JPH01153831A - Fluid sealed type vibration isolating bush - Google Patents

Fluid sealed type vibration isolating bush

Info

Publication number
JPH01153831A
JPH01153831A JP25642688A JP25642688A JPH01153831A JP H01153831 A JPH01153831 A JP H01153831A JP 25642688 A JP25642688 A JP 25642688A JP 25642688 A JP25642688 A JP 25642688A JP H01153831 A JPH01153831 A JP H01153831A
Authority
JP
Japan
Prior art keywords
receiving chamber
pressure receiving
fluid
fitting
rubber elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25642688A
Other languages
Japanese (ja)
Inventor
Ryoji Kanda
神田 良二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP25642688A priority Critical patent/JPH01153831A/en
Publication of JPH01153831A publication Critical patent/JPH01153831A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/14Units of the bushing type, i.e. loaded predominantly radially

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

PURPOSE:To favorably damp down low frequency- and large amplitude oscillation by providing a side extending portion which forms a defined constricted portion between an orifice for mutually connecting a balance chamber and a pressure receiving chamber and the inner wall of the pressure receiving chamber. CONSTITUTION:An inner cylinder fixture 10 and an outer cylinder fixture 16 are elastically linked together by means of a nearly semicylindrical rubber elastic body 14. A pressure receiving chamber 44 and a pair of balance chambers 46, 48 use a pocket portion 32 and the spaces of recessed portions 40, 42 as fluid housing spaces respectively. Orifices 50, 52 connects the pressure receiving chamber 44 and the balancing chambers 46, 48 respectively. An annular restricted portion 67 is formed between the outer peripheral edge portion of a side extend-out member 66 ana the inner wall of the pressure receiving chamber 44. Thereby, a favorable damping effect for a low frequency- and large amplitude can be obtained while obtaining a favorable cutting effect for a high-frequency small amplitude.

Description

【発明の詳細な説明】 (技術分野) 本発明は流体封入式防振ブツシュに係り、更に詳しくは
、径方向に入力される低周波振動と高周波振動とに対し
て、共に良好な防振機能を発揮することのできる流体封
入式防振ブツシュに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a fluid-filled vibration-isolating bushing, and more specifically, to a fluid-filled vibration-isolating bushing that has good vibration-isolating function against both low-frequency vibrations and high-frequency vibrations input in the radial direction. This invention relates to a fluid-filled anti-vibration bushing that can exhibit the following characteristics.

(従来技術) 振動伝達系を構成する所定の取付軸と筒状保持部との間
に介装されて、それらを防振連結する防振ブツシュの一
種に、主としてその径方向の所定の方向に入力される振
動を減衰乃至は遮断するようにしたものがある。例えば
、自動車のサスペンションブツシュやFF(フロントエ
ンジン・フロントドライブ)車の円筒型エンジンマウン
ト等がそれである。
(Prior art) A type of vibration-proof bushing that is interposed between a predetermined mounting shaft and a cylindrical holding part that constitute a vibration transmission system, and connects them in a vibration-proof manner. Some devices are designed to attenuate or block input vibrations. Examples include suspension bushings for automobiles and cylindrical engine mounts for FF (front engine/front drive) cars.

ところで、このような防振ブツシュでは、高周波−小振
幅の入力振動に対して良好な遮断性能が要求される一方
、低周波−大振幅の入力振動に対して良好な減衰性能が
要求されるのが一般的であるが、従来の防振ブツシュで
は、それらの入力振動に対する防振機能が、専ら、ゴム
弾性体の弾性変形だけに基づいて発揮されるようになっ
ていたため、それらの要求を同時に満足させることが難
しく、特に低周波−大振幅の入力振動に対して充分な減
衰効果を発揮することができないといった問題があった
By the way, such anti-vibration bushings are required to have good isolation performance against high-frequency, small-amplitude input vibrations, but are also required to have good damping performance against low-frequency, large-amplitude input vibrations. However, in conventional anti-vibration bushings, the anti-vibration function against these input vibrations was exclusively based on the elastic deformation of the rubber elastic body. It is difficult to satisfy this requirement, and there is a problem in that a sufficient damping effect cannot be exerted particularly against input vibrations of low frequency and large amplitude.

そのため、近年、特公昭48−36151号公報や特公
昭52−16554号公報等において、円筒状のゴム弾
性体内に、振動入力方向で対向するように一対の流体室
を形成すると共に、それら流体室をオリフィスで連通さ
せ、径方向の振動入力時において、各流体室に収容され
た所定の非圧縮性流体が、そのオリフィスを通じて相互
に流動し得るようにした流体封入式の防振ブツシュが提
案されている。
Therefore, in recent years, in Japanese Patent Publication No. 48-36151 and Japanese Patent Publication No. 52-16554, a pair of fluid chambers are formed in a cylindrical rubber elastic body so as to face each other in the vibration input direction, and the fluid chambers are A fluid-filled vibration-proof bushing has been proposed in which the two fluid chambers communicate with each other through an orifice so that predetermined incompressible fluids contained in each fluid chamber can mutually flow through the orifice when vibration is input in the radial direction. ing.

このような流体封入式防振ブツシュによれば、オリフィ
スを流動する非圧縮性流体の慣性質量効果乃至は液柱共
振作用に基づいて、そのオリフィスについて設定(チュ
ーニング)された周波数域の入力振動を良好に減衰する
ことができるのであり、従ってそのオリフィスのチュー
ニング周波数を低い周波数に設定することにより、低周
波−大振幅の入力振動に対して良好な減衰効果を発揮さ
せることができるのである。
According to such a fluid-filled vibration-proof bushing, input vibration in a frequency range set (tuned) for the orifice is suppressed based on the inertial mass effect or liquid column resonance effect of the incompressible fluid flowing through the orifice. Therefore, by setting the tuning frequency of the orifice to a low frequency, it is possible to exhibit a good damping effect against low frequency and large amplitude input vibrations.

(解決課題) しかしながら、このような従来の流体封入式防振ブツシ
ュにあっては、上述のように、オリフィスについて設定
された周波数域(チューニング周波数領域)の入力振動
に対しては、良好な減衰効果を発揮させることができる
ものの、それ以外の周波数域の入力振動に対しては、必
ずしも良好な防振機能が得られるとは言い難く、特にそ
のオリフィスのチューニング周波数域よりも高い周波数
域の入力振動に対しては、非圧縮性流体がオリフィスを
流動し難くなることに起因して、却って防振機能が低下
するといった問題があった。
(Problem to be solved) However, as mentioned above, such conventional fluid-filled vibration-proof bushings cannot provide good damping for input vibrations in the frequency range (tuning frequency range) set for the orifice. However, it is difficult to say that a good vibration isolation function can be obtained against input vibrations in other frequency ranges, especially for input vibrations in a frequency range higher than the tuning frequency range of the orifice. With respect to vibration, there is a problem in that the incompressible fluid becomes difficult to flow through the orifice, and the vibration damping function is rather deteriorated.

(解決手段) 本発明は、このような事情を背景として為されたもので
あっt、その特徴とするところは、前述の如き、径方向
に入力される振動を遮断乃至は減衰せしめる流体封入式
防振ブツシュを、(a)内筒部材と、(b)該内筒部材
の外側に同心的に若しくは偏心して配置された外筒部材
と、(C)それら内筒部材と外筒部材との間に介装せし
められてそれらを連結する、外周面に開口したポケット
部を有するゴム弾性体と、(d)それら内筒部材と外筒
部材との間の該ゴム弾性体にて連結されていない部位に
設けられた、ブツシュ軸心方向に貫通する空所と、(e
)前記ゴム弾性体のポケット部がその開口部を前記外筒
部材で流体密に閉塞せしめられることによって形成され
た、所定の非圧縮性流体が封入せしめられた受圧室と、
(f)前記内筒部材と外筒部材との間に設けられた貫通
空所内において、膨出変形の容易な薄肉壁部で少なくと
も一部を画成されて形成された、前記受圧室と同様の非
圧縮性流体が封入せしめられた平衡室と、(g)前記平
衡室と前記受圧室とを相互に連通せしめるオリフィスと
、(h)前記ポケット部の底部から前記受圧室内に突出
せしめられた突出部から、該突出部の側方に延び出させ
られて、前記受圧室の内壁との間で所定の狭窄部を形成
する側方延出部とを、含むように構成したことにある。
(Solution Means) The present invention was made against the background of the above, and is characterized by a fluid-filled type that blocks or damps vibrations input in the radial direction, as described above. The anti-vibration bushing includes (a) an inner cylinder member, (b) an outer cylinder member disposed concentrically or eccentrically on the outside of the inner cylinder member, and (C) a combination of the inner cylinder member and the outer cylinder member. (d) a rubber elastic body having a pocket portion open on the outer circumferential surface, which is interposed between and connects them; and (d) the inner cylinder member and the outer cylinder member are connected by the rubber elastic body. (e
) a pressure receiving chamber filled with a predetermined incompressible fluid, which is formed by fluid-tightly closing the opening of the pocket portion of the rubber elastic body with the outer cylindrical member;
(f) Similar to the pressure-receiving chamber, which is defined at least in part by a thin wall portion that is easily bulged and deformed in a through space provided between the inner cylinder member and the outer cylinder member. (g) an orifice that allows the equilibrium chamber and the pressure receiving chamber to communicate with each other; and (h) an orifice that projects from the bottom of the pocket portion into the pressure receiving chamber. The present invention is configured to include a lateral extending portion extending from the protruding portion to the side of the protruding portion and forming a predetermined narrowing portion with the inner wall of the pressure receiving chamber.

(作用・効果) かかる本発明に従う流体封入式防振ブツシュによれば、
従来の流体封入式防振ブツシュと同様に、オリフィスの
チューニング周波数を低い周波数に設定することにより
、かかるオリフィスを流動する非圧縮性流体の慣性質量
効果乃至は液柱共振作用に基づいて、受圧室とブツシュ
軸心方向の貫通空所との対向方向に入力される低周波−
大振幅の振動を良好に減衰することができることとなる
(Operations/Effects) According to the fluid-filled anti-vibration bushing according to the present invention,
As with conventional fluid-filled vibration-isolating bushings, by setting the tuning frequency of the orifice to a low frequency, the pressure receiving chamber is Low frequency input in the direction opposite to the through hole in the direction of the axis of the bushing.
This means that large amplitude vibrations can be well damped.

一方、上述のように、オリフィスのチューニング周波数
を低い周波数に設定すれば、受圧室とブツシュ軸心方向
の貫通空所との対向方向に人力される振動が高周波−小
振幅のものであるときは、非圧縮性流体がオリフィスを
流動することが困難となり、それ故非圧縮性流体がオリ
フィスを流動することによって達成される動バネ定数の
低下は殆ど期待できなくなる。しかし、この場合には、
側方延出部と受圧室内壁との間に形成された狭窄部を通
じて非圧縮性流体がブツシュ径方向に流動することが許
容されていることによって、かかる狭窄部の長さと断面
積とを高い周波数に対応して設定(チューニング)する
ことにより、その狭窄部を通じて流動する非圧縮性流体
の慣性質量効果乃至は液柱共振作用に基づいて、その高
周波−小振幅の入力振動を良好に遮断することが可能と
なるのである。
On the other hand, as mentioned above, if the tuning frequency of the orifice is set to a low frequency, when the vibration applied manually in the opposite direction between the pressure receiving chamber and the through space in the bushing axis direction is of high frequency and small amplitude, , it becomes difficult for an incompressible fluid to flow through the orifice, and therefore the reduction in dynamic spring constant achieved by flowing an incompressible fluid through the orifice is hardly expected. However, in this case,
By allowing the incompressible fluid to flow in the bush radial direction through the constriction formed between the lateral extension and the wall of the pressure receiving chamber, the length and cross-sectional area of the constriction can be increased. By setting (tuning) according to the frequency, high frequency and small amplitude input vibrations can be effectively blocked based on the inertial mass effect or liquid column resonance effect of the incompressible fluid flowing through the constriction. This makes it possible.

つまり、本発明に従う流体封入式防振ブツシュによれば
、ブツシュ径方向に入力する低周波−大振幅の振動に対
しては、オリフィスを流動する非圧縮性流体の慣性質量
効果乃至は液柱共振作用に基づいて、従来の流体封入式
防振ブツシュと同様に、良好な減衰効果を発揮すること
ができる一方、高周波−小振幅の入力振動に対しては、
側方延出部と受圧室内壁との間に形成された狭窄部を通
じて流動する非圧縮性流体の慣性質量効果乃至は液柱共
振作用に基づいて、従来の流体封入式防振ブツシュより
も良好な遮断効果を発揮することが可能となるのであり
、従ってブツシュ径方向の人力振動に対して、従来より
も優れた防振機能を発揮させることが可能となるのであ
る。
In other words, according to the fluid-filled vibration-isolating bushing according to the present invention, low-frequency and large-amplitude vibrations input in the bushing radial direction can be suppressed by the inertial mass effect of the incompressible fluid flowing through the orifice or liquid column resonance. Based on the action, it can exhibit a good damping effect like the conventional fluid-filled vibration-isolating bushing, but it also has a good damping effect against high-frequency and small-amplitude input vibrations.
Better than conventional fluid-filled vibration damping bushings based on the inertial mass effect or liquid column resonance effect of the incompressible fluid flowing through the constriction formed between the lateral extension and the wall of the pressure receiving chamber. Therefore, it becomes possible to exhibit a vibration isolation function superior to the conventional one against human vibration in the radial direction of the bushing.

(実施例) 以下、本発明をより一層具体的に明らかにするために、
本発明をFF(フロントエンジン・フロントドライブ)
車のパワーユニットの防振支持に用いられる円筒型エン
ジンマウントに適用した例について、その一実施例を図
面に基づいて詳細に説明する。
(Example) Hereinafter, in order to clarify the present invention more specifically,
The present invention is FF (front engine/front drive)
An example of application to a cylindrical engine mount used for anti-vibration support of a vehicle power unit will be described in detail with reference to the drawings.

先ず、第1図乃至第3図において、10および16は、
それぞれ、内筒部材としての円筒状の内筒金具と外筒部
材としての円筒状の外筒金具であって、マウント径方向
に所定量偏心して配置されており、それらの間に介装せ
しめられた略半円筒状のゴム弾性体14によって弾性的
に連結せしめられている。そして、本実施例のエンジン
マウントは、外筒金具16の外周面においてエンジンを
含むパワーユニット側または車体側の筒状保持部に嵌入
されて取り付けられる一方、内筒金具10の内孔18に
おいて車体側またはパワーユニット側の取付軸に外挿さ
れて取り付けられて、パワーユニットを車体に対して防
振支持せしめるようになっている。
First, in FIGS. 1 to 3, 10 and 16 are
Each of them includes a cylindrical inner metal fitting as an inner cylinder member and a cylindrical outer metal fitting as an outer cylinder member, which are arranged eccentrically by a predetermined amount in the radial direction of the mount, and are interposed between them. They are elastically connected by a rubber elastic body 14 having a substantially semi-cylindrical shape. The engine mount of this embodiment is fitted on the outer circumferential surface of the outer cylinder fitting 16 into a cylindrical holding part on the side of the power unit containing the engine or on the car body side, and is attached to the inner hole 18 of the inner cylinder fitting 10 on the side of the car body. Alternatively, it is attached by being inserted externally to the mounting shaft on the power unit side, so that the power unit is supported against vibration against the vehicle body.

ここで、ゴム弾性体14は、内筒金具10と外筒金具1
6との偏心方向の離隔距離の大きい側において、それら
両金具10.16間に介装せしめられており、それら両
金具10.16管の偏心方向の離隔距離の小さい側の部
位には、マウント軸心方向に貫通する状態で、略円弧状
断面の空所34が形成されている。そして、ゴム弾性体
14は、前記パワーユニットの取付けにより、内筒金具
10と外筒金具16との間でそれらの偏心方向に圧縮変
形せしめられるようになっており、これにより、パワー
ユニットの取付状態においては、内筒金具10と外筒金
具16とが略同心的に位置せしめられるようになってい
る。
Here, the rubber elastic body 14 includes the inner cylinder fitting 10 and the outer cylinder fitting 1.
The metal fittings 10.16 are interposed between the two metal fittings 10.16 on the side where the eccentric distance from the tube is larger, and the mount is interposed between the two metal fittings 10. A cavity 34 having a substantially arc-shaped cross section is formed so as to penetrate in the axial direction. When the power unit is installed, the rubber elastic body 14 is compressed and deformed in the eccentric direction between the inner cylinder fitting 10 and the outer cylinder fitting 16, so that when the power unit is installed, In this case, the inner cylindrical metal fitting 10 and the outer cylindrical metal fitting 16 are positioned substantially concentrically.

また、ゴム弾性体14は、その内周面において、内筒金
具10の外周面に一体加硫接着されており、その外周面
には、前記空所34を内包する状態で、シールスリーブ
12が一体加硫接着せ、しめられている。そして、この
シールスリーブ12の外周面に流体密に嵌着されて、前
記外筒金具16が配設されている。
Further, the rubber elastic body 14 is integrally vulcanized and bonded to the outer circumferential surface of the inner cylindrical fitting 10 on its inner circumferential surface, and the seal sleeve 12 is attached to the outer circumferential surface in a state that includes the cavity 34. It is vulcanized and sealed in one piece. The outer cylindrical fitting 16 is disposed so as to be fluid-tightly fitted onto the outer peripheral surface of the seal sleeve 12.

上記ゴム弾性体14の外周面に固着さ、れたシールスリ
ーブ12には、第4図乃至第7図に示されているように
、両金具10.16の偏心方向で内筒金具10を挟んで
対向するように、一対、の窓部20.22が形成されて
おり、またシールスリーブ12の外周面には、それら両
窓部20,2・2をつなぐ状態で、一対の周方向のオリ
フィス溝24゜26が形成されている。さらに、それら
オリフィス溝24.26の開口部を除く外筒金具16の
外周面には、軸心方向の両端部にそれぞれシールリップ
28.28を備えた所定厚さのシールゴム層30がゴム
弾性体14と一体に加硫成形されて配設されている。
As shown in FIGS. 4 to 7, the seal sleeve 12 is fixed to the outer peripheral surface of the rubber elastic body 14, and the inner cylinder fitting 10 is sandwiched between the two fittings 10 and 16 in the eccentric direction. A pair of windows 20, 22 are formed so as to face each other, and a pair of circumferential orifices is formed on the outer peripheral surface of the seal sleeve 12, connecting the windows 20, 2. Grooves 24° and 26 are formed. Further, on the outer peripheral surface of the outer cylinder fitting 16 excluding the openings of the orifice grooves 24 and 26, a sealing rubber layer 30 of a predetermined thickness and having sealing lips 28 and 28 at both ends in the axial direction is made of a rubber elastic material. It is vulcanized and disposed integrally with 14.

一方、ゴム弾性体14には、第4図および第5図に示さ
れているように、上記シールスリーブ12の窓部20に
開口する状態で、所定深さのポケット部32が形成され
ている。また、前記空所34に臨むシールスリーブ12
の部位には、該シールスリーブ12の他方の窓部22の
マウント周方向に隔たった両端部分をそれぞれ内側から
閉塞する状態で、膨出変形の容易な薄肉壁部としてのゴ
ム弾性膜36.38がそれぞれ一体加硫接着されており
、これにより、シールスリーブI2の窓部22に開口す
る状態で、所定深さの一対の凹所40.42が形成され
ている。なお、第4図および第5図から明らかなように
、凹所40.42間のシールスリーブ12の窓部22の
部分は、ゴム弾性膜36,38と一体に成形された所定
厚さのゴム層で塞がれている。
On the other hand, as shown in FIGS. 4 and 5, the rubber elastic body 14 is formed with a pocket 32 having a predetermined depth and opening into the window 20 of the seal sleeve 12. . Further, the seal sleeve 12 facing the cavity 34
Rubber elastic membranes 36 and 38 are provided as thin wall portions that are easily bulged and deformed in such a manner that both circumferentially separated end portions of the mount of the other window portion 22 of the seal sleeve 12 are closed from the inside. are integrally vulcanized and bonded, thereby forming a pair of recesses 40 and 42 of a predetermined depth, opening into the window portion 22 of the sealing sleeve I2. As is clear from FIGS. 4 and 5, the window portion 22 of the seal sleeve 12 between the recesses 40 and 42 is made of rubber having a predetermined thickness that is integrally formed with the rubber elastic membranes 36 and 38. covered with layers.

そして、ここでは、前述のように、シールスリーブ12
に対して外筒金具16が流体密に嵌着されることにより
、前記窓部20.22、ひいては前記ポケット部32お
よび凹所40.42の開口部がそれぞれ流体密に閉塞さ
れて、それらポケット部32および凹所40.42内の
空間をそれぞれ流体収容空間とする受圧室44および一
対の平衡室46.48が形成されている。また、前記オ
リフィス溝24.26の開口部が外筒金具16で流体密
に閉塞されることにより、受圧室44と各平衡室46.
48とを連通ずるオリフィス50゜52が形成されてい
る。さらに、ここでは、シールスリーブ12に対する外
筒金具16の嵌着操作が所定の非圧縮性流体中で行なわ
れることにより、それら受圧室44および各平衡室46
.48内に、水、アルキレングリコール、ポリアルキレ
ングリコール、低分子量重合体等の所定の非圧縮性流体
が封入されている。
And here, as mentioned above, the sealing sleeve 12
By fitting the outer cylinder fitting 16 in a fluid-tight manner, the openings of the window portion 20.22, the pocket portion 32 and the recess 40.42 are respectively fluid-tightly closed, and the pockets are closed. A pressure receiving chamber 44 and a pair of balance chambers 46, 48 are formed, each of which uses the space within the portion 32 and the recess 40, 42 as a fluid storage space. Further, the openings of the orifice grooves 24 and 26 are fluid-tightly closed by the outer cylinder fitting 16, so that the pressure receiving chamber 44 and each equilibrium chamber 46.
An orifice 50° 52 is formed that communicates with 48. Furthermore, here, the fitting operation of the outer cylindrical fitting 16 to the seal sleeve 12 is performed in a predetermined incompressible fluid, so that the pressure receiving chamber 44 and each equilibrium chamber 46
.. A predetermined incompressible fluid such as water, alkylene glycol, polyalkylene glycol, or a low molecular weight polymer is sealed within 48 .

なお、外筒金具16は、へ方絞り加工を施されてシール
スリーブ12に固着されている。また、本実施例のエン
ジンマウントは、かかる外筒金具16の嵌装操作後、所
定のダイスを通過させられることによって、その外径寸
法が所望の寸法に設定せしめられているが、外筒金具I
6の嵌装操作後、外筒金具16を絞ってその外径を所望
の寸法に設定するようにすることも可能である。さらに
、前記オリフィス50.52は、その断面積および長さ
が所定の低周波数域の振動に対応して設定(チューニン
グ)されており、これにより、それらオリフィス50.
52を流動する、乃至はそこに位置する非圧縮性流体の
慣性質量効果乃至は液柱共振作用に基づいて、それらオ
リフィス50.52のチューニング周波数に対応した低
周波数域の振動が良好に減衰せしめられるようになって
いる。
Note that the outer cylindrical metal fitting 16 is fixed to the seal sleeve 12 by being subjected to a helical drawing process. Further, in the engine mount of this embodiment, after the fitting operation of the outer cylinder metal fitting 16, the outer diameter dimension is set to a desired size by passing through a predetermined die. I
After the fitting operation in step 6, it is also possible to tighten the outer cylindrical fitting 16 to set its outer diameter to a desired dimension. Furthermore, the cross-sectional area and length of the orifices 50.52 are set (tuned) in response to vibrations in a predetermined low frequency range, so that the orifices 50.52.
Based on the inertial mass effect or liquid column resonance effect of the incompressible fluid flowing through the orifice 52 or located there, vibrations in the low frequency range corresponding to the tuning frequency of the orifice 50 and 52 are well damped. It is now possible to

ところで、第4図乃至第6図に示されているように、前
記内筒金具10の外周面には、その軸心方向の中央部に
位置して、長手方向が金具10゜16の偏心方向と一致
する状態で、所定長さの長手ブロック状のストッパ金具
54がその中央孔56において圧入固定されている。そ
して、このストッパ金具54の長手方向の両端部58.
60が、前記ポケット部32(受圧室44)および空所
34内に、それぞれ所定の高さをもって突出せしめられ
ており、これにより、かかるストッパ金具54の両端部
58.60が外筒金具16の内周面に当接することに基
づいて、内筒金具10と外筒金具16との偏心方向にお
ける過大な相対変位が防止されるようになっている。な
お、空所34内に延び出させられたストッパ金具54の
表面は、ゴム弾性体14と一体に成形された所定厚さの
緩衝用ゴム層で覆われている。
By the way, as shown in FIGS. 4 to 6, on the outer circumferential surface of the inner cylindrical fitting 10, there is a portion located at the center in the axial direction, and the longitudinal direction is in the eccentric direction of the fitting 10°16. A stopper metal fitting 54 in the form of a longitudinal block having a predetermined length is press-fitted and fixed in the central hole 56 in a state corresponding to the above. Both ends 58 in the longitudinal direction of this stopper fitting 54.
60 are made to protrude into the pocket portion 32 (pressure receiving chamber 44) and the cavity 34 at a predetermined height, respectively, so that both ends 58 and 60 of the stopper metal fitting 54 are connected to the outer cylindrical metal fitting 16. Based on the contact with the inner circumferential surface, excessive relative displacement between the inner cylinder fitting 10 and the outer cylinder fitting 16 in the eccentric direction is prevented. Note that the surface of the stopper fitting 54 extending into the cavity 34 is covered with a buffering rubber layer of a predetermined thickness that is molded integrally with the rubber elastic body 14.

そして、ここでは、第4図および第5図に示されている
ように、ポケット部32 (受圧室44)内に延び出さ
せられたストッパ金具54の端部58の先端面に雌ネジ
穴62が形成されており、第1図および第2図に示され
ているように、その雌ネジ六62に螺合された雄ネジ6
4により、外周縁部が端部58の周囲の側方に延び出す
ように、換言すれば、外周縁部がストッパ金具54の端
部58の側面からマウント軸心方向およびマウント周方
向にそれぞれ所定寸法突出する状態で、略円弧状断面の
矩形板状の側方延出部材66が固着されている。
Here, as shown in FIGS. 4 and 5, a female screw hole 62 is formed in the end surface of the end portion 58 of the stopper fitting 54 extending into the pocket portion 32 (pressure receiving chamber 44). As shown in FIGS. 1 and 2, a male screw 6 is screwed into the female screw 662.
4, so that the outer peripheral edge extends laterally around the end 58, in other words, the outer peripheral edge extends from the side surface of the end 58 of the stopper fitting 54 in a predetermined direction in the mount axis direction and in the mount circumferential direction. A rectangular plate-shaped lateral extending member 66 having a substantially arcuate cross section is fixed in a protruding state.

本実施例でゆ、かかる側方延出部材66の外周縁部と受
圧室44の内壁との間において、両金具10.16の偏
心方向に略直角な状態で、環状の狭窄部67が形成され
ているのであり、振動入力によって内筒金具10と外筒
金具16とがそれらの偏心方向に相対移動せしめられる
と、受圧室44内の非圧縮性流体がかかる狭窄部67を
通じてマウント径方向に流動せしめられるようになって
いるのである。
In this embodiment, an annular narrowed portion 67 is formed between the outer peripheral edge of the side extending member 66 and the inner wall of the pressure receiving chamber 44, substantially perpendicular to the eccentric direction of the metal fittings 10.16. When the inner cylindrical fitting 10 and the outer cylindrical fitting 16 are caused to move relative to each other in their eccentric direction due to vibration input, the incompressible fluid in the pressure receiving chamber 44 passes through the narrowed portion 67 and moves in the radial direction of the mount. It is designed to be made to flow.

なお、かかる狭窄部67は、振動入力方向(両金具10
.16の偏心方向)における長さ二1(第1図および第
2図参照)と断面積(振動入力方向に直角な方向におけ
る狭窄部67の面積)とが、前記オリフィス50.52
のチューニング周波数よりも高い周波数に対応して設定
されており、これにより、かかる狭窄部67に位置する
非圧縮性流体の側方延出部材66に対する相対的な流動
に従う慣性質量効果乃至は液柱共振作用に基づいて、そ
の狭窄部67のチューニング周波数に対応した高周波数
域の入力振動が良好に遮断せしめられるようになってい
る。
Note that the narrowed portion 67 is formed in the vibration input direction (both metal fittings 10
.. The length 21 (see FIGS. 1 and 2) in the eccentric direction of the orifice 50.
The tuning frequency is set to correspond to a frequency higher than the tuning frequency of Based on the resonance effect, input vibrations in a high frequency range corresponding to the tuning frequency of the narrowed portion 67 can be effectively blocked.

また、第1図および第2図に示されているように、前記
側方延出部材66は、ここでは、雄ネジ64によってス
トッパ部58に固着される補強金具68と、その外側面
に一体加硫成形された所定厚さの緩衝ゴム層70とから
なっており、緩衝ゴム層70には、雄ネジ64を雌ネジ
六62に螺合させるための通孔72が形成されている。
Further, as shown in FIGS. 1 and 2, the side extending member 66 is integrated with a reinforcing metal fitting 68 fixed to the stopper part 58 by a male screw 64, and an outer surface of the reinforcing metal fitting 68. It consists of a vulcanized buffer rubber layer 70 of a predetermined thickness, and a through hole 72 is formed in the buffer rubber layer 70 for screwing the male screw 64 into the female screw 662.

さらに、前述の説明から明らかなように、本実施例では
、ストッパ金具54の一方の端部58が、ポケット部3
2の底部から受圧室44内に突出せしめられた突出部を
構成していると共に、かかるストッパ金具54の端部5
8の側面から側方に突出した側方延出部材66の外周縁
部分が、受圧室44の内壁との間で狭窄部67を形成す
る側方延出部を構成している。
Furthermore, as is clear from the above description, in this embodiment, one end 58 of the stopper fitting 54 is connected to the pocket portion 3.
The end portion 5 of the stopper fitting 54 constitutes a protruding portion that protrudes into the pressure receiving chamber 44 from the bottom of the stopper fitting 54.
The outer circumferential edge portion of the lateral extending member 66 that protrudes laterally from the side surface of the pressure receiving chamber 8 constitutes a lateral extending portion that forms a narrowed portion 67 with the inner wall of the pressure receiving chamber 44 .

従って、このような構造のエンジンマウントによれば、
内筒金具10と外筒金具16との間に、受圧室44と空
所34との対向方向の低周波−大振幅の振動が入力され
ると、ゴム弾性体14の弾性変形に基づいて、受圧室4
4と各平衡室46゜48との間でオリフィス50.52
を通じて非圧縮性流体が流動せしめられることとなり、
従来の流体封入式エンジンマウントと同様に、それらオ
リフィス50.52を流動する、乃至はそこに位置する
非圧縮性流体の慣性質量効果乃至は液柱共振作用に基づ
いて、その低周波−大振幅の振動が良好に減衰されるこ
ととなる。
Therefore, according to the engine mount with this structure,
When low-frequency, large-amplitude vibration in the opposing direction of the pressure receiving chamber 44 and the cavity 34 is input between the inner cylindrical metal fitting 10 and the outer cylindrical metal fitting 16, based on the elastic deformation of the rubber elastic body 14, Pressure receiving chamber 4
4 and each equilibrium chamber 46° 48 between the orifice 50.52
An incompressible fluid is forced to flow through the
Similar to conventional fluid-filled engine mounts, the low frequency and large amplitude of the inertial mass effect or liquid column resonance of the incompressible fluid flowing through or located in the orifices 50, 52 The vibrations will be well damped.

一方、受圧室44と空所34との対向方向に入力される
振動が高周波−小振幅のものである場合には、最早、非
圧縮性流体がオリフィス50.52を通じて流動するこ
とが困難となるところから、非圧縮性流体がそれらオリ
フィス50.52を通じて流動することによって達成さ
れる動バネ定数の低下は殆ど期待できなくなる。しかし
、この場合には、受圧室44内の非圧縮性流体が前記狭
窄部67を通じてマウント径方向に流動することが許容
されていることによって、その狭窄部67に位置する非
圧縮性流体の側方延出部材66に対する相対的な流動作
用に従う慣性質量効果乃至は液柱共振作用に基づいて、
その高周波−小振幅の振動が良好に遮断されることとな
る。つまり、そのような狭窄部67が形成されていない
従来の流体封入式エンジンマウントに比べて、高周波−
小振幅振動に対する遮断効果が大幅に向上するのである
On the other hand, if the vibration input in the opposite direction between the pressure receiving chamber 44 and the cavity 34 is of high frequency and small amplitude, it becomes difficult for the incompressible fluid to flow through the orifice 50, 52. As a result, the reduction in dynamic spring constant achieved by flowing an incompressible fluid through the orifices 50, 52 can hardly be expected. However, in this case, since the incompressible fluid in the pressure receiving chamber 44 is allowed to flow in the radial direction of the mount through the narrowed part 67, the side of the incompressible fluid located in the narrowed part 67 is Based on the inertial mass effect or liquid column resonance effect according to the relative flow action on the horizontally extending member 66,
The high frequency and small amplitude vibrations are effectively blocked. In other words, compared to a conventional fluid-filled engine mount that does not have such a constricted portion 67, high-frequency
This greatly improves the effectiveness of blocking small amplitude vibrations.

このように、本実施例に従う円筒型エンジンマウントに
よれば、受圧室44と空所34との対向方向に入力する
低周波−大振幅の振動に対して、従来と同様に、良好な
減衰効果を発揮させることができる一方、高周波−小振
幅の振動に対して、従来よりも良好な遮断効果を発揮さ
せることができるのであり、従ってマウント径方向に入
力される振動を従来のマウントよりも有利に減衰乃至は
遮断することができるのである。
As described above, the cylindrical engine mount according to this embodiment has a good damping effect as in the conventional case against low frequency and large amplitude vibrations input in the opposite direction between the pressure receiving chamber 44 and the cavity 34. At the same time, it is also able to exhibit a better isolation effect than conventional mounts against high-frequency, small-amplitude vibrations, so it is more effective than conventional mounts in blocking vibrations input in the radial direction of the mount. It can be attenuated or cut off.

なお、本実施例のエンジンマウントにおいては、前述の
ように、パワーユニットの取付状態において、ゴム弾性
体14が金具10.16の偏心方向で圧縮されるように
なっていると共に、受圧室44および空所34内に延び
出させられたストッパ金具54の端部58,60が外筒
金具16に当接することに基づいて、内筒金具10と外
筒金具16との過大な変位が良好に防止されるようにな
っていることから、ゴム弾性体14に対する過大な引張
変形および圧縮変形が共に良好に防止されて、ゴム弾性
体14、ひいてはエンジンマウントの耐久性が向上する
といった利点もある。
In the engine mount of this embodiment, as described above, when the power unit is installed, the rubber elastic body 14 is compressed in the eccentric direction of the fitting 10.16, and the pressure receiving chamber 44 and the air space are compressed. Since the ends 58 and 60 of the stopper fitting 54 extended into the space 34 come into contact with the outer cylindrical fitting 16, excessive displacement between the inner cylindrical fitting 10 and the outer cylindrical fitting 16 is effectively prevented. Therefore, there is an advantage that both excessive tensile deformation and compressive deformation of the rubber elastic body 14 are effectively prevented, and the durability of the rubber elastic body 14 and, by extension, the engine mount is improved.

以上、本発明の一実施例を詳細に説明したが、これはあ
くまでも例示であって、本発明が、かかる具体例に限定
して解釈されるものではなく、その趣旨を逸脱しない範
囲内において、種々なる変更、修正、改良等を施した態
様で実施できることは、言うまでもないところである。
Although one embodiment of the present invention has been described in detail above, this is merely an example, and the present invention is not to be construed as being limited to such a specific example, and within the scope of the spirit thereof, It goes without saying that the present invention can be implemented with various changes, modifications, improvements, etc.

例えば、前記実施例では、側方延出部を構成する側方延
出部材66がストッパ金具54とは別体に構成されてい
たが、側方延出部材66、すなわち側方延出部材66の
補強金具68は、スト・7バ金具54と一体に構成する
ことも可能である。また、受圧室44の内壁との間で狭
窄部67を形成する側方延出部は、突出部としてのスト
ッパ金具54の突部58の全周において側方に延び出て
いる必要はなく、例えば、ストッパ金具54の端部58
の側面からマウント周方向(ブツシュ周方向)にのみ延
び出すように側方延出部を設けて、狭窄部67を形成す
るようにすることも可能である。
For example, in the embodiment described above, the side extending member 66 constituting the side extending portion was configured separately from the stopper fitting 54, but the side extending member 66, that is, the side extending member 66 The reinforcing metal fitting 68 can also be constructed integrally with the strike/seven bar metal fitting 54. Further, the lateral extending portion that forms the narrowed portion 67 with the inner wall of the pressure receiving chamber 44 does not need to extend laterally around the entire circumference of the protruding portion 58 of the stopper fitting 54 as a protruding portion. For example, the end 58 of the stopper fitting 54
It is also possible to form a narrowed portion 67 by providing a lateral extending portion extending only in the circumferential direction of the mount (circumferential direction of the bush) from the side surface of the bushing.

さらに、側方延出部を支持する突出部は、ゴム弾性体1
4と一体のゴムブロックで構成することも可能であり、
また突出部には、内筒金具10と外筒金具16との過大
な相対変位を規制するためのストッパ機能を必ずしも付
与する必要はない。
Furthermore, the protrusion that supports the lateral extension includes the rubber elastic body 1
It is also possible to configure it with a rubber block integrated with 4.
Further, the protrusion does not necessarily need to have a stopper function for regulating excessive relative displacement between the inner cylinder fitting 10 and the outer cylinder fitting 16.

また、前記実施例では、平衡室46.48を構成する凹
所40.42が、シールスリーブ12の窓部22のそれ
ぞれ一部を開口部とする状態で形成されていたが、それ
ら平衡室46.48の凹所40.42は、シールスリー
ブ12に形成された互いに独立した窓部を開口部とする
状態で形成することも可能であり、またそれら平衡室4
6.48を1つの平衡室として形成することも可能であ
り、更にはそれら平衡室46.48の一方のみを平衡室
として採用することも可能である。
Further, in the embodiment described above, the recesses 40.42 constituting the equilibrium chambers 46,48 were formed with openings formed in each of the windows 22 of the seal sleeve 12; The recesses 40 and 42 of .48 can also be formed with mutually independent windows formed in the sealing sleeve 12 as openings, and the recesses 40 and 42 of .
It is also possible to form 6.48 as one equilibrium chamber, and furthermore it is also possible to employ only one of the equilibrium chambers 46.48 as an equilibrium chamber.

更に、前記実施例では、平衡室46.48の一部を画成
する薄肉壁部としてのゴム弾性膜36゜38がシールス
リーブ12に一体に接着されて設けられていたが、薄肉
壁部は必ずしもシールスリーブに一体に接着されて設け
られている必要はなく、薄肉壁部をシールスリーブとは
別体に構成し、シールスリーブに機械的に取り付けるこ
とによって、平衡室を形成せしめるようにすることも可
能である。
Further, in the embodiment described above, the rubber elastic membrane 36, 38 as a thin wall portion defining a part of the equilibrium chamber 46, 48 was provided integrally bonded to the sealing sleeve 12, but the thin wall portion is The thin wall portion does not necessarily have to be integrally bonded to the sealing sleeve, but may be formed separately from the sealing sleeve and mechanically attached to the sealing sleeve to form an equilibrium chamber. is also possible.

また、前記実施例では、内筒金具10と外筒金具16と
がマウント径方向において所定量偏心した状態で配置さ
れていたが、それらを同心的に配置させることも可能で
ある。
Further, in the embodiment described above, the inner tube fitting 10 and the outer tube fitting 16 are arranged eccentrically by a predetermined amount in the radial direction of the mount, but it is also possible to arrange them concentrically.

加えて、前記実施例では、本発明をFF車の円筒型エン
ジンマウントに適用した例について述べたが、本発明は
、自動車用のサスペンションブツシュ等、FF車の円筒
型エンジンマウント以外の防振ブツシュや防振マウント
にも適用することが可能である。
In addition, in the embodiment described above, the present invention was applied to a cylindrical engine mount for a front-wheel drive vehicle. It can also be applied to bushings and anti-vibration mounts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に従うFF車用の円筒型エンジンマウン
トの一例を示す横断面図であり、第2図および第3図は
それぞれ第1図における■−■断面図およびm−m断面
図である。第4図は第1図のエンジンマウントにおける
ゴム弾性体の一体加硫成形品を示す第1図に対応する断
面図であり、第5図、第6図および第7図はそれぞれ第
4図におけるV−V断面図、 VT−Vl断面図および
■−■断面図である。 10:内筒金具(内筒部材) 12:シールスリーブ 14:ゴム弾性体 16:外筒金具(外筒部材) 32:ポケット部   34:空所 36.38:ゴム弾性膜(薄肉壁部) 40,42:凹所   44:受圧室 46.48:平衡室 50.52ニオリフイス 54:ストソバ金具  58:端部(突出部)66:側
方延出部材  67:挟窄部
FIG. 1 is a cross-sectional view showing an example of a cylindrical engine mount for a front-wheel drive vehicle according to the present invention, and FIGS. be. FIG. 4 is a sectional view corresponding to FIG. 1 showing an integrally vulcanized product of the rubber elastic body in the engine mount of FIG. 1, and FIGS. 5, 6, and 7 are respectively They are a V-V cross-sectional view, a VT-Vl cross-sectional view, and a ■-■ cross-sectional view. 10: Inner tube fitting (inner tube member) 12: Seal sleeve 14: Rubber elastic body 16: Outer tube fitting (outer tube member) 32: Pocket portion 34: Space 36.38: Rubber elastic membrane (thin wall portion) 40 , 42: Recess 44: Pressure receiving chamber 46. 48: Equilibrium chamber 50.

Claims (1)

【特許請求の範囲】 内筒部材と、 該内筒部材の外側に同心的に若しくは偏心して配置され
た外筒部材と、 それら内筒部材と外筒部材との間に介装せしめられてそ
れらを連結する、外周面に開口したポケット部を有する
ゴム弾性体と、 それら内筒部材と外筒部材との間の該ゴム弾性体にて連
結されていない部位に設けられた、ブッシュ軸心方向に
貫通する空所と、 前記ゴム弾性体のポケット部がその開口部を前記外筒部
材で流体密に閉塞せしめられることによって形成された
、所定の非圧縮性流体が封入せしめられた受圧室と、 前記内筒部材と外筒部材との間に設けられた貫通空所内
において、膨出変形の容易な薄肉壁部で少なくとも一部
を画成されて形成された、前記受圧室と同様の非圧縮性
流体が封入せしめられた平衡室と、 前記平衡室と前記受圧室とを相互に連通せしめるオリフ
ィスと、 前記ポケット部の底部から前記受圧室内に突出せしめら
れた突出部から、該突出部の側方に延び出させられて、
前記受圧室の内壁との間で所定の狭窄部を形成する側方
延出部とを、 含むことを特徴とする流体封入式防振ブッシュ。
[Scope of Claims] An inner cylindrical member, an outer cylindrical member disposed concentrically or eccentrically outside the inner cylindrical member, and an outer cylindrical member interposed between the inner cylindrical member and the outer cylindrical member. a rubber elastic body having a pocket portion opened on the outer circumferential surface, which connects the inner cylinder member and the outer cylinder member, and a bushing provided in a portion not connected by the rubber elastic body between the inner cylinder member and the outer cylinder member in the axial direction of the bush. a pressure-receiving chamber in which a predetermined incompressible fluid is enclosed, which is formed by fluid-tightly closing the opening of the pocket portion of the rubber elastic body with the outer cylindrical member; , a non-contact space similar to the pressure receiving chamber, which is defined at least in part by a thin wall portion that is easily bulged and deformed in a through space provided between the inner cylinder member and the outer cylinder member; an equilibrium chamber in which a compressible fluid is sealed; an orifice that allows the equilibrium chamber and the pressure receiving chamber to communicate with each other; Extended laterally,
A fluid-filled vibration damping bushing comprising: a lateral extending portion forming a predetermined narrowed portion with an inner wall of the pressure receiving chamber.
JP25642688A 1988-10-12 1988-10-12 Fluid sealed type vibration isolating bush Pending JPH01153831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25642688A JPH01153831A (en) 1988-10-12 1988-10-12 Fluid sealed type vibration isolating bush

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25642688A JPH01153831A (en) 1988-10-12 1988-10-12 Fluid sealed type vibration isolating bush

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10340988A Division JPS63289349A (en) 1988-04-26 1988-04-26 Fluid sealing type vibrationproof bush

Publications (1)

Publication Number Publication Date
JPH01153831A true JPH01153831A (en) 1989-06-16

Family

ID=17292501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25642688A Pending JPH01153831A (en) 1988-10-12 1988-10-12 Fluid sealed type vibration isolating bush

Country Status (1)

Country Link
JP (1) JPH01153831A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636248B2 (en) * 1978-09-09 1988-02-09 Amubitsuku Guruupu Ltd

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636248B2 (en) * 1978-09-09 1988-02-09 Amubitsuku Guruupu Ltd

Similar Documents

Publication Publication Date Title
JPH06677Y2 (en) Fluid filled anti-vibration bush
JPH0430442Y2 (en)
JP2598969B2 (en) Fluid-filled cylindrical mounting device
US4893798A (en) Fluid-filled elastic bushing having means for limiting elastic deformation of axial end portions of elastic member defining pressure-receiving chamber
JPS62224746A (en) Fluid seal type vibrationproof supporting body
JPH0369013B2 (en)
JP2002327788A (en) Vibrationproof device sealed with fluid
JPH0555739B2 (en)
JPH0545810B2 (en)
JPH0266335A (en) Cylinder-formed liquid sealing vibrationproofing mount
JPH01153831A (en) Fluid sealed type vibration isolating bush
JP3736155B2 (en) Fluid-filled cylindrical vibration isolator and manufacturing method thereof
JP2827846B2 (en) Fluid-filled bush
JPH0643555Y2 (en) Fluid-filled cylindrical mount device
JPH0369015B2 (en)
JP2002327787A (en) Vibrationproof device sealed with fluid
JP3627397B2 (en) Fluid filled cylindrical mount
JPH0523866Y2 (en)
JP2000088035A (en) Liquid sealed vibration isolating device
JPH0454099B2 (en)
JPH0716127Y2 (en) Fluid filled cylinder mount
JPH0681974B2 (en) Fluid filled anti-vibration bush
JP2750850B2 (en) Fluid-filled anti-vibration bush
JPH01153830A (en) Fluid sealed type vibration isolating bush
JPH07151182A (en) Sealed liquid type vibration-proof bush