JP2001335804A - Silver colloid substance and silver colloid associated body substance - Google Patents

Silver colloid substance and silver colloid associated body substance

Info

Publication number
JP2001335804A
JP2001335804A JP2000155311A JP2000155311A JP2001335804A JP 2001335804 A JP2001335804 A JP 2001335804A JP 2000155311 A JP2000155311 A JP 2000155311A JP 2000155311 A JP2000155311 A JP 2000155311A JP 2001335804 A JP2001335804 A JP 2001335804A
Authority
JP
Japan
Prior art keywords
silver
substance
silver colloid
sulfur
colloid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000155311A
Other languages
Japanese (ja)
Inventor
Toru Yonezawa
徹 米澤
Nobuo Kimizuka
信夫 君塚
Shinya Onoe
慎弥 尾上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2000155311A priority Critical patent/JP2001335804A/en
Publication of JP2001335804A publication Critical patent/JP2001335804A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a new silver colloid substance and the associated body substance thereof. SOLUTION: Silver nanograins are coated, via the bonding of a specified sulfur-containing fluorocarbon-based compound (fluorinated alkylmercaptan, fluorinated alkyldisulfide or the ester of the fluorinated alkyl and thioacetic acid) and sulfur atoms, with the molecules thereof to form a silver colloidal substance. The above silver colloid substances are further mutually associated by the action of the residual molecules of the above specified sulfur-containing fluorocarbon-based compound to form a silver colloid associated body substance. The silver colloid substance has a yellow color, the silver colloid associated body substance has originally an orange color or a red color, and, for example, use for coloring agents is expected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規な銀コロイド
物質及びその会合体物質に関し、特に黄色の銀コロイド
物質及び橙色乃至赤色の銀コロイド会合体物質に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel silver colloidal substance and an associated substance thereof, and more particularly to a yellow silver colloidal substance and an orange to red colloidal silver associated substance.

【0002】[0002]

【従来の技術】近年、貴金属コロイドによる発色が注目
を集め、着色剤等としての応用も検討されている(特開
平11−80647号公報、特開平11−319538
号公報等)。この発色は、電子のプラズマ振動に起因し
たプラズモン吸収と称される発色メカニズムによるもの
で、金属中の自由電子が光電場により揺さぶられて金属
粒子表面に電荷が現れ、非線形分極が生じるためである
とされている。この発色は、貴金属粒子の粒径が数nm
〜数十nm程度のナノ粒子において見られるもので、彩
度や光線透過率が高く、また、耐久性等にも優れてい
る。特開平11−80647号公報、特開平11−31
9538号公報に開示される貴金属コロイドは、高分子
顔料分散剤を保護コロイドとした貴金属ナノ粒子の分散
体であり、金コロイドの場合は赤色、銀コロイドの場合
は黄色とその発色の色彩が限られたものである。
2. Description of the Related Art In recent years, color development by precious metal colloids has attracted attention, and its application as a colorant or the like has been studied (JP-A-11-80647, JP-A-11-319538).
No.). This coloring is due to a coloring mechanism called plasmon absorption caused by the plasma oscillation of electrons, and free electrons in the metal are shaken by the photoelectric field to cause charges to appear on the surface of the metal particles and nonlinear polarization to occur. It has been. This coloration occurs when the particle size of the noble metal particles is several nm.
It is found in nanoparticles of about to several tens of nm, has high chroma and light transmittance, and is excellent in durability and the like. JP-A-11-80647, JP-A-11-31
The noble metal colloid disclosed in Japanese Patent No. 9538 is a dispersion of noble metal nanoparticles using a polymer pigment dispersant as a protective colloid, and the color of gold is red and the color of silver is yellow and the color of its color is limited. It was done.

【0003】[0003]

【発明が解決しようとする課題】本発明は、新規な銀コ
ロイド物質とその会合体物質を提供せんとするものであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel silver colloid substance and an associated substance thereof.

【0004】[0004]

【課題を解決するための手段】本発明は、銀ナノ粒子
が、下記化学式(1)、(2)又は(3) CF-(CF)-(CH)-SH (1) CF-(CF)-(CH)-SS-(CH)-(CF)-CH (2) CF-(CF)-(CH)-S-CO-CH (3) [但し、m、p、s及びxは独立に5〜13の整数を表
し、n、q、r及びyは独立に1〜5の整数を表す]で
表される硫黄含有炭化弗素系化合物の硫黄原子との結合
を介してその分子により被覆されていることを特徴とす
る銀コロイド物質、並びに、上記の銀コロイド物質が、
上記の化学式(1)、(2)又は(3)で表される硫黄
含有炭化弗素系化合物の余分の分子の作用により更に互
いに会合してなる銀コロイド会合体物質を提供するもの
である。
According to the present invention, there is provided a method for producing a silver nanoparticle comprising the following chemical formula (1), (2) or (3): CF 3- (CF 2 ) m- (CH 2 ) n -SH (1) CF 3 - (CF 2) p - (CH 2) q -SS- (CH 2) r - (CF 2) s -CH 3 (2) CF 3 - (CF 2) x - (CH 2) y -S —CO—CH 3 (3) [where m, p, s and x independently represent an integer of 5 to 13, and n, q, r and y independently represent an integer of 1 to 5]. A silver colloidal material characterized by being coated with a sulfur atom of a sulfur-containing fluorine-containing compound through a bond with a sulfur atom of the compound, and the silver colloidal material described above,
An object of the present invention is to provide a silver colloid-associated substance which is further associated with each other by the action of an extra molecule of the sulfur-containing fluorocarbon compound represented by the above chemical formula (1), (2) or (3).

【0005】化学式(1)の硫黄含有炭化弗素系化合物
は弗素化アルキルメルカプタン類であり、化学式(2)
の硫黄含有炭化弗素系化合物は弗素化アルキルジスルフ
ィド(弗素化された二硫化アルキル)であり、化学式
(3)の硫黄含有炭化弗素系化合物はチオ酢酸の弗素化
アルキルのエステル類である。これらは単独でも混合し
ても用いることができる。
The sulfur-containing fluorinated carbon compound represented by the chemical formula (1) is a fluorinated alkyl mercaptan,
Is a fluorinated alkyl disulfide (fluorinated alkyl disulfide), and the sulfur-containing fluorocarbon compound of formula (3) is fluorinated alkyl esters of thioacetic acid. These can be used alone or in combination.

【0006】本発明の銀コロイド物質においては、銀ナ
ノ粒子の表面銀原子と上記化学式(1)、(2)又は
(3)の硫黄含有炭化弗素系化合物の硫黄原子が共有結
合していると考えられ[例えば、近藤敏啓、魚崎浩平、
「金−イオウ結合の利用:自己組織化単分子膜(SA
M)」、化学と工業、第52巻、第7号(1999)第
842〜847頁参照]、該硫黄含有炭化弗素系化合物
は極めて安定な保護コロイドとして作用する。図1は、
本発明の銀コロイド物質のモデル図であり、図2は、化
学式(1)においてm=7、n=2の場合の硫黄含有炭
化弗素系化合物(パーフルオロオクチルエチルメルカプ
タン)の立体的モデル図である。本発明の銀コロイド物
質において、硫黄含有炭化弗素系化合物は硫黄を介して
銀ナノ粒子に結合しており、その弗化アルキル基に結合
した弗素原子は水素原子と比べて非常に大きいため、炭
化弗素鎖中ではC−C結合の回転を妨げ、そのため該炭
化弗素基は伸びきり鎖構造を有する。また、該弗素原子
自体は、かかる伸びきり鎖構造中で螺旋状に位置してい
るため、硫黄含有炭化弗素系化合物で被覆された銀ナノ
粒子はウニの様な剛体球と考えることができる。この様
な銀コロイド物質は、そのプラズモン吸収が波長400
nm前後のピークの廻りに集中しており、そのために黄
色を呈する。また、本発明の銀コロイド物質は、耐候
性、耐薬品性、耐熱性等の諸特性が優れている硫黄含有
炭化弗素系化合物で銀ナノ粒子が被覆されているため、
上記の諸特性に優れている。
In the colloidal silver material of the present invention, it is preferable that the surface silver atoms of the silver nanoparticles and the sulfur atom of the sulfur-containing fluorine-containing compound represented by the above formula (1), (2) or (3) are covalently bonded. [For example, Toshihiro Kondo, Kohei Uozaki,
“Utilization of Gold-Sulfur Bond: Self-Assembled Monolayer (SA)
M) ", Chemistry and Industry, Vol. 52, No. 7 (1999), pp. 842-847], and the sulfur-containing fluorocarbon compound acts as an extremely stable protective colloid. FIG.
FIG. 2 is a model diagram of the silver colloidal substance of the present invention, and FIG. 2 is a three-dimensional model diagram of a sulfur-containing fluorocarbon compound (perfluorooctylethyl mercaptan) when m = 7 and n = 2 in the chemical formula (1). is there. In the silver colloid material of the present invention, the sulfur-containing fluorine-containing compound is bonded to the silver nanoparticles via sulfur, and the fluorine atom bonded to the alkyl fluoride group is much larger than the hydrogen atom. In the fluorine chain, the rotation of the CC bond is prevented, so that the fluorocarbon group has an extended chain structure. Further, since the fluorine atoms themselves are helically positioned in the extended chain structure, the silver nanoparticles coated with the sulfur-containing fluorine-containing carbon-based compound can be considered as hard spheres like sea urchins. Such a colloidal silver material has a plasmon absorption wavelength of 400
It is concentrated around the peak around nm and therefore exhibits a yellow color. In addition, the silver colloid material of the present invention is coated with silver nanoparticles containing a sulfur-containing fluorine-based compound having excellent properties such as weather resistance, chemical resistance, and heat resistance.
Excellent in the above properties.

【0007】本発明の銀コロイド会合体物質は、上記化
学式(1)、(2)又は(3)の硫黄含有炭化弗素系化
合物が余分に存在する場合に生成する物質である。この
場合、該硫黄含有炭化弗素系化合物は、銀コロイド物質
の合成時に過剰に用いるのが通常であるが、合成後に添
加したり、合成系の相から例えば弗素系溶媒中に銀コロ
イド物質の相間移動を生ぜしめるなどして精製した後、
極性溶媒などと共に添加してもよい。この銀コロイド会
合体物質において、上記の銀コロイド物質の集合体の外
側部のコロイド物質のウニの棘の様な弗化アルキル基同
士間の隙間に余分の硫黄含有炭化弗素化合物分子の弗化
アルキル鎖がそれらの強い親和力によって部分的に入り
込み、それらのSH基やSS基やS-CO-CH基を外
に配列させる形で該余分の硫黄含有炭化弗素系化合物の
分子相互の強い親和力によって銀コロイド物質をかなり
の安定性をもって会合させている。図3は、かかる銀コ
ロイド会合体物質のファイバー状の会合状態を示すモデ
ル図であり、小円形が銀コロイド物質を表し、図4は図
3の大きな円の辺りの拡大モデル図であり、大円形が銀
コロイド物質を表し、長方形が化学式(1)のCF-
(CF)-(CH) -部分を表し、小円形が化学式
(1)の−SH部分を表す。この会合状態においては、
余分の硫黄含有炭化弗素系化合物のチューブ状の一種の
ミセル中に銀コロイド物質が充填されている形である。
この様に、SH基やSS基やS-CO-CH基を外に配
列させる形で余分の硫黄含有炭化弗素系化合物が配列す
る為には、かかるSH基やSS基やS-CO-CH基と
或る程度親和力のある極性媒体の存在が必要である。銀
コロイドが上記の様な会合体を自発形成していることに
より、即ち、銀ナノ粒子が密に集合することによって、
プラズモン吸収が長波長シフトして、そのため500n
mを越える吸収波長の存在比率が増加して赤みが増すも
のと考えられ、銀コロイド会合体物質は橙色乃至赤色を
呈するのが通常である。また、本発明の銀コロイド会合
体物質は、耐候性、耐薬品性、耐熱性等の諸特性が優れ
ている硫黄含有炭化弗素系化合物で銀ナノ粒子が被覆さ
れて更に会合されているため、上記の諸特性に優れてお
り、また、赤色の金コロイドと比べると安価である。
[0007] The silver colloid-associated substance of the present invention is
Formula (1), (2) or (3) of a sulfur-containing fluorocarbon system
It is a substance that is produced when the compound is present in excess. this
In the case, the sulfur-containing fluorocarbon compound is a silver colloid substance
Usually, it is used in excess during the synthesis of
Or from a synthetic phase, for example, in a fluorine-based solvent.
After purification by causing phase transfer of
You may add together with a polar solvent. This silver colloid society
In the coalesced substance, outside the above-mentioned aggregate of the silver colloidal substance
Alkyl fluorinated groups such as sea urchin spines in lateral colloidal substances
Fluorination of extra sulfur-containing fluorocarbon molecules in gaps
Alkyl chains partially enter due to their strong affinity
Including those SH groups, SS groups and S-CO-CH3Out of the group
Of the excess sulfur-containing fluorocarbon compound in a form
A considerable amount of silver colloidal material is generated by strong affinity between molecules.
Meeting with the stability of FIG. 3 shows such a silver coin.
A model showing the fibrous association state of the Lloyd associate material
FIG. 4 is a diagram showing a small circle representing a silver colloidal substance.
3 is an enlarged model diagram around a large circle, where the large circle is silver
The rectangle represents a colloidal substance, and the rectangle is CF of chemical formula (1).3-
(CF2)m-(CH2) n-Represents the part, the small circle is the chemical formula
Represents the -SH portion of (1). In this meeting state,
A tube-like type of extra sulfur-containing fluorocarbon compound
The micelles are filled with a silver colloidal substance.
Thus, SH group, SS group, S-CO-CH3Group outside
Extra sulfur-containing fluorocarbon compounds are arranged in a line
To achieve this, the SH group, SS group, S-CO-CH3Group and
The presence of a polar medium with some affinity is required. Silver
The fact that the colloid spontaneously forms the above aggregates
More specifically, by the dense aggregation of silver nanoparticles,
The plasmon absorption shifts to a longer wavelength, so that 500n
The presence ratio of absorption wavelengths exceeding m increases and redness increases.
It is considered that the silver colloid-associated substance changes its color from orange to red.
It is usually present. Further, the silver colloid association of the present invention
Body material has excellent properties such as weather resistance, chemical resistance, heat resistance, etc.
Silver nanoparticles are coated with a sulfur-containing fluorocarbon compound
And have been meeting further,
It is cheaper than red gold colloid.

【0008】銀ナノ粒子の平均粒子径は、1〜数十nm
の範囲であり、約2〜約10nmの範囲であるのが色彩
の点で好ましく、特に約2〜約5nmの範囲であるのが
好ましい。
The average particle size of the silver nanoparticles is 1 to several tens of nm.
It is preferably in the range of about 2 to about 10 nm in terms of color, and particularly preferably in the range of about 2 to about 5 nm.

【0009】[0009]

【発明の実施の形態】次に、本発明の実施の形態を説明
するが、本発明はこれらに限定されるものではない。
Next, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.

【0010】本発明の銀コロイド物質又は銀コロイド会
合体物質は、例えば、酢酸銀、硝酸銀、過塩素酸銀等の
極性溶媒に可溶な銀化合物を溶解して、攪拌しつつ上記
化学式(1)、(2)又は(3)の硫黄含有炭化弗素系
化合物を添加し、激しく攪拌しつつ還元反応を行って調
製することができる。銀化合物としては、極性溶媒に易
溶な過塩素酸銀が特に好ましい。還元反応は、例えば、
高圧水銀灯により光照射する方法や還元剤を添加する方
法により行うことができる。還元剤としては、例えば、
水素化硼素ナトリウム等のアルカリ金属水素化硼酸塩
類、アンモニウム水素化硼酸塩類、ヒドラジン系化合物
類、ジメチルアミノエタノール、ジメチルエチルアミ
ン、N,N,N’,N’−テトラメチル−1,3−ジア
ミノプロパン等のアミン類を挙げることができる。
The silver colloid substance or the silver colloid-associated substance of the present invention is prepared by dissolving a silver compound soluble in a polar solvent such as silver acetate, silver nitrate, silver perchlorate and the like, and stirring the mixture with the above chemical formula (1). ), (2) or (3), which can be prepared by adding a sulfur-containing fluorocarbon compound and performing a reduction reaction with vigorous stirring. As the silver compound, silver perchlorate which is easily soluble in a polar solvent is particularly preferred. The reduction reaction is, for example,
It can be performed by a method of irradiating light with a high-pressure mercury lamp or a method of adding a reducing agent. As the reducing agent, for example,
Alkali metal borohydrides such as sodium borohydride, ammonium borohydrides, hydrazine compounds, dimethylaminoethanol, dimethylethylamine, N, N, N ', N'-tetramethyl-1,3-diaminopropane And the like.

【0011】極性溶媒は、原料である上記化学式
(1)、(2)又は(3)の硫黄含有炭化弗素系化合物
及び銀化合物の双方を溶解し得るもので、例えば、メタ
ノール、エタノール、イソプロパノール、s−ブタノー
ル、n−ブタノール、n−ヘキサノール、2−エチルヘ
キサノール、ブチルセロソルブ等のアルコール系溶媒
類、アセトン、メチルエチルケトン、メチルイソブチル
ケトン等のケトン系溶媒類、酢酸エチル等のエステル系
溶媒類、テトラヒドロフラン等のエーテル系溶媒類など
を挙げることができる。これらは単独でも混合しても用
いることができ、また、非極性溶媒類との混合物として
も用いることができる。テトラヒドロフランと酢酸エチ
ルが特に好ましい。
The polar solvent is capable of dissolving both the sulfur-containing fluorine-containing compound represented by the above formula (1), (2) or (3) and the silver compound. Examples of the polar solvent include methanol, ethanol, isopropanol, and the like. alcohol solvents such as s-butanol, n-butanol, n-hexanol, 2-ethylhexanol and butyl cellosolve; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; ester solvents such as ethyl acetate; tetrahydrofuran Ether solvents and the like. These can be used alone or as a mixture, and can also be used as a mixture with non-polar solvents. Tetrahydrofuran and ethyl acetate are particularly preferred.

【0012】図5は、後述の実施例1と2において生成
した銀コロイド物質乃至銀コロイド会合体物質のプラズ
モン吸収スペクトルを示す図である。図5における吸光
度「Absorbance」は任意単位であり、「S/
Ag比」は銀コロイド物質乃至銀コロイド会合体物質の
生成に用いた原料のパーフルオロオクチルエチルメルカ
プタン/過塩素酸銀のモル比である。S/Ag比が高く
なる程500nm以上の吸収波長の吸収強度が高くなっ
ていることが分かる。図6は、同じく後述の実施例1と
2において生成した銀コロイド物質乃至銀コロイド会合
体物質のプラズモン吸収スペクトルのS/Ag比対極大
吸収波長(λmax)の関係を示すグラフ図であり、S
/Ag比が高くなる程極大吸収波長が長波長側へシフト
することを示しており、それに伴って本発明の物質の色
彩が赤みを増す。即ち、S/Ag比が大きくなって銀コ
ロイドの会合が進行するに伴って赤みが増すことが分か
る。なお、銀コロイドの会合は、条件によってファイバ
ー状や球状の会合体を形成する。
FIG. 5 is a diagram showing a plasmon absorption spectrum of a silver colloid substance or a silver colloid-associated substance produced in Examples 1 and 2 described later. The absorbance “Absorbance” in FIG. 5 is an arbitrary unit, and “S /
The “Ag ratio” is a molar ratio of perfluorooctylethyl mercaptan / silver perchlorate as a raw material used for producing a silver colloidal substance or a silver colloid associate substance. It can be seen that the higher the S / Ag ratio, the higher the absorption intensity at an absorption wavelength of 500 nm or more. FIG. 6 is a graph showing the relationship between the S / Ag ratio of the plasmon absorption spectrum and the maximum absorption wavelength (λmax) of the silver colloid material or the silver colloid-associated material produced in Examples 1 and 2 described below.
This shows that the higher the / Ag ratio, the longer the maximum absorption wavelength shifts to the longer wavelength side, and accordingly, the color of the substance of the present invention becomes reddish. That is, it can be seen that redness increases as the S / Ag ratio increases and association of silver colloid progresses. The association of the silver colloid forms a fibrous or spherical aggregate depending on the conditions.

【0013】銀化合物が還元反応を受けて銀ナノ粒子が
生成すると共に、該銀ナノ粒子の表面銀原子と化学式
(1)、(2)又は(3)の硫黄含有炭化弗素化合物が
反応して共有結合を形成すると考えられるので、該硫黄
含有炭化弗素化合物は強力な保護コロイドとして作用
し、銀コロイドを極めて安定なものとすることができ
る。この様に安定化された銀コロイド物質は、例えば、
有機溶媒可溶の弗素系ポリマー類(例えば、弗素含有モ
ノマーと他の一般的なモノマーとの共重合体等)に、ま
た、必要に応じて分散剤を併用して各種ポリマー類に安
定に分散させることができる。例えば、極性溶媒中で生
成した銀コロイド物質溶液と各種ポリマー類の有機溶媒
溶液とを混合して、必要に応じて分散剤を併用し、銀コ
ロイド物質の安定な黄色の塗料や印刷インキ等を得るこ
とができる。銀コロイド物質においては、銀ナノ粒子に
極めて強い結合で保護コロイドたる上記硫黄含有炭化弗
素化合物が保持されているので、生成した銀コロイド物
質を一旦乾燥してから、クロロフルオロカーボン類やフ
ルオロカーボン類等の弗素系溶媒類に分散させることが
でき、また、弗素系ポリマー類などの有機溶媒溶液に分
散させることもできると期待される。この様な際に、必
要に応じて他の着色顔料や白色顔料や体質顔料も分散さ
せて、調色も可能と期待される。
The silver compound undergoes a reduction reaction to form silver nanoparticles, and the surface silver atoms of the silver nanoparticles react with the sulfur-containing fluorine-containing carbon compound of formula (1), (2) or (3). Since it is considered that a covalent bond is formed, the sulfur-containing fluorocarbon compound acts as a strong protective colloid, and can make the silver colloid extremely stable. The silver colloid material thus stabilized is, for example,
Stably dispersed in various polymers using organic solvent-soluble fluorine-based polymers (for example, copolymers of fluorine-containing monomers and other general monomers) and, if necessary, a dispersant. Can be done. For example, a silver colloidal substance solution produced in a polar solvent and an organic solvent solution of various polymers are mixed, and a dispersant is used in combination as necessary, to obtain a stable yellow paint or printing ink of the silver colloidal substance. Obtainable. In the silver colloidal substance, since the sulfur-containing fluorocarbon compound serving as a protective colloid is held by silver nanoparticles with a very strong bond, the formed silver colloidal substance is once dried, and then the chlorofluorocarbons, fluorocarbons, etc. It is expected that it can be dispersed in a fluorine-based solvent and can be dispersed in an organic solvent solution such as a fluorine-based polymer. In such a case, it is expected that toning is possible by dispersing other color pigments, white pigments, and extender pigments as necessary.

【0014】一方、銀コロイド物質が会合体物質を形成
する為には、S/Ag比が大きくなる様に、例えば、反
応系に化学式(1)、(2)又は(3)の硫黄含有炭化
弗素化合物を添加すればよい。得られる銀コロイド会合
体物質は、表面にメルカプト基(−SH)やジスルフィ
ド基(−SS−)やメチルチオカルボン酸基(−S-C
O-CH)の極性基を有するので、上に列記した様な
極性溶媒中でかなり安定であり、この銀コロイド会合体
物質の極性溶媒溶液と各種ポリマーの有機溶媒溶液とを
混合して橙色乃至赤色の塗料や印刷インキ等を得ること
ができる。他の着色顔料や白色顔料や体質顔料も必要な
場合は、これらとポリマーの有機溶媒溶液とを混練した
分散液に銀コロイド会合体物質の極性溶媒溶液を軽く混
ぜ合わせればよく、調色も可能と期待される。
On the other hand, in order for the silver colloidal substance to form an associated substance, for example, the sulfur-containing carbonized compound represented by the chemical formula (1), (2) or (3) is added to the reaction system so as to increase the S / Ag ratio. What is necessary is just to add a fluorine compound. The resulting silver colloid-associated substance has a mercapto group (-SH), a disulfide group (-SS-), and a methylthiocarboxylic acid group (-SC) on the surface.
Since it has a polar group of O-CH 3 ), it is quite stable in the polar solvents listed above, and a solution of this colloidal silver aggregate in a polar solvent and an organic solvent solution of various polymers are mixed to give an orange color. Or a red paint or a printing ink. If other color pigments, white pigments, or extender pigments are also required, lightly mix the polar solvent solution of the silver colloid-associated substance with the dispersion obtained by kneading these with the organic solvent solution of the polymer, and toning is possible. Is expected.

【0015】[0015]

【実施例】次に、実施例により本発明を具体的に説明す
るが、本発明はこれに限定されるものではない。
Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

【0016】実施例1 5ミリモルの過塩素酸銀(AgClO)のエタノール
溶液30mlを100mlの丸底フラスコに入れた。攪
拌しつつ、室温でこの溶液にパーフルオロオクチルエチ
ルメルカプタン[CF(CFCHCH
H]をS/Ag比=1.0となる様に添加した。この
時、反応系内は沈澱は生じないが、うっすらと白濁し
た。
Example 1 A 100 ml round bottom flask was charged with 30 ml of a 5 mmol solution of silver perchlorate (AgClO 4 ) in ethanol. While stirring, add perfluorooctylethyl mercaptan [CF 3 (CF 2 ) 7 CH 2 CH 2 S at room temperature to this solution.
H] was added so that the S / Ag ratio was 1.0. At this time, no precipitation occurred in the reaction system, but it became slightly cloudy.

【0017】次いで、激しく攪拌しつつ、直ぐに0.0
74g(2ミリモル)の水素化硼素ナトリウムを溶解し
た水5mlをゆっくりと一定量ずつ滴下した。反応系は
黒赤色へと変化していった。
Then, while stirring vigorously, immediately
5 ml of water in which 74 g (2 mmol) of sodium borohydride was dissolved was slowly added dropwise in a fixed amount. The reaction system turned black-red.

【0018】滴下終了後、約3時間攪拌を続けた。調製
直後は沈澱物等は殆ど見られず、均一な銀ナノ粒子会合
体の分散液であった。ただし、数日経過すると沈澱が生
じてきた。上記銀ナノ粒子会合体を透過型電子顕微鏡で
観察したところ、平均アスペクト比が約133のファイ
バー状の会合体であることを確認した。
After completion of the dropwise addition, stirring was continued for about 3 hours. Immediately after the preparation, almost no precipitate and the like were observed, and the dispersion was a uniform silver nanoparticle aggregate. However, precipitation occurred after several days. When the silver nanoparticle aggregate was observed with a transmission electron microscope, it was confirmed that the aggregate was a fiber-like aggregate having an average aspect ratio of about 133.

【0019】実施例2 S/Ag比を変える様にパーフルオロオクチルエチルメ
ルカプタンの添加量を変えた以外は実施例1と同様の操
作を行った。各生成物についてプラズモン吸収スペクト
ルを測定して、図5と図6を得た。
Example 2 The same operation as in Example 1 was performed except that the amount of perfluorooctylethyl mercaptan was changed so as to change the S / Ag ratio. The plasmon absorption spectrum of each product was measured to obtain FIGS. 5 and 6.

【0020】[0020]

【発明の効果】本発明の銀コロイド物質は、銀ナノ粒子
の表面銀原子と化学式(1)、(2)又は(3)の硫黄
含有炭化弗素系化合物の硫黄原子が共有結合していると
考えられるので、極めて安定な黄色のコロイド物質であ
る。また、本発明の銀コロイド会合体物質は、化学式
(1)、(2)又は(3)の硫黄含有炭化弗素系化合物
が余分に存在する場合に生成する物質であり、上記の銀
コロイド物質の集合体の外側部のコロイド物質のウニの
棘の様な弗化アルキル基同士間の隙間に余分の硫黄含有
炭化弗素化合物分子の弗化アルキル鎖がそれらの強い親
和力によって部分的に入り込み、それらのSH基やSS
基やS-CO-CH基を外に配列させる形で該硫黄含有
炭化弗素系化合物の分子相互の強い親和力によって銀コ
ロイド物質を会合させているので、かなり安定な通常は
橙色乃至赤色の会合体物質である。
The silver colloid material of the present invention is characterized in that the surface silver atoms of silver nanoparticles are covalently bonded to the sulfur atoms of the sulfur-containing fluorocarbon compound of formula (1), (2) or (3). It is considered a very stable yellow colloidal substance. In addition, the silver colloid-associated substance of the present invention is a substance generated when an excess of the sulfur-containing fluorocarbon compound represented by the chemical formula (1), (2) or (3) is present. Extra alkyl fluoride chains of the sulfur-containing fluorocarbon compound molecules partially enter into the gaps between the alkyl fluoride groups, such as sea urchin spines, of the colloidal substance on the outer side of the aggregate due to their strong affinity. SH group or SS
Since bringing into association silver colloidal material in the form of arranging the groups or S-CO-CH 3 group outside the strong affinity of molecules with each of the sulfur-containing fluorocarbon-based compounds, is fairly stable normal kai orange to red It is a united substance.

【0021】本発明の物質は、化学的に安定であり、着
色剤として用いる場合、得られる塗膜や印刷膜や成形物
に鮮やかな色彩を付与することができる。例えば、通常
の黄色や橙色乃至赤色の顔料等の着色剤類が反射光によ
ってかかる色を発現するのに対して、本発明の銀コロイ
ド物質と銀コロイド会合体物質はプラズモン吸収によっ
て黄色や橙色乃至赤色を発現する。本発明の物質は、各
種塗料、印刷インキ、液晶カラーフィルター用着色剤、
光学材料、触媒、抗体の担体などの用途や従来の銀コロ
イドと異なる用途に用いることができると期待される。
The substance of the present invention is chemically stable and, when used as a coloring agent, can impart a vivid color to the obtained coating film, printed film or molded product. For example, a colorant such as a normal yellow or orange to red pigment or the like expresses such a color by reflected light, whereas the silver colloid substance and the silver colloid aggregate substance of the present invention have a yellow or orange or It develops red color. The substance of the present invention includes various paints, printing inks, colorants for liquid crystal color filters,
It is expected that it can be used for applications such as optical materials, catalysts, carriers for antibodies, and other applications different from conventional silver colloids.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の銀コロイド物質のモデル図で
ある。
FIG. 1 is a model diagram of a silver colloid substance of the present invention.

【図2】図2は、化学式(1)においてm=7、n=2
の場合の硫黄含有炭化弗素系化合物の立体的モデル図で
ある。
FIG. 2 is a graph showing that m = 7 and n = 2 in the chemical formula (1).
FIG. 3 is a three-dimensional model diagram of a sulfur-containing fluorine-containing compound in the case of FIG.

【図3】図3は、本発明の銀コロイド会合体物質のファ
イバー状の会合状態の一部を示すモデル図である。
FIG. 3 is a model diagram showing a part of a fibrous association state of a silver colloid-associated substance of the present invention.

【図4】図4は、図3の大きな円の辺りの拡大モデル図
である。
FIG. 4 is an enlarged model diagram around a large circle in FIG. 3;

【図5】図5は、実施例1と2において生成した銀コロ
イド物質乃至銀コロイド会合体物質のプラズモン吸収ス
ペクトルを示す図である。
FIG. 5 is a view showing a plasmon absorption spectrum of the silver colloid substance or silver colloid-associated substance produced in Examples 1 and 2.

【図6】図6は、実施例1と2において生成した銀コロ
イド物質乃至銀コロイド会合体物質のプラズモン吸収ス
ペクトルのS/Ag比対極大吸収波長(λmax)の関
係を示すグラフ図である。
FIG. 6 is a graph showing the relationship between the S / Ag ratio of the plasmon absorption spectrum of the silver colloidal substance and the silver colloid-associated substance produced in Examples 1 and 2, and the maximum absorption wavelength (λmax).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22F 9/00 B22F 9/00 B (72)発明者 尾上 慎弥 福岡県北九州市小倉南区隠蓑14−11 Fターム(参考) 4G065 AA04 AB21Y AB29Y BA13 BB06 CA13 DA06 DA09 EA03 4J037 AA04 CB01 CB21 DD05 DD23 EE03 EE28 EE43 FF06 FF07 4K017 AA08 BA02 CA08 DA07 DA09 EJ01 FB07 4K018 BA01 BB05 BC30 BD04 BD10──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) B22F 9/00 B22F 9/00 B (72) Inventor Shinya Onoe 14-11 Omino, Kokuraminami-ku, Kitakyushu-shi, Fukuoka Prefecture F term (reference) 4G065 AA04 AB21Y AB29Y BA13 BB06 CA13 DA06 DA09 EA03 4J037 AA04 CB01 CB21 DD05 DD23 EE03 EE28 EE43 FF06 FF07 4K017 AA08 BA02 CA08 DA07 DA09 EJ01 FB07 4K018 BA04 BB05 BC30 BD

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 銀ナノ粒子が、下記化学式(1)、
(2)又は(3) CF-(CF)-(CH)-SH (1) CF-(CF)-(CH)-SS-(CH)-(CF)-CH (2) CF-(CF)-(CH)-S-CO-CH (3) [但し、m、p、s及びxは独立に5〜13の整数を表
し、n、q、r及びyは独立に1〜5の整数を表す]で
表される硫黄含有炭化弗素系化合物の硫黄原子との結合
を介してその分子により被覆されていることを特徴とす
る銀コロイド物質。
The silver nanoparticles have the following chemical formula (1):
(2) or (3) CF 3- (CF 2 ) m- (CH 2 ) n -SH (1) CF 3- (CF 2 ) p- (CH 2 ) q -SS- (CH 2 ) r- ( CF 2 ) s -CH 3 (2) CF 3- (CF 2 ) x- (CH 2 ) y -S-CO-CH 3 (3) wherein m, p, s and x are independently 5 to 13 And n, q, r and y each independently represent an integer of 1 to 5], and the sulfur-containing fluorocarbon compound represented by the following formula: A silver colloid substance characterized by the following.
【請求項2】 請求項1に記載の銀コロイド物質が、請
求項1に記載の化学式(1)、(2)又は(3)で表さ
れる硫黄含有炭化弗素系化合物の余分の分子の作用によ
り更に互いに会合してなる銀コロイド会合体物質。
2. The action of an extra molecule of the sulfur-containing fluorocarbon compound represented by the chemical formula (1), (2) or (3) according to claim 1 wherein the silver colloidal substance according to claim 1 is used. And a silver colloid associated substance further associated with each other.
JP2000155311A 2000-05-25 2000-05-25 Silver colloid substance and silver colloid associated body substance Pending JP2001335804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000155311A JP2001335804A (en) 2000-05-25 2000-05-25 Silver colloid substance and silver colloid associated body substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000155311A JP2001335804A (en) 2000-05-25 2000-05-25 Silver colloid substance and silver colloid associated body substance

Publications (1)

Publication Number Publication Date
JP2001335804A true JP2001335804A (en) 2001-12-04

Family

ID=18660277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000155311A Pending JP2001335804A (en) 2000-05-25 2000-05-25 Silver colloid substance and silver colloid associated body substance

Country Status (1)

Country Link
JP (1) JP2001335804A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020043499A (en) * 2002-05-06 2002-06-10 오성근 Improvement of antiseptic/germicidal of silver nanoparticles by using sulfur compounds
JP2002275654A (en) * 2001-03-13 2002-09-25 Japan Science & Technology Corp Production method for water repelling-oil repelling surface and structure having the same surface
WO2003068674A1 (en) * 2002-02-15 2003-08-21 Japan Science And Technology Agency Noble-metal nanowire structure and process for producing the same
JP2005120074A (en) * 2003-08-11 2005-05-12 L'oreal Sa Stabilized cosmetic composition containing covered metal particles as the case may be
JP2005270957A (en) * 2004-02-26 2005-10-06 Mitsubishi Materials Corp Extraction method and use of metal fine particle
JP2005320616A (en) * 2003-09-05 2005-11-17 Mitsubishi Materials Corp Metal microparticle, composition containing the same or the like
EP2113807A2 (en) 2008-04-30 2009-11-04 Fujifilm Corporation Optical material having a colored optically anisotropic layer
WO2013122136A1 (en) * 2012-02-14 2013-08-22 国立大学法人群馬大学 Associated metal microparticles and process for producing same
JP2014529353A (en) * 2011-07-22 2014-11-06 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイアルテアナティーフCommissariat A L’Energie Atomique Et Aux Energies Alternatives Method for functionalizing metal nanowires and method for producing electrodes

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4695278B2 (en) * 2001-03-13 2011-06-08 独立行政法人科学技術振興機構 Method for producing water / oil repellent surface and structure having the surface
JP2002275654A (en) * 2001-03-13 2002-09-25 Japan Science & Technology Corp Production method for water repelling-oil repelling surface and structure having the same surface
WO2003068674A1 (en) * 2002-02-15 2003-08-21 Japan Science And Technology Agency Noble-metal nanowire structure and process for producing the same
KR20020043499A (en) * 2002-05-06 2002-06-10 오성근 Improvement of antiseptic/germicidal of silver nanoparticles by using sulfur compounds
JP2005120074A (en) * 2003-08-11 2005-05-12 L'oreal Sa Stabilized cosmetic composition containing covered metal particles as the case may be
JP2005320616A (en) * 2003-09-05 2005-11-17 Mitsubishi Materials Corp Metal microparticle, composition containing the same or the like
JP4512876B2 (en) * 2003-09-05 2010-07-28 三菱マテリアル株式会社 Metal fine particles, method for producing metal fine particles, composition containing metal fine particles, etc.
JP2005270957A (en) * 2004-02-26 2005-10-06 Mitsubishi Materials Corp Extraction method and use of metal fine particle
EP2113807A2 (en) 2008-04-30 2009-11-04 Fujifilm Corporation Optical material having a colored optically anisotropic layer
JP2014529353A (en) * 2011-07-22 2014-11-06 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイアルテアナティーフCommissariat A L’Energie Atomique Et Aux Energies Alternatives Method for functionalizing metal nanowires and method for producing electrodes
WO2013122136A1 (en) * 2012-02-14 2013-08-22 国立大学法人群馬大学 Associated metal microparticles and process for producing same
JPWO2013122136A1 (en) * 2012-02-14 2015-05-18 国立大学法人群馬大学 Metal fine particle aggregate and method for producing the same
US9893366B2 (en) 2012-02-14 2018-02-13 National University Corporation Gunma University Metal fine particle association and method for producing the same

Similar Documents

Publication Publication Date Title
CN101111338B (en) Fine metal particle, process for producing the same, composition containing the same, and use thereof
Yamamoto et al. Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine
Crasto et al. Green gold: Au30 (S-t-C4H9) 18 molecules
Torimoto et al. Preparation of novel silica− cadmium sulfide composite nanoparticles having adjustable void space by size-selective photoetching
US6875465B2 (en) Method of decorating a substrate by application of gold nanoparticles
KR101623349B1 (en) Quantum dot capped with ionic liquid and the production method thereof
JP6061952B2 (en) Polystyrene stabilized nanoparticles and methods for preparing nanostructured substrate surfaces comprising the same, nanostructured substrate surfaces, and uses thereof
JP5435229B2 (en) Dispersant of fine metal particles comprising a polymer compound having a dithiocarbamate group
JP2001335804A (en) Silver colloid substance and silver colloid associated body substance
JPH1176800A (en) Solid sol of noble metal or copper, its production, coating material composition and resin formed product
JP3932866B2 (en) Polymerizable liquid composition
Ghavidast et al. A comparative study of the photochromic compounds incorporated on the surface of nanoparticles
JP2005314712A (en) Composition for forming metal particulate and metal particulate
JP2006118036A (en) Metal fine particle, method for producing metal fine particle, composition containing same, and application thereof
US7223474B1 (en) Heteroporphyrin nanotubes and composites
ITRM20130269A1 (en) METHOD FOR THE CONTROL OF QUANTUM DOTS SOLUBILITY
JP4108350B2 (en) Method for producing silver nanoparticles
TW201515739A (en) Surface modification of metal nanostructures
Torigoe et al. Preparation and catalytic effect of gold nanoparticles in water dissolving carbon disulfide
JP3790149B2 (en) Metal nano-sized particles and manufacturing method thereof
JP2021187701A (en) Carbon nanotube dispersion and its manufacturing method
JP3683076B2 (en) Surface-modified semiconductor ultrafine particle-containing resin material and method for producing the same
Zhang et al. Photophysical behavior of variously sized colloidal gold clusters capped with monolayers of an alkylstilbenethiolate
JP2005281685A (en) Metal-fluorine-containing oligomer nanocomposite
Sato et al. Spectroscopic properties of noble metal nano-particles covered with J-aggregates of cyanine dye

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090617