JP4511421B2 - Liquid-filled bush - Google Patents

Liquid-filled bush Download PDF

Info

Publication number
JP4511421B2
JP4511421B2 JP2005176816A JP2005176816A JP4511421B2 JP 4511421 B2 JP4511421 B2 JP 4511421B2 JP 2005176816 A JP2005176816 A JP 2005176816A JP 2005176816 A JP2005176816 A JP 2005176816A JP 4511421 B2 JP4511421 B2 JP 4511421B2
Authority
JP
Japan
Prior art keywords
liquid chamber
partition wall
main
liquid
bush
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005176816A
Other languages
Japanese (ja)
Other versions
JP2006349068A (en
Inventor
和夫 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Kako Co Ltd
Original Assignee
Kurashiki Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Kako Co Ltd filed Critical Kurashiki Kako Co Ltd
Priority to JP2005176816A priority Critical patent/JP4511421B2/en
Publication of JP2006349068A publication Critical patent/JP2006349068A/en
Application granted granted Critical
Publication of JP4511421B2 publication Critical patent/JP4511421B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、内外筒に挟まれたゴム弾性体の内部に液室を形成し、液体の流動抵抗によって振動を減衰させるようにした液体封入ブッシュに関し、特に、自動車のサスペンションアームやトルクロッドなどのリンク装置に好適な構造の技術分野に属する。   The present invention relates to a liquid-filled bush in which a liquid chamber is formed inside a rubber elastic body sandwiched between inner and outer cylinders, and vibration is damped by the flow resistance of the liquid. It belongs to a technical field having a structure suitable for a link device.

従来より、一般的に、自動車のサスペンションアームやトルクロッドなどに用いられるリンク装置は、2つの部材同士を所定の軌跡に沿って相対移動するように連結するとともに、それらの部材間の振動伝達を抑制するために、主軸部の両端における各部材との連結部にそれぞれゴムブッシュを設けている(例えば特許文献1を参照)。   Conventionally, in general, a link device used for a suspension arm, a torque rod, or the like of an automobile connects two members so as to move relative to each other along a predetermined locus, and transmits vibration between these members. In order to suppress, rubber bushes are provided at the connecting portions with the respective members at both ends of the main shaft portion (see, for example, Patent Document 1).

また、ゴム弾性体の内部に液室を形成して、液体の流動抵抗により振動を減衰させるようにした液体封入式のゴムブッシュは自動車用のエンジンマウントなどに広く利用されており(例えば特許文献2、3などを参照)、これを前記リンク装置に適用して、振動減衰作用を高めることも提案されている(例えば特許文献4を参照)。   Also, liquid-filled rubber bushes in which a liquid chamber is formed inside a rubber elastic body so that vibration is attenuated by the flow resistance of the liquid are widely used in engine mounts for automobiles (for example, patent documents) It has also been proposed to enhance the vibration damping effect by applying this to the link device (see, for example, Patent Document 4).

前記提案例の液入り防振リンク装置では、ゴムブッシュの内部に形成した複数の液室間で液体を流動させるオリフィス通路が、リンク装置の主軸部を軸心方向に貫通して延びるように形成されており、その通路長さをゴムブッシュの大きさに制約されることなく、十分に長くすることができるので、非常に大きな振動減衰作用を得ることができる。
特開平6−109075号公報 特許第3601196号公報 特開平10−78076号公報 特公平6−29637号公報
In the liquid vibration isolating link device of the proposed example, an orifice passage for allowing a liquid to flow between a plurality of liquid chambers formed inside the rubber bush is formed so as to extend through the main shaft portion of the link device in the axial direction. Since the length of the passage can be made sufficiently long without being restricted by the size of the rubber bush, a very large vibration damping action can be obtained.
Japanese Patent Laid-Open No. 6-109075 Japanese Patent No. 3601196 Japanese Patent Laid-Open No. 10-78076 Japanese Patent Publication No. 6-29637

ところで、一般にリンク装置は、主軸部の軸心方向に主たる荷重が入力するように設けられ、この主荷重を受け止めた後は、これによる揺り返しを速やかに減衰させることが求められている。そこで、前記提案例(特許文献4)のものでも、ゴムブッシュ内には主軸部の軸心方向、即ちブッシュの径方向に並ぶように一対の液室を形成し、これら各液室の容積を前記主荷重によるゴム弾性体の変形によって大きく変化させて、オリフィス通路における液体の流通量を確保するようにしている。   By the way, in general, the link device is provided so that a main load is input in the axial direction of the main shaft portion, and after receiving the main load, it is required to quickly attenuate the swinging back. Therefore, even in the proposed example (Patent Document 4), a pair of liquid chambers are formed in the rubber bush so as to be aligned in the axial direction of the main shaft portion, that is, in the radial direction of the bush. The flow amount of the liquid in the orifice passage is ensured by largely changing the rubber elastic body due to the main load.

しかし、例えば、自動車に横置き搭載されたパワープラントの前後方向の揺れを抑えるために、その下部を車体部材に連結するトルクロッドの場合は、急加速時などの大荷重が前記のようにロッド(主軸部)の軸方向に作用し、これによりゴムブッシュに径方向の主荷重が入力して、その内外筒が径方向に相対変位する一方で、エンジンのアイドル振動などパワープラントのロール軸周りの振動はロッドを捩るように作用し、これによりゴムブッシュの内外筒が相対的に回動変位することになる。   However, for example, in the case of a torque rod that connects the lower part of the power plant mounted horizontally in an automobile to the vehicle body member in order to suppress shaking in the front-rear direction, a large load such as during sudden acceleration is applied to the rod as described above. Acting in the axial direction of the (main shaft), the main load in the radial direction is input to the rubber bush, and the inner and outer cylinders are relatively displaced in the radial direction. This vibration acts to twist the rod, and thereby the inner and outer cylinders of the rubber bush are relatively rotated and displaced.

また、所謂シェークと呼ばれる上下方向の振動によってトルクロッドが上下に揺動するときにも、ゴムブッシュの内外筒は相対的に回動変位することになるが、このように内外筒が相対回動変位するときにはゴム弾性体が或る程度、変形しても、液室の容積はあまり変化しないので、オリフィス通路における液体の流動量は少なく、これによる減衰はあまり期待できない。   Also, when the torque rod swings up and down due to vertical vibrations called so-called shakes, the inner and outer cylinders of the rubber bush are relatively displaced. Even if the rubber elastic body is deformed to some extent when it is displaced, the volume of the liquid chamber does not change so much, so that the amount of liquid flowing in the orifice passage is small, and attenuation due to this cannot be expected so much.

つまり、従来構造の液体封入ブッシュを防振リンク装置に適用しても、これをトルクロッドとして用いる場合、エンジンのアイドル振動やシェークなどについては液体封入式であることのメリットを活かすことができず、それらの振動を効果的に低減することができないという問題がある。   In other words, even if a liquid-filled bush with a conventional structure is applied to an anti-vibration link device, when this is used as a torque rod, it is not possible to take advantage of the liquid-filled type for engine idle vibration or shake. There is a problem that these vibrations cannot be effectively reduced.

本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、例えば前記トルクロッドのような防振リンク装置に適用される液体封入ブッシュにおいて、その筒軸に略直交する主荷重入力方向の振動だけでなく、内外筒が相対回動するような別の方向の振動に対しても液体の流動による減衰を付与して、この振動を効果的に低減できるようにすることにある。   The present invention has been made in view of such a point, and an object of the present invention is, for example, a liquid-filled bush applied to a vibration-proof link device such as the torque rod, which is substantially orthogonal to the cylinder axis. In addition to vibration in the main load input direction, damping due to the flow of liquid is also applied to vibration in another direction in which the inner and outer cylinders rotate relative to each other so that this vibration can be effectively reduced. It is in.

前記の目的を達成するために、本発明では、液体封入ブッシュの内筒体側から主液室内を径方向外方に延びて、当該主液室を周方向に複数の区域に分ける区分壁部を設け、この区分壁部の外端面と相対向する主液室の外周壁面との間に所定間隔の隙間を形成して、内外筒が相対回動するときに、その隙間がオリフィス通路として機能するようにした。   In order to achieve the above object, in the present invention, there is provided a partition wall portion that extends radially outward from the inner cylindrical body side of the liquid-filled bush and divides the main liquid chamber into a plurality of sections in the circumferential direction. A gap of a predetermined interval is formed between the outer end surface of the partition wall portion and the outer peripheral wall surface of the main liquid chamber facing each other, and the gap functions as an orifice passage when the inner and outer cylinders rotate relative to each other. I did it.

具体的に、請求項1の発明は、内筒体と、その径方向外方を囲む外筒体と、これら内筒体及び外筒体の間に介装されて両者を連結するゴム弾性体と、このゴム弾性体内にその変形に伴い容積が変化するように形成された主液室と、この主液室にオリフィス通路を介して連通された副液室と、を備えた液体封入ブッシュを前提とする。   Specifically, the invention of claim 1 includes an inner cylindrical body, an outer cylindrical body surrounding the outer side in the radial direction, and a rubber elastic body that is interposed between the inner cylindrical body and the outer cylindrical body and connects the two. A liquid-filled bush comprising: a main liquid chamber formed in the rubber elastic body so as to change its volume in accordance with the deformation; and a sub liquid chamber communicated with the main liquid chamber via an orifice passage. Assumption.

そして、前記主液室を、径方向の所定方向からの主荷重入力によって容積が変化するよう、その主荷重入力方向で前記内筒体と隣り合うように設ける場合に、前記内筒体には、その外周から前記主液室内に向かって径方向外方に突出する突出部を形成し、この突出部を覆うゴム層を当該突出部の先端からさらに径方向外方に延ばして、前記主液室を周方向に複数の区域に分ける区分壁部を構成するとともに、この区分壁部の径方向外端面と相対向する主液室の外周壁面との間に、その区分壁部の両側の区域間で液体が流通するオリフィス通路となるように、所定間隔の隙間を形成したものである。   When the main liquid chamber is provided adjacent to the inner cylinder in the main load input direction so that the volume is changed by the main load input from a predetermined direction in the radial direction, Forming a protrusion projecting radially outward from the outer periphery into the main liquid chamber, and extending a rubber layer covering the protrusion further radially outward from the tip of the protrusion, A partition wall that divides the chamber into a plurality of zones in the circumferential direction is formed, and a zone on both sides of the partition wall between the radially outer end surface of the partition wall and the outer peripheral wall of the main liquid chamber facing the partition wall. A gap having a predetermined interval is formed so as to be an orifice passage through which liquid flows.

より具体的に、前記区分壁部は2つ形成し、筒軸方向に見て、その2つの区分壁部が主荷重入力方向の仮想の直線を挟んで、径方向外方に向かい互いに徐々に離れるように設け、それら2つの区分壁部の間に挟まれるように、主液室の外周壁面から径方向内方に向かって膨出する膨出部を形成したものである。More specifically, two partition wall portions are formed, and when viewed in the cylinder axis direction, the two partition wall portions gradually move toward each other radially outward across a virtual straight line in the main load input direction. A bulging portion is formed so as to bulge radially inward from the outer peripheral wall surface of the main liquid chamber so as to be separated from each other and sandwiched between the two partition wall portions.

前記の構成により、まず、液体封入ブッシュに、その径方向の所定方向から主荷重が入力すると、ゴム弾性体の変形によって主液室の容積が比較的大きく変化し、この主液室と副液室との間のオリフィス通路を液体が流通するときの抵抗によって、前記主荷重入力に起因する振動が効果的に減衰されるようになる。   With the above configuration, first, when a main load is input to the liquid-filled bush from a predetermined direction in the radial direction, the volume of the main liquid chamber changes relatively greatly due to the deformation of the rubber elastic body. The vibration caused by the main load input is effectively damped by the resistance when the liquid flows through the orifice passage between the chamber and the chamber.

また、前記液体封入ブッシュに、その内外筒が相対的に回動変位するような方向の振動が入力すると、ゴム弾性体の変形によって内外筒が相対回動変位し、内筒体側の区分壁部が主液室内を周方向に移動する。このとき、該区分壁部により分けられている複数の区域間で液体が、当該区分壁部の外端面と相対向する主液室の外周壁面との間の隙間、即ちオリフィス通路を介して流通するようになり、その流動抵抗によって前記の入力振動が効果的に減衰される。   Further, when vibration in a direction in which the inner and outer cylinders are relatively rotated and displaced is input to the liquid-filled bush, the inner and outer cylinders are relatively rotated and displaced by deformation of the rubber elastic body, so that the partition wall portion on the inner cylinder side Moves in the circumferential direction in the main liquid chamber. At this time, the liquid flows between a plurality of areas divided by the partition wall through a gap between the outer end wall of the main liquid chamber and the outer peripheral wall facing the outer wall of the partition wall, that is, through an orifice passage. The input vibration is effectively damped by the flow resistance.

そのように区分壁部の外端面と主液室の外周壁面との間の隙間をオリフィス通路として機能させるためには、液体の粘性などにもよるが、両者の間隔を概略1〜6mmとすればよい。そうして、前記の構成によると、ブッシュに径方向から入力する主荷重による振動だけでなく、内外筒が相対回動するような別の方向の振動に対しても液体の流動による減衰を付与して、振動を効果的に低減することができる。   In order to allow the gap between the outer end surface of the partition wall and the outer peripheral wall surface of the main liquid chamber to function as an orifice passage in this way, the distance between the two is approximately 1 to 6 mm, depending on the viscosity of the liquid. That's fine. Thus, according to the above-described configuration, not only vibration due to the main load input to the bush from the radial direction but also vibration due to the flow of the liquid is given to vibration in another direction in which the inner and outer cylinders rotate relative to each other. Thus, vibration can be effectively reduced.

さらに、液体封入ブッシュに径方向の主荷重が入力して、内外筒が径方向に大きく相対変位するときには、その主荷重入力方向に向かい内筒体側から径方向外方に延びた2つの区分壁部の各外端面が、それぞれ、主液室の外周壁面に当接するとともに、その外周壁面から、即ち外筒体側から径方向内方に膨出する膨出部の端部が、相対向する主液室の内周壁面に当接して、それぞれ内外筒の相対変位を規制するストッパとして機能する。こうして2段構えのストッパにより、大きな主荷重入力に対してもゴム弾性体の過度の変形を防止して、耐久性を確保することができる。Further, when the main load in the radial direction is input to the liquid-filled bush and the inner and outer cylinders are relatively displaced in the radial direction, the two partition walls extending radially outward from the inner cylinder side toward the main load input direction The outer end surfaces of the respective portions are in contact with the outer peripheral wall surface of the main liquid chamber, and the end portions of the bulging portions that bulge radially inward from the outer peripheral wall surface, that is, from the outer cylindrical body side, are opposed to each other. It contacts the inner peripheral wall surface of the liquid chamber and functions as a stopper for restricting the relative displacement of the inner and outer cylinders. Thus, the two-stage stopper prevents excessive deformation of the rubber elastic body even when a large main load is input, thereby ensuring durability.

その場合に、より好ましいのは、前記各区分壁部にそれぞれ埋設されている内筒体の突出部の先端と、膨出部の先端とが、前記主荷重入力方向にオーバーラップしていることである。こうすれば、内外筒が相対回動変位するときにも、その変位が大きくなれば区分壁部と膨出部とが当接して、過度の変位を規制するストッパとして機能するようになるので、ゴム弾性体の過度の変形をより確実に防止することができる。In that case, it is more preferable that the tip of the protruding portion of the inner cylinder embedded in each of the partition wall portions and the tip of the bulging portion overlap in the main load input direction. It is. In this way, even when the inner and outer cylinders are displaced relative to each other, if the displacement increases, the partition wall portion and the bulging portion come into contact with each other, and function as a stopper that restricts excessive displacement. Excessive deformation of the rubber elastic body can be prevented more reliably.

前記の如き構成の液体封入ブッシュにおいて、好ましいのは、区分壁部の形状を、径方向外方側に向かって徐々に周方向の厚みが増大する先太りのものとすることである(請求項2の発明)。こうすれば、オリフィス通路として機能する隙間の通路長さを長くすることができ、液体の流動抵抗による減衰を安定的に得る上で有利になる In the liquid-filled bush having the above-described configuration, it is preferable that the shape of the partition wall portion is a tapered shape in which the thickness in the circumferential direction gradually increases toward the radially outer side. Invention of 2). By doing so, the passage length of the gap functioning as the orifice passage can be increased, which is advantageous in stably obtaining attenuation due to the flow resistance of the liquid .

た、前記膨出部をブッシュの径方向内方に向かって徐々に周方向に狭まる台形状とし、その周方向一側面に開口するように穴部が形成してもよい。こうすると、膨出部の先端が主液室の内周壁面に当接してストッパとして機能するときに、膨出部の変形に伴い穴部から主液室に押し出される液体の流動抵抗によっても減衰作用が得られる。この場合には、前記穴部の開口が区分壁部によって塞がれることがないよう、その穴部の開口する膨出部の周方向一側に位置する一方の区分壁部は、他方よりも径方向の長さを短くすることが好ましい(請求項の発明) Also, the bulges radially inwardly of the bush and narrow trapezoidal shape gradually circumferential direction, may be formed a hole portion so as to open in the circumferential direction one side. In this way, when the tip of the bulging part abuts against the inner peripheral wall surface of the main liquid chamber and functions as a stopper, the bulging part is also attenuated by the flow resistance of the liquid pushed out from the hole to the main liquid chamber as the bulging part is deformed. The effect is obtained. In this case, one of the partition wall portions located on one side in the circumferential direction of the bulging portion where the hole portion opens is more than the other so that the opening of the hole portion is not blocked by the partition wall portion. It is preferable to shorten the length in the radial direction (invention of claim 3 ) .

記の如き構成の液体封入ブッシュは、特に自動車の車体とパワープラントとを連結するトルクロッドのような防振リンク装置に適用するのが好ましい。すなわち、自動車の車体に横置きに搭載されたパワープラントには、その揺動を抑えるために下部にトルクロッドが取り付けられるが、このトルクロッドには急加速時などの大荷重がロッド(主軸部)の軸方向に作用し、これが液体封入ブッシュに径方向の主荷重として入力するとともに、エンジンのアイドル振動や所謂シェークなどによって、特にパワープラント側のブッシュにはその内外筒を相対回動させるような方向の振動が入力する。 Fluid-filled bushing before Symbol such configuration is preferably applied to image stabilization linkage, such as a torque rod in particular connecting the vehicle body and the power plant of a motor vehicle. That is, in a power plant mounted horizontally on the body of an automobile, a torque rod is attached to the lower part to suppress the swinging of the power plant. A large load such as during sudden acceleration is applied to the torque rod. This is input to the liquid-filled bush as a radial main load, and the inner and outer cylinders of the bush on the power plant side are relatively rotated by idle vibration of the engine or so-called shake. Input vibration in any direction.

したがって、上述したように径方向の主荷重の入力に起因する振動だけでなく、内外筒が相対回動するような別の方向の振動に対しても液体の流動による減衰を付与して、振動を効果的に低減することができる、という本発明の液体封入ブッシュの作用は、前記トルクロッドの特にパワープラント側のブッシュとして用いたときに、非常に有効なものとなるのである Therefore, as described above, not only vibration due to the input of the main load in the radial direction but also vibration in another direction in which the inner and outer cylinders rotate relative to each other are given damping due to the flow of the liquid. The action of the liquid-filled bush of the present invention that can effectively reduce the torque becomes very effective when used as a bush on the torque plant, particularly on the power plant side .

以上、説明したように、本発明に係る液体封入ブッシュによると、ゴム弾性体に設けられた主液室内を内筒体側から径方向外方に延びて、当該主液室を周方向に複数の区域に分ける区分壁部を設け、この区分壁部の外端面と相対向する主液室の外周壁面との間に所定間隔の隙間を形成して、内外筒が相対回動するときにオリフィス通路として機能させるようにしたから、径方向の主荷重入力に起因する振動だけでなく、内外筒が相対回動するような別の方向の振動に対しても液体の流動による減衰を付与して、振動を効果的に低減することができる、
そして、前記区分壁部を利用して2段構えのストッパを構成すれば、大きな主荷重入力に対してもゴム弾性体の過度の変形を防止して、液体封入ブッシュの耐久性を十分に確保することができる
As described above, according to the liquid-filled bush according to the present invention, the main liquid chamber provided in the rubber elastic body extends radially outward from the inner cylindrical body side, and the main liquid chamber has a plurality of circumferential directions. An orifice passage is provided when the inner and outer cylinders rotate relative to each other by providing a partition wall section that divides the section and forming a gap at a predetermined interval between the outer end surface of the partition wall section and the outer peripheral wall surface of the main liquid chamber facing each other. As a function, the vibration due to the main load input in the radial direction, as well as the vibration due to the flow of the liquid to the vibration in another direction in which the inner and outer cylinders rotate relative to each other, Vibration can be effectively reduced,
If a two-stage stopper is configured using the partition wall, excessive deformation of the rubber elastic body is prevented even when a large main load is input, and the durability of the liquid-filled bush is sufficiently secured. it can be.

以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature, and is not intended to limit the present invention, its application, or its use.

(実施形態1)
図1及び図2は、本発明の実施形態1に係る液体封入式のゴムブッシュ1を示し、このゴムブッシュ1は、例えば図3に一例を示すようなトルクロッドA(防振リンク装置)のパワープラント側の連結部に用いられる。トルクロッドAは、図示しないが、自動車のエンジンルームに横置きに搭載されるエンジン及びトランスミッション(パワープラント)の下端部を後方のサブフレーム等の車体側部材に連結して、そのパワープラントの過大な揺動を規制するためのものである。
(Embodiment 1)
1 and 2 show a liquid-filled rubber bush 1 according to Embodiment 1 of the present invention. This rubber bush 1 is a torque rod A (anti-vibration link device) as shown in FIG. 3, for example. Used for connecting parts on the power plant side. The torque rod A is not shown, but the lower end of the engine and transmission (power plant) mounted horizontally in the engine room of the automobile is connected to a vehicle body side member such as a rear subframe so that the power plant is excessively large. This is for restricting the rocking.

図示のトルクロッドAは、長手方向の両端部に小嵌入孔10a及び大嵌入孔10bが平行に設けられたアルミニウム合金製のブラケット10と、その各嵌入孔10a,10bにそれぞれ嵌め込まれたゴムブッシュ1,11とからなる。小嵌入孔10aには前記液体封入式のゴムブッシュ1が嵌め込まれ、その内筒2は図示しないボルトなどによってパワープラントの下部に連結される。また、大嵌入孔10bに嵌め込まれたゴムブッシュ11の内筒12も同様にして車体側の部材に連結される。尚、2つの嵌入孔10a,10bに挟まれたブラケット10の中間部(トルクロッドの主軸部)には軽量化のための貫通孔10cが形成されている。   The illustrated torque rod A includes an aluminum alloy bracket 10 in which a small insertion hole 10a and a large insertion hole 10b are provided in parallel at both ends in the longitudinal direction, and a rubber bush fitted in each of the insertion holes 10a and 10b. 1 and 11. The liquid-filled rubber bush 1 is fitted into the small fitting hole 10a, and the inner cylinder 2 is connected to the lower part of the power plant by a bolt (not shown). Similarly, the inner cylinder 12 of the rubber bush 11 fitted into the large insertion hole 10b is connected to a member on the vehicle body side. A through hole 10c for weight reduction is formed in an intermediate portion (main shaft portion of the torque rod) of the bracket 10 sandwiched between the two insertion holes 10a and 10b.

そうしてパワープラントの下部を後方の車体側部材に連結するトルクロッドAには、自動車の急加速時などにその反力によってパワープラントが後傾するとき、長手方向(主軸部の軸方向)に大きな引っ張り荷重が作用し、これがゴムブッシュ1,11にそれぞれ径方向の主荷重として入力する。従って、ゴムブッシュ1,11には、そのように大きな主荷重を受け止めた後に、これによる揺り返しを速やかに減衰させることが求められる。   Thus, the torque rod A that connects the lower part of the power plant to the rear vehicle body side member has a longitudinal direction (axial direction of the main shaft portion) when the power plant is tilted backward due to the reaction force at the time of rapid acceleration of the automobile. A large tensile load acts on the rubber bushes 1 and 11, and these are input to the rubber bushes 1 and 11 as main loads in the radial direction. Therefore, after receiving such a large main load, the rubber bushes 1 and 11 are required to quickly attenuate the backlash caused by this.

また、エンジンのアイドル振動などパワープラントのロール軸周りの振動はトルクロッドAを捩るように作用し、さらに、所謂シェークと呼ばれる上下方向の振動によって、トルクロッドAは上下に揺動する。このようにトルクロッドAが捩られたり、上下動したりするときには、ゴムブッシュ1,11の内外筒は相対的に回動変位することになるが、特にパワープラント側のゴムブッシュ1は、アイドル振動の伝達を抑えるために比較的柔らかなゴムを用いており、その内外筒の回動変位は相対的に大きなものになりやすい。   Further, vibration around the roll axis of the power plant, such as engine idle vibration, acts to twist the torque rod A, and further, the torque rod A swings up and down by vertical vibration called so-called shake. When the torque rod A is twisted or moved up and down in this way, the inner and outer cylinders of the rubber bushes 1 and 11 are relatively rotated and displaced. In particular, the rubber bush 1 on the power plant side is idle. A relatively soft rubber is used to suppress vibration transmission, and the rotational displacement of the inner and outer cylinders tends to be relatively large.

そこで、本発明では、前記パワープラント側のゴムブッシュ1を液体封入式のものとして、液体の流動により振動の減衰を図るようにしている。すなわち、この実施形態1のゴムブッシュ1は、前記図1、2に拡大して示すように、内筒体2と、その径方向外方を所定間隔を隔てて囲む外筒体3と、これら内筒体2及び外筒体3の間に介装されて両者を連結するゴム弾性体4と、このゴム弾性体4内にその変形に伴い容積が変化するように形成された主液室5と、この主液室5に一対のオリフィス通路6,6を介して連通された副液室7と、を備えている。   Therefore, in the present invention, the rubber bush 1 on the power plant side is a liquid-filled type so that vibration is attenuated by the flow of the liquid. That is, the rubber bush 1 of the first embodiment includes an inner cylinder 2, an outer cylinder 3 surrounding the outer side in the radial direction with a predetermined interval, as shown in FIGS. A rubber elastic body 4 interposed between the inner cylindrical body 2 and the outer cylindrical body 3 to connect them, and a main liquid chamber 5 formed in the rubber elastic body 4 so that its volume changes with deformation. And a sub liquid chamber 7 communicated with the main liquid chamber 5 through a pair of orifice passages 6 and 6.

前記内筒体2及び外筒体3の軸線X1,X2(筒軸)は、図2に示すように所定方向(図の上下方向)にオフセットして、互いに平行になっており、そのオフセット方向がトルクロッドAの長手方向、即ちゴムブッシュ1への径方向の主荷重入力方向となるようにして、前記ブラケット10の小嵌入孔10aに嵌め込まれる。言い換えると、内筒体2及び外筒体3の軸線X1,X2は前記主荷重入力方向にオフセットしており、両者は主荷重入力方向に見ると、合致する。   Axes X1 and X2 (cylinder axes) of the inner cylinder 2 and the outer cylinder 3 are offset in a predetermined direction (vertical direction in the figure) and are parallel to each other as shown in FIG. Is fitted in the small insertion hole 10a of the bracket 10 so as to be the longitudinal direction of the torque rod A, that is, the radial main load input direction to the rubber bush 1. In other words, the axes X1 and X2 of the inner cylinder 2 and the outer cylinder 3 are offset in the main load input direction, and they match when viewed in the main load input direction.

そして、そのようにブラケット10の小嵌入孔10aに嵌め込まれた状態で、ゴムブッシュ1の主液室5及び副液室7は、前記主荷重の入力方向で内筒体2を両側から挟むように、言い換えると、主荷重入力方向で内筒体2と隣り合うように設けられている。また、図2(a)に示すように軸線X1,X2方向に見ると、内筒体2と外筒体3とを連結するゴム弾性体4の主ばね部40,40は、前記主荷重入力方向(直線Lで示す)に対し略直交する径方向で内筒体2を両側から挟むように、即ち同図において内筒体2の左右両側に位置している。   The main liquid chamber 5 and the sub liquid chamber 7 of the rubber bush 1 sandwich the inner cylinder 2 from both sides in the input direction of the main load in such a state that the main liquid chamber 5 and the sub liquid chamber 7 of the rubber bush 1 are fitted in the small insertion holes 10a of the bracket 10. In other words, it is provided adjacent to the inner cylinder 2 in the main load input direction. 2A, when viewed in the directions of the axes X1 and X2, the main spring portions 40 and 40 of the rubber elastic body 4 connecting the inner cylinder 2 and the outer cylinder 3 are connected to the main load input. The inner cylindrical body 2 is located on both the left and right sides of the inner cylindrical body 2 in FIG.

さらに、前記オリフィス通路6,6は、それぞれゴム弾性体4の各主ばね部40の外周面に周方向に延びるように形成された溝部と、その主ばね部40の外周面が接着される外筒体3の内周面との間に形成され、一端部(図2(a)の下端部)が主液室5を臨んで開口する一方、他端部(同図の上端部)は副液室7を臨んで開口している。そして、内筒体2及び外筒体3が前記主荷重入力方向に相対変位して、主液室5の容積が変化すると、オリフィス通路6,6を介して主液室5と副液室7との間で液体が流通し、その流動抵抗によって前記内外筒2,3の相対変位に減衰が付与されるようになっている。   Further, each of the orifice passages 6 and 6 has a groove formed on the outer peripheral surface of each main spring portion 40 of the rubber elastic body 4 so as to extend in the circumferential direction and an outer surface to which the outer peripheral surface of the main spring portion 40 is bonded. It is formed between the inner peripheral surface of the cylinder 3 and one end (the lower end of FIG. 2 (a)) opens to face the main liquid chamber 5, while the other end (the upper end in the same figure) is the sub-portion. The liquid chamber 7 is opened. When the inner cylinder 2 and the outer cylinder 3 are relatively displaced in the main load input direction and the volume of the main liquid chamber 5 is changed, the main liquid chamber 5 and the auxiliary liquid chamber 7 are connected via the orifice passages 6 and 6. A liquid flows between the inner cylinder and the outer cylinder 2 and 3 due to the flow resistance.

尚、前記ゴム弾性体4の外周付近には、これを補強するための中間筒体41が埋め込まれている。また、内筒体2と副液室7との間には軸線X1,X2方向に貫通する貫通空所42が形成され、この貫通空所42と副液室7との間の隔壁部43は、液体の流出に伴う副液室7容積変化を吸収するダイヤフラムとして機能するようになっている。   An intermediate cylinder 41 is embedded in the vicinity of the outer periphery of the rubber elastic body 4 to reinforce it. Further, a through space 42 is formed between the inner cylinder 2 and the sub liquid chamber 7 so as to penetrate in the directions of the axes X1 and X2, and a partition wall 43 between the through space 42 and the sub liquid chamber 7 is formed. The sub-liquid chamber 7 functions as a diaphragm that absorbs changes in volume due to the outflow of liquid.

上記の構成に加えて、この実施形態のゴムブッシュ1では、本発明の特長部分として、主液室5を周方向に区分けする区分壁部8,8が設けられており、その径方向外方の端面と相対向する主液室5の外周壁面との隙間S,Sが、オリフィス通路として機能するとともに、その区分壁部8,8がストッパとしても機能するようになっている。   In addition to the above configuration, the rubber bush 1 of this embodiment is provided with partition wall portions 8 and 8 for partitioning the main liquid chamber 5 in the circumferential direction as a feature of the present invention. The gaps S and S with the outer peripheral wall surface of the main liquid chamber 5 opposite to the end surface of the main liquid chamber 5 function as an orifice passage, and the partition wall portions 8 and 8 also function as stoppers.

すなわち、まず、前記内筒体2には、その外周から主液室5内に向かって突出する2つの突出片20,20(突出部)が形成されている。この各突出片20は、それぞれ、内筒体2に、その外周における軸方向中央部を含む所定範囲から径方向外方に突出するように一体成形されていて、これを覆うように形成されたゴム弾性体4のゴム層44,44が、各突出片20,20の先端からさらに径方向外方に延びて、主液室5を周方向に3つの区域に分ける2つの区分壁部8,8を構成している。   That is, first, the inner cylindrical body 2 is formed with two projecting pieces 20 and 20 (projecting portions) projecting from the outer periphery toward the main liquid chamber 5. Each of the protruding pieces 20 is integrally formed on the inner cylinder 2 so as to protrude radially outward from a predetermined range including the axial central portion on the outer periphery thereof, and is formed so as to cover the same. The rubber layers 44, 44 of the rubber elastic body 4 further extend radially outward from the tips of the protruding pieces 20, 20 to divide the main liquid chamber 5 into three sections in the circumferential direction, 8 is constituted.

前記2つの区分壁部8,8は、図2(a)のように軸線X1,X2方向に見ると、主荷重入力方向の仮想直線Lを挟んで径方向外方に向かい徐々に離れるように設けられ、同図では下方に向かって広がるハの字状になっている。この区分壁部8,8によって主液室5は、同図にのみ左側から右側に順に示すように、周方向に第1、第2及び第3の3つの区域5a、5b、5cに分けられている。そして、各区分壁部8の径方向外端面(図の下端面)とその径方向外方に対向する主液室5の外周壁面との間に隙間S,Sが形成されている。   When viewed in the direction of the axis X1, X2 as shown in FIG. 2 (a), the two partition walls 8, 8 are gradually separated outward in the radial direction across the virtual straight line L in the main load input direction. In the same figure, it is in the shape of a letter C that spreads downward. The main liquid chamber 5 is divided into first, second, and third three zones 5a, 5b, and 5c in the circumferential direction as shown in order from the left side to the right side in FIG. ing. And the clearance gaps S and S are formed between the radial direction outer end surface (lower end surface of a figure) of each division wall part 8, and the outer peripheral wall surface of the main liquid chamber 5 which opposes the radial direction outward.

この隙間Sは、ゴムブッシュ1の内筒体2及び外筒体3が相対回動変位して、内筒体2側の区分壁部8,8が主液室5内を周方向に移動するときに、前記の区域5a〜5c間で相互に液体が流通するオリフィス通路となり、その液体の流動抵抗によって前記内外筒2,3の回動変位に減衰を付与するようになっている。この実施形態では、主にエンジンのアイドル振動に起因する内外筒2,3の回動変位に対して効果的に減衰を付与するために、前記隙間Sの大きさ(区分壁部8の外端面と相対向する主液室5外周壁面との間の径方向の間隔)を概略3〜4mmくらいに設定しているが、適切な隙間Sの大きさは液体の粘性などによっても異なるもので、概略1〜6mmとすればよい。   The gap S is such that the inner cylinder 2 and the outer cylinder 3 of the rubber bush 1 are relatively rotated and displaced, and the partition wall portions 8 and 8 on the inner cylinder 2 side move in the main liquid chamber 5 in the circumferential direction. Sometimes, an orifice passage through which the liquid flows between the sections 5a to 5c is provided, and the rotational displacement of the inner and outer cylinders 2 and 3 is attenuated by the flow resistance of the liquid. In this embodiment, the size of the gap S (the outer end surface of the partition wall portion 8) is used to effectively attenuate the rotational displacement of the inner and outer cylinders 2 and 3 mainly caused by idle vibration of the engine. The radial gap between the main liquid chamber 5 and the outer peripheral wall surface of the main liquid chamber 5 opposite to each other is set to about 3 to 4 mm, but the appropriate size of the gap S varies depending on the viscosity of the liquid, What is necessary is just to be about 1-6 mm.

また、前記2つの区分壁部8,8の間に挟まれるようにして、主液室5の外周側にはストッパ部材9が配設されている。このストッパ部材9は、金属製乃至樹脂製の円弧状プレート90と、その内周面に内方に向かって膨出するように形成されたゴムのストッパ部91(膨出部)とからなり、そのプレート90の内周面が概略、中間筒体41の内周面と連続するようにゴム弾性体4に組み付けられて、これと一体に外筒体3内に圧入されたものである。   A stopper member 9 is disposed on the outer peripheral side of the main liquid chamber 5 so as to be sandwiched between the two partition wall portions 8 and 8. The stopper member 9 comprises a metal or resin arcuate plate 90 and a rubber stopper portion 91 (bulging portion) formed so as to bulge inward on the inner peripheral surface thereof. The plate 90 is assembled to the rubber elastic body 4 so that the inner peripheral surface of the plate 90 is substantially continuous with the inner peripheral surface of the intermediate cylinder 41, and is press-fitted into the outer cylinder 3 integrally therewith.

こうして組み付けられたストッパ部材9のプレート90の内周面には、前記ゴムストッパ部91と一体の薄いゴム膜が形成されていて、これがゴムブッシュ1の主液室5の外周壁面になっている。また、そこから膨出する前記ゴムストッパ部91は、主液室5をその外周壁面から主荷重入力方向に内筒体2側に向かって膨出するとともに、先端側ほど徐々に周方向に狭まる台形状とされており、その先端面は、主液室5の内周面、即ち内筒体2の外周面を覆うゴム弾性体4と一体のゴム膜と、所定の間隔を空けて対峙している。   A thin rubber film integral with the rubber stopper portion 91 is formed on the inner peripheral surface of the plate 90 of the stopper member 9 assembled in this way, and this is the outer peripheral wall surface of the main liquid chamber 5 of the rubber bush 1. . Further, the rubber stopper portion 91 bulging out of the main liquid chamber 5 bulges from the outer peripheral wall surface toward the inner cylinder 2 in the main load input direction, and gradually narrows in the circumferential direction toward the tip side. It has a trapezoidal shape, and its front end face is opposed to a rubber film integral with the rubber elastic body 4 covering the inner peripheral surface of the main liquid chamber 5, that is, the outer peripheral surface of the inner cylindrical body 2, with a predetermined interval. ing.

そのため、前記内筒体2及び外筒体3が主荷重入力方向に大きく相対変位すると、前記の如く内筒体2側から径方向外方に延びた2つの区分壁部8,8の各外端面がそれぞれ主液室5の外周壁面に当接するとともに、その外周壁面から径方向内方に膨出するストッパ部91の先端面が主液室5の内周壁面に当接して、それぞれ内外筒2,3の相対変位を規制するストッパとして機能することになる。   For this reason, when the inner cylinder 2 and the outer cylinder 3 are relatively displaced in the main load input direction, the outer portions of the two partition wall portions 8, 8 extending radially outward from the inner cylinder 2 side as described above. The end surfaces are in contact with the outer peripheral wall surface of the main liquid chamber 5 respectively, and the distal end surface of the stopper portion 91 bulging radially inward from the outer peripheral wall surface is in contact with the inner peripheral wall surface of the main liquid chamber 5. It functions as a stopper that restricts the relative displacement of a few.

その際、前記各区分壁部8の径方向外側がゴム層44のみで形成されているため、その外端面と主液室5の外周壁面との当接初期には区分壁部8が容易に撓むようになり、その当接の際の衝撃を非常に小さくすることができる。言い換えると、そのように区分壁部8の径方向外側が容易に撓む間はストッパとしての機能はかなり弱くなるから、その外端面と主液室5外周壁面との間の隙間Sの間隔を前記のように小さく設定していても、このことによって内外筒体2,3間の相対変位が小さくなり過ぎることはない。   At that time, since the radially outer side of each partition wall 8 is formed of only the rubber layer 44, the partition wall 8 can be easily formed at the initial contact between the outer end surface and the outer peripheral wall surface of the main liquid chamber 5. It comes to bend and the impact at the time of the contact can be made very small. In other words, since the function as a stopper is considerably weakened while the radially outer side of the partition wall portion 8 is easily bent, the gap S between the outer end surface and the outer peripheral wall surface of the main liquid chamber 5 is set to be smaller. Even if it is set to be small as described above, the relative displacement between the inner and outer cylinders 2 and 3 does not become too small.

一方で、図2(a)に明らかなように、筒軸X1,X2方向に見ると、前記各区分壁部8の径方向内方に埋設されている内筒体2の突出片20,20と、前記のように主液室5内を主荷重入力方向に径方向内方に向かうゴムストッパ部91とは、その主荷重入力方向にオーバーラップしている。このため、内筒体2及び外筒体3が相対的に回動変位して、いずれかの区分壁部8の側面とゴムストッパ部91の側面とが当接すれば、それ以上の回動変位が規制されることになる。つまり、前記区分壁部8,8及びゴムストッパ部91によって、内外筒2,3の過度の相対回動変位を規制するストッパも構成されている。   On the other hand, as is apparent from FIG. 2 (a), when viewed in the direction of the cylinder axes X1 and X2, the protruding pieces 20 and 20 of the inner cylinder 2 embedded in the radially inward direction of the respective partition wall portions 8. As described above, the rubber stopper portion 91 that is radially inward in the main load input direction in the main liquid chamber 5 overlaps in the main load input direction. For this reason, if the inner cylinder body 2 and the outer cylinder body 3 are relatively rotated and displaced, and the side surface of one of the partition wall portions 8 and the side surface of the rubber stopper portion 91 are in contact with each other, further rotation displacement is performed. Will be regulated. That is, the partition wall portions 8 and 8 and the rubber stopper portion 91 also constitute a stopper that restricts excessive relative rotational displacement of the inner and outer cylinders 2 and 3.

したがって、この実施形態1の如き構成の液体封入ブッシュ1は、自動車の車体に横置きに搭載されたパワープラントが加速時の反力などによって後傾し、その下部に取り付けられたトルクロッドAの長手方向に引っ張り荷重が作用すると、この荷重が径方向の主荷重として入力し、内筒体2及び外筒体3が主荷重入力方向に相対変位する。これによりゴム弾性体4の主ばね部40,40が撓んで、主液室5の容積が比較的大きく変化し、オリフィス通路6,6を流通する液体の流動抵抗によって、前記の主荷重入力に起因する振動が効果的に減衰される。よって、加減速時などのパワープラントの揺動を速やかに減衰させることができる。   Therefore, the liquid-filled bush 1 having the structure as in the first embodiment is configured such that the power plant mounted horizontally on the vehicle body tilts backward due to a reaction force during acceleration, etc. When a tensile load acts in the longitudinal direction, this load is input as a radial main load, and the inner cylinder 2 and the outer cylinder 3 are relatively displaced in the main load input direction. As a result, the main spring portions 40, 40 of the rubber elastic body 4 are bent, and the volume of the main liquid chamber 5 changes relatively greatly. The flow resistance of the liquid flowing through the orifice passages 6, 6 causes the main load input. The resulting vibration is effectively damped. Therefore, the oscillation of the power plant during acceleration / deceleration can be quickly attenuated.

また、例えば急加速時など、前記主荷重による内外筒2,3の相対変位が大きいときには、内筒体2側の区分壁部8,8が主液室5の外周壁に当接するとともに、その外周壁の、即ち外筒体3側のゴムストッパ部91が主液室5の内周壁に当接して、それぞれ内外筒2,3の相対変位を規制するストッパとして機能する。この2段構えのストッパにより、大きな主荷重入力に対してもゴム弾性体4の主ばね部40,40の過度の変形を防止して、耐久性を確保することができる。   Further, when the relative displacement of the inner and outer cylinders 2 and 3 due to the main load is large, for example, during rapid acceleration, the partition wall portions 8 and 8 on the inner cylinder 2 side abut against the outer peripheral wall of the main liquid chamber 5, and A rubber stopper 91 on the outer peripheral wall, that is, on the outer cylinder 3 side, comes into contact with the inner peripheral wall of the main liquid chamber 5 and functions as a stopper for restricting the relative displacement of the inner and outer cylinders 2 and 3, respectively. With this two-stage stopper, it is possible to prevent the main spring portions 40, 40 of the rubber elastic body 4 from being excessively deformed and to ensure durability even when a large main load is input.

さらに、エンジンのアイドル振動などがトルクロッドAを捩るように作用し、これによりゴムブッシュ1の内外筒2,3が相対回動変位するときには、内筒体2側の区分壁部8,8の外端面と主液室5の外周壁面との隙間S,Sにおける液体の流動抵抗によって減衰力が発生し、これにより、アイドル振動も効果的に低減することができる。   Furthermore, when the engine idle vibration or the like acts to twist the torque rod A and thereby the inner and outer cylinders 2 and 3 of the rubber bush 1 are relatively rotated, the partition walls 8 and 8 on the inner cylinder body 2 side A damping force is generated by the flow resistance of the liquid in the gaps S, S between the outer end surface and the outer peripheral wall surface of the main liquid chamber 5, thereby effectively reducing idle vibration.

図4は、エンジンのアイドル振動を含む比較的低周波の振動(例えば振幅が±0.1mmで周波数が10〜30Hz)の入力に対してトルクロッドAが示す捩り方向の動ばね特性を数値計算によって予測したグラフ図である。図に実線で示すように、この実施形態の液体封入ブッシュ1をパワープラント側に用いると、上述の如く液体の流動抵抗による減衰が得られることから、10〜30Hzにおける損失係数tanδの値が0.20以上とかなり高くなっており、総ゴムの場合(図示しないが通常、0.1くらい)に比べて、アイドル振動の低減に優れることが分かる。   FIG. 4 shows a numerical calculation of a dynamic spring characteristic in the torsional direction indicated by the torque rod A with respect to an input of a relatively low frequency vibration (for example, an amplitude of ± 0.1 mm and a frequency of 10 to 30 Hz) including an idle vibration of the engine. FIG. As shown by the solid line in the figure, when the liquid-filled bush 1 of this embodiment is used on the power plant side, the attenuation due to the flow resistance of the liquid is obtained as described above, and therefore the value of the loss coefficient tanδ at 10 to 30 Hz is 0. It can be seen that it is excellent in reducing idle vibration as compared with the case of total rubber (not shown, usually about 0.1).

また、図に破線で示すように内部損失の増大に伴う動ばねの上昇は比較的低く抑えられており、仮に総ゴムのブッシュでゴムの物性等を変更することにより、同等の減衰効果を得ようとする場合に比べると、動ばねの上昇による弊害は非常に小さいと言える。   In addition, as shown by the broken line in the figure, the rise of the dynamic spring due to the increase in internal loss is suppressed to a relatively low level. By changing the physical properties of the rubber with the total rubber bush, the equivalent damping effect can be obtained. Compared with the case where it is going to be said, it can be said that the harmful effect by the rise of a dynamic spring is very small.

さらにまた、この実施形態では、所謂シェークなど上下方向の振動によってトルクロッドAが上下に揺動するときにも、ゴムブッシュ1の内外筒2,3が相対回動変位して、前記アイドル振動の場合と同様に液体の流動抵抗によって振動の減衰が図られる。しかも、その回動変位量が大きくなれば、内筒体2側の区分壁部8,8と外筒体3側のゴムストッパ部91とが当接して、ストッパとして機能することになるので、ゴムブッシュ1の耐久性をより確実なものとすることができる。   Furthermore, in this embodiment, when the torque rod A swings up and down due to vertical vibration such as so-called shake, the inner and outer cylinders 2 and 3 of the rubber bush 1 are relatively rotated and displaced, and the idle vibration is reduced. As in the case, the vibration is attenuated by the flow resistance of the liquid. Moreover, if the amount of rotational displacement increases, the partition walls 8 and 8 on the inner cylinder 2 side and the rubber stopper 91 on the outer cylinder 3 side come into contact with each other, and function as a stopper. The durability of the rubber bush 1 can be made more reliable.

−変形例−
図5は、前記した実施形態1のゴムブッシュ1の変形例を示し、同図(a)は、2つの区分壁部8,8の形状を、それぞれ、径方向外方に向かって徐々に周方向の厚みが増大する先太りにしたものである。こうすれば、オリフィス通路として機能する隙間S,Sの通路長さが長くなるので、液体の流動抵抗による減衰を安定的に得る上で有利になる。
-Modification-
FIG. 5 shows a modified example of the rubber bush 1 of the first embodiment, and FIG. 5 (a) shows the shape of the two partition wall portions 8 and 8 gradually around the outer side in the radial direction. It is a taper that increases the thickness in the direction. By doing so, the passage lengths of the gaps S, S functioning as orifice passages are increased, which is advantageous in stably obtaining attenuation due to the flow resistance of the liquid.

また、同図(b)は、ゴムストッパ部91の周方向一側面(図の右側面)に開口するように穴部91aを形成したものである。こうすると、主荷重の入力により内外筒2,3が径方向に大きく相対変位して、ゴムストッパ部91の先端が主液室5の内周壁面に当接し、ストッパとして機能するときには、該ゴムストッパ部91の弾性変形に伴い穴部91aから主液室5内に押し出される液体の流動抵抗によっても、減衰が得られるようになる。そして、そのように主液室5内に向かって液体の押し出される穴部91aの開口を塞がないように、その穴部91aの開口するゴムストッパ部91の周方向一側に位置する一方の区分壁部8(図の右側の区分壁部8)は、他方よりも径方向の長さを短くしている。   FIG. 2B shows a hole 91a formed so as to open on one circumferential side surface (the right side surface in the drawing) of the rubber stopper 91. Thus, when the main load is input, the inner and outer cylinders 2 and 3 are relatively displaced in the radial direction so that the tip of the rubber stopper 91 comes into contact with the inner peripheral wall surface of the main liquid chamber 5 and functions as a stopper. Attenuation can also be obtained by the flow resistance of the liquid pushed out from the hole 91a into the main liquid chamber 5 with the elastic deformation of the stopper 91. And one side located in the circumferential direction one side of the rubber stopper part 91 which the hole part 91a opens so that the opening of the hole part 91a from which the liquid is extruded toward the inside of the main liquid chamber 5 is not blocked. The dividing wall portion 8 (the dividing wall portion 8 on the right side of the drawing) has a shorter radial length than the other.

参考例
図6は、参考例に係る液体封入式のゴムブッシュ1’を示す。このゴムブッシュ1’は、区分壁部80を1つだけとし、これに対応して主液室5の外周壁面に形成するゴムストッパ部92の形状を前記実施形態1と異ならせたものであり、それ以外の構造は実施形態1のものと同じなので、同一部材には同一符号を付して、その説明は省略する。
( Reference example )
FIG. 6 shows a liquid-filled rubber bush 1 ′ according to a reference example . This rubber bush 1 ′ has only one partition wall portion 80, and the shape of the rubber stopper portion 92 formed on the outer peripheral wall surface of the main liquid chamber 5 correspondingly is different from that of the first embodiment. Since the other structure is the same as that of the first embodiment, the same members are denoted by the same reference numerals, and the description thereof is omitted.

そして、この参考例では、図6(a)に示すように筒軸X1,X2方向に見て、内筒体2の外周から突出する突出片21(突出部)と、これを覆って径方向外方に延びるゴム層45とによって、主液室5内を主荷重入力方向(L)に径方向内方から外方に向かって延びて、当該主液室5を周方向に2つの区域5a,5bに分ける単一の区分壁部80が構成されている。この区分壁部80の径方向外端面(図の下端面)とその径方向外方に対向する主液室5の外周壁面との間には、前記実施形態1と同様にオリフィス通路として機能する隙間Sが形成されている。 And in this reference example , as shown to Fig.6 (a), seeing in the cylinder-axis X1, X2 direction, the protrusion piece 21 (protrusion part) which protrudes from the outer periphery of the inner cylinder 2, and radial direction covering this By the rubber layer 45 extending outward, the main liquid chamber 5 extends in the main load input direction (L) from the radially inner side to the outer side, and the main liquid chamber 5 is circumferentially divided into two sections 5a. , 5b, a single partition wall 80 is formed. Between the radially outer end face (lower end face in the figure) of the partition wall 80 and the outer peripheral wall surface of the main liquid chamber 5 facing radially outward, it functions as an orifice passage as in the first embodiment. A gap S is formed.

また、前記区分壁部80に対応して主液室5の外周側に設けられたゴムストッパ部92は、この参考例では、前記区分壁部80の径方向外端部を周方向の両側(同図(a)の左右両側)から囲むように、主液室5の外周壁面から径方向内方に向かって膨出する一対の膨出部92a,92aを有している。そして、その一対の膨出部92a,92aの先端部同士を同図(b)に示すように軸線X1,X2方向の両端部でそれぞれ連繋する半円状の連繋壁部92b,92bが設けられており、これら膨出部92a及び連繋壁部92bは、図示の如く、区分壁部80の径方向内方に埋設されている内筒体2の突出片21と主荷重入力方向(図の上下方向)にオーバーラップしている。 Further, in this reference example , the rubber stopper portion 92 provided on the outer peripheral side of the main liquid chamber 5 corresponding to the partition wall portion 80 is configured so that the radially outer end portion of the partition wall portion 80 is disposed on both sides in the circumferential direction ( A pair of bulging portions 92a and 92a bulging radially inward from the outer peripheral wall surface of the main liquid chamber 5 are provided so as to surround from both the left and right sides in FIG. And the semicircular connection wall part 92b, 92b which connects each front-end | tip part of the pair of bulging part 92a, 92a at both ends of an axis line X1, X2 direction as shown in the same figure (b) is provided. As shown in the drawing, the bulging portion 92a and the connecting wall portion 92b are connected to the protruding piece 21 of the inner cylindrical body 2 embedded in the radially inner side of the partition wall portion 80 and the main load input direction (upper and lower sides in the figure). Direction).

したがって、この参考例の液体封入ブッシュ1’を用いたトルクロッドAによっても、前記実施形態1のものと同様に、オリフィス通路6,6における液体の流動抵抗により加減速時などのパワープラントの揺動を速やかに減衰させることができるとともに、主液室5の外周壁面と区分壁部80の外端面との隙間Sにおける液体の流動抵抗によって、アイドル振動を効果的に低減することができる。 Therefore, also with the torque rod A using the liquid-filled bush 1 ′ of this reference example , the vibration of the power plant during acceleration / deceleration is caused by the flow resistance of the liquid in the orifice passages 6 and 6, as in the first embodiment. The movement can be quickly attenuated, and the idle vibration can be effectively reduced by the flow resistance of the liquid in the gap S between the outer peripheral wall surface of the main liquid chamber 5 and the outer end surface of the partition wall portion 80.

また、前記実施形態1と同様に、急加速時などには、内筒体2側の前記区分壁部80と外筒体3側のゴムストッパ部92とがそれぞれ内外筒2,3の径方向の相対変位を規制する2段構えのストッパとして機能するとともに、それら区分壁部80及びゴムストッパ部92が内外筒2,3の相対回動変位に対してもストッパとして機能するようになるので、大きな荷重入力に対してもゴム弾性体4の主ばね部40,40の過度の変形を防止して、耐久性を確保することができる。   Similarly to the first embodiment, during sudden acceleration, the partition wall 80 on the inner cylinder 2 side and the rubber stopper 92 on the outer cylinder 3 side are respectively in the radial direction of the inner and outer cylinders 2 and 3. Since the partition wall portion 80 and the rubber stopper portion 92 function as a stopper against the relative rotational displacement of the inner and outer cylinders 2 and 3, Even when a large load is input, excessive deformation of the main spring portions 40, 40 of the rubber elastic body 4 can be prevented to ensure durability.

尚、本発明の構成は、前記の実施形態1に限定されるものではなく、その他の種々の態様を包含するものである。すなわち、例えば前記の実施形態1で、本発明に係るゴムブッシュ1(液体封入ブッシュ)を自動車のパワープラントのトルクロッドAに適用しているが、これに限らず、本発明の液体封入ブッシュは例えばサスペンションリンクなど種々の防振リンク装置に適用することができる。 In addition, the structure of this invention is not limited to the said Embodiment 1 , The other various aspects are included. That is, for example, the in the embodiment 1, although the rubber bush 1 according to the present invention (fluid-filled bushing) is applied to the torque rods A motor vehicle power plant is not limited to this, fluid-filled bushing of the present invention Can be applied to various anti-vibration link devices such as suspension links.

以上、説明したように、本発明に係る液体封入ブッシュを用いた防振リンク装置は、その軸方向に入力する主荷重による振動だけでなく、ブッシュの内外筒が相対回動するような別の方向の振動に対しても液体の流動による減衰を付与して、この振動を効果的に低減できるものなので、例えば自動車のエンジンマウント、サスペンションブッシュを始めとして、各種産業機械などにも好適である。   As described above, the vibration isolating link device using the liquid-filled bush according to the present invention is not limited to the vibration caused by the main load input in the axial direction, but another type in which the inner and outer cylinders of the bush rotate relative to each other. Since the vibration due to the flow of the liquid is also given to the vibration in the direction to effectively reduce the vibration, it is suitable for various industrial machines such as an engine mount and a suspension bush of an automobile.

実施形態1に係る液体封入ブッシュの(a)外観を示す斜視図及び(b)一部を切り欠いて内部構造を示す斜視図である。2A is a perspective view showing an external appearance of a liquid-filled bush according to Embodiment 1, and FIG. 同ブッシュの(a)横断面図及び(b)縦断面図である。FIG. 3 is a (a) transverse sectional view and (b) longitudinal sectional view of the bush. 同ブッシュを用いたトルクロッドの斜視図である。It is a perspective view of the torque rod using the bush. 同トルクロッドの捩り方向の動ばね特性を示すグラフである。It is a graph which shows the dynamic spring characteristic of the twist direction of the torque rod. (a),(b)はそれぞれ同ブッシュの変形例に係る図2(a)相当図である。(a), (b) is a figure corresponding to Drawing 2 (a) concerning a modification of the bush, respectively. 参考例に係る液体封入ブッシュの図2相当する参考図である。It is a reference diagram corresponding to FIG. 2 of the fluid-filled bushing according to a reference example.

L 主荷重入力方向の仮想直線
S 隙間
1 ゴムブッシュ(液体封入ブッシュ)
2 内筒体
20,21 突出片(突出部)
3 外筒体
4 ゴム弾性体
44,45 ゴム層
5 主液室
6 オリフィス通路
7 副液室
8,80 区分壁部
9 ストッパ部材
91,92 ゴムストッパ部(膨出部)
91a 穴部
L Virtual straight line S in the main load input direction Clearance 1 Rubber bush (liquid filled bush)
2 Inner cylinder 20, 21 Protruding piece (protruding part)
3 Outer cylinder 4 Rubber elastic body 44, 45 Rubber layer 5 Main liquid chamber 6 Orifice passage 7 Sub liquid chamber 8, 80 Separation wall 9 Stopper members 91, 92 Rubber stopper (bulging part)
91a hole

Claims (3)

内筒体と、その径方向外方を囲む外筒体と、これら内筒体及び外筒体の間に介装されて両者を連結するゴム弾性体と、このゴム弾性体内にその変形に伴い容積が変化するように形成された主液室と、この主液室にオリフィス通路を介して連通された副液室と、を備えた液体封入ブッシュにおいて、
前記主液室は、径方向の所定方向からの主荷重入力によって容積が変化するよう、その主荷重入力方向で前記内筒体と隣り合うように設けられ、
前記内筒体には、その外周から前記主液室内に向かって径方向外方に突出する突出部が形成され、この突出部を覆うゴム層が当該突出部の先端からさらに径方向外方に延びて、前記主液室を周方向に複数の区域に分ける区分壁部とされており、
前記区分壁部の径方向外端面と相対向する主液室の外周壁面との間には、その区分壁部の両側の区域間で液体が流通するオリフィス通路となるように、所定間隔の隙間が形成されており、
前記区分壁部は2つ設けられ、筒軸方向に見て、その2つの区分壁部が主荷重入力方向の仮想の直線を挟んで、径方向外方に向かい互いに徐々に離れるように設けられ、
前記2つの区分壁部の間に挟まれるように、主液室の外周壁面から径方向内方に向かって膨出する膨出部が形成されていることを特徴とする液体封入ブッシュ。
An inner cylindrical body, an outer cylindrical body that surrounds the outer side in the radial direction, a rubber elastic body that is interposed between the inner cylindrical body and the outer cylindrical body, and connects the two, and the rubber elastic body is deformed. In a liquid-filled bush comprising a main liquid chamber formed so as to change its volume, and a sub liquid chamber communicated with the main liquid chamber via an orifice passage,
The main liquid chamber is provided so as to be adjacent to the inner cylindrical body in the main load input direction so that the volume changes due to the main load input from a predetermined direction in the radial direction,
The inner cylindrical body is formed with a protruding portion that protrudes radially outward from the outer periphery into the main liquid chamber, and a rubber layer that covers the protruding portion is further radially outward from the tip of the protruding portion. It is a partition wall that extends and divides the main liquid chamber into a plurality of zones in the circumferential direction,
A gap of a predetermined interval is provided between the radially outer end surface of the partition wall and the outer peripheral wall surface of the main liquid chamber facing the partition wall so as to form an orifice passage through which liquid flows between the sections on both sides of the partition wall. Is formed ,
The two partition wall portions are provided, and the two partition wall portions are provided so as to be gradually separated from each other outward in the radial direction across the virtual straight line in the main load input direction when viewed in the cylinder axis direction. ,
A liquid-filled bush, wherein a bulging portion bulging radially inward from the outer peripheral wall surface of the main liquid chamber is formed so as to be sandwiched between the two partition wall portions .
請求項1の液体封入ブッシュにおいて、
前記区分壁部は、径方向外方に向かって徐々に周方向の厚みが増大する形状とされていることを特徴とする液体封入ブッシュ。
The liquid-filled bush of claim 1,
The liquid-filled bushing, wherein the partition wall portion has a shape in which a circumferential thickness gradually increases outward in the radial direction.
請求項1又は2のいずれかの液体封入ブッシュにおいて、
前記膨出部は、径方向内方に向かって徐々に周方向に狭まる台形状とされ、その周方向一側面に開口するように穴部が形成されていて、
前記2つの区分壁部のうち、前記穴部の開口する膨出部の周方向一側に位置する一方の区分壁部は、他方よりも径方向の長さが短くされていることを特徴とする液体封入ブッシュ。
In the liquid-filled bush according to claim 1 or 2 ,
The bulging portion has a trapezoidal shape gradually narrowing in the circumferential direction toward the radially inner side, and a hole is formed so as to open on one side surface in the circumferential direction.
Of the two sections walls, one of the division wall portion located on one circumferential side of the protruding portion of the opening of the hole portion, and characterized in that it is shorter in length in the radial direction than the other Liquid-filled bush.
JP2005176816A 2005-06-16 2005-06-16 Liquid-filled bush Expired - Fee Related JP4511421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005176816A JP4511421B2 (en) 2005-06-16 2005-06-16 Liquid-filled bush

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005176816A JP4511421B2 (en) 2005-06-16 2005-06-16 Liquid-filled bush

Publications (2)

Publication Number Publication Date
JP2006349068A JP2006349068A (en) 2006-12-28
JP4511421B2 true JP4511421B2 (en) 2010-07-28

Family

ID=37645142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005176816A Expired - Fee Related JP4511421B2 (en) 2005-06-16 2005-06-16 Liquid-filled bush

Country Status (1)

Country Link
JP (1) JP4511421B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106015446A (en) * 2015-03-31 2016-10-12 哈金森公司 Device for rotary-wing aircraft capable of providing information on the level of damage due to fatigue of said device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5363391B2 (en) 2010-03-29 2013-12-11 東海ゴム工業株式会社 Torque rod stopper structure
JP2012097878A (en) * 2010-11-05 2012-05-24 Kurashiki Kako Co Ltd Vibration control connecting rod
DE102011122274B4 (en) * 2011-12-23 2024-06-13 Anvis Deutschland Gmbh Elastic pendulum support
JP5986464B2 (en) * 2012-09-18 2016-09-06 住友理工株式会社 Torque rod
JP6068215B2 (en) * 2013-03-20 2017-01-25 東洋ゴム工業株式会社 Vibration isolator
JP6063348B2 (en) * 2013-05-27 2017-01-18 東洋ゴム工業株式会社 Vibration isolator
CN104912995B (en) * 2014-03-14 2017-04-19 广州汽车集团股份有限公司 Hydraulic bushing in vehicle suspension system guide device and vehicle
CN104290583B (en) * 2014-09-28 2017-10-20 长城汽车股份有限公司 Suspending apparatus
FR3029243B1 (en) * 2014-11-28 2017-05-19 Hutchinson ALVEOLED ARTICULATION WITH SIDE STOP.
CN106314116A (en) * 2015-06-29 2017-01-11 广州汽车集团股份有限公司 Anti-torque pulling rod
WO2021117761A1 (en) * 2019-12-10 2021-06-17 株式会社ブリヂストン Liquid seal bushing and method for manufacturing liquid seal bushing

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5780318U (en) * 1980-11-04 1982-05-18
JPS62261731A (en) * 1986-05-08 1987-11-13 Tokai Rubber Ind Ltd Cylindrical fluid containing type vibration damper support body
JPH01149044U (en) * 1988-04-05 1989-10-16
JPH0366947A (en) * 1989-08-02 1991-03-22 Toyoda Gosei Co Ltd Liquid sealed vibration isolator
JPH0425052U (en) * 1990-06-26 1992-02-28
JPH05306730A (en) * 1992-04-28 1993-11-19 Marugo Rubber Kogyo Kk Liquid-sealed vibration control supporting device
JPH06109075A (en) * 1992-09-22 1994-04-19 Bridgestone Corp Vibrationproof rubber
JPH0629637B2 (en) * 1986-02-25 1994-04-20 東海ゴム工業株式会社 Anti-vibration link device with fluid
JPH102372A (en) * 1996-06-18 1998-01-06 Honda Motor Co Ltd Liquid-sealed bush
JPH1078076A (en) * 1996-09-05 1998-03-24 Tokai Rubber Ind Ltd Fluid-charging cylindrical mount
JP3601196B2 (en) * 1996-07-19 2004-12-15 東海ゴム工業株式会社 Inclined fluid-filled cylindrical mount

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5780318U (en) * 1980-11-04 1982-05-18
JPH0629637B2 (en) * 1986-02-25 1994-04-20 東海ゴム工業株式会社 Anti-vibration link device with fluid
JPS62261731A (en) * 1986-05-08 1987-11-13 Tokai Rubber Ind Ltd Cylindrical fluid containing type vibration damper support body
JPH01149044U (en) * 1988-04-05 1989-10-16
JPH0366947A (en) * 1989-08-02 1991-03-22 Toyoda Gosei Co Ltd Liquid sealed vibration isolator
JPH0425052U (en) * 1990-06-26 1992-02-28
JPH05306730A (en) * 1992-04-28 1993-11-19 Marugo Rubber Kogyo Kk Liquid-sealed vibration control supporting device
JPH06109075A (en) * 1992-09-22 1994-04-19 Bridgestone Corp Vibrationproof rubber
JPH102372A (en) * 1996-06-18 1998-01-06 Honda Motor Co Ltd Liquid-sealed bush
JP3601196B2 (en) * 1996-07-19 2004-12-15 東海ゴム工業株式会社 Inclined fluid-filled cylindrical mount
JPH1078076A (en) * 1996-09-05 1998-03-24 Tokai Rubber Ind Ltd Fluid-charging cylindrical mount

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106015446A (en) * 2015-03-31 2016-10-12 哈金森公司 Device for rotary-wing aircraft capable of providing information on the level of damage due to fatigue of said device
CN106015446B (en) * 2015-03-31 2019-10-11 哈金森公司 It can provide and be related to the device of the gyroplane of device fatigue associated damage degree information

Also Published As

Publication number Publication date
JP2006349068A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
JP4511421B2 (en) Liquid-filled bush
JP2010159873A (en) Cylindrical vibration isolating device of fluid encapsulation type
JP2006292106A (en) Vibration control device
JP5876685B2 (en) Bush type hydraulic mount for 3-point support system
JP4823976B2 (en) Liquid filled anti-vibration support device
JP5695851B2 (en) Torque rod and engine unit
JP2012092875A (en) Fluid sealed type cylindrical vibration damping device
JP3705715B2 (en) Fluid filled cylindrical mount
JP7102234B2 (en) Vibration isolation device
JP3676025B2 (en) Liquid filled anti-vibration mount
JPS61109934A (en) Engine mount for ff car
JP5907777B2 (en) Fluid filled cylindrical vibration isolator
JPH1130267A (en) Vibration control device
JPH11141595A (en) Vibration control device
JP2008111558A (en) Fluid filled system toe correct bush and suspension mechanism using it
JP3998491B2 (en) Fluid filled anti-vibration bush
JP4066456B2 (en) Cylindrical vibration isolator
JP3684469B2 (en) Vibration isolator
JP4602821B2 (en) Vibration isolator
JPH0324915Y2 (en)
KR102496488B1 (en) Mount Core Structure with Core Cushion Part
JPH022498B2 (en)
JPH06330983A (en) Liquid-sealed type vibration isolating support device
JP3695619B2 (en) Liquid filled vibration isolator
JP3693062B2 (en) Vibration isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees