JPH1078076A - Fluid-charging cylindrical mount - Google Patents

Fluid-charging cylindrical mount

Info

Publication number
JPH1078076A
JPH1078076A JP23512396A JP23512396A JPH1078076A JP H1078076 A JPH1078076 A JP H1078076A JP 23512396 A JP23512396 A JP 23512396A JP 23512396 A JP23512396 A JP 23512396A JP H1078076 A JPH1078076 A JP H1078076A
Authority
JP
Japan
Prior art keywords
elastic body
rubber elastic
axial
pressure receiving
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23512396A
Other languages
Japanese (ja)
Inventor
Jiyouji Tsutsumida
讓治 堤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP23512396A priority Critical patent/JPH1078076A/en
Publication of JPH1078076A publication Critical patent/JPH1078076A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Abstract

PROBLEM TO BE SOLVED: To compatibly exercise both effective vibration isolating performance and supporting performance, even in case of inputting both a vibration load which is applied to a mount in axial right angle direction, to be vibration isolated, and a support load, acting between connected units, respectively and mutually displaced in a peripheral direction. SOLUTION: In a support rubber elastic unit 16 connecting an inner/outer cylinder metal fitting 12, 14, by making each elastic deformation characteristic of an axial direction intermediate part constituting peripheral direction both side wall parts 40, 42 of a pressure receiving chamber 62 and of an axial direction both side parts constituting axial direction both side wall parts of the pressure receiving chamber 62, different from each other, a load input direction: Q easily influencing a pressure change to the pressure receiving chamber 62 in the concerned axial direction intermediate part and a load input direction: R with generation difficult of tensile deformation in the axial direction both side parts are set to be displaced by a prescribed angle: θ mutually in a peripheral direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は、受圧室と平衡室の間での流体の
流動作用に基づいて防振効果を得るようにした流体封入
式筒形マウントに係り、特にそれぞれ軸直角方向に及ぼ
される防振すべき振動荷重と被連結体間に作用する支持
荷重とが、互いに周方向にずれて及ぼされる状態で装着
される場合に好適に用いられる流体封入式筒形マウント
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid-filled cylindrical mount having a vibration damping effect based on the flow of fluid between a pressure receiving chamber and an equilibrium chamber, and more particularly to a fluid-tight cylinder mount which is applied in a direction perpendicular to the axis. The present invention relates to a fluid-filled cylindrical mount that is preferably used when the vibration load to be shaken and the support load acting between connected bodies are mounted so as to be shifted from each other in the circumferential direction.

【0002】[0002]

【従来技術】従来から、振動伝達系を構成する被連結体
間に介装されて、それらの被連結体を防振連結せしめる
防振装置の一種として、特公平5−55739号公報や
特開平1−116329号公報、米国特許第46903
89号等に記載されているように、軸金具とその外方に
離隔配置された外筒金具の間において、軸金具を軸直角
方向に挟んで位置する一方の側に支持ゴム弾性体を介装
し、他方の側に軸方向に貫通して周方向に広がるスリッ
トを設けることにより、それら軸金具と外筒金具を支持
ゴム弾性体により実質的に一方の側でだけ連結せしめる
一方、軸金具と外筒金具の間に、壁部が支持ゴム弾性体
で構成されて非圧縮性流体が封入された、振動が入力さ
れる受圧室を形成すると共に、軸金具と外筒金具の間に
おけるスリットの形成部側に、非圧縮性流体が封入され
て容積変化が許容される平衡室を形成し、更にそれら受
圧室と平衡室を相互に連通するオリフィス通路を設けた
構造の流体封入式筒形マウントが知られている。
2. Description of the Related Art Conventionally, Japanese Patent Publication No. 5-55739 and Japanese Unexamined Patent Publication No. Hei 5-55739 show a type of a vibration isolator which is interposed between connected bodies constituting a vibration transmission system and connects the connected bodies with vibration isolation. 1-1116329, US Patent No. 46903
As described in No. 89 and the like, a supporting rubber elastic body is interposed between one side of the shaft fitting and the outer cylindrical fitting spaced apart from the outer fitting in a direction perpendicular to the axis. By mounting a slit on the other side and axially penetrating in the circumferential direction and extending in the circumferential direction, the shaft fitting and the outer cylinder fitting are connected substantially only on one side by a supporting rubber elastic body, while the shaft fitting is provided. A wall is formed of a supporting rubber elastic body, a non-compressible fluid is sealed, a pressure receiving chamber into which vibration is input is formed, and a slit between the shaft fitting and the outer cylinder fitting is formed between the outer cylinder fitting and the outer cylinder fitting. A fluid-filled cylindrical type having a structure in which an incompressible fluid is sealed, an equilibrium chamber whose volume change is allowed is formed, and an orifice passage connecting the pressure receiving chamber and the equilibrium chamber to each other is formed on the side of the forming section. Mounts are known.

【0003】かかる筒形マウントは、軸金具と外筒金具
が防振連結される被連結体の各一方に取り付けられて被
連結体間に装着せしめられるが、入力荷重によって軸金
具が外筒金具に対して支持ゴム弾性体側に変位せしめら
れるように装着されることにより、スリットによって支
持ゴム弾性体における引張応力の発生が軽減されて優れ
た耐久性が発揮されると共に、受圧室と平衡室の間でオ
リフィス通路を通じて流動せしめられる流体の共振作用
等の流動作用に基づいて有効な防振効果が発揮されるこ
ととなる。
[0003] Such a cylindrical mount is mounted on each of the connected bodies in which the shaft fitting and the outer cylindrical fitting are vibration-isolated and mounted between the connected bodies, but the shaft fitting is attached to the outer cylindrical fitting by an input load. By being mounted so as to be displaced toward the supporting rubber elastic body side, the generation of tensile stress in the supporting rubber elastic body is reduced by the slit, and excellent durability is exhibited. An effective vibration damping effect is exerted on the basis of a flow action such as a resonance action of the fluid caused to flow through the orifice passage.

【0004】また、かくの如き流体封入式筒形マウント
では、防振すべき振動荷重や、被連結体間に及ぼされる
支持荷重が、何れも、軸直角方向に及ぼされることとな
るが、例えば自動車用エンジンロールマウントとして採
用する場合等において、その装着状態下で、振動荷重の
入力方向と支持荷重の入力方向とが一致せずに、互いに
周方向にずれて及ぼされる場合がある。なお、上記およ
び以下の説明中、マウントの支持荷重は、原則として、
エンジンロールマウントにおけるエンジン荷重やロール
荷重乃至はトルク荷重や振動荷重など、マウントによっ
て支持力が発揮されるべき、マウントに及ぼされる全て
の荷重の合力としての外的荷重をいうものとする。
In such a fluid-filled cylindrical mount, the vibration load to be damped and the support load applied between the connected bodies are all applied in the direction perpendicular to the axis. In the case of adoption as an engine roll mount for automobiles, the input direction of the vibration load and the input direction of the support load may be displaced in the circumferential direction without being matched with each other in the mounted state. In the description above and below, the support load of the mount is, in principle,
It refers to an external load as a resultant force of all loads exerted on the mount, such as an engine load and a roll load, or a torque load and a vibration load, in the engine roll mount.

【0005】ところが、従来の流体封入式筒形マウント
では、その構造上、振動荷重と支持荷重の入力方向の違
いが考慮されていなかったために、例えば、振動荷重の
入力時に受圧室の内圧変化が有効に生ぜしめられてオリ
フィス通路を通じての流体の流動作用に基づく防振効果
が有利に発揮されるようにマウント装着方向を決定する
と、支持荷重の入力によって支持ゴム弾性体に引張応力
が発生して耐久性が不足したり、有効な支持ばね特性が
発揮されなくなったりする場合等があり、流体の流動作
用に基づく有効な防振性能と支持ばね特性を両立して実
現することが難しかったのである。
However, in the conventional fluid-filled cylindrical mount, due to its structure, the difference between the input directions of the vibration load and the support load is not taken into consideration. For example, when the vibration load is input, the internal pressure of the pressure receiving chamber changes. When the mount mounting direction is determined so that the vibration is effectively generated and the vibration isolation effect based on the fluid flow action through the orifice passage is advantageously exerted, a tensile stress is generated in the supporting rubber elastic body by the input of the supporting load. In some cases, durability may be insufficient, or effective support spring characteristics may not be exhibited, and it has been difficult to achieve both effective vibration isolation performance and support spring characteristics based on the fluid flow action. .

【0006】[0006]

【解決課題】ここにおいて、請求項1〜5に記載の発明
(以下、本発明という)は、何れも、上述の如き事情を
背景として為されたものであって、装着状態下における
振動荷重と支持荷重の各入力方向が相互に一致しない場
合にも、流体の流動作用に基づく防振性能と有効な支持
ばね特性とが、簡単な構造をもって、共に高度に両立し
て発揮される、新規な流体封入式筒形マウントを提供す
ることを、目的とする。
Here, the inventions according to claims 1 to 5 (hereinafter, referred to as the present invention) are all made on the background of the above-described circumstances, and the vibration load and the vibration load under the mounted state are all reduced. Even when the input directions of the supporting loads do not coincide with each other, a new structure that achieves a high degree of compatibility between the anti-vibration performance based on the fluid flow action and the effective supporting spring characteristics with a simple structure. It is an object to provide a fluid-filled cylindrical mount.

【0007】[0007]

【解決手段】そして、このような課題を解決するため
に、請求項1に記載の発明の特徴とするところは、軸部
材と該軸部材の外方に離隔配置された外筒部材の間にお
いて、該軸部材を軸直角方向に挟んで位置する一方の側
に支持ゴム弾性体を介装し、他方の側に軸方向に貫通し
て周方向に広がるスリットを設けることにより、それら
軸部材と外筒部材を該支持ゴム弾性体により実質的に前
記一方の側でだけ連結せしめる一方、前記軸部材と前記
外筒部材の間に、軸方向および周方向の各両側壁部が前
記支持ゴム弾性体により構成されて非圧縮性流体が封入
された、振動が入力される受圧室を形成すると共に、前
記軸部材と前記外筒部材の間における前記スリットの形
成部側に、非圧縮性流体が封入されて容積変化が許容さ
れる平衡室を形成し、更にそれら受圧室と平衡室を相互
に連通するオリフィス通路を設けてなり、前記軸部材と
前記外筒部材が防振連結される被連結体の各一方に取り
付けられる流体封入式筒形マウントにおいて、前記支持
ゴム弾性体におけるマウント軸直角方向の弾性変形特性
を、前記受圧室の周方向両側壁部を構成する軸方向中間
部分と、該受圧室の軸方向両側壁部を構成する軸方向両
側部分とで、相互に異ならせて、該支持ゴム弾性体の軸
方向中間部分において前記受圧室に圧力変化を及ぼし易
い荷重入力方向と、該支持ゴム弾性体の軸方向両側部分
において引張変形が生ぜしめられ難い荷重入力方向と
を、互いに周方向にずらせて設定したことにある。
In order to solve such a problem, a feature of the invention according to claim 1 is that a shaft member and an outer cylinder member spaced apart from the shaft member are provided. A support rubber elastic body is interposed on one side of the shaft member sandwiched in the direction perpendicular to the axis, and a slit is formed on the other side so as to penetrate in the axial direction and expand in the circumferential direction. The outer cylindrical member is substantially connected only on the one side by the supporting rubber elastic body, while the both side walls in the axial direction and the circumferential direction are provided between the shaft member and the outer cylindrical member by the supporting rubber elastic member. A non-compressible fluid is enclosed by the body, and forms a pressure receiving chamber to which vibration is input, and an incompressible fluid is provided on the slit forming side between the shaft member and the outer cylinder member. To form an equilibrium chamber that is Further, in the fluid-filled cylindrical mount, which is provided with an orifice passage for communicating the pressure receiving chamber and the equilibrium chamber with each other, and the shaft member and the outer cylindrical member are attached to each one of the connected bodies to be vibration-isolated. The elastic deformation characteristics of the support rubber elastic body in the direction perpendicular to the mount axis are defined by an axial intermediate portion forming the circumferential side walls of the pressure receiving chamber, and an axial side portion forming the axial both side walls of the pressure receiving chamber. Thus, a load input direction that easily causes a pressure change in the pressure receiving chamber at the axially intermediate portion of the support rubber elastic body and a tensile deformation at both axial side portions of the support rubber elastic body are generated. The load input direction which is difficult to be set is set to be shifted from each other in the circumferential direction.

【0008】このような請求項1に記載の発明に従う構
造とされた流体封入式筒形マウントにおいては、支持ゴ
ム弾性体のうち、荷重入力時に弾性変形せしめられて受
圧室に対してピストン的作用を為して受圧室に圧力変動
を生ぜしめることとなる軸方向中間部分と、荷重入力時
における受圧室に対するピストン的作用は少ないが、荷
重入力時に有効なばね剛性を発揮し得る軸方向両側部分
とに対して、互いに異なる設計思想の下に、それぞれの
弾性変形特性が付与されることとなる。そして、かかる
軸方向中間部分においては、そのピストン的作用に基づ
き受圧室に圧力変化を及ぼし易い荷重入力方向を考慮し
て形状等が設計される一方、軸方向両側部分において
は、そのばね剛性に基づき引張応力の発生を押えつつ有
効な弾性支持力を発揮し得る荷重入力方向を考慮して形
状等が設計される。
[0008] In the fluid-filled cylindrical mount having the structure according to the first aspect of the present invention, the support rubber elastic body is elastically deformed when a load is applied and acts like a piston on the pressure receiving chamber. And the axial middle part, which causes pressure fluctuations in the pressure receiving chamber, and both axial parts, which exert little spring-like action on the pressure receiving chamber when load is applied, but can exhibit effective spring rigidity when load is input In contrast, the respective elastic deformation characteristics are provided under different design ideas. In the axially intermediate portion, the shape and the like are designed in consideration of the load input direction that easily causes a pressure change in the pressure receiving chamber based on the action of the piston. The shape and the like are designed based on a load input direction that can exert an effective elastic supporting force while suppressing the generation of tensile stress.

【0009】従って、かかる請求項1に記載の発明に従
う構造とされた流体封入式筒形マウントにおいては、装
着時における振動荷重入力方向と支持荷重入力方向とが
異なる場合にも、振動荷重入力によって受圧室に有効な
圧力変化が生ぜしめられるように、支持ゴム弾性体の軸
方向中間部分の形状等を設計する一方、支持荷重の入力
時における引張応力発生が抑えられるように、支持ゴム
弾性体の軸方向両側部分の形状等を設定することが出来
るのであり、それによって、流体の流動作用に基づく防
振効果と、支持ゴム弾性体の耐久性とが、両立して高度
に達成可能となるのである。
Therefore, in the fluid-filled cylindrical mount having the structure according to the first aspect of the present invention, even if the input direction of the vibration load and the input direction of the support load at the time of mounting are different, the input of the vibration load is performed. Design the shape of the intermediate portion of the supporting rubber elastic body in the axial direction so that an effective pressure change is generated in the pressure receiving chamber, and adjust the supporting rubber elastic body so that the generation of tensile stress when the supporting load is input is suppressed. It is possible to set the shape and the like of both sides in the axial direction, thereby achieving a high level of compatibility between the vibration-proofing effect based on the fluid flow action and the durability of the supporting rubber elastic body. It is.

【0010】なお、このような請求項1に記載の発明に
従う構造とされた流体封入式筒形マウントにあっては、
支持ゴム弾性体の軸方向両側部分に引張変形が生ぜしめ
られ難い荷重入力方向を、支持ゴム弾性体の略周方向中
心線上に設定する一方、受圧室を支持ゴム弾性体の周方
向一方の側に偏倚して形成して、該周方向一方の側に位
置する受圧室の一方の周方向側壁部を他方の周方向側壁
部よりも薄肉とすることにより、受圧室に圧力変化を及
ぼし易い荷重入力方向を、前記支持ゴム弾性体の軸方向
両側部分に引張変形が生ぜしめられ難い荷重入力方向に
対して、該薄肉とされた一方の周方向側壁部側にずらせ
た構成が、好適に採用される。
In the fluid-filled cylindrical mount having the structure according to the first aspect of the present invention,
The load input direction in which tensile deformation is unlikely to occur on both axial portions of the support rubber elastic body is set on the substantially circumferential center line of the support rubber elastic body, while the pressure receiving chamber is set on one side in the circumferential direction of the support rubber elastic body. And the pressure-receiving chamber located on one side in the circumferential direction is made thinner at one circumferential side wall than the other circumferential side wall. A configuration in which the input direction is shifted to one of the thinner circumferential side wall portions with respect to the load input direction in which tensile deformation is unlikely to be generated in both axial portions of the supporting rubber elastic body is preferably adopted. Is done.

【0011】このような構成を採用すれば、振動荷重の
入力時における受圧室の圧力変化の発生を充分に確保し
つつ、支持ゴム弾性体の軸方向両側部分における引張変
形の発生をより有利に軽減乃至は防止せしめて、極めて
優れた耐久性を得ることが出来るのである。
By employing such a configuration, it is possible to more reliably prevent the occurrence of tensile deformation at both axial sides of the supporting rubber elastic body while sufficiently securing the pressure change in the pressure receiving chamber when the vibration load is input. Extremely excellent durability can be obtained by reducing or preventing it.

【0012】また、請求項2に記載の発明は、請求項1
に記載の発明に従う構造とされた流体封入式筒形マウン
トにおいて、前記支持ゴム弾性体の軸方向中間部分にお
ける前記受圧室に圧力変化を及ぼし易い荷重入力方向
に、防振すべき振動荷重が入力される一方、前記支持ゴ
ム弾性体の軸方向両側部分における引張変形が生ぜしめ
られ難い荷重入力方向に、前記被連結体間に作用する支
持荷重が入力されるようにしたことを、特徴とする。
The invention described in claim 2 is the first invention.
In the fluid-filled cylindrical mount having a structure according to the invention described in (1), a vibration load to be subjected to vibration damping is input in a load input direction in which a pressure change is likely to be exerted on the pressure receiving chamber at an axially intermediate portion of the support rubber elastic body. On the other hand, a support load acting between the connected members is input in a load input direction in which tensile deformation is hardly generated in both axial portions of the support rubber elastic body. .

【0013】このような請求項2に記載の発明に従う構
造とされた流体封入式筒形マウントにおいては、振動荷
重の入力時にオリフィス通路を通じて流動せしめられる
流体量が有利に確保されて、流体の流動作用に基づく防
振効果が有効に発揮されると共に、支持荷重による引張
応力の発生が軽減乃至は防止されて、支持ゴム弾性体に
おける亀裂等の発生が抑えられてマウントの耐久性が有
利に確保されるのである。
In the fluid-filled cylindrical mount having the structure according to the second aspect of the present invention, the amount of fluid that can flow through the orifice passage when a vibration load is input is advantageously secured, and the fluid flow The anti-vibration effect based on the action is effectively exhibited, and the generation of tensile stress due to the supporting load is reduced or prevented, and the generation of cracks and the like in the supporting rubber elastic body is suppressed, and the durability of the mount is advantageously secured. It is done.

【0014】さらに、前述の如き課題を解決するため
に、請求項3に記載の発明の特徴とするところは、軸部
材と該軸部材の外方に離隔配置された外筒部材の間にお
いて、該軸部材を軸直角方向に挟んで位置する一方の側
に支持ゴム弾性体を介装し、他方の側に軸方向に貫通し
て周方向に広がるスリットを設けることにより、それら
軸部材と外筒部材を該支持ゴム弾性体により実質的に前
記一方の側でだけ連結せしめる一方、前記軸部材と前記
外筒部材の間に、軸方向および周方向の各両側壁部が前
記支持ゴム弾性体により構成されて非圧縮性流体が封入
された、振動が入力される受圧室を形成すると共に、前
記軸部材と前記外筒部材の間における前記スリットの形
成部側に、非圧縮性流体が封入されて容積変化が許容さ
れる平衡室を形成し、更にそれら受圧室と平衡室を相互
に連通するオリフィス通路を設けてなり、前記軸部材と
前記外筒部材が防振連結される被連結体の各一方に取り
付けられる流体封入式筒形マウントにおいて、前記支持
ゴム弾性体の前記受圧室が設けられた軸方向中間部分に
おける、荷重入力時に周方向両側の圧縮及び剪断応力が
略等しくなる軸直角方向の荷重入力方向と、前記支持ゴ
ム弾性体の該受圧室の周方向両側壁部を構成する軸方向
両側部分における、荷重入力時に周方向両側の圧縮及び
剪断応力が略等しくなる軸直角方向の荷重入力方向と
を、互いに異ならせることによって、かかる支持ゴム弾
性体におけるマウント軸直角方向の弾性変形特性を、そ
れら軸方向中間部分と軸方向両側部分とで相互に異なら
せたことにある。
Further, in order to solve the above-mentioned problem, a feature of the present invention according to claim 3 is that a shaft member and an outer cylinder member spaced apart from the shaft member are provided. A support rubber elastic body is interposed on one side of the shaft member that is sandwiched in the direction perpendicular to the axis, and a slit that penetrates in the axial direction and extends in the circumferential direction is provided on the other side. While the cylindrical member is substantially connected only on the one side by the support rubber elastic body, both side walls in the axial direction and the circumferential direction are provided between the shaft member and the outer cylindrical member by the support rubber elastic body. And a pressure receiving chamber into which vibration is input, in which an incompressible fluid is sealed, and an incompressible fluid is sealed on the side of the slit forming portion between the shaft member and the outer cylinder member. To form an equilibrium chamber where volume changes are allowed Further, in the fluid-filled cylindrical mount, which is provided with an orifice passage for communicating the pressure receiving chamber and the equilibrium chamber with each other, and the shaft member and the outer cylindrical member are attached to each one of the connected bodies to be vibration-isolated. In the axially intermediate portion of the support rubber elastic body where the pressure receiving chamber is provided, a load input direction in a direction perpendicular to the axis at which compression and shear stress on both sides in the circumferential direction are substantially equal at the time of load input; Such support is achieved by making the load input directions in the direction perpendicular to the axis at which the compressive and shear stresses on both sides in the circumferential direction become substantially equal at the time of load input in the axial side portions forming the circumferential side walls of the pressure receiving chamber. The elastic deformation characteristics of the rubber elastic body in the direction perpendicular to the mount axis are different between the intermediate portion in the axial direction and the both side portions in the axial direction.

【0015】なお、上記圧縮及び剪断応力は、単位断面
積あたりの応力でなく、荷重入力方向線を挟んで周方向
両側に位置するそれぞれの全領域において発生する総応
力をいう。
Note that the compressive and shear stresses are not the stresses per unit cross-sectional area but the total stresses generated in all the regions located on both sides in the circumferential direction with respect to the load input direction line.

【0016】このような請求項3に記載の発明に従う構
造とされた流体封入式筒形マウントにおいて、支持ゴム
弾性体の軸方向中間部分では、周方向両側の圧縮及び剪
断応力が略等しくなる軸直角方向に荷重が入力された際
に、受圧室内方への弾性変形が効率的に生ぜしめられて
受圧室に有効な圧力変化が生ぜしめられる一方、支持ゴ
ム弾性体の軸方向両側部分では、周方向両側の圧縮およ
び剪断応力が略等しくなる軸直角方向に荷重が入力され
た際に、引張応力の発生を抑えつつ有効なばね剛性によ
って優れた荷重支持特性が発揮されることとなる。
In the fluid-filled cylindrical mount having the structure according to the third aspect of the present invention, in the axially intermediate portion of the support rubber elastic body, the axial and compressive shear forces on both sides in the circumferential direction are substantially equal. When a load is input in the perpendicular direction, elastic deformation toward the pressure receiving chamber is efficiently generated, and an effective pressure change is generated in the pressure receiving chamber.On the other hand, on both axial sides of the support rubber elastic body, When a load is input in a direction perpendicular to the axis at which the compressive and shear stresses on both sides in the circumferential direction are substantially equal, excellent load supporting characteristics are exhibited by effective spring rigidity while suppressing generation of tensile stress.

【0017】それ故、かかる請求項3に記載の発明に従
う構造とされた流体封入式筒形マウントにおいても、請
求項1に記載の発明に従う構造とされた流体封入式筒形
マウントと同様、装着時における振動荷重入力方向と支
持荷重入力方向とが異なる場合にも、流体の流動作用に
基づく防振効果と、有効な荷重支持特性を、両立して高
度に達成することが出来るのである。
Therefore, the fluid-filled cylindrical mount having the structure according to the third aspect of the present invention is mounted similarly to the fluid-filled cylindrical mount having the structure according to the first aspect of the present invention. Even when the input direction of the vibration load and the input direction of the support load at the time are different, the vibration isolation effect based on the fluid flow action and the effective load support characteristics can both be achieved at a high level.

【0018】なお、請求項1乃至3の何れかに記載の流
体封入式筒形マウントにおいては、例えば、支持ゴム弾
性体の周方向両側面に軸方向中間部分と軸方向両側部分
の間で段差等をつけて、それら軸方向中間部分と軸方向
両側部分における弾性変形特性を相互に異ならせること
も可能であるが、支持ゴム弾性体の成形性や耐久性等の
観点から、スリットをマウント軸方向全長に亘って略一
定断面形状とすることにより、支持ゴム弾性体の周方向
両側面を、軸方向中間部分および軸方向両側部分の全体
として軸方向に平坦面とし、軸方向中間部分に形成され
る受圧室の形状等や、軸方向両側部分の軸方向内外面の
形状等を適当に設定すること等によって、軸方向中間部
分と軸方向両側部分における弾性変形特性を相互に異な
らせることが望ましい。
In the fluid-filled cylindrical mount according to any one of the first to third aspects, for example, a step is formed between the axially intermediate portion and the axially opposite side portion on both circumferential sides of the support rubber elastic body. It is also possible to make the elastic deformation characteristics of the intermediate portion in the axial direction and the both side portions in the axial direction different from each other, but from the viewpoint of the moldability and durability of the supporting rubber elastic body, the slit is mounted on the mounting shaft. By forming a substantially constant cross-sectional shape over the entire length in the direction, the circumferential side surfaces of the support rubber elastic body are flattened in the axial direction as a whole in the axial middle portion and the axial both side portions, and formed in the axial middle portion. By appropriately setting the shape of the pressure receiving chamber and the shape of the inner and outer surfaces in the axial direction on both sides in the axial direction, the elastic deformation characteristics in the axial intermediate portion and the axial both sides can be made different from each other. Hope There.

【0019】さらに、前述の如き課題を解決するため
に、請求項4に記載の発明の特徴とするところは、軸部
材と該軸部材の外方に離隔配置された外筒部材の間にお
いて、該軸部材を軸直角方向に挟んで位置する一方の側
に支持ゴム弾性体を介装し、他方の側に軸方向に貫通し
て周方向に広がるスリットを設けることにより、それら
軸部材と外筒部材を該支持ゴム弾性体により実質的に前
記一方の側でだけ連結せしめる一方、前記軸部材と前記
外筒部材の間に、軸方向および周方向の各両側壁部が前
記支持ゴム弾性体により構成されて非圧縮性流体が封入
された、振動が入力される受圧室を形成すると共に、前
記軸部材と前記外筒部材の間における前記スリットの形
成部側に、非圧縮性流体が封入されて容積変化が許容さ
れる平衡室を形成し、更にそれら受圧室と平衡室を相互
に連通するオリフィス通路を設けてなり、前記軸部材と
前記外筒部材が防振連結される被連結体の各一方に取り
付けられる流体封入式筒形マウントにおいて、前記スリ
ットをマウント軸方向全長に亘って略一定断面形状とす
る一方、前記支持ゴム弾性体における軸方向両端面の周
方向中間部分において凹陥又は突出する偏肉部を形成
し、該偏肉部の周方向中心を、前記受圧室の周方向中心
に対して周方向に相互にずらせることにより、かかる支
持ゴム弾性体におけるマウント軸直角方向の弾性変形特
性を、該受圧室の周方向両側壁部を構成する軸方向中間
部分と、該受圧室の軸方向両側壁部を構成する軸方向両
側部分とで、互いに異ならせたことにある。
Further, in order to solve the above-mentioned problem, a feature of the present invention according to claim 4 is that a shaft member and an outer cylindrical member which is spaced apart from the shaft member are provided. A support rubber elastic body is interposed on one side of the shaft member that is sandwiched in the direction perpendicular to the axis, and a slit that penetrates in the axial direction and extends in the circumferential direction is provided on the other side. While the cylindrical member is substantially connected only on the one side by the support rubber elastic body, both side walls in the axial direction and the circumferential direction are provided between the shaft member and the outer cylindrical member by the support rubber elastic body. And a pressure receiving chamber into which vibration is input, in which an incompressible fluid is sealed, and an incompressible fluid is sealed on the side of the slit forming portion between the shaft member and the outer cylinder member. To form an equilibrium chamber where volume changes are allowed Further, in the fluid-filled cylindrical mount, which is provided with an orifice passage for communicating the pressure receiving chamber and the equilibrium chamber with each other, and the shaft member and the outer cylindrical member are attached to each one of the connected bodies to be vibration-isolated. The slit has a substantially constant cross-sectional shape over the entire length in the mount axial direction, and a concave or projecting thickened portion is formed in a circumferentially intermediate portion of both axial end surfaces of the support rubber elastic body. By displacing the center in the circumferential direction with respect to the center in the circumferential direction of the pressure receiving chamber in the circumferential direction, the elastic deformation characteristics of the support rubber elastic body in the direction perpendicular to the mount axis can be reduced. And the axially opposite side portions of the pressure receiving chamber that constitute the axially opposite side walls are different from each other.

【0020】このような請求項4に記載の発明に従う構
造とされた流体封入式筒形マウントにおいては、支持ゴ
ム弾性体の軸方向中間部分が弾性変形によって受圧室に
有効な圧力変化を生ぜしめ得る荷重入力方向を、受圧室
の周方向中心を適当に設定することによって調節するこ
とが出来る一方、支持ゴム弾性体の軸方向両側壁部によ
る適当なばね剛性が、応力の局部的集中等を伴うことな
く発揮される荷重入力方向を、偏肉部の周方向中心を適
当に設定することによって調節することが出来る。
In the fluid-filled cylindrical mount having the structure according to the fourth aspect of the present invention, the axially intermediate portion of the supporting rubber elastic body causes an effective pressure change in the pressure receiving chamber due to elastic deformation. The load input direction to be obtained can be adjusted by appropriately setting the center in the circumferential direction of the pressure receiving chamber. On the other hand, the appropriate spring stiffness due to both side walls in the axial direction of the supporting rubber elastic body reduces the local concentration of stress and the like. The load input direction exerted without accompanying can be adjusted by appropriately setting the circumferential center of the uneven thickness portion.

【0021】そして、これら受圧室と偏肉部の各周方向
中心は、相互に独立して且つ周方向に相互にずらせて設
定され得ることから、防振すべき振動荷重の入力方向を
考慮して受圧室の周方向中心を設定すると共に、被連結
体間に作用する支持荷重の入力方向を考慮して偏肉部の
周方向中心を設定することによって、振動荷重の入力方
向と支持荷重の入力方向が互いに異なる場合でも、振動
荷重の入力時に支持ゴム弾性体の軸方向中間部分におけ
るピストン的作用に基づいて流体の流動作用に基づく防
振効果が有効に発揮されると共に、支持荷重に対して支
持ゴム弾性体の軸方向両側部分における圧縮及び剪断応
力に基づいて、局部的な応力集中等を防止しつつ、適当
な支持ばね剛性が良好なる耐久性のもとに発揮されるの
である。
Since the center of each of the pressure receiving chamber and the uneven thickness portion in the circumferential direction can be set independently of each other and shifted from each other in the circumferential direction, the input direction of the vibration load to be damped is taken into consideration. By setting the center of the pressure receiving chamber in the circumferential direction, and by setting the center of the uneven thickness portion in the circumferential direction in consideration of the input direction of the support load acting between the connected bodies, the input direction of the vibration load and the support Even when the input directions are different from each other, the vibration damping effect based on the fluid flow action based on the piston-like action at the axially intermediate portion of the supporting rubber elastic body at the time of inputting the vibration load is effectively exhibited, and Thus, based on the compressive and shear stresses on both axial sides of the support rubber elastic body, appropriate support spring stiffness is exhibited with good durability while preventing local stress concentration and the like.

【0022】なお、受圧室と偏肉部の各周方向中心は、
少なくとも何れか一方が周方向に偏倚することによっ
て、互いに周方向にずらされておれば良いが、好ましく
は、支持ゴム弾性体の周方向中心に対して、それら受圧
室と偏肉部の各周方向中心が、互いに周方向反対側に偏
倚して位置せしめられる。
The center of each of the pressure receiving chamber and the uneven thickness portion in the circumferential direction is
It is sufficient that at least one of the pressure receiving chambers and the uneven thickness portion are shifted from each other in the circumferential direction by biasing at least one in the circumferential direction. The directional centers are positioned offset from each other in the circumferential direction.

【0023】また、請求項5に記載の発明は、請求項4
に記載の発明に従う構造とされた流体封入式筒形マウン
トにおいて、前記偏肉部の周方向中心に対する前記受圧
室の周方向中心の周方向におけるずれ量が、前記軸部材
と前記外筒部材の間にそれぞれ及ぼされる、防振すべき
振動荷重の入力方向に対する前記被連結体間に作用する
支持荷重の入力方向のずれ量に応じて設定されているこ
とを、特徴とする。
The invention described in claim 5 is the same as the invention described in claim 4.
In the fluid-filled cylindrical mount having the structure according to the invention described in (1), the amount of deviation in the circumferential direction of the circumferential center of the pressure receiving chamber with respect to the circumferential center of the uneven thickness portion is different between the shaft member and the outer cylindrical member. It is characterized in that it is set in accordance with the amount of shift in the input direction of the support load acting between the connected bodies with respect to the input direction of the vibration load to be damped, which is exerted between them.

【0024】このような請求項5に記載の発明に従う構
造とされた流体封入式筒形マウントにおいては、防振す
べき振動荷重が受圧室の略周方向中心を通る方向に及ぼ
される一方、支持荷重が偏肉部の略周方向中心を通る方
向に及ぼされるように、装着せしめることが出来るので
あり、それによって、支持ゴム弾性体の軸方向中間部分
におけるピストン的作用がより有効に発揮されて、振動
荷重の入力時にオリフィス通路を通じて流動せしめられ
る流体量が有利に確保されることにより、流体の流動作
用に基づく防振効果が一層有効に発揮されると共に、支
持ゴム弾性体の軸方向両側部分における圧縮ばね剛性が
より有効に発揮されて、支持荷重に対する支持ばね剛性
が一層有効に発揮されることにより、支持ゴム弾性体に
おける耐久性が有利に確保され得るのである。
In the fluid-filled cylindrical mount having the structure according to the fifth aspect of the present invention, the vibration load to be damped is applied in a direction passing through the substantially circumferential center of the pressure receiving chamber, while the support is provided. The mounting can be performed so that the load is applied in the direction passing through the substantially circumferential center of the uneven thickness portion, whereby the piston-like action at the axially intermediate portion of the supporting rubber elastic body is more effectively exhibited. When the vibration load is input, the amount of fluid that can be made to flow through the orifice passage is advantageously ensured, so that the vibration damping effect based on the fluid flow action is more effectively exerted, and the axially opposite sides of the supporting rubber elastic body. The compression rubber stiffness is more effectively exerted, and the support spring stiffness with respect to the support load is more effectively exerted. Than it can be reserved.

【0025】ところで、請求項1乃至5の何れかに記載
の発明に従う構造とされた流体封入式筒形マウントにお
いては、支持ゴム弾性体を、軸直角方向断面において、
全体として、軸部材側から外筒部材側に向かって広がる
略扇形の断面形状をもって形成することが好ましい。
By the way, in the fluid-filled cylindrical mount having the structure according to any one of the first to fifth aspects of the present invention, the supporting rubber elastic body is formed so as to have a cross section perpendicular to the axis.
As a whole, it is preferable to form it with a substantially fan-shaped cross-sectional shape that spreads from the shaft member side to the outer cylinder member side.

【0026】このような支持ゴム弾性体の形状を採用す
れば、支持荷重の入力時において、支持ゴム弾性体の軸
方向中間部分および軸方向両側部分における引張応力の
発生を有利に軽減乃至は防止することが可能となる。
By adopting such a shape of the supporting rubber elastic body, it is possible to advantageously reduce or prevent the occurrence of tensile stress in the axially intermediate portion and the axially both side portions of the supporting rubber elastic body when a supporting load is input. It is possible to do.

【0027】また、請求項1乃至5の何れかに記載の発
明に従う構造とされた流体封入式筒形マウントにおいて
は、支持ゴム弾性体の外周面に金属スリーブを加硫接着
せしめて、該金属スリーブに外筒金具を外嵌固定すると
共に、金属スリーブに設けた窓部を通じて外周面に開口
するポケット部を外筒金具で閉塞することによって受圧
室を形成する一方、支持ゴム弾性体の軸方向中間部分に
おける受圧室の周方向両側壁部のうち、振動荷重の入力
方向に対して支持荷重の入力方向側に位置せしめられる
受圧室の周方向一方の側壁部、換言すれば支持荷重によ
る圧縮応力が大なる方の周方向側壁部において、その外
周面に接着された金属スリーブを内方に突出させて周方
向に延びる凹溝を形成し、該凹溝の外周面開口部を外筒
金具で覆蓋することにより、受圧室と平衡室を繋ぐオリ
フィス通路を形成せしめると共に、かかる内方に突出す
る凹溝によって、圧縮応力が大なる方の周方向側壁部よ
りも、他方の周方向側壁部の方が、軸直角方向における
弾性変形可能な自由長を大きく設定するようにしても良
い。
In the fluid-filled cylindrical mount having the structure according to any one of the first to fifth aspects of the present invention, the metal sleeve is vulcanized and bonded to the outer peripheral surface of the supporting rubber elastic body. A pressure receiving chamber is formed by externally fitting and fixing the outer cylinder fitting to the sleeve, and closing the pocket portion opened to the outer peripheral surface through the window provided in the metal sleeve with the outer cylinder fitting. Of the circumferential side walls of the pressure receiving chamber in the intermediate portion, one of the circumferential side walls of the pressure receiving chamber positioned on the input side of the support load with respect to the input direction of the vibration load, in other words, the compressive stress due to the support load. In the larger circumferential side wall portion, the metal sleeve bonded to the outer peripheral surface is formed to protrude inward to form a concave groove extending in the circumferential direction, and the outer peripheral surface opening of the concave groove is formed with an outer cylinder fitting. Cover Thereby, while forming an orifice passage connecting the pressure receiving chamber and the equilibrium chamber, due to the inwardly protruding groove, the other circumferential side wall portion has a larger compressive stress than the circumferential side wall portion. The elastically deformable free length in the direction perpendicular to the axis may be set large.

【0028】このような構成を採用すれば、支持ゴム弾
性体の軸方向中間部分において支持荷重入力時に引張応
力が発生し易い周方向一方の側壁部に対して、仮に、引
張応力が発生した場合でも、その自由長が大きくされて
いることにより、生ぜしめられる引張歪みの量、即ち単
位長さあたりの引張変形量乃至は単位断面積あたりの引
張応力が小さく抑えられるのであり、その結果、支持ゴ
ム弾性体の軸方向中間部分における耐久性も有利に確保
され得て、マウントの耐久性の更なる向上が図られ得る
のである。
If such a configuration is adopted, if a tensile stress is generated on one circumferential side wall portion where a tensile stress is likely to be generated when a supporting load is input at the axially intermediate portion of the supporting rubber elastic body. However, by increasing the free length, the amount of tensile strain generated, that is, the amount of tensile deformation per unit length or the tensile stress per unit cross-sectional area can be suppressed to a small value. The durability at the axially intermediate portion of the rubber elastic body can be advantageously secured, and the durability of the mount can be further improved.

【0029】しかも、かかる構成を採用すれば、支持ゴ
ム弾性体の軸方向中間部分における周方向両側壁部の自
由長を相互に異ならせるために設けられた、金属スリー
ブにおける内方突部(凹溝)を利用して、オリフィス通
路が形成されることから、スペースを有効に利用しつ
つ、オリフィス通路が有利に形成され得るのである。
In addition, if such a configuration is adopted, the inner protrusions (concave portions) of the metal sleeve provided to make the free lengths of the circumferential side walls at the axially intermediate portion of the supporting rubber elastic body different from each other. Since the orifice passage is formed using the groove, the orifice passage can be advantageously formed while effectively utilizing the space.

【0030】[0030]

【発明の実施の形態】以下、本発明を更に具体的に明ら
かにするために、本発明の実施の形態の一具体例につい
て、図面を参照しつつ、詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, in order to clarify the present invention more specifically, a specific example of an embodiment of the present invention will be described in detail with reference to the drawings.

【0031】先ず、図1〜3には、本発明に従う構造と
された自動車用エンジンマウント10が示されている。
このエンジンマウント10は、軸部材としての内筒金具
12と、その外方に所定距離を隔てて配設された外筒部
材としての外筒金具14が、それら内外筒金具12,1
4間に介装された支持ゴム弾性体16によって弾性的に
連結された構造とされている。そして、内筒金具12が
パワーユニット側に、外筒金具14がボデー側に、それ
ぞれ取り付けられることにより、パワーユニットとボデ
ーの間に介装されて、パワ−ユニットをボデーに対して
防振支持せしめるようになっている。
First, FIGS. 1 to 3 show an automobile engine mount 10 having a structure according to the present invention.
The engine mount 10 includes an inner cylinder fitting 12 as a shaft member and an outer cylinder fitting 14 as an outer cylinder member disposed outside of the inner cylinder fitting 12 at a predetermined distance.
It is structured to be elastically connected by a supporting rubber elastic body 16 interposed between the four. By mounting the inner cylinder fitting 12 on the power unit side and the outer cylinder fitting 14 on the body side, the inner cylinder fitting 12 is interposed between the power unit and the body so that the power unit is supported on the body with vibration isolation. It has become.

【0032】より詳細には、内筒金具12は、ストレー
トな円筒形状を有しており、図示はされていないが、内
孔18に挿通されるボルト等により、自動車のパワーユ
ニット側に固定されるようになっている。
More specifically, the inner cylinder fitting 12 has a straight cylindrical shape, and is fixed to the power unit side of the vehicle by bolts or the like inserted into the inner hole 18 although not shown. It has become.

【0033】また、内筒金具12の径方向外方には、全
体として大径の薄肉円筒形状を有する金属スリーブ20
が配設されており、この金属スリーブ20が、内筒金具
12の周りを所定距離を隔てて囲むようにして、且つ内
筒金具12に対して径方向に僅かに偏心して位置せしめ
られている。かかる金属スリーブ20には、その周壁部
の軸方向中央部分において、それぞれ半周には至らない
周方向長さで開口する第一の窓部22と第二の窓部24
が、径方向に対向位置して形成されている。なお、第一
の窓部22は、第二の窓部24よりも、僅かに周方向長
さが短く設定されている。換言すれば、金属スリーブ2
0は、互いに軸方向に所定距離を隔てて同一軸上に配設
された円環形状乃至は円筒形状を有する一対のリング状
部26,26が、それらの軸方向対向面間に跨がって延
びる第一及び第二の軸方向連結部28,30によって一
体的に連結されており、リング状部26,26の軸方向
対向面間の開口が、第一及び第二の軸方向連結部28,
30で仕切られることにより、径方向で対向位置する第
一の窓部22と第二の窓部24が形成されているのであ
る。
A metal sleeve 20 having a large-diameter thin-walled cylindrical shape as a whole is provided radially outward of the inner cylindrical fitting 12.
The metal sleeve 20 is positioned so as to surround the inner cylindrical fitting 12 at a predetermined distance and is slightly eccentric in the radial direction with respect to the inner cylindrical fitting 12. The metal sleeve 20 has a first window portion 22 and a second window portion 24, each of which has a circumferential length that does not reach half a circumference at a central portion in the axial direction of the peripheral wall portion.
Are formed facing each other in the radial direction. The first window 22 has a slightly shorter circumferential length than the second window 24. In other words, the metal sleeve 2
Reference numeral 0 denotes a pair of annular or cylindrical ring-shaped portions 26, 26 which are arranged on the same axis at a predetermined distance in the axial direction from each other and straddle between their axially opposed surfaces. The first and second axial connecting portions are integrally connected by first and second axial connecting portions 28 and 30 extending from each other, and an opening between the axially facing surfaces of the ring-shaped portions 26 and 26 is formed by the first and second axial connecting portions. 28,
By partitioning at 30, a first window portion 22 and a second window portion 24 that are radially opposed to each other are formed.

【0034】更にまた、金属スリーブ20では、第一の
軸方向連結部28が径方向内方に凹陥せしめられてお
り、それによって、金属スリーブ20の外周面上に開口
し、第一の窓部22と第二の窓部24の間に跨がって周
方向に延びる凹溝が形成されている。このことから明ら
かなように、本実施例では、第一の軸方向連結部28に
よって、他方の軸方向連結部(第二の軸方向連結部)3
0よりも径方向内方に突出する内方突部が構成されてい
る。
Further, in the metal sleeve 20, the first axial connecting portion 28 is recessed inward in the radial direction, whereby the first axial connecting portion 28 is opened on the outer peripheral surface of the metal sleeve 20, and the first window portion is formed. A groove extending in the circumferential direction is formed so as to extend between the second window portion 22 and the second window portion 24. As is apparent from this, in the present embodiment, the first axial connecting portion 28 allows the other axial connecting portion (second axial connecting portion) 3
An inward projection that projects radially inward from zero is formed.

【0035】そして、かかる金属スリーブ20は、内筒
金具12に外挿されて、内筒金具12に対して、略第一
の窓部22と第二の窓部24が対向位置する径方向にお
いて、第一の窓部22側で離隔し第二の窓部24側で接
近して位置せしめられる状態で、偏心して配設されてい
る。
The metal sleeve 20 is externally inserted into the inner cylindrical fitting 12 and is positioned in a radial direction where the first window 22 and the second window 24 are opposed to the inner cylindrical fitting 12. Are arranged eccentrically in a state where they are separated from each other on the side of the first window portion 22 and close to each other on the side of the second window portion 24.

【0036】また、金属スリーブ20における第二の窓
部24の周方向中間部分には、溝形のストッパ金具32
が両リング状部26,26間に跨がって配設されて、そ
れらリング状部26,26の内周面に固着されている。
そして、このストッパ金具32が、金属スリーブ20の
内周面から内筒金具12側に向かって溝底部が突出する
状態で、換言すれば金属スリーブ20の第二の窓部24
を通じて溝内部が開口する状態で位置せしめられてお
り、該ストッパ金具32の溝底部が内筒金具12に対し
て、径方向に所定距離を隔てて対向せしめられている。
A groove-shaped stopper fitting 32 is provided in the metal sleeve 20 at a circumferentially intermediate portion of the second window 24.
Are provided so as to straddle between the two ring-shaped portions 26, 26, and are fixed to the inner peripheral surfaces of the ring-shaped portions 26, 26.
Then, in a state in which the groove of the stopper projects from the inner peripheral surface of the metal sleeve 20 toward the inner cylinder 12, in other words, the second window 24 of the metal sleeve 20.
The inside of the groove is positioned so as to open, and the groove bottom of the stopper fitting 32 is opposed to the inner cylinder fitting 12 at a predetermined distance in the radial direction.

【0037】さらに、内筒金具12と金属スリーブ20
の径方向対向面間には、それら両部材12,20の偏心
方向における離隔距離が大なる側において、支持ゴム弾
性体16が介装されて、内筒金具12および金属スリー
ブ20に対して加硫接着されており、この支持ゴム弾性
体16によって、内筒金具12と金属スリーブ20が弾
性的に連結されている。この支持ゴム弾性体16は、内
筒金具12が金属スリーブ20に対して第二の窓部24
側に偏心位置せしめられていることに加えて、第一の窓
部22が第二の窓部24よりも周方向開口幅が小さくさ
れており、周囲が略扇形の断面形状をもって形成されて
いるが、実質的には、かかる支持ゴム弾性体16は、内
筒金具12と金属スリーブ20の間において、それら両
部材12,20の偏心方向における離隔距離が大なる側
にだけ介装されている。また、支持ゴム弾性体16は、
周方向両側端面が軸方向全長に亘って略平坦面とされ
て、軸方向全長に亘って略一定の外周形状とされてい
る。
Further, the inner tube fitting 12 and the metal sleeve 20
A support rubber elastic body 16 is interposed between the radially opposed surfaces of the two on the side where the separation distance between the two members 12 and 20 in the eccentric direction is large, and is added to the inner cylinder fitting 12 and the metal sleeve 20. The inner cylindrical fitting 12 and the metal sleeve 20 are elastically connected to each other by the support rubber elastic body 16. The support rubber elastic body 16 is formed so that the inner cylindrical metal fitting 12 is in contact with the metal sleeve 20 in the second window 24.
In addition to being eccentrically positioned on the side, the first window portion 22 has a smaller circumferential opening width than the second window portion 24, and has a substantially fan-shaped cross section around the first window portion 22. However, substantially, the supporting rubber elastic body 16 is interposed only between the inner cylindrical member 12 and the metal sleeve 20 on the side where the distance between the two members 12 and 20 in the eccentric direction is large. . In addition, the supporting rubber elastic body 16
Both end surfaces in the circumferential direction are substantially flat surfaces over the entire length in the axial direction, and have a substantially constant outer peripheral shape over the entire length in the axial direction.

【0038】また、支持ゴム弾性体16には、その内部
をくり抜くようにしてポケット部38が形成されてお
り、このポケット部38が、金属スリーブ20の第一の
窓部22を通じて、外周面に開口せしめられている。要
するに、ポケット部38は、周壁部が支持ゴム弾性体1
6によって構成されているのである。また、かかるポケ
ット部38の周壁部のうち、支持ゴム弾性体16の軸方
向中間部分によって構成されてポケット部38の周方向
両側壁部を構成する第一の周方向側壁部40と第二の周
方向側壁部42は、内筒金具12と第一の軸方向連結部
28の径方向対向面間および内筒金具12と第二の軸方
向連結部30の径方向対向面間に、それぞれ介装されて
いる。
The support rubber elastic body 16 is formed with a pocket 38 so as to hollow out the inside thereof, and the pocket 38 is formed on the outer peripheral surface through the first window 22 of the metal sleeve 20. It is opened. In short, the pocket portion 38 has a peripheral wall portion of the supporting rubber elastic body 1.
6. Further, of the peripheral wall portion of the pocket portion 38, the first peripheral side wall portion 40 and the second peripheral side wall portion which are constituted by the axially intermediate portion of the support rubber elastic body 16 and constitute the peripheral side wall portions of the pocket portion 38. The circumferential side wall portion 42 is interposed between the radially opposed surfaces of the inner cylindrical member 12 and the first axial connection portion 28 and between the radially opposite surfaces of the inner cylindrical member 12 and the second axially connected portion 30, respectively. Is equipped.

【0039】ここにおいて、ポケット部38は、支持ゴ
ム弾性体16内において、その中心位置が支持ゴム弾性
体16の周方向中心点に対して周方向一方の側に偏倚し
て形成されており、それによって、第二の周方向側壁部
42における周方向の肉厚寸法が、第一の周方向側壁部
40よりも小さくされている。換言すれば、内筒金具1
2側の荷重入力点とポケット部38の周方向中心点を通
る方向線が、内筒金具12側の荷重入力点と支持ゴム弾
性体16の周方向中心点を通る方向線に対して、マウン
ト周方向において第二の周方向側壁部42側に所定量だ
けずれて設定されているのである。
Here, the pocket portion 38 is formed such that its center position is deviated to one side in the circumferential direction with respect to the circumferential center point of the support rubber elastic body 16 in the support rubber elastic body 16. Thereby, the thickness of the second circumferential side wall portion 42 in the circumferential direction is made smaller than that of the first circumferential side wall portion 40. In other words, the inner cylinder fitting 1
The direction line passing through the load input point on the second side and the center point in the circumferential direction of the pocket portion 38 is mounted with respect to the direction line passing through the load input point on the side of the inner cylinder fitting 12 and the center point in the circumferential direction of the supporting rubber elastic body 16. It is set to be shifted by a predetermined amount toward the second circumferential side wall portion 42 in the circumferential direction.

【0040】このように、ポケット部38が支持ゴム弾
性体16に対して周方向に偏倚して形成されていること
により、内筒金具12が外筒金具14に対して径方向に
相対変位した際に第一及び第二の周方向側壁部40,4
2がポケット部38の内方に向かって有利に膨出変形せ
しめられて該ポケット部38の容積が最も大きく変化せ
しめられる、内外筒金具12,14の径方向における相
対変位方向が、支持ゴム弾性体16の周方向中心線の方
向からポケット部38の周方向偏倚方向に所定量だけず
らされているのである。また、見方を変えれば、内筒金
具12が外筒金具14に対して径方向に相対変位した際
に、第一の周方向側壁部40と第二の周方向側壁部42
に生ぜしめられる応力(圧縮および剪断応力)が略等し
くなって且つ引張応力の発生が最も小さくなる、内外筒
金具12,14の相対変位方向が、支持ゴム弾性体16
の周方向中心線の方向からポケット部38の周方向偏倚
方向に所定量だけずらされているのである。
As described above, since the pocket portion 38 is formed so as to be deviated in the circumferential direction with respect to the support rubber elastic body 16, the inner cylindrical member 12 is relatively displaced in the radial direction with respect to the outer cylindrical member 14. At this time, the first and second circumferential side wall portions 40, 4
2 is swelled and deformed inwardly of the pocket 38 so that the volume of the pocket 38 can be changed most greatly. It is shifted by a predetermined amount from the direction of the circumferential center line of the body 16 in the direction in which the pocket portion 38 is biased in the circumferential direction. In other words, when the inner cylindrical member 12 is radially displaced relative to the outer cylindrical member 14, the first circumferential side wall portion 40 and the second circumferential side wall portion 42
The relative displacement direction of the inner and outer tube fittings 12 and 14 at which the stress (compression and shear stress) generated in the inner and outer cylindrical fittings 12 and 14 at which the generation of the tensile stress becomes the smallest is determined.
Is shifted by a predetermined amount from the direction of the circumferential center line in the circumferential direction of the pocket portion 38.

【0041】また、金属スリーブ20が、第一の周方向
側壁部40の外周面が接着された第一の軸方向連結部2
8において、第二の周方向側壁部42の外周面が接着さ
れた第二の軸方向連結部30よりも径方向内方に凹陥せ
しめられ、内筒金具12との径方向の対向面間距離が小
さくされていることによって、内筒金具12と第一の軸
方向連結部28の間に介装された第一の周方向側壁部4
0よりも、内筒金具12と第二の軸方向連結部30の間
に介装された第二の周方向側壁部42の方が、径方向の
自由長が大きく設定されている。なお、第一の周方向側
壁部40の外周面上には、金属スリーブ20の第一の軸
方向連結部28によって、周方向に延びる凹溝43が形
成されている。
The metal sleeve 20 is connected to the first axial connecting portion 2 to which the outer peripheral surface of the first circumferential side wall portion 40 is bonded.
At 8, the outer peripheral surface of the second circumferential side wall portion 42 is recessed inward in the radial direction from the second axial connection portion 30 to which the second circumferential side wall portion 42 is bonded, and the distance between the radially opposed surfaces with the inner cylindrical metal fitting 12. Is reduced, the first circumferential side wall portion 4 interposed between the inner cylindrical fitting 12 and the first axial connection portion 28 is formed.
The free length in the radial direction is set to be greater in the second circumferential side wall portion 42 interposed between the inner cylinder fitting 12 and the second axial connection portion 30 than in the case of 0. A groove 43 extending in the circumferential direction is formed on the outer peripheral surface of the first circumferential side wall portion 40 by the first axial connecting portion 28 of the metal sleeve 20.

【0042】さらに、ポケット部38の周壁部のうち、
支持ゴム弾性体16の軸方向両端部分によって構成され
たポケット部38の軸方向側壁部44,44には、それ
ぞれ、周方向の中間部分の外面において、外周部分が軸
方向外方に突出した軸方向凸部46とされると共に、内
周部分が軸方向内方に凹陥した軸方向凹部48とされた
偏肉部50が、ポケット部38の周方向長さと略同一の
周方向長さで形成されている。これらの偏肉部50,5
0は、何れも、その周方向中心が支持ゴム弾性体16の
周方向中心に対して、ポケット部38のずれ方向とは反
対の周方向、換言すれば第一の周方向側壁部40側に近
づく周方向に、僅かにずれて形成されている。
Further, of the peripheral wall portion of the pocket portion 38,
The axial side walls 44, 44 of the pocket portion 38 formed by the axial end portions of the supporting rubber elastic body 16 have shafts whose outer peripheral portions protrude outward in the axial direction on the outer surfaces of the circumferential intermediate portions, respectively. The uneven thickness portion 50, which is a convex portion 46, and whose inner peripheral portion is an axial concave portion 48 recessed inward in the axial direction, has a circumferential length substantially equal to the circumferential length of the pocket portion 38. Have been. These uneven thickness portions 50 and 5
In the case of 0, the center in the circumferential direction is in the circumferential direction opposite to the shift direction of the pocket portion 38 with respect to the circumferential center of the supporting rubber elastic body 16, that is, in the first circumferential side wall portion 40 side. It is formed slightly shifted in the circumferential direction approaching.

【0043】このように、各軸方向側壁部44に偏肉部
50が形成されていることにより、軸方向側壁部44に
おける径方向の支持ばね剛性の大きさ等が調節されてい
るのであり、特に、偏肉部50が軸方向側壁部44の周
方向に偏倚して形成されていることにより、支持ばね剛
性が有効に発揮される、内外筒金具12,14の径方向
における相対変位方向が、前記第一の周方向側壁部40
と第二の周方向側壁部42に生ぜしめられる両応力(圧
縮および剪断)が略等しくなって且つ引張応力の発生が
最も小さくなる内外筒金具12,14の相対変位方向に
対して、偏肉部50の周方向偏倚方向に所定量だけずら
されているのである。また、見方を変えれば、内筒金具
12が外筒金具14に対して径方向に相対変位した際、
第一及び第二の周方向側壁部40,42において、周方
向両側で生ぜしめられる応力(圧縮および剪断応力)が
略等しくなって且つ引張応力の発生が最も小さくなる、
内外筒金具12,14の相対変位方向と、各軸方向側壁
部44,44において、周方向両側で生ぜしめられる応
力(圧縮および剪断応力)が略等しくなって且つ引張応
力の発生が最も小さくなる、内外筒金具12,14の相
対変位方向とが、互いに、ポケット部38と偏肉部50
のずれ方向で相互にずれて設定されているのである。
As described above, since the uneven thickness portion 50 is formed in each axial side wall portion 44, the size of the radial direction support spring rigidity in the axial side wall portion 44 is adjusted. In particular, since the uneven thickness portion 50 is formed so as to be deviated in the circumferential direction of the axial side wall portion 44, the relative displacement direction in the radial direction of the inner and outer cylindrical fittings 12, 14 in which the support spring rigidity is effectively exerted is improved. The first circumferential side wall portion 40
And the two stresses (compression and shear) generated in the second circumferential side wall portion 42 are substantially equal to each other, and the thickness of the inner and outer cylindrical metal fittings 12 and 14 in which the generation of the tensile stress is minimized is uneven. It is shifted by a predetermined amount in the circumferential direction of the displacement of the portion 50. From another point of view, when the inner cylindrical member 12 is displaced relative to the outer cylindrical member 14 in the radial direction,
In the first and second circumferential side wall portions 40 and 42, stresses (compression and shear stress) generated on both sides in the circumferential direction are substantially equal, and the generation of tensile stress is minimized.
The stress (compression and shear stress) generated on both sides in the circumferential direction at the relative displacement direction of the inner and outer cylindrical fittings 12, 14 and the respective axial side walls 44, 44 is substantially equal, and the generation of tensile stress is minimized. , The relative displacement directions of the inner and outer cylindrical metal fittings 12 and 14 correspond to the pocket portion 38 and the uneven thickness portion 50.
Are set to be shifted from each other in the shift direction.

【0044】なお、本具体例では、肉厚および自由長が
相互に異ならしめられた第一及び第二の周方向側壁部4
0,42のばね特性が軸方向側壁部44に及ぼされるこ
とも考慮して、軸方向側壁部44における偏肉部50
が、ポケット部38のずれ方向とは反対側に大きくずら
されているが、第一及び第二の周方向側壁部40,42
のばね特性の影響によって、軸方向側壁部44において
実際に有効なばね剛性が発揮される径方向は、軸方向側
壁部44の周方向中心線と略一致せしめられている。
In this embodiment, the first and second circumferential side wall portions 4 having different thicknesses and free lengths from each other are provided.
In consideration of the fact that the spring characteristics of 0, 42 are exerted on the axial side wall portion 44, the uneven thickness portion 50 in the axial side wall portion 44 is considered.
Are largely displaced in the direction opposite to the displacing direction of the pocket portion 38, but the first and second circumferential side wall portions 40, 42
Due to the influence of the spring characteristic described above, the radial direction in which the effective spring stiffness is actually exerted on the axial side wall portion 44 substantially coincides with the circumferential center line of the axial side wall portion 44.

【0045】一方、内筒金具12と金属スリーブ20の
径方向対向面間における、それら両部材12,20の偏
心方向での離隔距離が小なる側には、支持ゴム弾性体1
6が介在せしめられていない部分を周方向略半周に亘っ
て広がるスリット52が、軸方向に貫通して形成されて
いる。即ち、このスリット52が形成されていることに
より、内筒金具12と金属スリーブ20の偏心方向にお
ける離隔距離が小なる側では、支持ゴム弾性体16によ
るそれら両部材12,20の連結が分断されており、実
質的に両部材12,20の支持ゴム弾性体16による連
結が為されていない状態とされているのである。なお、
内筒金具12の外周面上には、スリット52側に突出す
る第一の緩衝ゴム突起54が、支持ゴム弾性体16によ
って一体形成されており、この第一の緩衝ゴム突起54
を介して、内筒金具12がストッパ金具32に当接せし
められることにより、リバウンド方向のストッパ機能が
発揮されるようになっている。
On the other hand, between the radially opposed surfaces of the inner cylinder fitting 12 and the metal sleeve 20, on the side where the distance between the two members 12, 20 in the eccentric direction is small, the supporting rubber elastic body 1 is provided.
A slit 52 extending in a portion where no 6 is interposed over substantially half a circumference in the circumferential direction is formed so as to penetrate in the axial direction. That is, since the slit 52 is formed, on the side where the separation distance in the eccentric direction between the inner cylinder fitting 12 and the metal sleeve 20 is small, the connection between the two members 12 and 20 by the supporting rubber elastic body 16 is cut off. In this state, the members 12 and 20 are not substantially connected by the supporting rubber elastic body 16. In addition,
On the outer peripheral surface of the inner cylinder fitting 12, a first cushion rubber projection 54 projecting toward the slit 52 is integrally formed by the support rubber elastic body 16.
The inner cylinder fitting 12 is brought into contact with the stopper fitting 32 through the through hole, so that a stopper function in the rebound direction is exhibited.

【0046】また、金属スリーブ20において、スリッ
ト52側に位置せしめられた第二の窓部24の形成部分
には、浅底袋形状を有する袋状ゴム弾性体56が配設さ
れており、この袋状ゴム弾性体56が、金属スリーブ2
0に対して、第二の窓部24を内周側から覆蓋するよう
にして加硫接着されていることにより、袋状ゴム弾性体
56の袋部58が、第二の窓部24を通じて、金属スリ
ーブ20の外周面上に開口せしめられている。更に、こ
の袋部58は、その周方向一方の端部において、金属ス
リーブ20の第一の軸方向連結部28によって形成され
た凹溝43により、支持ゴム弾性体16に形成されたポ
ケット部38に接続されている。
In the metal sleeve 20, a bag-like rubber elastic body 56 having a shallow bottom bag shape is provided at a portion where the second window 24 located on the slit 52 side is formed. The bag-like rubber elastic body 56 is
0, the second window 24 is vulcanized and bonded so as to cover the inner window from the inner peripheral side, so that the bag 58 of the bag-shaped rubber elastic body 56 passes through the second window 24. It is opened on the outer peripheral surface of the metal sleeve 20. Further, at one end in the circumferential direction, the bag portion 58 is formed with a pocket portion 38 formed in the support rubber elastic body 16 by a concave groove 43 formed by the first axial connection portion 28 of the metal sleeve 20. It is connected to the.

【0047】なお、袋部58の中央部分には、ストッパ
金具32の底部中央から第二の窓部24に向かって突出
する当接部60が、袋状ゴム弾性体56に一体形成され
ている。また、袋状ゴム弾性体56は、支持ゴム弾性体
16と一体的に形成されており、例えば、内筒金具12
と金属スリーブ20をセットせしめたゴムの加硫成形型
内にゴム材料を充填し、支持ゴム弾性体16と袋状ゴム
弾性体56を一体加硫成形すること等によって、有利に
形成され得る。
A contact portion 60 protruding from the center of the bottom of the stopper fitting 32 toward the second window portion 24 is formed integrally with the bag-like rubber elastic body 56 at the center of the bag portion 58. . Further, the bag-shaped rubber elastic body 56 is formed integrally with the supporting rubber elastic body 16 and, for example, the inner cylindrical metal fitting 12.
A rubber material is filled in a rubber vulcanization mold in which the metal sleeve 20 is set, and the support rubber elastic body 16 and the bag-like rubber elastic body 56 are integrally vulcanized and molded.

【0048】そして、このような一体加硫成形品に対し
て、外筒金具14が外挿され、八方絞り加工等により金
属スリーブ20の外周面に嵌着固定されて組み付けられ
ている。これにより、ポケット部38と袋部58の開口
が外筒金具14で覆蓋されて、内部に所定の非圧縮性流
体が封入された受圧室62と平衡室64が形成されてい
ると共に、凹溝43が外筒金具14で覆蓋されて、受圧
室62と平衡室64を相互に連通するオリフィス通路6
6が形成されている。なお、外筒金具14の内周面に
は、略全面に亘って、薄肉のシールゴム層68が形成さ
れており、このシールゴム層68が、金属スリーブ20
と外筒金具14の間で挟圧されることにより、封入流体
の流体密性が確保されるようになっている。また、封入
流体としては、水やアルキレングリコール、ポリアルキ
レングリコール、シリコーン油等が好適に採用され得、
特に流体の共振作用に基づく防振効果を有利に得るため
に、0.1Pa・s以下の低粘性流体が有利に採用され
る。
Then, the outer tube fitting 14 is externally inserted into such an integrally vulcanized molded product, and is fitted and fixed to the outer peripheral surface of the metal sleeve 20 by an eight-way drawing process or the like. Thereby, the openings of the pocket portion 38 and the bag portion 58 are covered with the outer tube fitting 14, and the pressure receiving chamber 62 and the equilibrium chamber 64 in which a predetermined incompressible fluid is sealed are formed. The orifice passage 43 is covered with the outer tube fitting 14 and communicates the pressure receiving chamber 62 and the equilibrium chamber 64 with each other.
6 are formed. A thin seal rubber layer 68 is formed on the inner peripheral surface of the outer tube fitting 14 over substantially the entire surface, and the seal rubber layer 68
The fluid tightness of the sealed fluid is ensured by being sandwiched between the outer casing 14 and the outer tube fitting 14. Further, as the sealed fluid, water, alkylene glycol, polyalkylene glycol, silicone oil and the like can be suitably used,
In particular, a low-viscosity fluid of 0.1 Pa · s or less is advantageously employed in order to advantageously obtain a vibration damping effect based on the resonance action of the fluid.

【0049】そこにおいて、受圧室62は、周壁部が支
持ゴム弾性体16で構成されており、内外筒金具12,
14間への振動入力時に、支持ゴム弾性体16の弾性変
形に基づいて内圧変動が惹起されるようになっている。
一方、平衡室64は、袋状ゴム弾性体によって構成され
た底壁部と周壁部の弾性変形に基づいて、容積変化が容
易に許容されるようになっている。これにより、内外筒
金具12,14間に径方向の振動が入力されると、受圧
室62と平衡室64の相対的内圧差に基づいて、それら
両室62,64間でオリフィス通路66を通じての流体
流動が生ぜしめられることとなり、以て、流体の共振作
用等の流動作用に基づく防振効果が発揮されるようにな
っているのである。
Here, the pressure receiving chamber 62 has a peripheral wall portion formed of the supporting rubber elastic body 16, and the inner and outer cylindrical metal fittings 12,
When a vibration is input to the space 14, the internal pressure fluctuation is caused based on the elastic deformation of the support rubber elastic body 16.
On the other hand, the volume of the equilibrium chamber 64 can be easily changed based on the elastic deformation of the bottom wall and the peripheral wall formed of the bag-shaped rubber elastic body. Accordingly, when vibration in the radial direction is input between the inner and outer cylinder fittings 12 and 14, the orifice passage 66 passes between the two chambers 62 and 64 based on the relative internal pressure difference between the pressure receiving chamber 62 and the equilibrium chamber 64. Fluid flow is generated, so that a vibration damping effect based on a fluid action such as a resonance action of the fluid is exerted.

【0050】なお、受圧室62には、ストッパブロック
70が収容されており、金属スリーブ20の第一の窓部
22に嵌め込まれて、外周面を外筒金具14によって支
持されることにより、かかるストッパブロック70が、
受圧室62内に突出し、突出先端面が受圧室62の底面
に対して所定距離を隔てて対向位置せしめられた状態
で、固定的に支持されている。そして、このストッパブ
ロック70が、受圧室62の側面に形成された第二の緩
衝ゴム突起72を介して、内筒金具12に当接せしめら
れることにより、バウンド方向のストッパ機能が発揮さ
れるようになっている。
A stopper block 70 is accommodated in the pressure receiving chamber 62, is fitted into the first window 22 of the metal sleeve 20, and is supported by the outer peripheral surface of the outer sleeve 14. The stopper block 70
The protruding tip surface protrudes into the pressure receiving chamber 62, and is fixedly supported in a state where the protruding distal end face is opposed to the bottom surface of the pressure receiving chamber 62 at a predetermined distance. Then, the stopper block 70 is brought into contact with the inner cylinder fitting 12 via the second cushion rubber projection 72 formed on the side surface of the pressure receiving chamber 62 so that the stopper function in the bound direction is exhibited. It has become.

【0051】そして、このような構造とされたエンジン
マウント10は、内筒金具12がパワーユニット側に、
外筒金具14がボデー側に、それぞれ取り付けられて、
パワユーニットとボデーの間に介装されるのであり、そ
のような装着状態下、内筒金具12と外筒金具14の間
には、防振性能が要求される振動荷重と、支持ばね剛性
が要求される支持荷重とが、それぞれ及ぼされることと
なる。なお、本実施例において、振動荷重は、主として
エンジンロール振動であり、支持荷重は、パワーユニッ
ト荷重等の外的荷重の合力としての大きな入力荷重であ
る。
In the engine mount 10 having such a structure, the inner metal fitting 12 is mounted on the power unit side.
The outer tube fittings 14 are attached to the body side, respectively.
It is interposed between the power unit and the body, and in such a mounted state, the vibration load required for vibration proof performance and the support spring rigidity are required between the inner cylinder fitting 12 and the outer cylinder fitting 14. And the supporting load to be applied. In this embodiment, the vibration load is mainly an engine roll vibration, and the support load is a large input load as a resultant of an external load such as a power unit load.

【0052】また、図1に示されている如く、これらの
振動荷重:Qと、支持荷重:Rは、エンジンマウント1
0の内外筒金具12,14間に対し、パワーユニットの
支持構造等に起因して、互いにマウント周方向に所定角
度:θだけずれた径方向に入力されることとなる。
Further, as shown in FIG. 1, the vibration load: Q and the supporting load: R
Due to the support structure of the power unit and the like, input is made between the inner and outer cylindrical metal fittings 12 and 14 in the radial direction shifted from each other by a predetermined angle: θ in the circumferential direction of the mount.

【0053】ここにおいて、かかるエンジンマウント1
0は、第一及び第二の周方向側壁部40,42において
周方向両側で生ぜしめられる応力(圧縮および剪断応
力)が略等しくなって且つ引張応力の発生が最も小さく
なる内外筒金具12,14の相対変位方向と、各軸方向
側壁部44,44において周方向両側で生ぜしめられる
応力(圧縮および剪断応力)が略等しくなって且つ引張
応力の発生が最も小さくなる内外筒金具12,14の相
対変位方向との、周方向のずれ量が、上記振動荷重:Q
の入力方向と支持荷重:Rの入力方向との周方向のずれ
量:θに対応して設定されている。そして、第一及び第
二の周方向側壁部40,42において周方向両側で生ぜ
しめられる応力(圧縮および剪断応力)が略等しくなっ
て且つ引張応力の発生が最も小さくなる内外筒金具1
2,14の相対変位方向が、振動荷重:Qの入力方向に
略一致すると共に、各軸方向側壁部44,44において
周方向両側で生ぜしめられる応力(圧縮および剪断応
力)が略等しくなって且つ引張応力の発生が最も小さく
なる内外筒金具12,14の相対変位方向が、支持荷
重:Rの入力方向に略一致する状態で、パワーユニット
とボデーの間に装着されているのである。
Here, the engine mount 1
0 indicates that the stresses (compression and shear stress) generated on both sides in the circumferential direction in the first and second circumferential side wall portions 40 and 42 are substantially equal and the generation of tensile stress is minimized. The relative displacement direction of the inner and outer cylindrical metal fittings 12, 14 at which the stress (compression and shear stress) generated on both sides in the circumferential direction at each axial side wall 44, 44 becomes substantially equal and the generation of tensile stress is minimized. The amount of deviation in the circumferential direction from the relative displacement direction is the above vibration load: Q
In the circumferential direction between the input direction and the support load: R. The inner and outer cylindrical metal fittings 1 in which the stress (compression and shear stress) generated on both sides in the circumferential direction in the first and second circumferential side wall portions 40 and 42 are substantially equal and the generation of tensile stress is minimized.
The relative displacement directions of the shafts 2 and 14 substantially coincide with the input direction of the vibration load: Q, and the stresses (compression and shear stress) generated on both sides in the circumferential direction in the axial side walls 44 and 44 become substantially equal. In addition, the inner and outer cylindrical fittings 12, 14 at which the generation of tensile stress is minimized are mounted between the power unit and the body in a state in which the relative displacement direction substantially coincides with the input direction of the supporting load: R.

【0054】このような方向性をもって装着されたエン
ジンマウント10においては、振動荷重:Qの入力方向
が、内外筒金具12,14の相対変位によってポケット
部38の容積変化ひいては受圧室62の圧力変動が極め
て有効に生ぜしめられる内外筒金具12,14の相対変
位方向とされていることから、振動荷重:Qの入力時に
オリフィス通路66を通じての流動せしめられる流体量
が充分に確保されて、流体の共振作用等の流動作用に基
づく防振効果が有利に発揮され得るのである。
In the engine mount 10 mounted in such a direction, the input direction of the vibration load: Q changes in the volume of the pocket 38 due to the relative displacement of the inner and outer cylindrical fittings 12 and 14, and thus the pressure in the pressure receiving chamber 62. Is set to the relative displacement direction of the inner and outer cylindrical fittings 12 and 14 that can be generated very effectively. Therefore, when the vibration load: Q is input, a sufficient amount of fluid is allowed to flow through the orifice passage 66, and the fluid The vibration damping effect based on the flow action such as the resonance action can be advantageously exhibited.

【0055】また一方、かかるエンジンマウント10に
おいては、支持荷重:Rの入力方向が、支持ゴム弾性体
16(軸方向側壁部44,44)における支持ばね剛性
が極めて有効に発揮される内外筒金具12,14の相対
変位方向とされていることから、支持荷重:Rの入力時
に、目的とする支持ばね剛性が発揮されると共に、引張
応力の発生が軽減乃至は防止されて、優れた耐久性が発
揮されるのである。
On the other hand, in the engine mount 10, the input direction of the support load: R is such that the support spring elasticity of the support rubber elastic body 16 (axial side walls 44, 44) is extremely effectively exerted. Because of the relative displacement directions of 12, 14, when the support load: R is input, the desired support spring stiffness is exhibited, and the occurrence of tensile stress is reduced or prevented, resulting in excellent durability. Is exhibited.

【0056】なお、本具体例においては、振動荷重:Q
の入力方向に対して支持荷重:Rの入力方向が、第一の
周方向側壁部40側にずれていることから、支持ゴム弾
性体16の軸方向中間部分においては、支持荷重:Rの
入力時に、第二の周方向側壁部42における、特に金属
スリーブ20への接着で拘束された外周部分に対して引
張変形が発生し易いが、前述の如く、かかる第二の周方
向側壁部42は、第一の周方向側壁部40よりも、径方
向の自由長が大きく設定されていることから、内外筒金
具12,14の相対的変位量に対する歪量が小さく抑え
られるのであり、それ故、仮に、第二の周方向側壁部4
2に引張変形が発生した場合でも、歪量ひいては引張応
力が抑えられて、優れた耐久性が発揮されるのである。
In this example, the vibration load: Q
Since the input direction of the support load: R is shifted toward the first circumferential side wall portion 40 with respect to the input direction of the support rubber elastic body 16, the input of the support load: R Occasionally, tensile deformation is likely to occur in the second circumferential side wall portion 42, particularly in the outer peripheral portion restrained by bonding to the metal sleeve 20, but as described above, the second circumferential side wall portion 42 Since the free length in the radial direction is set to be larger than that of the first circumferential side wall portion 40, the amount of distortion with respect to the relative displacement amount of the inner and outer cylindrical metal fittings 12 and 14 can be reduced. Assuming that the second circumferential side wall portion 4
2, even when tensile deformation occurs, the amount of strain and, consequently, tensile stress are suppressed, and excellent durability is exhibited.

【0057】また、本具体例では、第一の周方向側壁部
40と第二の周方向側壁部42の交角(中心角):α
が、180度より小さく設定されて、支持ゴム弾性体1
6が扇形の軸直角方向断面形状とされていることによ
り、振動荷重:Qの入力方向を支持金具:Rの入力方向
に対して周方向にずらせてエンジンマウント10を傾斜
配置せしめた場合でも、第二の周方向側壁部42におけ
る引張変形の発生が一層有利に抑えられるのである。
In this example, the intersection angle (center angle) between the first circumferential side wall portion 40 and the second circumferential side wall portion 42 is α.
Is set to be smaller than 180 degrees, and the supporting rubber elastic body 1
Because the fan 6 has a fan-shaped cross section perpendicular to the axis, even if the input direction of the vibration load: Q is shifted in the circumferential direction with respect to the input direction of the support bracket: R, the engine mount 10 is inclined and disposed. The occurrence of tensile deformation in the second circumferential side wall portion 42 is further advantageously suppressed.

【0058】加えて、本具体例では、バウンドおよびリ
バウンドの両方向のストッパ機構が設けられて、内外筒
金具12,14の過大な相対的変位ひいては支持ゴム弾
性体16の過大な弾性変形が防止されていることから、
それによっても、支持ゴム弾性体16における引張変形
の発生が低減されて、耐久性の向上が図られている。
In addition, in this specific example, a stopper mechanism in both directions of the bound and the rebound is provided to prevent excessive relative displacement of the inner and outer cylindrical fittings 12 and 14 and hence excessive elastic deformation of the support rubber elastic body 16. From that
Thereby, the occurrence of tensile deformation in the support rubber elastic body 16 is reduced, and the durability is improved.

【0059】また、本具体例では、軸方向側壁部44,
44だけでなく、支持ゴム弾性体16の軸方向中間部分
においても、パワーユニット支持荷重の分担が大きくな
る第一の周方向側壁部40における径方向の有効自由長
が、金属スリーブ20に設けられた径方向内方への凹陥
部分によって、小さくされていることから、この第一の
周方向側壁部40によって有効な支持ばね剛性が発揮さ
れるのである。
In this embodiment, the axial side walls 44,
Not only at 44 but also at the intermediate portion in the axial direction of the supporting rubber elastic body 16, the metal sleeve 20 is provided with a radially effective free length in the first circumferential side wall portion 40 in which the sharing of the power unit supporting load is increased. The first circumferential side wall portion 40 provides effective support spring rigidity because the first circumferential side wall portion 40 is reduced in size by the concave portion inward in the radial direction.

【0060】しかも、本具体例のエンジンマウント10
においては、第一の周方向側壁部40における径方向の
有効自由長を短くするために金属スリーブ20に設けら
れた径方向内方への凹陥部分を利用して、第一の周方向
側壁部40の外周面と外筒金具14の間にオリフィス通
路66の形成スペースが有利に確保され得るのであり、
オリフィス通路66が有効なスペース効率と簡単な構造
で形成され得るといった利点もある。
Moreover, the engine mount 10 of this specific example
In order to shorten the effective free length in the radial direction of the first circumferential side wall portion 40, the first circumferential side wall portion is provided by using a radially inward recessed portion provided in the metal sleeve 20. A space for forming the orifice passage 66 can be advantageously secured between the outer peripheral surface of the outer casing 40 and the outer cylinder fitting 14,
There is also the advantage that the orifice passage 66 can be formed with effective space efficiency and a simple structure.

【0061】以上、本発明の一具体例について詳述して
きたが、これは文字通りの例示であって、本発明は、か
かる具体例にのみ限定して解釈されるものではない。
Although one specific example of the present invention has been described in detail above, this is a literal example, and the present invention is not construed as being limited to such specific example.

【0062】例えば、マウントを傾斜配置するに際し
て、支持ゴム弾性体16は、支持荷重の入力時に内筒金
具12が外筒金具14に対して接近方向に変位せしめら
れる側に配設されるものであり、マウントの傾斜配置方
向は、支持荷重の入力方向に応じて適宜に決定されるこ
ととなる。具体的には、前記具体例のエンジンマウント
10では、その装着状態下、内筒金具12の略下方に支
持ゴム弾性体16が位置せしめられていたが、内筒金具
12をボデー側に外筒金具14をパワーユニット側にそ
れぞれ取り付ける場合には、逆に、内筒金具12の上方
に支持ゴム弾性体16が位置せしめられる状態で、装着
されることとなる。
For example, when the mount is arranged obliquely, the support rubber elastic body 16 is provided on the side where the inner cylinder 12 is displaced in the approaching direction with respect to the outer cylinder 14 when a support load is input. In this case, the mounting direction of the mount is appropriately determined in accordance with the input direction of the supporting load. Specifically, in the engine mount 10 of the specific example described above, the support rubber elastic body 16 is positioned substantially below the inner cylinder fitting 12 in the mounted state, but the inner cylinder fitting 12 is moved toward the body side by the outer cylinder. When the metal fittings 14 are attached to the power unit, respectively, on the contrary, the support rubber elastic body 16 is mounted above the inner cylindrical metal fitting 12.

【0063】また、平衡室は、容積変化が容易に許容さ
れるものであれば良く、その構造は何等限定されるもの
でない。
Further, the equilibrium chamber may be of any type as long as its volume change can be easily tolerated, and its structure is not limited at all.

【0064】更にまた、オリフィス通路66の形状や構
造は、マウントに要求される防振特性等に応じて適宜に
設定されるものであり、何等限定されるものでない。
Furthermore, the shape and structure of the orifice passage 66 are appropriately set in accordance with the anti-vibration characteristics required for the mount, and are not limited at all.

【0065】加えて、前記実施例では、本発明を自動車
用エンジンマウントに適用したものの一具体例を示した
が、本発明は、その他、各種の流体封入式筒形マウント
に適用され得るものであることは、勿論であり、特に、
支持荷重が振動入力方向に対してずれた方向に入力され
るマウントに対して、有利に適用されることとなる。
In addition, in the above-described embodiment, a specific example in which the present invention is applied to an automobile engine mount is shown. However, the present invention can be applied to various fluid-filled cylindrical mounts. There are, of course,
This is advantageously applied to a mount in which the supporting load is input in a direction shifted from the vibration input direction.

【0066】[0066]

【発明の効果】上述の説明から明らかなように、請求項
1乃至5に記載の発明に従う構造とされた流体封入式筒
形マウントにあっては、何れも、支持ゴム弾性体の軸方
向中間部分と軸方向両側部分とにおいて、マウント軸直
角方向の弾性変形特性が互いに相違して設定されるので
あり、それら軸方向中間部分と軸方向両側部分の各弾性
変形特性を利用することによって、マウント装着時にお
ける振動荷重入力方向と支持荷重入力方向とが異なる場
合にも、流体の流動作用に基づく有効な防振効果と、良
好な荷重支持特性を、両立して高度に達成することが可
能となるのである。
As is apparent from the above description, any of the fluid-filled cylindrical mounts constructed according to the first to fifth aspects of the present invention has a structure in which the support rubber elastic body is axially intermediate. The elastic deformation characteristics in the direction perpendicular to the mount axis are set differently from each other in the portion and the axially opposite side portions. Even when the input direction of the vibration load and the input direction of the support load at the time of mounting are different, it is possible to achieve both an effective anti-vibration effect based on the flow action of the fluid and a good load support characteristic, and to achieve a high degree. It becomes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一具体例としての自動車
用エンジンマウントを示す横断面図であって、図2にお
けるI−I断面に相当する。
FIG. 1 is a cross-sectional view showing an automobile engine mount as a specific example of an embodiment of the present invention, and corresponds to a II section in FIG.

【図2】図1におけるII−II断面図である。FIG. 2 is a sectional view taken along the line II-II in FIG.

【図3】図2における右側面図である。FIG. 3 is a right side view in FIG. 2;

【符号の説明】[Explanation of symbols]

10 エンジンマウント 12 内筒金具 14 外筒金具 16 支持ゴム弾性体 38 ポケット部 40 第一の周方向側壁部 42 第二の周方向側壁部 44 軸方向側壁部 50 偏肉部 52 スリット 62 受圧室 64 平衡室 66 オリフィス通路 DESCRIPTION OF SYMBOLS 10 Engine mount 12 Inner cylinder fitting 14 Outer cylinder fitting 16 Support rubber elastic body 38 Pocket part 40 First circumferential side wall part 42 Second circumferential side wall part 44 Axial side wall part 50 Uneven thickness part 52 Slit 62 Pressure receiving chamber 64 Equilibrium chamber 66 Orifice passage

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 軸部材と該軸部材の外方に離隔配置され
た外筒部材の間において、該軸部材を軸直角方向に挟ん
で位置する一方の側に支持ゴム弾性体を介装し、他方の
側に軸方向に貫通して周方向に広がるスリットを設ける
ことにより、それら軸部材と外筒部材を該支持ゴム弾性
体により実質的に前記一方の側でだけ連結せしめる一
方、前記軸部材と前記外筒部材の間に、軸方向および周
方向の各両側壁部が前記支持ゴム弾性体により構成され
て非圧縮性流体が封入された、振動が入力される受圧室
を形成すると共に、前記軸部材と前記外筒部材の間にお
ける前記スリットの形成部側に、非圧縮性流体が封入さ
れて容積変化が許容される平衡室を形成し、更にそれら
受圧室と平衡室を相互に連通するオリフィス通路を設け
てなり、前記軸部材と前記外筒部材が防振連結される被
連結体の各一方に取り付けられる流体封入式筒形マウン
トにおいて、 前記支持ゴム弾性体におけるマウント軸直角方向の弾性
変形特性を、前記受圧室の周方向両側壁部を構成する軸
方向中間部分と、該受圧室の軸方向両側壁部を構成する
軸方向両側部分とで、相互に異ならせて、該支持ゴム弾
性体の軸方向中間部分において前記受圧室に圧力変化を
及ぼし易い荷重入力方向と、該支持ゴム弾性体の軸方向
両側部分において引張変形が生ぜしめられ難い荷重入力
方向とを、互いに周方向にずらせて設定したことを特徴
とする流体封入式筒形マウント。
1. A support rubber elastic body is interposed between a shaft member and an outer cylinder member spaced apart from the shaft member on one side of the shaft member which is positioned to sandwich the shaft member in a direction perpendicular to the shaft. By providing a slit that penetrates in the axial direction and expands in the circumferential direction on the other side, the shaft member and the outer cylindrical member are substantially connected only on the one side by the supporting rubber elastic body, while the shaft is Between the member and the outer cylindrical member, both side walls in the axial direction and the circumferential direction are formed of the supporting rubber elastic body, and a non-compressible fluid is sealed therein to form a pressure receiving chamber to which vibration is input. An equilibrium chamber in which an incompressible fluid is sealed and volume change is allowed is formed on the side of the slit forming portion between the shaft member and the outer cylinder member, and the pressure receiving chamber and the equilibrium chamber are mutually connected. An orifice passage communicating with the shaft member is provided. In the fluid-filled cylindrical mount attached to each one of the connected bodies to which the outer cylindrical member is vibration-isolated, the elastic deformation characteristics of the support rubber elastic body in a direction perpendicular to a mount axis are determined on both sides in a circumferential direction of the pressure receiving chamber. An axial intermediate portion forming a wall portion and an axial both side portion forming an axial side wall portion of the pressure receiving chamber are different from each other, and the pressure receiving chamber is formed at an axial intermediate portion of the supporting rubber elastic body. A fluid input characterized in that a load input direction in which a pressure change is easily applied to the load and a load input direction in which tensile deformation is unlikely to occur in both axial portions of the supporting rubber elastic body are circumferentially shifted from each other. Type cylindrical mount.
【請求項2】 前記支持ゴム弾性体の軸方向中間部分に
おける前記受圧室に圧力変化を及ぼし易い荷重入力方向
に、防振すべき振動荷重が入力される一方、前記支持ゴ
ム弾性体の軸方向両側部分における引張変形が生ぜしめ
られ難い荷重入力方向に、前記被連結体間に作用する支
持荷重が入力される請求項1に記載の流体封入式筒形マ
ウント。
2. A vibration load to be damped is input in a load input direction in which a pressure change is likely to be applied to the pressure receiving chamber at an axially intermediate portion of the support rubber elastic body, while an axial direction of the support rubber elastic body is set. The fluid-filled cylindrical mount according to claim 1, wherein a supporting load acting between the connected members is input in a load input direction in which tensile deformation is hardly generated on both side portions.
【請求項3】 軸部材と該軸部材の外方に離隔配置され
た外筒部材の間において、該軸部材を軸直角方向に挟ん
で位置する一方の側に支持ゴム弾性体を介装し、他方の
側に軸方向に貫通して周方向に広がるスリットを設ける
ことにより、それら軸部材と外筒部材を該支持ゴム弾性
体により実質的に前記一方の側でだけ連結せしめる一
方、前記軸部材と前記外筒部材の間に、軸方向および周
方向の各両側壁部が前記支持ゴム弾性体により構成され
て非圧縮性流体が封入された、振動が入力される受圧室
を形成すると共に、前記軸部材と前記外筒部材の間にお
ける前記スリットの形成部側に、非圧縮性流体が封入さ
れて容積変化が許容される平衡室を形成し、更にそれら
受圧室と平衡室を相互に連通するオリフィス通路を設け
てなり、前記軸部材と前記外筒部材が防振連結される被
連結体の各一方に取り付けられる流体封入式筒形マウン
トにおいて、 前記支持ゴム弾性体の前記受圧室の周方向両側壁部を構
成する軸方向中間部分における、荷重入力時に周方向両
側の圧縮及び剪断応力が略等しくなる軸直角方向の荷重
入力方向と、前記支持ゴム弾性体の該受圧室の軸方向両
側壁部を構成する軸方向両側部分における、荷重入力時
に周方向両側の圧縮及び剪断応力が略等しくなる軸直角
方向の荷重入力方向とを、互いに異ならせることによっ
て、かかる支持ゴム弾性体におけるマウント軸直角方向
の弾性変形特性を、それら軸方向中間部分と軸方向両側
部分とで相互に異ならせたことを特徴とする流体封入式
筒形マウント。
3. A supporting rubber elastic body is interposed between the shaft member and an outer cylinder member spaced apart from the shaft member on one side of the shaft member which is sandwiched in a direction perpendicular to the shaft. By providing a slit that penetrates in the axial direction and expands in the circumferential direction on the other side, the shaft member and the outer cylindrical member are substantially connected only on the one side by the supporting rubber elastic body, while the shaft is Between the member and the outer cylindrical member, both side walls in the axial direction and the circumferential direction are formed of the supporting rubber elastic body, and a non-compressible fluid is sealed therein to form a pressure receiving chamber to which vibration is input. An equilibrium chamber in which an incompressible fluid is sealed and volume change is allowed is formed on the side of the slit forming portion between the shaft member and the outer cylinder member, and the pressure receiving chamber and the equilibrium chamber are mutually connected. An orifice passage communicating with the shaft member is provided. In the fluid-filled cylindrical mount attached to each one of the connected bodies to which the outer cylindrical member is vibration-isolated, the support rubber elastic body includes an axially intermediate portion that constitutes a circumferential side wall of the pressure receiving chamber. The load input direction in the direction perpendicular to the axis at which the compressive and shear stresses on both sides in the circumferential direction are substantially equal at the time of load input, and the load on the axial both side portions of the support rubber elastic body constituting the axial side walls of the pressure receiving chamber. By making the load input directions in the direction perpendicular to the axis in which the compressive and shear stresses on both sides in the circumferential direction are substantially equal at the time of input different from each other, the elastic deformation characteristics of the support rubber elastic body in the direction perpendicular to the mount axis can be calculated in the axial direction A fluid-filled cylindrical mount characterized in that the portion and the axial side portions are different from each other.
【請求項4】 軸部材と該軸部材の外方に離隔配置され
た外筒部材の間において、該軸部材を軸直角方向に挟ん
で位置する一方の側に支持ゴム弾性体を介装し、他方の
側に軸方向に貫通して周方向に広がるスリットを設ける
ことにより、それら軸部材と外筒部材を該支持ゴム弾性
体により実質的に前記一方の側でだけ連結せしめる一
方、前記軸部材と前記外筒部材の間に、軸方向および周
方向の各両側壁部が前記支持ゴム弾性体により構成され
て非圧縮性流体が封入された、振動が入力される受圧室
を形成すると共に、前記軸部材と前記外筒部材の間にお
ける前記スリットの形成部側に、非圧縮性流体が封入さ
れて容積変化が許容される平衡室を形成し、更にそれら
受圧室と平衡室を相互に連通するオリフィス通路を設け
てなり、前記軸部材と前記外筒部材が防振連結される被
連結体の各一方に取り付けられる流体封入式筒形マウン
トにおいて、 前記スリットをマウント軸方向全長に亘って略一定断面
形状とする一方、前記支持ゴム弾性体における軸方向両
端面の周方向中間部分において凹陥又は突出する偏肉部
を形成し、該偏肉部の周方向中心を、前記受圧室の周方
向中心に対して周方向に相互にずらせることにより、か
かる支持ゴム弾性体におけるマウント軸直角方向の弾性
変形特性を、該受圧室の周方向両側壁部を構成する軸方
向中間部分と、該受圧室の軸方向両側壁部を構成する軸
方向両側部分とで、互いに異ならせたことを特徴とする
流体封入式筒形マウント。
4. A support rubber elastic body is interposed between a shaft member and an outer cylindrical member spaced apart from the shaft member on one side of the shaft member which is sandwiched in a direction perpendicular to the shaft. By providing a slit that penetrates in the axial direction and expands in the circumferential direction on the other side, the shaft member and the outer cylindrical member are substantially connected only on the one side by the supporting rubber elastic body, while the shaft is Between the member and the outer cylindrical member, both side walls in the axial direction and the circumferential direction are formed of the supporting rubber elastic body, and a non-compressible fluid is sealed therein to form a pressure receiving chamber to which vibration is input. An equilibrium chamber in which an incompressible fluid is sealed and volume change is allowed is formed on the side of the slit forming portion between the shaft member and the outer cylinder member, and the pressure receiving chamber and the equilibrium chamber are mutually connected. An orifice passage communicating with the shaft member is provided. In the fluid-filled cylindrical mount attached to each one of the connected bodies to which the outer cylinder member is vibration-proof connected, the slit has a substantially constant cross-sectional shape over the entire length in the mount axial direction, and the support rubber elastic body is provided. Forming a depressed or protruding portion at a circumferentially intermediate portion between both end surfaces in the axial direction, and displacing a circumferential center of the deflected portion in a circumferential direction with respect to a circumferential center of the pressure receiving chamber. Thus, the elastic deformation characteristics of the supporting rubber elastic body in the direction perpendicular to the mount axis can be changed by changing the axially intermediate portions forming the circumferential side walls of the pressure receiving chamber and the axial directions forming the axial side walls of the pressure receiving chamber. A fluid-filled cylindrical mount characterized by being different from each other on both sides.
【請求項5】 前記偏肉部の周方向中心に対する前記受
圧室の周方向中心の周方向におけるずれ量が、前記軸部
材と前記外筒部材の間にそれぞれ及ぼされる、防振すべ
き振動荷重の入力方向に対する前記被連結体間に作用す
る支持荷重の入力方向のずれ量に応じて設定されている
請求項4に記載の流体封入式筒形マウント。
5. A vibration load to be damped, wherein an amount of deviation in a circumferential direction of a circumferential center of the pressure receiving chamber with respect to a circumferential center of the uneven thickness portion is applied between the shaft member and the outer cylinder member, respectively. 5. The fluid-filled cylindrical mount according to claim 4, wherein the fluid load type cylindrical mount is set in accordance with a shift amount of a support load acting between the connected bodies with respect to the input direction in the input direction.
JP23512396A 1996-09-05 1996-09-05 Fluid-charging cylindrical mount Pending JPH1078076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23512396A JPH1078076A (en) 1996-09-05 1996-09-05 Fluid-charging cylindrical mount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23512396A JPH1078076A (en) 1996-09-05 1996-09-05 Fluid-charging cylindrical mount

Publications (1)

Publication Number Publication Date
JPH1078076A true JPH1078076A (en) 1998-03-24

Family

ID=16981400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23512396A Pending JPH1078076A (en) 1996-09-05 1996-09-05 Fluid-charging cylindrical mount

Country Status (1)

Country Link
JP (1) JPH1078076A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349068A (en) * 2005-06-16 2006-12-28 Kurashiki Kako Co Ltd Liquid-sealed bush and vibration control link device using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349068A (en) * 2005-06-16 2006-12-28 Kurashiki Kako Co Ltd Liquid-sealed bush and vibration control link device using it
JP4511421B2 (en) * 2005-06-16 2010-07-28 倉敷化工株式会社 Liquid-filled bush

Similar Documents

Publication Publication Date Title
JP3477920B2 (en) Fluid-filled anti-vibration support
JPH08177945A (en) Fluid sealing type cylindrical vibration proof device
JP2002327788A (en) Vibrationproof device sealed with fluid
JPH05141473A (en) Fluid-sealed cylindrical mount device
JPH0555739B2 (en)
JP3427593B2 (en) Fluid-filled cylindrical mount
JPH1078076A (en) Fluid-charging cylindrical mount
JP3601196B2 (en) Inclined fluid-filled cylindrical mount
JP3736155B2 (en) Fluid-filled cylindrical vibration isolator and manufacturing method thereof
JPH1182607A (en) Fluid sealed tubular mount
JP6431738B2 (en) Fluid filled cylindrical vibration isolator
JP3627397B2 (en) Fluid filled cylindrical mount
JP2678705B2 (en) Fluid-filled cylindrical mount
JPH0625731Y2 (en) Fluid filled anti-vibration bush
JPH0643555Y2 (en) Fluid-filled cylindrical mount device
JPH0454099B2 (en)
JPH0349316Y2 (en)
JPH0324914Y2 (en)
JP2827846B2 (en) Fluid-filled bush
JPH0643556Y2 (en) Fluid filled cylindrical mount
JP2750850B2 (en) Fluid-filled anti-vibration bush
JPH0643557Y2 (en) Fluid filled cylinder mount
JP2000120761A (en) Fluid sealed type cylindrical mount
JP2002021913A (en) Fluid sealed cylindrical mount device
JPH0724675Y2 (en) Fluid-filled cylinder mount device