JPH0555739B2 - - Google Patents

Info

Publication number
JPH0555739B2
JPH0555739B2 JP63103409A JP10340988A JPH0555739B2 JP H0555739 B2 JPH0555739 B2 JP H0555739B2 JP 63103409 A JP63103409 A JP 63103409A JP 10340988 A JP10340988 A JP 10340988A JP H0555739 B2 JPH0555739 B2 JP H0555739B2
Authority
JP
Japan
Prior art keywords
rubber elastic
elastic body
pressure receiving
receiving chamber
cylindrical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63103409A
Other languages
Japanese (ja)
Other versions
JPS63289349A (en
Inventor
Ryoji Kanda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP10340988A priority Critical patent/JPS63289349A/en
Publication of JPS63289349A publication Critical patent/JPS63289349A/en
Publication of JPH0555739B2 publication Critical patent/JPH0555739B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/14Units of the bushing type, i.e. loaded predominantly radially

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Vehicle Body Suspensions (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は流体封入式防振ブツシユに係り、更に
詳しくは、径方向に入力される低周波振動と高周
波振動とに対して、共に良好な防振機能を発揮す
ることのできる流体封入式防振ブツシユに関する
ものである。
Detailed Description of the Invention (Technical Field) The present invention relates to a fluid-filled vibration-isolating bushing, and more specifically, to a vibration-isolating bushing having good vibration-isolating function against both low-frequency vibrations and high-frequency vibrations input in the radial direction. This invention relates to a fluid-filled anti-vibration bushing that can exhibit the following characteristics.

(従来技術) 振動伝達系を構成する所定の取付軸と筒状保持
部との間に介装されて、それらを防振連結する防
振ブツシユの一種に、主としてその径方向の所定
の方向に入力される振動を減衰乃至は遮断するよ
うにしたものがある。例えば、自動車のサスペン
シヨンブツシユやFF(フロントエンジン・フロン
トドライブ)車の円筒型エンジンマウント等がそ
れである。
(Prior art) A type of vibration-proof bushing that is interposed between a predetermined mounting shaft and a cylindrical holding part that constitute a vibration transmission system, and connects them in a vibration-proof manner. Some devices are designed to attenuate or block input vibrations. Examples include suspension bushings in automobiles and cylindrical engine mounts in front-engine, front-drive (FF) cars.

ところで、このような防振ブツシユでは、高周
波−小振幅の入力振動に対して良好な遮断性能が
要求される一方、低周波−大振幅の入力振動に対
して良好な減衰性能が要求されるのが一般的であ
るが、従来の防振ブツシユでは、それらの入力振
動に対する防振機能が、専ら、ゴム弾性体の弾性
変形だけに基づいて発揮されるようになつていた
ため、それらの要求を同時に満足させることが難
しく、特に低周波−大振幅の入力振動に対して充
分な減衰効果を発揮することができないといつた
問題があつた。
By the way, such anti-vibration bushings are required to have good isolation performance against high-frequency, small-amplitude input vibrations, but are also required to have good damping performance against low-frequency, large-amplitude input vibrations. However, in conventional anti-vibration bushings, the anti-vibration function against these input vibrations was exclusively based on the elastic deformation of the rubber elastic body. The problem was that it was difficult to satisfy the requirements, and in particular, it was not possible to exhibit a sufficient damping effect against input vibrations of low frequency and large amplitude.

そのため、近年、特公昭48−36151号公報や特
公昭52−16554号公報等において、円筒状のゴム
弾性体内に、振動入力方向で対向するように一対
の流体室を形成すると共に、それら流体室をオリ
フイスで連通させ、径方向の振動入力時におい
て、各流体室に収容された所定の非圧縮性流体
が、そのオリフイスを通じて相互に流動し得るよ
うにした流体封入式の防振ブツシユが提案されて
いる。
Therefore, in recent years, in Japanese Patent Publication No. 48-36151 and Japanese Patent Publication No. 52-16554, a pair of fluid chambers are formed in a cylindrical rubber elastic body so as to face each other in the vibration input direction, and the fluid chambers are A fluid-filled vibration-proof bushing has been proposed in which the two fluid chambers are connected through an orifice so that predetermined incompressible fluids contained in each fluid chamber can mutually flow through the orifice when vibration is input in the radial direction. ing.

このような流体封入式防振ブツシユによれば、
オリフイスを流動する非圧縮性流体の慣性質量効
果乃至は液柱共振作用に基づいて、そのオリフイ
スについて設定(チユーニング)された周波数域
の入力振動を良好に減衰することができるのであ
り、従つてそのオリフイスのチユーニング周波数
を低い周波数に設定することにより、低周波−大
振幅の入力振動に対して良好な減衰効果を発揮さ
せることができるのである。
According to such a fluid-filled anti-vibration bushing,
Based on the inertial mass effect or liquid column resonance effect of the incompressible fluid flowing through the orifice, input vibrations in the frequency range set (tuned) for the orifice can be well damped. By setting the tuning frequency of the orifice to a low frequency, it is possible to exhibit a good damping effect against low-frequency, large-amplitude input vibrations.

(解決課題) しかしながら、このような従来の流体封入式防
振ブツシユにあつては、上述のように、オリフイ
スについて設定された周波数域(チユーニング周
波数領域)の入力振動に対しては、良好な減衰効
果を発揮させることができるものの、それ以外の
周波数域の入力振動に対しては、必ずしも良好な
防振機能が得られるとは言い難く、特にそのオリ
フイスのチユーニング周波数域よりも高い周波数
域の入力振動に対しては、非圧縮性流体がオリフ
イスを流動し難くなることに起因して、却つて防
振機能が低下するといつた問題があつた。
(Problem to be solved) However, in the case of such a conventional fluid-filled vibration-isolating bushing, as mentioned above, good damping is not possible for input vibration in the frequency range (tuning frequency range) set for the orifice. However, it is difficult to say that a good vibration isolation function can be obtained against input vibrations in other frequency ranges, especially for inputs in a frequency range higher than the tuning frequency range of the orifice. Regarding vibrations, there was a problem in that the incompressible fluid became difficult to flow through the orifice, and the vibration damping function was actually reduced.

(解決手段) 本発明は、このような事情を背景として為され
たものであつて、その特徴とするところは、前述
の如き、径方向に入力される振動を遮断乃至は減
衰せしめる流体封入式防振ブツシユを、(a)内筒部
材と、(b)該内筒部材の外側に同心的に若しくは偏
心して配置されたシールスリーブと、(c)該シール
スリーブの外周面に嵌装された外筒部材と、(d)前
記シールスリーブと前記内筒部材との間に介装せ
しめられてそれらを連結する、外周面に開口した
ポケツト部を有するゴム弾性体と、(e)前記シール
スリーブと前記内筒部材との間の該ゴム弾性体に
て連結されていない部位に設けられた、ブツシユ
軸心方向に貫通する空所と、(f)前記ゴム弾性体の
ポケツト部がその開口部を前記外筒部材で流体密
に閉塞せしめられることによつて形成された、防
振すべき振動が入力せしめられる受圧室と、(g)前
記シールスリーブと内筒部材との間に設けられた
貫通空所内において、膨出変形の容易な薄肉壁部
で少なくとも一部を画成されて形成された平衡室
と、(h)該平衡室と前記受圧室とに封入された所定
の非圧縮性流体と、(i)前記平衡室と前記受圧室と
を相互に連通せしめるオリフイスと、(j)前記受圧
室内において、前記ポケツト部の底部から径方向
外側に向かつて延び出す状態で設けられた、所定
高さのストツパ部と、(k)該ストツパ部の先端側部
分から側方に延び出す状態で設けられ、前記受圧
室の内壁との間で所定の狭窄部を形成する側方延
出部とを、含むように構成したことにある。
(Solution Means) The present invention was made against the background of the above, and is characterized by a fluid-filled type that blocks or damps vibrations input in the radial direction, as described above. The anti-vibration bushing includes (a) an inner cylindrical member, (b) a sealing sleeve disposed concentrically or eccentrically on the outside of the inner cylindrical member, and (c) a sealing sleeve fitted on the outer peripheral surface of the sealing sleeve. an outer cylindrical member; (d) a rubber elastic body interposed between the seal sleeve and the inner cylindrical member to connect them; and (e) a rubber elastic body having a pocket portion opened on the outer peripheral surface; and (e) the seal sleeve. and (f) a hollow space penetrating in the direction of the axis of the bush provided between the inner cylinder member and the inner cylindrical member at a portion not connected by the rubber elastic body; (g) a pressure receiving chamber formed by fluid-tightly closing the seal sleeve with the outer cylinder member and into which vibrations to be damped are input; and (g) a pressure receiving chamber provided between the seal sleeve and the inner cylinder member. (h) a predetermined incompressible chamber sealed in the equilibrium chamber and the pressure receiving chamber; and (h) a predetermined incompressibility chamber enclosed in the equilibrium chamber and the pressure receiving chamber. (i) an orifice that allows the equilibrium chamber and the pressure receiving chamber to communicate with each other; (j) an orifice provided in the pressure receiving chamber and extending radially outward from the bottom of the pocket portion; a stopper portion having a predetermined height; and (k) a lateral extending portion extending laterally from the distal end portion of the stopper portion and forming a predetermined narrowing portion between the stopper portion and the inner wall of the pressure receiving chamber. The reason lies in the fact that it is structured to include the following.

(作用・効果) かかる本発明に従う流体封入式防振ブツシユに
よれば、従来の流体封入式防振ブツシユと同様
に、オリフイスのチユーニング周波数を低い周波
数に設定することにより、かかるオリフイスを流
動する非圧縮性流体の慣性質量効果乃至は液柱共
振作用に基づいて、受圧室とブツシユ軸心方向の
貫通空所との対向方向に入力される低周波−大振
幅の振動を良好に減衰することができることとな
る。
(Operation/Effect) According to the fluid-filled vibration-isolating bushing according to the present invention, like the conventional fluid-filled vibration-damping bushing, by setting the tuning frequency of the orifice to a low frequency, the vibration damping bushing flowing through the orifice is set to a low frequency. Based on the inertial mass effect of the compressible fluid or the liquid column resonance effect, it is possible to satisfactorily attenuate low frequency and large amplitude vibrations input in the opposite direction between the pressure receiving chamber and the through space in the bush axis direction. It becomes possible.

一方、上述のように、オリフイスのチユーニン
グ周波数を低い周波数に設定すれば、受圧室とブ
ツシユ軸心方向の貫通空所との対向方向に入力さ
れる振動が高周波−小振幅のものであるときは、
非圧縮性流体がオリフイスを流動することが困難
となり、それ故非圧縮性流体がオリフイスを流動
することによつて達成される動バネ定数の低下は
殆ど期待できなくなる。しかし、この場合には、
ストツパ部の先端側部分に設けられた側方延出部
と受圧室内壁との間に形成された狭窄部を通じて
非圧縮性流体がブツシユ径方向に流動することが
許容されていることによつて、かかる狭窄部の長
さと断面積とを高い周波数に対応して設定(チユ
ーニング)することにより、その狭窄部を通じて
流動する非圧縮性流体の慣性質量効果乃至は液柱
共振作用に基づいて、その高周波−小振幅の入力
振動を良好に遮断することが可能となるのであ
る。
On the other hand, as mentioned above, if the tuning frequency of the orifice is set to a low frequency, when the vibration input in the opposite direction between the pressure receiving chamber and the through space in the bush axis direction is of high frequency and small amplitude, ,
It becomes difficult for an incompressible fluid to flow through the orifice, and therefore the reduction in dynamic spring constant achieved by flowing an incompressible fluid through the orifice is less likely to be expected. However, in this case,
This is because the incompressible fluid is allowed to flow in the radial direction of the bush through the constricted portion formed between the lateral extending portion provided at the distal end portion of the stopper portion and the inner wall of the pressure receiving chamber. By setting (tuning) the length and cross-sectional area of the constriction to correspond to a high frequency, the inertial mass effect or liquid column resonance effect of the incompressible fluid flowing through the constriction can be set. This makes it possible to effectively block high-frequency, small-amplitude input vibrations.

つまり、本発明に従う流体封入式防振ブツシユ
によれば、ブツシユ径方向に入力する低周波−大
振幅の振動に対しては、オリフイスを流動する非
圧縮性流体の慣性質量効果乃至は液柱共振作用に
基づいて、従来の流体封入式防振ブツシユと同様
に、良好な減衰効果を発揮することができる一
方、高周波−小振幅の入力振動に対しては、側方
延出部と受圧室内壁との間に形成された狭窄部を
通じて流動する非圧縮性流体の慣性質量効果乃至
は液柱共振作用に基づいて、従来の流体封入式防
振ブツシユよりも良好な遮断効果を発揮すること
が可能となるのであり、従つてブツシユ径方向の
入力振動に対して、従来よりも優れた防振機能を
発揮させることが可能となるのである。
In other words, according to the fluid-filled vibration-isolating bushing according to the present invention, low-frequency, large-amplitude vibrations input in the radial direction of the bushing can be suppressed by the inertial mass effect of the incompressible fluid flowing through the orifice or liquid column resonance. Based on the action, it can exhibit a good damping effect similar to the conventional fluid-filled vibration isolating bushing. Based on the inertial mass effect or liquid column resonance effect of the incompressible fluid flowing through the constriction formed between the Therefore, it is possible to exhibit a vibration damping function superior to the conventional one against input vibration in the bush radial direction.

しかも、本発明によれば、シールスリーブと内
筒部材との間のゴム弾性体で連結されていない部
位に、ブツシユ軸心方向に貫通する空所が形成さ
れているため、ゴム弾性体がブツシユ径方向で予
備圧縮される形態でブツシユを使用することによ
り、ゴム弾性体に過大な引張力が作用することを
良好に防止して、ゴム弾性体、ひいてはブツシユ
の耐久性を向上できるといつた利点もあるのであ
る。
Moreover, according to the present invention, a space penetrating in the direction of the axis of the bushing is formed in a portion between the seal sleeve and the inner cylindrical member that are not connected by the rubber elastic body. It is said that by using a bushing that is precompressed in the radial direction, it is possible to effectively prevent excessive tensile force from acting on the rubber elastic body, thereby improving the durability of the rubber elastic body and, by extension, the bushing. There are also advantages.

また、本発明によれば、受圧室内にストツパ部
が設けられ、内筒部材と外筒部材との一定以上の
相対変位時において、そのストツパ部の先端部が
外筒部材に当接せしめられるようになつているた
め、それら内筒部材と外筒部材との過大な変位、
ひいてはかかるブツシユによつて防振連結せしめ
られる所定の取付軸と筒状保持部との過大な変位
を、その当接に基づいて良好に防止できると共
に、その当接に基づいて、ゴム弾性体の過大な圧
縮変形を良好に防止して、ゴム弾性体の耐久性、
ひいてはブツシユの耐久性を向上できるといつた
利点もあるのである。
Further, according to the present invention, a stopper portion is provided in the pressure receiving chamber, and the tip of the stopper portion is brought into contact with the outer cylinder member when the inner cylinder member and the outer cylinder member are displaced over a certain level. , excessive displacement between the inner cylinder member and outer cylinder member,
As a result, excessive displacement between the predetermined mounting shaft and the cylindrical holder, which are connected to each other in a vibration-proof manner by such a bushing, can be effectively prevented based on their contact, and based on their contact, the rubber elastic body It effectively prevents excessive compression deformation and improves the durability of the rubber elastic body.
Another advantage is that the durability of the bushing can be improved.

(実施例) 以下、本発明をより一層具体的に明らかにする
ために、本発明をFF(フロントエンジン・フロン
トドライブ)車のパワーユニツトの防振支持に用
いられる円筒型エンジンマウントに適用した例に
ついて、その実施例を図面に基づいて詳細に説明
する。
(Example) In order to clarify the present invention more specifically, below is an example in which the present invention is applied to a cylindrical engine mount used for anti-vibration support of a power unit of a FF (front engine/front drive) vehicle. Embodiments thereof will be described in detail based on the drawings.

先ず、第1図乃至第3図において、10および
16は、それぞれ、内筒部材としての円筒状の内
筒金具と外筒部材としての円筒状の外筒金具であ
つて、マウント径方向に所定量偏心して配置され
ており、それらの間に介装せしめられた略半円筒
状のゴム弾性体14によつて弾性体に連結せしめ
られている。そして、本実施例のエンジンマウン
トは、外筒金具16の外周面においてエンジンを
含むパワーユニツト側または車体側の筒状保持部
に嵌入されて取り付けられる一方、内筒金具10
の内孔18において車体側またはパワーユニツト
側の取付軸に外挿されて取り付けられて、パワー
ユニツトを車体に対して防振支持せしめるように
なつている。
First, in FIGS. 1 to 3, reference numerals 10 and 16 denote a cylindrical inner metal fitting as an inner cylinder member and a cylindrical outer metal fitting as an outer cylinder member, respectively. They are arranged with a certain amount of eccentricity, and are connected to the elastic bodies by a substantially semi-cylindrical rubber elastic body 14 interposed between them. The engine mount of this embodiment is fitted onto the outer circumferential surface of the outer cylindrical metal fitting 16 into a cylindrical holding part on the power unit side including the engine or on the vehicle body side, while the inner cylindrical metal fitting 16
The power unit is attached to the mounting shaft on the vehicle body side or the power unit side through the inner hole 18 of the power unit, so that the power unit is supported against vibrations in relation to the vehicle body.

ここで、ゴム弾性体14は、内筒金具10と外
筒金具16との偏心方向の離隔距離の大きい側に
おいて、それら両金具10,16間に介装せしめ
られており、それら両金具10,16間の偏心方
向の離隔距離の小さい側の部位には、マウント軸
心方向に貫通する状態で、略円弧状断面の空所3
4が形成されている。そして、ゴム弾性体14
は、前記パワーユニツトの取付けにより、内筒金
具10と外筒金具16との間でそれらの偏心方向
に圧縮変形せしめられるようになつており、これ
により、パワーユニツトの取付状態においては、
内筒金具10と外筒金具16とが略同心的に位置
せしめられるようになつている。
Here, the rubber elastic body 14 is interposed between the two metal fittings 10 and 16 on the side where the separation distance in the eccentric direction between the inner cylinder metal fitting 10 and the outer cylinder metal fitting 16 is large. 16, a space 3 with a substantially arcuate cross-section is provided in the portion where the eccentric distance between the holes 3 and 16 is smaller, penetrating in the axial direction of the mount.
4 is formed. And the rubber elastic body 14
When the power unit is installed, the inner cylindrical metal fitting 10 and the outer cylindrical metal fitting 16 are compressed and deformed in the eccentric direction thereof, so that when the power unit is installed,
The inner cylindrical metal fitting 10 and the outer cylindrical metal fitting 16 are arranged substantially concentrically.

また、ゴム弾性体14は、その内周面におい
て、内筒金具10の外周面に一体加硫接着されて
おり、その外周面には、前記空所34を内包する
状態で、シールスリーブ12が一体加硫接着せし
められている。そして、このシールスリーブ12
の外周面に流体密に嵌着されて、前記外筒金具1
6が配設されている。
Further, the rubber elastic body 14 is integrally vulcanized and bonded to the outer circumferential surface of the inner cylindrical fitting 10 on its inner circumferential surface, and the seal sleeve 12 is attached to the outer circumferential surface in a state that includes the cavity 34. It is integrally vulcanized and bonded. And this seal sleeve 12
The outer cylindrical fitting 1 is fluid-tightly fitted to the outer peripheral surface of the outer cylindrical fitting 1
6 are arranged.

上記ゴム弾性体14の外周面に固着されたシー
ルスリーブ12には、第4図乃至第7図に示され
ているように、両金具10,16の偏心方向で内
筒金具10を挟んで対向するように、一対の窓部
20,22が形成されており、またシールスリー
ブ12の外周面には、それら両窓部20,22を
つなぐ状態で、一対の周方向のオリフイス溝2
4,26が形成されている。さらに、それらオリ
フイス溝24,26の開口部を除く外筒金具16
の外周面には、軸心方向の両端部にそれぞれシー
ルリツプ28,28を備えた所定厚さのシールゴ
ム層30がゴム弾性体14と一体に加硫成形され
て配設されている。
As shown in FIGS. 4 to 7, the seal sleeve 12 fixed to the outer circumferential surface of the rubber elastic body 14 is located opposite to the inner cylinder fitting 10 in the eccentric direction of the fittings 10 and 16. A pair of windows 20 and 22 are formed on the outer peripheral surface of the seal sleeve 12, and a pair of circumferential orifice grooves 2 are formed on the outer peripheral surface of the seal sleeve 12, connecting the windows 20 and 22.
4 and 26 are formed. Furthermore, the outer cylinder metal fitting 16 excluding the openings of those orifice grooves 24 and 26
A sealing rubber layer 30 having a predetermined thickness and having sealing lips 28, 28 at both ends in the axial direction is provided on the outer peripheral surface of the rubber elastic body 14 by vulcanization molding integrally with the rubber elastic body 14.

一方、ゴム弾性体14には、第4図および第5
図に示されているように、上記シールスリーブ1
2の窓部20に開口する状態で、所定深さのポケ
ツト部32が形成されている。また、前記空所3
4に臨むシールスリーブ12の部位には、該シー
ルスリーブ12の他方の窓部22のマウント周方
向に隔たつた両端部分をそれぞれ内側から閉塞す
る状態で、膨出変形の容易な薄肉壁部としてのゴ
ム弾性膜36,38がそれぞれ一体加硫接着され
ており、これにより、シールスリーブ12の窓部
22に開口する状態で、所定深さの一対の凹所4
0,42が形成されている。なお、第4図および
第5図から明らかなように、凹所40,42間の
シールスリーブ12の窓部22の部分は、ゴム弾
性膜36,38と一体に成形された所定厚さのゴ
ム層で塞がれている。
On the other hand, the rubber elastic body 14 has
As shown in the figure, the sealing sleeve 1
A pocket portion 32 of a predetermined depth is formed in a state where it opens into the window portion 20 of No. 2. In addition, the space 3
The part of the seal sleeve 12 facing the window 22 of the seal sleeve 12 is provided with a thin wall part that easily expands and deforms, with both end parts separated in the mount circumferential direction of the seal sleeve 12 being closed from the inside. The rubber elastic membranes 36 and 38 are integrally vulcanized and bonded to each other, so that the pair of recesses 4 of a predetermined depth are opened in the window 22 of the seal sleeve 12.
0,42 are formed. As is clear from FIGS. 4 and 5, the window portion 22 of the seal sleeve 12 between the recesses 40 and 42 is made of rubber having a predetermined thickness that is integrally formed with the rubber elastic membranes 36 and 38. covered with layers.

そして、ここでは、前述のように、シールスリ
ーブ12に対して外筒金具16が流体密に嵌着さ
れることにより、前記窓部20,22、ひいては
前記ポケツト部32および凹所40,42の開口
部がそれぞれ流体密に閉塞されて、それらポケツ
ト部32および凹所40,42内の空間をそれぞ
れ流体収容空間とする受圧室44および一対の平
衡室46,48が形成されている。また、前記オ
リフイス溝24,26の開口部が外筒金具16で
流体密に閉塞されることにより、受圧室44と各
平衡室46,48とを連通するオリフイス50,
52が形成されている。さらに、ここでは、シー
ルスリーブ12に対する外筒金具16の嵌着操作
が所定の非圧縮性流体中で行なわれることによ
り、それら受圧室44および各平衡室46,48
内に水、アルキレングリコール、ポリアルキレン
グリコール、低分子量重合体等の所定の非圧縮性
流体が封入されている。
Here, as described above, by fluid-tightly fitting the outer cylindrical fitting 16 to the seal sleeve 12, the windows 20, 22, and eventually the pocket 32 and the recesses 40, 42 are closed. The openings are each fluid-tightly closed to form a pressure receiving chamber 44 and a pair of equilibrium chambers 46, 48, each of which uses the pocket portion 32 and the spaces within the recesses 40, 42 as fluid storage spaces. Further, the openings of the orifice grooves 24 and 26 are fluid-tightly closed by the outer cylindrical fitting 16, so that the orifice 50 communicates the pressure receiving chamber 44 and each equilibrium chamber 46, 48.
52 is formed. Further, here, the fitting operation of the outer cylinder fitting 16 to the seal sleeve 12 is performed in a predetermined incompressible fluid, so that the pressure receiving chamber 44 and each equilibrium chamber 46, 48
A predetermined incompressible fluid such as water, alkylene glycol, polyalkylene glycol, or low molecular weight polymer is sealed inside.

なお、外筒金具16は、八方絞り加工を施され
てシールスリーブ12に固着されている。また、
本実施例のエンジンマウントは、かかる外筒金具
16の嵌装操作後、所定のダイスを通過させられ
ることによつて、その外径寸法が所望の寸法に設
定せしめられている。さらに、前記オリフイス5
0,52は、その断面積および長さが所定の低周
波数域の振動に対応して設定(チユーニング)さ
れており、これにより、それらオリフイス50,
52を流動する、乃至はそこに位置する非圧縮性
流体の慣性質量効果乃至は液柱共振作用に基づい
て、それらオリフイス50,52のチユーニング
周波数に対応した低周波数域の振動が良好に減衰
せしめられるようになつている。
The outer cylindrical metal fitting 16 is fixed to the seal sleeve 12 by drawing in all directions. Also,
After the outer cylinder fitting 16 is fitted, the engine mount of this embodiment is passed through a predetermined die to set its outer diameter to a desired size. Furthermore, the orifice 5
The cross-sectional area and length of the orifices 50 and 52 are set (tuned) to correspond to vibrations in a predetermined low frequency range, and as a result, the orifices 50 and
Based on the inertial mass effect or liquid column resonance effect of the incompressible fluid flowing through the orifices 52 or located there, vibrations in a low frequency range corresponding to the tuning frequency of the orifices 50 and 52 are well damped. It is becoming more and more popular.

ところで、第4図乃至第6図に示されているよ
うに、前記内筒金具10の外周面には、その軸心
方向の中央部に位置して、長手方向が金具10,
16の偏心方向と一致する状態で、所定長さの長
手ブロツク状のストツパ金具54がその中央孔5
6において圧入固定されている。そして、このス
トツパ金具54の長手方向の両端部が、前記ポケ
ツト部32および空所34内に、それぞれ所定の
高さをもつて突出せしめられており、これによ
り、かかるストツパ金具54の両端部が外筒金具
16の内周面に当接することに基づいて、内筒金
具10と外筒金具16との偏心方向における過大
な相対変位が防止されるようになつている。
By the way, as shown in FIGS. 4 to 6, on the outer circumferential surface of the inner cylindrical fitting 10, there is a fitting 10, which is located in the center in the axial direction and extends in the longitudinal direction.
16, the stopper fitting 54 in the form of a longitudinal block with a predetermined length is inserted into the central hole 5.
It is press-fitted and fixed at 6. Both ends of the stopper metal fitting 54 in the longitudinal direction are made to protrude into the pocket portion 32 and the cavity 34 at a predetermined height, so that both ends of the stopper metal fitting 54 are Due to the contact with the inner circumferential surface of the outer cylindrical fitting 16, excessive relative displacement between the inner cylindrical fitting 10 and the outer cylindrical fitting 16 in the eccentric direction is prevented.

つまり、ここでは、かかるストツパ金具54の
長手方向の両端部が、それぞれ、内筒金具10と
外筒金具16との過大な相対変位、ひいてはパワ
ーユニツトと車体との過大な相対変位を規制する
ためのストツパ部58,60とされているのであ
り、外筒金具16に対するストツパ部58の当接
に基づいて、ゴム弾性体14の過大な圧縮変形が
良好に防止されるようになつていると共に、外筒
金具16に対するストツパ部60の当接に基づい
て、ゴム弾性体14の過大な引張変形が良好に防
止されるようになつているのである。
That is, here, both longitudinal ends of the stopper metal fittings 54 are used to restrict excessive relative displacement between the inner cylinder metal fitting 10 and the outer cylinder metal fitting 16, and furthermore, to restrict excessive relative displacement between the power unit and the vehicle body. Based on the abutment of the stopper portion 58 against the outer cylinder metal fitting 16, excessive compressive deformation of the rubber elastic body 14 is well prevented, and Based on the contact of the stopper portion 60 with the outer cylinder metal fitting 16, excessive tensile deformation of the rubber elastic body 14 is effectively prevented.

なお、空所34内に延び出させられたストツパ
金具54の表面は、ゴム弾性体14と一体に成形
された所定厚さの緩衝用ゴム層で覆われている。
The surface of the stopper fitting 54 extending into the cavity 34 is covered with a cushioning rubber layer of a predetermined thickness that is molded integrally with the rubber elastic body 14.

そして、ここでは、第4図および第5図に示さ
れているように、ポケツト部32(受圧室44)
内に延び出させられたストツパ部58の先端面に
雌ネジ穴62が形成されており、第1図および第
2図に示されているように、その雌ネジ穴62に
螺合された雄ネジ64により、外周縁部がストツ
パ部58の周囲の側方に延び出すように、換言す
れば、外周縁部がストツパ部58の側面からマウ
ント軸心方向およびマウント周方向にそれぞれ所
定寸法突出する状態で、略円弧状断面の矩形板状
の側方延出部材66が固着されている。
Here, as shown in FIGS. 4 and 5, the pocket portion 32 (pressure receiving chamber 44)
A female screw hole 62 is formed in the distal end surface of the stopper portion 58 that extends inward, and a male screw hole 62 is screwed into the female screw hole 62, as shown in FIGS. 1 and 2. The screws 64 cause the outer peripheral edge to extend laterally around the stopper part 58, in other words, the outer peripheral edge protrudes from the side surface of the stopper part 58 by a predetermined distance in the mount axis direction and in the mount circumferential direction. In this state, a rectangular plate-shaped laterally extending member 66 having a substantially arcuate cross section is fixed.

本実施例では、かかる側方延出部材66の外周
縁部と受圧室44の内壁との間において、両金具
10,16の偏心方向に略直角な状態で、環状の
狭窄部67が形成されているのであり、振動入力
によつて内筒金具10と外筒金具16とがそれら
の偏心方向に相対移動せしめられると、受圧室4
4内の非圧縮性流体がかかる狭窄部67を通じて
マウント径方向に流動せしめられるようになつて
いるのである。
In this embodiment, an annular narrowed portion 67 is formed between the outer peripheral edge of the side-extending member 66 and the inner wall of the pressure-receiving chamber 44 in a state substantially perpendicular to the eccentric direction of the metal fittings 10 and 16. Therefore, when the inner cylindrical fitting 10 and the outer cylindrical fitting 16 are moved relative to each other in their eccentric direction by vibration input, the pressure receiving chamber 4
The incompressible fluid within 4 is made to flow in the radial direction of the mount through the constriction 67.

なお、かかる狭窄部67は、振動入力方向(両
金具10,16の偏心方向)における長さ:
(第1図および第2図参照)と断面積(振動入力
方向に直角な方向における狭窄部67の面積)と
が、前記オリフイス50,52のチユーニング周
波数よりも高い周波数に対応して設定されてお
り、これにより、かかる狭窄部67に位置する非
圧縮性流体の側方延出部材66に対する相対的な
流動に従う慣性質量効果乃至は液柱共振作用に基
づいて、その狭窄部67のチユーニング周波数に
対応した高周波数域の入力振動が良好に遮断せし
められるようになつている。
The length of the narrowed portion 67 in the vibration input direction (the eccentric direction of both metal fittings 10 and 16) is:
(See FIGS. 1 and 2) and the cross-sectional area (area of the constriction portion 67 in the direction perpendicular to the vibration input direction) are set to correspond to a frequency higher than the tuning frequency of the orifices 50 and 52. As a result, the tuning frequency of the narrowed portion 67 is adjusted based on the inertial mass effect or liquid column resonance effect according to the relative flow of the incompressible fluid located in the narrowed portion 67 to the lateral extending member 66. Input vibrations in the corresponding high frequency range can be effectively blocked.

また、第1図および第2図に示されているよう
に、前記側方延出部材66は、ここでは、雄ネジ
64によつてストツパ部58に固着される補強金
具68と、その外側面に一体加硫成形された所定
厚さの緩衝ゴム層70とからなつており、緩衝ゴ
ム層70には、雄ネジ64を雌ネジ穴62に螺合
させるための通孔72が形成されている。
Further, as shown in FIGS. 1 and 2, the lateral extending member 66 includes a reinforcing metal fitting 68 fixed to the stopper portion 58 by a male screw 64, and an outer surface thereof. It consists of a buffer rubber layer 70 of a predetermined thickness that is integrally vulcanized with the buffer rubber layer 70, and a through hole 72 for screwing the male screw 64 into the female screw hole 62 is formed in the buffer rubber layer 70. .

さらに、前述の説明から明らかなように、本実
施例では、ストツパ部58の側面から側方に突出
した側方延出部材66の外周縁部分が、受圧室4
4の内壁との間で狭窄部67を形成する側方延出
部を構成している。
Furthermore, as is clear from the above description, in this embodiment, the outer peripheral edge portion of the lateral extending member 66 that protrudes laterally from the side surface of the stopper portion 58 is connected to the pressure receiving chamber 4.
A lateral extending portion forms a narrowed portion 67 with the inner wall of the portion 4.

従つて、このような構造のエンジンマウントに
よれば、内筒金具10と外筒金具16との間に、
受圧室44と空所34との対向方向の低周波−大
振幅の振動が入力されると、ゴム弾性体14の弾
性変形に基づいて、受圧室44と各平衡室46,
48との間でオリフイス50,52を通じて非圧
縮性流体が流動せしめられることとなり、従来の
流体封入式エンジンマウントと同様に、それらオ
リフイス50,52を流動する、乃至はそこに位
置する非圧縮性流体の慣性質量効果乃至は液柱共
振作用に基づいて、その低周波−大振幅の振動が
良好に減衰されることとなる。
Therefore, according to the engine mount having such a structure, there is a gap between the inner cylinder fitting 10 and the outer cylinder fitting 16.
When low-frequency and large-amplitude vibrations in opposing directions between the pressure-receiving chamber 44 and the cavity 34 are input, the pressure-receiving chamber 44 and each equilibrium chamber 46,
48 through the orifices 50, 52, and the incompressible fluid flowing through or located therein is similar to conventional fluid-filled engine mounts. Based on the inertial mass effect of the fluid or the liquid column resonance effect, the low frequency and large amplitude vibrations are effectively damped.

一方、受圧室44と空所34との対向方向に入
力される振動が高周波−小振幅のものである場合
には、最早、非圧縮性流体がオリフイス50,5
2を通じて流動することが困難となるところか
ら、非圧縮性流体がそれらオリフイス50,52
を通じて流動することによつて達成される動バネ
定数の低下は殆ど期待できなくなる。しかし、こ
の場合には、受圧室44内の非圧縮性流体が前記
狭窄部67を通じてマウント径方向に流動するこ
とが許容されていることによつて、その狭窄部6
7に位置する非圧縮性流体の側方延出部材66に
対する相対的な流動作用に従う慣性質量効果乃至
は液柱共振作用に基づいて、その高周波−小振幅
の振動が良好に遮断されることとなる。つまり、
そのような狭窄部67が形成されていない従来の
流体封入式エンジンマウントに比べて、高周波−
小振幅振動に対する遮断効果が大幅に向上するの
である。
On the other hand, if the vibrations input in the opposite direction between the pressure receiving chamber 44 and the cavity 34 are of high frequency and small amplitude, the incompressible fluid no longer flows into the orifices 50 and 5.
The incompressible fluid flows through the orifices 50, 52 from where it becomes difficult to flow through the orifices 2.
The reduction in dynamic spring constant that can be achieved by flowing through is almost impossible. However, in this case, since the incompressible fluid in the pressure receiving chamber 44 is allowed to flow in the radial direction of the mount through the narrowed portion 67, the narrowed portion 67
Based on the inertial mass effect or liquid column resonance effect according to the relative flow action of the incompressible fluid on the side-extending member 66 located at 7, the high frequency and small amplitude vibrations can be effectively blocked. Become. In other words,
Compared to conventional fluid-filled engine mounts that do not have such a narrowed part 67, high-frequency
This greatly improves the effectiveness of blocking small amplitude vibrations.

このように、本実施例に従う円筒型エンジンマ
ウントによれば、受圧室44と空所34との対向
方向に入力する低周波−大振幅の振動に対して、
従来と同様に、良好な減衰効果を発揮させること
ができる一方、高周波−小振幅の振動に対して、
従来よりも良好な遮断効果を発揮させることがで
きるのであり、従つてマウント径方向に入力され
る振動を従来のマウントよりも有利に減衰乃至は
遮断することができるのである。
As described above, the cylindrical engine mount according to the present embodiment can withstand low frequency and large amplitude vibrations input in the opposite direction between the pressure receiving chamber 44 and the cavity 34.
While it can exhibit good damping effect as before, it is effective against high-frequency and small-amplitude vibrations.
It is possible to exhibit a better isolation effect than in the past, and therefore it is possible to attenuate or isolate vibrations input in the radial direction of the mount more advantageously than in the conventional mount.

また、本実施例のエンジンマウントにおいて
は、前述のように、パワーユニツトの取付状態に
おいて、ゴム弾性体14が金具10,16の偏心
方向で圧縮されるようになつていると共に、空所
34内に突出するストツパ部60が設けられて、
ゴム弾性体14に過大な引張力が作用することが
良好に回避されるようになつていることから、ゴ
ム弾性体14、ひいてはエンジンマウントの耐久
性が優れているといつた利点があるのであり、ま
た受圧室44内にストツパ部58が延び出させら
れて、かかるストツパ部58の外筒金具16に対
する当接に基づいて、ゴム弾性体14が過大に圧
縮変形されないようになつていることから、この
意味においても、ゴム弾性体14,ひいてはエン
ジンマウントの耐久性が優れているといつた利点
があるのである。
Further, in the engine mount of this embodiment, as described above, when the power unit is installed, the rubber elastic body 14 is compressed in the eccentric direction of the metal fittings 10 and 16, and the rubber elastic body 14 is compressed in the hollow space 34. A stopper portion 60 is provided that protrudes from the
Since excessive tensile force is effectively prevented from being applied to the rubber elastic body 14, there is an advantage that the rubber elastic body 14 and, by extension, the engine mount have excellent durability. Furthermore, the stopper portion 58 is extended into the pressure receiving chamber 44, and the rubber elastic body 14 is prevented from being excessively compressed and deformed based on the contact of the stopper portion 58 with the outer cylinder metal fitting 16. In this sense as well, there is an advantage that the rubber elastic body 14 and, by extension, the engine mount have excellent durability.

さらに、ポケツト部32および空所34内にそ
れぞれストツパ部58,60が延び出させられて
いることから、前述のように、パワーユニツトと
車体との過大な変位を良好に防止できるといつた
利点もあるのである。
Furthermore, since the stopper portions 58 and 60 extend into the pocket portion 32 and the space 34, respectively, an advantage is that excessive displacement between the power unit and the vehicle body can be effectively prevented as described above. There is also.

以上、本発明の一実施例を詳細に説明したが、
これはあくまでも例示であつて、本発明が、かか
る具体例に限定して解釈されるべきものでないこ
とは、勿論である。
Although one embodiment of the present invention has been described in detail above,
This is just an example, and it goes without saying that the present invention should not be construed as being limited to this specific example.

例えば、前記実施例では、側方延出部を構成す
る側方延出部材66がストツパ金具54とは別体
に構成されていたが、側方延出部材66、すなわ
ち側方延出部材66の補強金具68は、ストツパ
金具54と一体に構成することも可能である。ま
た、受圧室44の内壁との間で狭窄部67を形成
する側方延出部は、ストツパ部58の全周におい
てストツパ部58の側方に延び出ている必要はな
く、例えば、ストツパ部58の側面からマウント
周方向(ブツシユ周方向)のみに延び出すように
側方延出部を設けて、狭窄部67を形成するよう
にすることも可能である。
For example, in the embodiment described above, the side extending member 66 constituting the side extending portion was configured separately from the stopper fitting 54, but the side extending member 66, that is, the side extending member 66 The reinforcing metal fitting 68 can also be constructed integrally with the stopper metal fitting 54. Further, the lateral extending portion forming the narrowed portion 67 with the inner wall of the pressure receiving chamber 44 does not need to extend to the side of the stopper portion 58 over the entire circumference of the stopper portion 58; It is also possible to form a narrowed portion 67 by providing a lateral extending portion so as to extend only in the mount circumferential direction (bush circumferential direction) from the side surface of 58 .

また、前記実施例では、平衡室46,48を構
成する凹所40,42が、シールスリーブ12の
窓部22のそれぞれ一部を開口部とする状態で形
成されていたが、それら平衡室46,48の凹所
40,42は、シールスリーブ12に形成された
互いに独立した窓部を開口部とする状態で形成す
ることも可能であり、またそれら平衡室46,4
8を1つの平衡室として形成することも可能であ
り、更にはそれら平衡室46,48の一方のみを
平衡室として採用することも可能である。
Further, in the embodiment described above, the recesses 40 and 42 constituting the equilibrium chambers 46 and 48 were formed with openings formed in each of the window portions 22 of the seal sleeve 12. , 48 can also be formed with mutually independent windows formed in the sealing sleeve 12 as openings, and the recesses 40, 42 of the equilibrium chambers 46, 4
It is also possible to form 8 as one equilibrium chamber, and furthermore, it is also possible to employ only one of the equilibrium chambers 46 and 48 as an equilibrium chamber.

更に、前記実施例では、平衡室46,48を形
成する薄肉壁部としてのゴム弾性膜36,38が
シールスリーブ12に一体に装着されて設けられ
ていたが、薄肉壁部は必ずしもシールスリーブに
一体に接着されて設けられている必要はなく、薄
肉壁部をシールスリーブとは別体に構成し、シー
ルスリーブに対して機械的に取り付けることによ
り、平衡室を形成せしめるようにすることも可能
である。
Further, in the embodiment described above, the rubber elastic membranes 36 and 38 as thin wall portions forming the equilibrium chambers 46 and 48 were integrally attached to the seal sleeve 12, but the thin wall portions are not necessarily attached to the seal sleeve. They do not need to be glued together; the thin wall can be constructed separately from the sealing sleeve and mechanically attached to the sealing sleeve to form an equilibrium chamber. It is.

また、前記実施例では、内筒金具10と外筒金
具16とがマウント径方向において所定量偏心し
た状態で配置されていたが、それらを同心的に配
置させることも可能である。
Further, in the embodiment described above, the inner tube fitting 10 and the outer tube fitting 16 are arranged eccentrically by a predetermined amount in the radial direction of the mount, but it is also possible to arrange them concentrically.

加えて、前記実施例では、本発明をFF車の円
筒型エンジンマウントに適用した例について述べ
たが、本発明は、自動車用のサスペンシヨンブツ
シユ等、FF車の円筒型エンジンマウント以外の
防振ブツシユや防振マウントにも適用することが
可能である。
In addition, in the above embodiment, an example was described in which the present invention was applied to a cylindrical engine mount for a FF vehicle, but the present invention can also be applied to a cylindrical engine mount other than a cylindrical engine mount for a FF vehicle, such as a suspension bushing for an automobile. It can also be applied to vibration bushings and anti-vibration mounts.

その他、一々列挙はしないが、本発明が、その
趣旨を逸脱しない範囲内において、種々なる変
更、修正、改良等を施した態様で実施できること
は、言うまでもないところである。
Although not listed in detail, it goes without saying that the present invention can be implemented with various changes, modifications, improvements, etc. without departing from the spirit thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に従うFF車用の円筒型エンジ
ンマウントの一例を示す横断面図であり、第2図
および第3図はそれぞれ第1図における−断
面図および−断面図である。第4図は第1図
のエンジンマウントにおけるゴム弾性体の一体加
硫成形品を示す第1図に対応する断面図であり、
第5図、第6図および第7図はそれぞれ第4図に
おける−断面図、−断面図および−
断面図である。 10……内筒金具(内筒部材)、12……シー
ルスリーブ、14……ゴム弾性体、16……外筒
金具(外筒部材)、20,22……窓部、24,
26……オリフイス溝、32……ポケツト部、3
4……空所、36,38……ゴム弾性膜(薄肉壁
部)、40,42……凹所、44……受圧室、4
6,48……平衡室、50,52……オリフイ
ス、54……ストツパ金具、58,60……スト
ツパ部、66……側方延出部材、67……狭窄
部、68……補強金具、70……緩衝ゴム層。
FIG. 1 is a cross-sectional view showing an example of a cylindrical engine mount for a front-wheel drive vehicle according to the present invention, and FIGS. 2 and 3 are a cross-sectional view and a cross-sectional view, respectively, of FIG. FIG. 4 is a sectional view corresponding to FIG. 1 showing an integrally vulcanized product of the rubber elastic body in the engine mount of FIG. 1;
5, 6 and 7 are a cross-sectional view, a cross-sectional view and a cross-sectional view in FIG. 4, respectively.
FIG. 10... Inner tube fitting (inner tube member), 12... Seal sleeve, 14... Rubber elastic body, 16... Outer tube fitting (outer tube member), 20, 22... Window, 24,
26... Orifice groove, 32... Pocket part, 3
4...Vacancy, 36, 38...Rubber elastic membrane (thin wall part), 40, 42...Recess, 44...Pressure receiving chamber, 4
6, 48... Equilibrium chamber, 50, 52... Orifice, 54... Stopper fitting, 58, 60... Stopper part, 66... Laterally extending member, 67... Narrowing part, 68... Reinforcement fitting, 70...Buffer rubber layer.

Claims (1)

【特許請求の範囲】 1 内筒部材と、 該内筒部材の外側に同心的に若しくは偏心して
配置されたシールスリーブと、 該シールスリーブの外周面に嵌装された外筒部
材と、 前記シールスリーブと前記内筒部材との間に介
装せしめられてそれらを連結する、外周面に開口
したポケツト部を有するゴム弾性体と、 前記シールスリーブと前記内筒部材との間の該
ゴム弾性体にて連結されていない部位に設けられ
た、ブツシユ軸心方向に貫通する空所と、 前記ゴム弾性体のポケツト部がその開口部を前
記外筒部材で流体密に閉塞せしめられることによ
つて形成された、防振すべき振動が入力せしめら
れる受圧室と、 前記シールスリーブと内筒部材との間に設けら
れた貫通空所内において、膨出変形の容易な薄肉
壁部で少なくとも一部を画成されて形成された平
衡室と、 該平衡室と前記受圧室とに封入された所定の非
圧縮性流体と、 前記平衡室と前記受圧室とを相互に連通せしめ
るオリフイスと、 前記受圧室内において、前記ポケツト部の底部
から径方向外側に向かつて延び出す状態で設けら
れた、所定高さのストツパ部と、 該ストツパ部の先端側部分から側方に延び出す
状態で設けられ、前記受圧室の内壁との間で所定
の狭窄部を形成する側方延出部とを、 含むことを特徴とする流体封入式防振ブツシユ。
[Scope of Claims] 1. An inner cylindrical member; a seal sleeve disposed concentrically or eccentrically on the outside of the inner cylindrical member; an outer cylindrical member fitted onto the outer peripheral surface of the seal sleeve; and the seal. a rubber elastic body interposed between the sleeve and the inner cylindrical member to connect them; and a rubber elastic body having a pocket portion opened on the outer circumferential surface; and a rubber elastic body between the seal sleeve and the inner cylindrical member. a hollow space penetrating in the direction of the axis of the bush provided in a portion not connected with the pocket part of the rubber elastic body, the opening of which is fluid-tightly closed by the outer cylindrical member; At least a portion of the formed pressure receiving chamber into which vibrations to be damped are input, and the through space provided between the seal sleeve and the inner cylinder member with a thin wall portion that can be easily bulged and deformed. an equilibrium chamber defined and formed; a predetermined incompressible fluid sealed in the equilibrium chamber and the pressure receiving chamber; an orifice that allows the equilibrium chamber and the pressure receiving chamber to communicate with each other; and an orifice within the pressure receiving chamber. A stopper portion of a predetermined height is provided to extend radially outward from the bottom of the pocket portion, and a stopper portion is provided to extend laterally from a distal end portion of the stopper portion, and the stopper portion is provided to extend radially outward from the bottom of the pocket portion, and the stopper portion is provided to extend laterally from the tip side of the stopper portion, and 1. A fluid-filled vibration-isolating bushing comprising: a lateral extending portion forming a predetermined narrowed portion with an inner wall of a chamber.
JP10340988A 1988-04-26 1988-04-26 Fluid sealing type vibrationproof bush Granted JPS63289349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10340988A JPS63289349A (en) 1988-04-26 1988-04-26 Fluid sealing type vibrationproof bush

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10340988A JPS63289349A (en) 1988-04-26 1988-04-26 Fluid sealing type vibrationproof bush

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP63256425A Division JPH0681975B2 (en) 1988-10-12 1988-10-12 Fluid filled anti-vibration bush
JP25642688A Division JPH01153831A (en) 1988-10-12 1988-10-12 Fluid sealed type vibration isolating bush

Publications (2)

Publication Number Publication Date
JPS63289349A JPS63289349A (en) 1988-11-25
JPH0555739B2 true JPH0555739B2 (en) 1993-08-17

Family

ID=14353254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10340988A Granted JPS63289349A (en) 1988-04-26 1988-04-26 Fluid sealing type vibrationproof bush

Country Status (1)

Country Link
JP (1) JPS63289349A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681974B2 (en) * 1987-02-20 1994-10-19 東海ゴム工業株式会社 Fluid filled anti-vibration bush
JPH02190638A (en) * 1989-01-17 1990-07-26 Marugo Rubber Kogyo Kk Liquid seal type elastic bush
JPH02113037U (en) * 1989-02-27 1990-09-10
JPH0747976B2 (en) * 1989-04-14 1995-05-24 東海ゴム工業株式会社 Upper support for suspension
JPH0747977B2 (en) * 1989-04-28 1995-05-24 東海ゴム工業株式会社 Spring insulator for suspension
JPH0788872B2 (en) * 1989-07-05 1995-09-27 東海ゴム工業株式会社 Method for manufacturing fluid-filled cylindrical mount device
FR2650356B1 (en) * 1989-07-31 1994-05-27 Hutchinson IMPROVEMENTS MADE TO MAN CHONS HYDRAULIC ANTI-VIBRATOR
JPH0355937U (en) * 1989-10-03 1991-05-29
JP2538463B2 (en) * 1991-11-13 1996-09-25 東海ゴム工業株式会社 Fluid-filled cylindrical mounting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566934A (en) * 1979-06-29 1981-01-24 Gomma Antivibranti Applic Shock absorbing mountings
JPS60104824A (en) * 1983-11-09 1985-06-10 Honda Motor Co Ltd Fluid-contained engine mount
JPS60211140A (en) * 1984-04-05 1985-10-23 Bridgestone Corp Elastic bush
JPS60249749A (en) * 1984-05-24 1985-12-10 Bridgestone Corp Vibro-isolator
EP0172700A1 (en) * 1984-08-07 1986-02-26 Avon Industrial Polymers Limited Hydraulically damped mounting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566934A (en) * 1979-06-29 1981-01-24 Gomma Antivibranti Applic Shock absorbing mountings
JPS60104824A (en) * 1983-11-09 1985-06-10 Honda Motor Co Ltd Fluid-contained engine mount
JPS60211140A (en) * 1984-04-05 1985-10-23 Bridgestone Corp Elastic bush
JPS60249749A (en) * 1984-05-24 1985-12-10 Bridgestone Corp Vibro-isolator
EP0172700A1 (en) * 1984-08-07 1986-02-26 Avon Industrial Polymers Limited Hydraulically damped mounting device

Also Published As

Publication number Publication date
JPS63289349A (en) 1988-11-25

Similar Documents

Publication Publication Date Title
JPH0430442Y2 (en)
JPH06677Y2 (en) Fluid filled anti-vibration bush
US4749173A (en) Fluid-filled resilient bushing having damping means within fluid chambers
JPH0225947Y2 (en)
JP2598969B2 (en) Fluid-filled cylindrical mounting device
JPH0330736B2 (en)
JPH03121327A (en) Fluid sealed type cylindrical mount apparatus
US4893798A (en) Fluid-filled elastic bushing having means for limiting elastic deformation of axial end portions of elastic member defining pressure-receiving chamber
JPH08177945A (en) Fluid sealing type cylindrical vibration proof device
JPH0369013B2 (en)
JPH0555739B2 (en)
JP3736155B2 (en) Fluid-filled cylindrical vibration isolator and manufacturing method thereof
JPH0545810B2 (en)
JP2827846B2 (en) Fluid-filled bush
JPH0523866Y2 (en)
JP2750850B2 (en) Fluid-filled anti-vibration bush
JP3627397B2 (en) Fluid filled cylindrical mount
JPH0643555Y2 (en) Fluid-filled cylindrical mount device
JPH0729318Y2 (en) Fluid-filled cylinder mount device
JPH01153830A (en) Fluid sealed type vibration isolating bush
JPH01153831A (en) Fluid sealed type vibration isolating bush
JPH0454099B2 (en)
JPH0324914Y2 (en)
JPH0625731Y2 (en) Fluid filled anti-vibration bush
JPH022498B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees