(1)で示す4級アンモニウム塩を用いる金属微粒子の製造方法。
CH3(CH3)n+(CH3)3Br- (n=1〜17の整数) …式(1)
The method of claim 1, wherein the quaternary ammonium salt represented by the following formula (1) is used as an ammonium salt used in combination with an amine.
CH 3 (CH 3 ) n N + (CH 3 ) 3 Br (n = 1 to 17 integer) (1)
請求項1または2の方法において、アンモニウム塩と併用するアミン類として次式(2)〜(3)によって示される1種または2種以上のアルキルアミンまたはアルカノールアミンを用いる金属微粒子の製造方法。
NR3 (R:Cn2n+1 n=1〜8の整数) …式(2)
N(ROH)3 (R:Cn2n n=1〜8の整数) …式(3)
3. The method for producing fine metal particles according to claim 1, wherein one or more alkylamines or alkanolamines represented by the following formulas (2) to (3) are used as amines used in combination with ammonium salts.
NR 3 (R: C n H 2n + 1 n = 1-8 integer) (2)
N (ROH) 3 (R: C n H 2n n = 1~8 integer) Equation (3)
請求項3の方法において、アミン類として、トリエチルアミン、トリブチルアミン、トリペンチルアミン、または2,2',2''−ニトリロトリエタノールを用いる金属微粒子の製造方法。
4. The method of producing fine metal particles according to claim 3, wherein triamineamine, tributylamine, tripentylamine, or 2,2 ′, 2 ″ -nitrilotriethanol is used as the amine.
請求項1または2の方法において、アンモニウム塩と併用するアミン類として次式(4)〜(5)によって示される1種または2種以上のアルキルアミンを用いる金属微粒子の製造方法。
2NR (R:Cn2n+1 n=1〜8の整数) …式(4)
HNR2 (R:Cn2n+1 n=1〜8の整数) …式(5)
3. The method for producing fine metal particles according to claim 1 or 2, wherein one or more alkylamines represented by the following formulas (4) to (5) are used as amines used in combination with an ammonium salt.
H 2 NR (R: C n H 2n + 1 n = 1 to 8 integer) (4)
HNR 2 (R: C n H 2n + 1 n = 1 to 8 integer) (5)
式(1)によって示されるアンモニウム塩の水溶液中の濃度が0.01〜1.0mol/Lである請求項2〜5の何れかに記載する金属微粒子の製造方法。
The method for producing metal fine particles according to any one of claims 2 to 5, wherein the concentration of the ammonium salt represented by the formula (1) in the aqueous solution is 0.01 to 1.0 mol / L.
式(2)〜(5)によって示されるアミン類の水溶液中の濃度が0.001〜10wt%である請求項2〜6の何れかに記載する金属微粒子の製造方法。
The method for producing fine metal particles according to any one of claims 2 to 6, wherein the concentration of the amines represented by the formulas (2) to (5) in the aqueous solution is 0.001 to 10 wt%.
式(2)〜(5)によって示されるアミン類の電離指数(pka値)が7.0〜12.5である請求項2〜7の何れかに記載する金属微粒子の製造方法。
The method for producing metal fine particles according to any one of claims 2 to 7, wherein the ionization index (pka value) of the amines represented by the formulas (2) to (5) is 7.0 to 12.5.
アミン類とアンモニウム塩の濃度を調整することによって粒子径を制御する請求項1〜8の何れかに記載する金属微粒子の製造方法。
The method for producing fine metal particles according to any one of claims 1 to 8, wherein the particle diameter is controlled by adjusting the concentrations of amines and ammonium salt.
上記アミン類およびアンモニウム塩を含有する水溶液にケトン類を添加し、金属微粒子のアスペクト比を調整する請求項1〜9の何れかに記載する金属微粒子の製造方法。
The method for producing metal fine particles according to any one of claims 1 to 9, wherein a ketone is added to the aqueous solution containing the amines and ammonium salt to adjust the aspect ratio of the metal fine particles.
請求項1〜10の何れかの方法によって製造された、長軸が400nm以下、短軸が15nm以下であってアスペクト比が1より大きいロッド状の金属微粒子。
A rod-shaped metal fine particle produced by the method according to any one of claims 1 to 10, wherein the major axis is 400 nm or less, the minor axis is 15 nm or less, and the aspect ratio is greater than 1.
請求項1〜10の何れかの方法によって製造され、かつ非水溶媒に親和性のある側鎖を有する非水分散剤によって表面処理された金属微粒子。
Metal fine particles produced by the method according to any one of claims 1 to 10 and surface-treated with a non-aqueous dispersant having a side chain having an affinity for a non-aqueous solvent.
請求項1〜10の何れかの方法によって製造され、かつ金属微粒子表面のアンモニウム塩残留量が、金属微粒子100重量部に対して15重量部以下に除去ないし低減された金属微粒子。
Metal fine particles produced by the method according to any one of claims 1 to 10, wherein the residual amount of ammonium salt on the surface of the metal fine particles is removed or reduced to 15 parts by weight or less with respect to 100 parts by weight of the metal fine particles.
請求項1〜10の何れかの方法によって製造された金属微粒子、または請求項11〜13の何れかに記載された金属微粒子を含有する組成物。
The composition containing the metal microparticle manufactured by the method in any one of Claims 1-10, or the metal microparticle in any one of Claims 11-13.
金属微粒子と共にバインダー(樹脂)、および分散媒を含有する請求項14の金属微粒子含有組成物。
The metal fine particle-containing composition according to claim 14, comprising a binder (resin) and a dispersion medium together with the metal fine particles.
金属微粒子と共に、染料、顔料、蛍光体、金属酸化物、金属ナノ繊維の1種または2種以上を含有する請求項14または15の金属微粒子含有組成物。
The metal fine particle-containing composition according to claim 14 or 15, which contains one or more of dyes, pigments, phosphors, metal oxides, and metal nanofibers together with the metal fine particles.
請求項14〜16の何れかに記載した金属微粒子含有組成物によって形成された塗料組成物、塗膜、フィルム、または板材の形態を有する光吸収材。
The light absorption material which has the form of the coating composition formed by the metal microparticle containing composition in any one of Claims 14-16, a coating film, a film, or a board | plate material.
請求項1〜10の何れかの方法によって製造された金属微粒子、または請求項11〜13の何れかに記載された金属微粒子を含有する光学フィルター材料、配線材料、電極材料、触媒、着色剤、化粧品、近赤外線吸収剤、偽造防止インク、電磁波シールド材、表面増強蛍光センサー、生体マーカー、ナノ導波路、記録材料、記録素子、偏光材料、薬物送達システム(DDS)用薬物保持体、バイオセンサー、DNAチップ、検査薬。

An optical filter material, a wiring material, an electrode material, a catalyst, a colorant containing the metal fine particles produced by the method according to any one of claims 1 to 10, or the metal fine particles according to any one of claims 11 to 13, Cosmetics, near-infrared absorber, anti-counterfeiting ink, electromagnetic shielding material, surface-enhanced fluorescent sensor, biomarker, nanowaveguide, recording material, recording element, polarizing material, drug delivery system (DDS) drug holder, biosensor, DNA chip, test drug.

JP2005148350A 2004-07-08 2005-05-20 METAL PARTICLE, PROCESS FOR PRODUCING THE SAME, COMPOSITION CONTAINING THE SAME AND USE THEREOF Active JP4529160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005148350A JP4529160B2 (en) 2004-07-08 2005-05-20 METAL PARTICLE, PROCESS FOR PRODUCING THE SAME, COMPOSITION CONTAINING THE SAME AND USE THEREOF

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004201982 2004-07-08
JP2004277152 2004-09-24
JP2005148350A JP4529160B2 (en) 2004-07-08 2005-05-20 METAL PARTICLE, PROCESS FOR PRODUCING THE SAME, COMPOSITION CONTAINING THE SAME AND USE THEREOF

Publications (2)

Publication Number Publication Date
JP2006118036A JP2006118036A (en) 2006-05-11
JP4529160B2 true JP4529160B2 (en) 2010-08-25

Family

ID=36536184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005148350A Active JP4529160B2 (en) 2004-07-08 2005-05-20 METAL PARTICLE, PROCESS FOR PRODUCING THE SAME, COMPOSITION CONTAINING THE SAME AND USE THEREOF

Country Status (1)

Country Link
JP (1) JP4529160B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101835556A (en) * 2007-12-28 2010-09-15 国立大学法人滋贺医科大学 Gold nanoparticle composition, DNA chip, near infrared absorbent, drug carrier for drug delivery system (DDS), coloring agent, biosensor, cosmetic, composition for in vivo diagnosis and composition for therapeutic use
JP2011515510A (en) 2008-02-26 2011-05-19 カンブリオス テクノロジーズ コーポレイション Method and composition for screen printing conductive features
JP2009299162A (en) * 2008-06-16 2009-12-24 Fujifilm Corp Silver nanowire, method for producing the same, water base dispersion product and transparent conductor
JP5690058B2 (en) * 2009-08-28 2015-03-25 国立大学法人九州大学 Gold nanorod structure and manufacturing method thereof
JP5358648B2 (en) 2010-11-05 2013-12-04 田中貴金属工業株式会社 Blue gold nanoparticles for immunological measurement, production method thereof and measurement method using the same
JP5868751B2 (en) * 2012-03-26 2016-02-24 富士フイルム株式会社 Method for producing silver nanowire dispersion
CN103042226A (en) * 2012-12-14 2013-04-17 昆明贵金属研究所 Method for preparing gold nano-rods by seed crystal media
WO2022163709A1 (en) 2021-01-29 2022-08-04 キヤノン株式会社 Toner and method for reading image
JP7566656B2 (en) 2021-02-10 2024-10-15 キヤノン株式会社 Toner, toner manufacturing method, and image reading method
JP2023065127A (en) 2021-10-27 2023-05-12 キヤノン株式会社 Ink and image reading method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239853A (en) * 1999-02-25 2000-09-05 Nippon Paint Co Ltd Method for formation of metal thin film and production of reflector plate for reflection type liquid crystal display
JP2002256308A (en) * 2001-02-28 2002-09-11 Mitsuboshi Belting Ltd Method for manufacturing fine noble-metal particle
JP2003515438A (en) * 1999-12-03 2003-05-07 サーロメッド・インコーポレーテッド Hydroxylamine seeding of metal colloid nanoparticles
JP2003313506A (en) * 2002-02-25 2003-11-06 Mitsubishi Materials Corp Metal nanorod-containing composition
JP2003315531A (en) * 2002-02-25 2003-11-06 Mitsubishi Materials Corp Polymer film containing metal nanorod and optical filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239853A (en) * 1999-02-25 2000-09-05 Nippon Paint Co Ltd Method for formation of metal thin film and production of reflector plate for reflection type liquid crystal display
JP2003515438A (en) * 1999-12-03 2003-05-07 サーロメッド・インコーポレーテッド Hydroxylamine seeding of metal colloid nanoparticles
JP2002256308A (en) * 2001-02-28 2002-09-11 Mitsuboshi Belting Ltd Method for manufacturing fine noble-metal particle
JP2003313506A (en) * 2002-02-25 2003-11-06 Mitsubishi Materials Corp Metal nanorod-containing composition
JP2003315531A (en) * 2002-02-25 2003-11-06 Mitsubishi Materials Corp Polymer film containing metal nanorod and optical filter

Also Published As

Publication number Publication date
JP2006118036A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
JP4665499B2 (en) Metal fine particles, production method thereof, composition containing the same, and use thereof
KR101125491B1 (en) Method for producing metal fine particle, metal fine particle produced thereby, composition containing same, light absorbing material, and application thereof
JP4529160B2 (en) METAL PARTICLE, PROCESS FOR PRODUCING THE SAME, COMPOSITION CONTAINING THE SAME AND USE THEREOF
JP4821951B2 (en) Wire-shaped gold fine particles, production method thereof, containing composition and use
JP4517230B2 (en) Composition containing fine metal particles and use thereof
JP5059317B2 (en) Method for producing silver particles
WO2004101430A1 (en) Method for preparation of metal nano-rod and use thereof
JP2007154292A (en) Method for producing silver particle, silver particle-containing composition containing the silver particle and its use
JP2007138249A (en) Method for producing silver grain, silver grain-containing composition containing the obtained silver grain and its use
KR20100034999A (en) Method for preparing metal nanoparticles using matal seed and metal nanoparticles comprising metal seed
JP2008013798A (en) Method for manufacturing nanowire-like metallic substance, nanowire-like metallic substance, and composition containing nanowire-like metallic substance
JP2007069270A (en) Inorganic nanoparticle with high dispersibility
EP2165791B1 (en) Method for producing gold nanorods
WO2013099818A1 (en) Silver fine particles, production process therefor, and conductive paste, conductive membrane and electronic device, containing said silver fine particles
JP2007146279A (en) Method for producing silver colloidal solution, silver particulate obtained by the production method and dispersed solution thereof
JP2003315531A (en) Polymer film containing metal nanorod and optical filter
JP2005097581A (en) Metal nano rod with small minor axis, composition containing the rod, and application thereof
JP2003313506A (en) Metal nanorod-containing composition
JP4491776B2 (en) Method for producing conductive paste, etc.
JP2010285695A (en) Silver fine particle and dispersion liquid thereof
JP4573153B2 (en) Metal nanorod, metal nanorod-containing composition, method for producing the same, and use thereof
JP5598796B2 (en) Inorganic nanoparticle dispersion
KR20090102965A (en) Preparing method of copper nonoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100528

R150 Certificate of patent or registration of utility model

Ref document number: 4529160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250