JPS63289349A - Fluid sealing type vibrationproof bush - Google Patents

Fluid sealing type vibrationproof bush

Info

Publication number
JPS63289349A
JPS63289349A JP10340988A JP10340988A JPS63289349A JP S63289349 A JPS63289349 A JP S63289349A JP 10340988 A JP10340988 A JP 10340988A JP 10340988 A JP10340988 A JP 10340988A JP S63289349 A JPS63289349 A JP S63289349A
Authority
JP
Japan
Prior art keywords
fluid
receiving chamber
pressure receiving
vibrations
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10340988A
Other languages
Japanese (ja)
Other versions
JPH0555739B2 (en
Inventor
Ryoji Kanda
神田 良二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP10340988A priority Critical patent/JPS63289349A/en
Publication of JPS63289349A publication Critical patent/JPS63289349A/en
Publication of JPH0555739B2 publication Critical patent/JPH0555739B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/14Units of the bushing type, i.e. loaded predominantly radially

Abstract

PURPOSE:To bring an excellent vibro-isolating function into full play by constituting vibrations of low frequency and large amplitude so as to be damped by action of a fluid flowing an orifice and vibrations of high frequency and small amplitude so to be intercepted by action of another fluid flowing a bottleneck part, respectively. CONSTITUTION:Each setting frequency of orifices 50 and 52 is set to be low, and vibrations of low frequency and large amplitude to be inputted in the opposed direction of a pressure receiving chamber 44 and an axial through void 34 are favorably damped by inertial mass effect or liquid column resonance action of an incompressible fluid flowing in these orifices. On the other hand, when the vibrations are of high frequency and small amplitude, length and a sectional area of a bottleneck part 67 between the side extending part 66 installed in a tip part of a stopper 58 and a wall of the pressure receiving chamber 44 is set as corresponding to the high frequency, whereby the input vibration is favorably interceptable by the inertial mass effect or the liquid column resonance action of the incompressible fluid flowing in the bottleneck part 67. Consequently, such a vibro-isolating function that is more excellent than ever before can be demonstrated.

Description

【発明の詳細な説明】 (技術分野) 本発明は流体封入式防振ブ・ンシュに係り、更に詳しく
は、径方向に入力される低周波振動と高周波振動とに対
して、共に良好な防振機能を発揮することのできる流体
封入式防振ブンシュに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a fluid-filled vibration damping bushing, and more specifically, to a fluid-filled vibration damping bushing that provides good protection against both low frequency vibrations and high frequency vibrations input in the radial direction. This invention relates to a fluid-filled anti-vibration bundle that can exhibit a vibration function.

(従来波f4・テ) 振動伝達系を構成する所定の取付軸と筒状保持部との間
に介装されて、それらを防振連結する防振ブツシュの一
種に、主としてその径方向の所定の方向に入力される振
動を減衰乃至は遮断するようにしたものがある。例えば
、自動車のサスペンションブツシュやFF(フロントエ
ンジン・フロントドライブ)車の円筒型エンジンマウン
ト等がそれである。
(Conventional wave f4・te) A type of vibration-proof bushing that is interposed between a predetermined mounting shaft and a cylindrical holding part that constitute a vibration transmission system, and connects them in a vibration-proof manner. Some devices are designed to attenuate or block vibrations input in this direction. Examples include suspension bushings for automobiles and cylindrical engine mounts for FF (front engine/front drive) cars.

ところで、このような防振フンシュでは、高周波−小振
幅の入力振動に対して良好な遮断性能が要求される一方
、低周波−大振幅の入力振動に対して良好な減衰性能が
要求されるのが一般的であるが、従来の防振ブツシュで
は、それらの人力振動に対する防振機能が、専ら、ゴム
弾性体の弾性変形だけに基づいて発揮されるようになっ
ていたため、それらの要求を同時に満足させることが難
しく、特に低周波−大振幅の入力振動に対して充分な減
衰効果を発揮することかてきないといった問題があった
By the way, such anti-vibration racks are required to have good isolation performance against high-frequency, small-amplitude input vibrations, while good damping performance is required against low-frequency, large-amplitude input vibrations. However, in conventional anti-vibration bushings, the anti-vibration function against human vibration was exclusively based on the elastic deformation of the rubber elastic body. It is difficult to satisfy this requirement, and there is a problem in that it is difficult to achieve a sufficient damping effect, especially for input vibrations of low frequency and large amplitude.

そのため、近年、特公昭48−36151号公報や特公
昭52−16554号公報等において、円筒状のゴム弾
性体内に、振動入力方向で対向するように一対の流体室
を形成すると共に、それら流体室をオリフィスで連通さ
せ、径方向の振動人力時において、各流体室に収容され
た所定の非圧縮性流体が、そのオリフィスを通して相互
に流動し得るようにした流体封入式の防振ブンシュが提
案されている。
Therefore, in recent years, in Japanese Patent Publication No. 48-36151 and Japanese Patent Publication No. 52-16554, a pair of fluid chambers are formed in a cylindrical rubber elastic body so as to face each other in the vibration input direction, and the fluid chambers are A fluid-filled vibration-proof bunsch has been proposed in which the two fluid chambers are communicated through an orifice, and a predetermined incompressible fluid contained in each fluid chamber can mutually flow through the orifice during radial vibration. ing.

このような流体封入式防振ブツシュによれば、オリフィ
スを流動する非圧縮性流体の慣性質量効果乃至は液柱共
振作用に基づいて、そのオリフィスについて設定(チュ
ーニング)された周波数域の入力振動を良好に減衰する
ことができるのであり、従ってそのオリフィスのチュー
ニング周波数を低い周波数に設定することにより、低周
波−大振幅の入力振動に対して良好な減衰効果を発揮さ
せるこよができるのである。
According to such a fluid-filled vibration-proof bushing, input vibration in a frequency range set (tuned) for the orifice is suppressed based on the inertial mass effect or liquid column resonance effect of the incompressible fluid flowing through the orifice. Therefore, by setting the tuning frequency of the orifice to a low frequency, it is possible to exhibit a good damping effect against low-frequency, large-amplitude input vibrations.

(問題点) しかしながら、このような流体封入式防振ブンシュにあ
っては、上述のように、オリフィスについて設定された
周波数域(チューニング周波数領域)の入力振動に対し
ては、良好な減衰効果を発揮させることができるものの
、それ以外の周波数域の入力振動に対しては、必ずしも
良好な防振機能が得られるとばばい難く、特にそのオリ
フィスのチューニング周波数域よりも高い周波数域の入
力振動に対しては、非圧縮性流体がオリフィスを流動し
難くなることに起因して、却って防振機能が低下すると
いった問題があった。
(Problem) However, as mentioned above, such a fluid-filled vibration damping bund cannot provide a good damping effect for input vibrations in the frequency range (tuning frequency range) set for the orifice. However, it is difficult to obtain a good vibration isolation function against input vibrations in other frequency ranges, especially for input vibrations in a frequency range higher than the tuning frequency range of the orifice. On the other hand, there was a problem in that the incompressible fluid became difficult to flow through the orifice, and the vibration damping function was rather deteriorated.

一方、上述の如き流体封入式防振ブツシュの変形タイプ
として、前記流体室の−・方を、防振ずべき振動が入力
せしめられる受圧室と為ず一方、他方を、膨出変形の容
易な可撓性薄膜て画成した平衡室と為し、該可撓性薄膜
の変形による平衡室の容積変化によって前記受圧室の容
積変化を許容させ、これによって非圧縮性流体がオリフ
ィスを通じてそれら受圧室と平衡室との間を相互に流動
し得るようにしたものが考えられている。しかし、この
ようなタイプの流体封入式防振ブツシュにおいても、前
記公報等で開示されでいる形式のものと同様の問題があ
り、低周波−大振幅の入力振動と高周波−小振幅の入力
振動とに対して同時に良好な防振機能を発揮させること
は困難であった。
On the other hand, as a modified type of the fluid-filled vibration-isolating bushing as described above, one side of the fluid chamber is not used as a pressure-receiving chamber into which vibrations to be damped are input, but one side is used as a pressure-receiving chamber into which vibrations to be damped are input, and the other side is used as a pressure-receiving chamber that can be easily bulged and deformed. An equilibrium chamber is defined by a flexible thin film, and the volume change of the equilibrium chamber due to the deformation of the flexible thin film allows the volume of the pressure receiving chamber to change, whereby the incompressible fluid passes through the orifice and fills the pressure receiving chambers. A system that allows mutual flow between the liquid and the equilibrium chamber has been considered. However, even in this type of fluid-filled anti-vibration bushing, there are problems similar to those of the type disclosed in the above-mentioned publications, such as low frequency - large amplitude input vibration and high frequency - small amplitude input vibration. It has been difficult to simultaneously exhibit good vibration-proofing function.

また、それら流体封入式防振ブツシュに対し、特開昭5
3−5316号公報や特開昭57−9340号公報等に
開示の流体封入式防振支持体に用いられている如き、可
動板を備えた流体圧吸収機構を設け、この流体圧吸収機
構による流体圧の吸収作用によって動ハネ定数を低下さ
せ、もって高周波−小振幅の人力振動に対しても、良好
な遮断効果を発揮させるようにすることが考えられるか
、このような流体圧吸収機構を採用すると、ブツシュ構
造が著しく複雑となり、経済的にも不利となるうえ、ス
ペース的な制約もあるため、容易には採用し難いのであ
る。
In addition, for those fluid-filled anti-vibration bushings,
A fluid pressure absorption mechanism equipped with a movable plate, such as that used in the fluid-filled vibration isolation support disclosed in Japanese Patent Application Laid-open No. 3-5316 and Japanese Patent Application Laid-Open No. 57-9340, is provided, and this fluid pressure absorption mechanism Is it possible to reduce the dynamic spring constant by absorbing fluid pressure, thereby achieving a good isolation effect even against high-frequency, small-amplitude human vibrations? If adopted, the bushing structure would be extremely complicated, which would be economically disadvantageous, and there would be space constraints, so it would be difficult to adopt it easily.

(解決手段) 本発明は、このような事情を背景として為されたもので
あって、その特徴とするところは、前述の如き、径方向
に入力される振動を遮断乃至は減衰せしめる流体封入式
防振ブツシュを、(a)内筒部材と、(b)該内筒部材
の外側に同心的に若しくは偏心して配置された、複数の
窓部を有する外筒部材と、(C)該外筒部材の外周面に
嵌装され、前記複数の窓部を流体密に閉塞するシールス
リーブと、(d)前記外筒部材と前記内筒部材との間に
介装せしめられてそれらを連結する、前記内筒部材を挟
んで対向する部位の一方に位置して前記外筒部材の窓部
の一つを開口部とするポケット部を有すると共に、他方
に位置して軸心方向に貫通する空所を備えたゴム弾性体
と、(e)該ゴム弾性体の前記ポケット部がその開口す
る窓部において前記シールスリーブで流体密に閉塞せし
められることによって形成された、防振ずべき振動が入
力せしめられる受圧室と、(f)前記ゴム弾性体の軸心
方向の貫通空所内において、前記外筒部材の窓部の残り
のものを開口部とする状態で形成された、膨出変形の容
易なゴム弾性材料から成る薄肉壁部で囲まれた凹所が、
その開口する窓部において前記シールスリーブで流体密
に閉塞せしめられることによって形成された平衡室と、
(g)該平衡室と前記受圧室とに封入された所定の非圧
縮性流体と、(h)前記平衡室と前記受圧室とを相互に
連通せしめ、該非圧縮性流体がそれら平衡室と受圧室と
の間で相互に流動することを許容するオリフィスと、(
i)前記受圧室内において、前記ポケット部の底部から
径方向外側に向かって延び出す状態で設けられた、所定
高さのストッパ部と、(j)該ストッパ部の先端側部分
から側方に延び出す状態で設けられ、前記受圧室の内壁
との間で所定の狭窄部を周りに形成する側方延出部とを
、含むように構成したことにある。
(Solution Means) The present invention was made against the background of the above-mentioned circumstances, and is characterized by a fluid-filled type that blocks or damps vibrations input in the radial direction, as described above. The anti-vibration bushing includes (a) an inner cylinder member, (b) an outer cylinder member having a plurality of windows arranged concentrically or eccentrically on the outside of the inner cylinder member, and (C) the outer cylinder. a seal sleeve that is fitted onto the outer peripheral surface of the member and fluid-tightly closes the plurality of windows; (d) interposed between the outer cylindrical member and the inner cylindrical member to connect them; A pocket portion located on one side of the opposing portions with the inner cylinder member interposed therebetween and having one of the windows of the outer cylinder member as an opening, and a cavity located on the other side that penetrates in the axial direction. (e) the pocket portion of the rubber elastic body is fluid-tightly closed by the sealing sleeve at the opening thereof, and the vibration that should be vibration-isolated is input to the pocket portion of the rubber elastic body; (f) a pressure-receiving chamber that is easily bulged and deformed, and (f) is formed in a through space in the axial direction of the rubber elastic body, with the remainder of the window of the outer cylinder member serving as an opening. A recess surrounded by a thin wall made of rubber elastic material is
an equilibrium chamber formed by fluid-tightly closing the opening window with the sealing sleeve;
(g) a predetermined incompressible fluid sealed in the equilibrium chamber and the pressure receiving chamber; (h) the equilibrium chamber and the pressure receiving chamber communicate with each other, and the incompressible fluid communicates with the equilibrium chamber and the pressure receiving chamber; an orifice that allows reciprocal flow to and from the chamber;
i) a stopper part of a predetermined height provided in the pressure receiving chamber and extending radially outward from the bottom of the pocket part; (j) a stopper part extending laterally from a distal end portion of the stopper part; and a lateral extending portion which is provided in a projecting state and forms a predetermined narrowed portion around the inner wall of the pressure receiving chamber.

(作用・効果) かかる本発明に従う流体封入式防振ブツシュによれば、
従来の流体封入式防振ブツシュと同様に、オリフィスの
チューニング周波数を低い周波数に設定することにより
、かかるオリフィスを流動する非圧縮性流体の慣性質量
効果乃至は液柱共振作用に基づいて、受圧室と軸心方向
の貫通空所との対向方向に入力される低周波−大振幅の
振動を良好に減衰することができることとなる。
(Operation/Effect) According to the fluid-filled anti-vibration bushing according to the present invention,
As with conventional fluid-filled vibration-isolating bushings, by setting the tuning frequency of the orifice to a low frequency, the pressure receiving chamber is This means that it is possible to satisfactorily attenuate low-frequency, large-amplitude vibrations that are input in the direction opposite to the through space in the axial direction.

一方、オリフィスのチューニング周波数を低い周波数に
設定すれば、受圧室と軸心方向の貫通空所との対向方向
に入力される振動が高周波−小振幅のものであるときは
、非圧縮性流体がオリフィスを流動することが困難とな
り、それ故非圧縮性流体がオリフィスを流動することに
よって達成される動ハネ定数の低下は殆ど期待できなく
なる。
On the other hand, if the tuning frequency of the orifice is set to a low frequency, when the vibration input in the opposite direction between the pressure receiving chamber and the through space in the axial direction is of high frequency and small amplitude, the incompressible fluid is It becomes difficult to flow through the orifice and therefore the reduction in dynamic spring constant achieved by flowing an incompressible fluid through the orifice is less likely to be expected.

しかし、この場合には、ストンパ部の先端側部分に設け
られた側方延出部と受圧室内壁との間に形成された狭窄
部を通じて非圧縮性流体がブツシュ径方向に流動するこ
とが許容されていることによって、かかる狭窄部の長さ
と断面積とを高い周波数に対応して設定(チューニング
)することにより、その狭窄部を通して流動する非圧縮
性流体の慣性質量効果乃至は液柱共振作用に基づいて、
その高周波−小振幅の入力振動を良好に遮断することが
可能となるのである。
However, in this case, the incompressible fluid is allowed to flow in the radial direction of the bushing through the narrowed part formed between the lateral extending part provided at the tip side of the stomper part and the wall of the pressure receiving chamber. By setting (tuning) the length and cross-sectional area of the constriction to correspond to high frequencies, the inertial mass effect or liquid column resonance effect of the incompressible fluid flowing through the constriction can be reduced. On the basis of the,
This makes it possible to effectively block the high-frequency, small-amplitude input vibration.

つまり、本発明に従う流体封入式防振ブツシュによれば
、ブツシュ径方向に入力する低周波−大振幅の振動に対
しては、オリフィスを流動する非圧縮性流体の慣性質量
効果乃至は液柱共振作用に基づいて、従来の流体封入式
防振ブツシュと同様に、良好な減衰効果を発揮すること
ができる一方、高周波−小振幅の入力振動に対しては、
側方延出部と受圧室内壁との間に形成された狭窄部を通
して流動する非圧縮性流体の慣性質量効果乃至は液柱共
振作用に基づいて、従来の流体封入式防振ブツシュより
も良好な遮断効果を発揮することが可能となるのであり
、従ってブツシュ径方向の入力振動に対して、従来より
も優れた防振機能を発揮させることが可能となるのであ
る。
In other words, according to the fluid-filled vibration-isolating bushing according to the present invention, low-frequency and large-amplitude vibrations input in the bushing radial direction can be suppressed by the inertial mass effect of the incompressible fluid flowing through the orifice or liquid column resonance. Based on the action, it can exhibit a good damping effect like the conventional fluid-filled vibration-isolating bushing, but it also has a good damping effect against high-frequency and small-amplitude input vibrations.
Better performance than conventional fluid-filled vibration damping bushings based on the inertial mass effect or liquid column resonance effect of the incompressible fluid flowing through the constriction formed between the lateral extension and the wall of the pressure receiving chamber. Therefore, it becomes possible to exhibit a vibration isolation function superior to the conventional one against input vibration in the radial direction of the bushing.

しかも、本発明によれば、受圧室内に設けたストッパ部
の先端側部分に側方延出部を設けるだけでそのような防
振機能を得ることができるため、可動板を備えた流体圧
吸収機構を設ける場合に比べて、構造か簡単で済むので
あり、経済的にも有利になるのである。
Moreover, according to the present invention, such a vibration isolation function can be obtained simply by providing a lateral extension at the tip end of the stopper provided in the pressure receiving chamber. Compared to the case where a mechanism is provided, the structure is simpler and economically advantageous.

なお、本発明に従う流体封入式防振ブツシュでは、受圧
室内にストンパ部が設けられ、内筒部材と外筒部材(シ
ールスリーブ)との一定収上の相対変位時において、そ
のストンパ部の先端部がシールスリーブの内周面に当接
廿しめられるようになっているため、それら内筒部材と
外筒部材との過大な変位、ひいてはかかるブツシュによ
って防振連結せしめられる所定の取イ」軸と筒状保持部
との過大な変位を、その当接に基づいて良好に防止でき
るといった利点がある。
In addition, in the fluid-filled vibration-isolating bushing according to the present invention, a stomper part is provided in the pressure receiving chamber, and when the inner cylindrical member and the outer cylindrical member (seal sleeve) undergo a certain relative displacement, the tip of the stomper part Because the bushings are brought into contact with the inner circumferential surface of the seal sleeve, excessive displacement between the inner and outer cylinder members may occur, and the predetermined shaft and There is an advantage that excessive displacement with the cylindrical holding part can be effectively prevented based on the contact.

(実施例) 以下、本発明をより一層具体的に明らかにするために、
本発明をFF(フロントエンジン・フロントドライブ)
車のパワーユニットの防振支持に用いられる円筒型エン
ジンマウントに適用した例について、その実施例を図面
に基づいて詳細に説明する。
(Example) Hereinafter, in order to clarify the present invention more specifically,
The present invention is FF (front engine/front drive)
An example of application to a cylindrical engine mount used for anti-vibration support of a vehicle power unit will be described in detail with reference to the drawings.

先ず、第1図乃至第3図において、10および12は、
それぞれ、内筒部材としての円筒状の内筒金具と外筒部
材としての円筒状の外筒金具であって、マウント径方向
に所定量偏心して配置されており、それらの間に介装せ
しめられたゴム弾性体としてのゴムスリーブ14によっ
て弾性的に連結せしめられている。また、外筒金具12
の外周面にはシールスリーブとしての金属スリーブ16
が嵌装されている。そして、本実施例のj−ンシンマウ
ントは、この金属スリーブ16の外周面においでエンジ
ンを含むパワーユニット側または車体側の筒状保持部に
嵌入されて取り石1けられると共に、前記内筒金具10
の内孔18において車体側またはパワーユニット側の取
イ」軸に外挿されて取り付けられて、パワーユニットを
車体に対して防振支持せしめるようになっている。
First, in FIGS. 1 to 3, 10 and 12 are
Each of them includes a cylindrical inner metal fitting as an inner cylinder member and a cylindrical outer metal fitting as an outer cylinder member, which are arranged eccentrically by a predetermined amount in the radial direction of the mount, and are interposed between them. They are elastically connected by a rubber sleeve 14 as a rubber elastic body. In addition, the outer cylinder fitting 12
A metal sleeve 16 as a sealing sleeve is provided on the outer peripheral surface of the
is fitted. The engine mount of this embodiment is fitted onto the outer peripheral surface of the metal sleeve 16 into a cylindrical holding portion on the side of the power unit including the engine or the side of the vehicle body, and the inner cylindrical metal fitting 10
The power unit is inserted into the inner hole 18 of the vehicle body or the power unit to support the power unit against vibration.

なお、内筒金具10と外筒金具12、ずなわJう内筒金
具10と金属スリーブ16とは、パワーユニットの重量
が負荷せしめられたとき、略同心的に位置せしめられる
こととなる。また、ゴムスリ−ブ14は、内筒金具10
および外筒金具12に対して一体加硫接着せしめられて
いる。
Note that the inner cylindrical metal fitting 10 and the outer cylindrical metal fitting 12, as well as the inner cylindrical metal fitting 10 and the metal sleeve 16, are positioned substantially concentrically when the weight of the power unit is applied. Further, the rubber sleeve 14 is connected to the inner cylinder fitting 10.
and is integrally vulcanized and bonded to the outer cylindrical metal fitting 12.

ここにおいて、ゴムスリーブ14の外周面に加硫接着せ
しめられた外筒金具12には、第4図乃至第6図に示さ
れでいるように、内筒金具10に対する偏心方向におい
て該内筒金具10を挾んで対向するように、−・対の窓
部20.22が形成されており、またその外周面には、
内筒金具10を挟んで対向する部位に位置して、それら
窓部20゜22をつなく一対の周方向のオリフィス溝2
4゜26が形成されている。さらに、それらオリフィス
溝24.26の開口部を除く外筒金具12の外周面には
、軸心方向の両端部にそれぞれシールゴム層28.28
を備えた所定厚さのシールゴム層30か前記ゴ1、スリ
ーブ14と一体に加硫成形せしめられている。
Here, as shown in FIGS. 4 to 6, the outer cylindrical fitting 12 vulcanized and bonded to the outer circumferential surface of the rubber sleeve 14 has an inner cylindrical fitting 12 in an eccentric direction with respect to the inner cylindrical fitting 10. A pair of windows 20 and 22 are formed to face each other with the window 10 in between, and on the outer peripheral surface thereof,
A pair of circumferential orifice grooves 2 are located at opposing positions with the inner cylinder fitting 10 in between and connect the windows 20 and 22.
4°26 is formed. Further, on the outer peripheral surface of the outer cylinder fitting 12 excluding the openings of the orifice grooves 24 and 26, seal rubber layers 28 and 28 are provided at both ends in the axial direction.
A sealing rubber layer 30 having a predetermined thickness is integrally vulcanized and molded with the gong 1 and the sleeve 14.

一力、第4図乃至第7回に示されているように、ゴムス
リーブ14には、上記外筒金具12の一方の窓部20に
開口する状態で、所定深さのポケット部32が形成され
ている一方、他方の窓部22に対応する部位に位置して
軸心方向に貫通ずる空所34が形成されている。また、
かかる空所34内において周方向に所定距離隔たった部
位には、窓部22の一部をそれぞれ開口部とする状態で
、前記オリフィス溝24.26を通してボケノI・部3
2にそれぞれ連通せしめられた、膨出変形の容易な薄肉
壁部36,38で画成された一対の凹所40.4.2が
形成されている。なお、第4図および第5図から明らか
なように、凹所40と42との開口部間はゴムスリーブ
14の一部を構成する所定厚さのゴム層で連結されてい
る。
As shown in FIGS. 4 to 7, the rubber sleeve 14 has a pocket 32 of a predetermined depth that opens into one of the windows 20 of the outer cylindrical fitting 12. On the other hand, a cavity 34 is formed at a portion corresponding to the other window portion 22 and extending through the window portion 22 in the axial direction. Also,
In such a space 34, a hole I/section 3 is inserted through the orifice grooves 24 and 26, with a part of the window 22 serving as an opening.
A pair of recesses 40.4.2 defined by thin wall portions 36 and 38, which are easily bulged and deformed, are formed, respectively, in communication with the recesses 40.4.2. As is clear from FIGS. 4 and 5, the openings of the recesses 40 and 42 are connected by a rubber layer having a predetermined thickness and forming a part of the rubber sleeve 14.

そして、本実施例では、第1図乃至第3図に示されてい
るように、かかるゴムスリーブ14の外周面に固着され
た外筒金具12に対して前記金属スリーブ16が嵌装さ
れることにより、前記窓部20.22、ひいては前記ポ
ケット部32および凹所40,42の開口部がそれぞれ
流体密に閉塞されて、それらボケンI・部32および凹
所40゜42の内部空間をそれぞれ流体収容空間とする
受圧室44および一対の平衡室46.48が形成されて
いる。また、前記オリフィス溝24.26の開口部が流
体密に閉塞されることにより、受圧室44と各平衡室4
6.48とを連通ずるオリフィス50.52がそれぞれ
形成されている。さらに、本実施例では、その金属スリ
ーブ16の嵌装操作が所定の非圧縮性流体中で行なわれ
ることにより、それら受圧室44および各平衡室46.
48内に、水、アルキレングリコール、ポリアルキレン
グリコール、シリコーン油、低分子量重合体等の所定の
非圧縮性流体が封入されている。
In this embodiment, as shown in FIGS. 1 to 3, the metal sleeve 16 is fitted onto the outer cylindrical fitting 12 fixed to the outer peripheral surface of the rubber sleeve 14. As a result, the openings of the window portions 20, 22, the pocket portion 32, and the recesses 40, 42 are respectively fluid-tightly closed, and the internal spaces of the hole I portion 32 and the recesses 40, 42 are closed with fluid. A pressure receiving chamber 44 and a pair of equilibrium chambers 46 and 48 are formed as accommodation spaces. In addition, by fluid-tightly closing the openings of the orifice grooves 24 and 26, the pressure receiving chamber 44 and each equilibrium chamber 4
Orifices 50, 52 communicating with 6, 48 are formed respectively. Furthermore, in this embodiment, the fitting operation of the metal sleeve 16 is performed in a predetermined incompressible fluid, so that the pressure receiving chamber 44 and each equilibrium chamber 46.
A predetermined incompressible fluid such as water, alkylene glycol, polyalkylene glycol, silicone oil, or a low molecular weight polymer is sealed within 48 .

なお、金属スリーブ16はへ方絞り加工を施されて外筒
金具12に固着されている。また、本実施例のエンジン
マウントは、かかる金属スリーブ16の嵌装操作後、所
定のダイスを通過させられることによって、その外形寸
法を所望の寸法に設定されている。さらに、前記オリフ
ィス50.52は、その断面積および長さが所定の低周
波数域の振動に対応して形成されており、これにより、
それらオリフィス50.52を流動する、乃至はそこに
位置する非圧縮性流体の慣性質量効果乃至は液柱共振作
用に基づいて、低周波数域の振動か良好に減衰せしめら
れるようになっている。
Note that the metal sleeve 16 is hexagonally drawn and fixed to the outer cylindrical fitting 12. Furthermore, after the metal sleeve 16 is fitted, the engine mount of this embodiment is passed through a predetermined die to set its external dimensions to desired dimensions. Furthermore, the orifice 50.52 is formed with a cross-sectional area and a length corresponding to vibrations in a predetermined low frequency range.
Based on the inertial mass effect or liquid column resonance effect of the incompressible fluid flowing through or located in the orifices 50, 52, vibrations in the low frequency range can be well damped.

また、第4図乃至第6図に示されているように、前記ゴ
ムスリーブエ4の内周面に加硫接着せしめられた内筒金
具10には、その軸心方向の中央部に位置して、所定厚
さの長手ブロック状のストッパ金具54がその中央孔5
6において圧入固定されている。そして、このストッパ
金具54の長手方向の各端部が前記ポケット部32およ
び空所34内にそれぞれ所定の高さをもって突出せしめ
られている。
Further, as shown in FIGS. 4 to 6, the inner cylindrical fitting 10 vulcanized and bonded to the inner circumferential surface of the rubber sleeve 4 has a central portion located in the axial direction thereof. A stopper fitting 54 in the form of a longitudinal block with a predetermined thickness is inserted into the central hole 5.
It is press-fitted and fixed at 6. Each longitudinal end of the stopper fitting 54 projects into the pocket portion 32 and the cavity 34 at a predetermined height.

本実施例では、かかるストッパ金具54の長手方向の両
端部が、それぞれ、内筒金具10と外筒金具12との過
大な相対変位、ひいてはパワーユニットと車体との過大
な相対変位を規制するためのストッパ部58.60とさ
れているのである。
In this embodiment, both ends of the stopper metal fitting 54 in the longitudinal direction are used to prevent excessive relative displacement between the inner cylinder metal fitting 10 and the outer cylinder metal fitting 12, and furthermore, to restrict excessive relative displacement between the power unit and the vehicle body. This is the stopper portion 58,60.

なお、前記ゴムスリーブ14は、かかるストッパ金具5
4が圧入固定された内筒金具10に対して加硫成形せし
められている。また、該ストッパ金具54の空所34側
に突出せしめられたストンパ部60は、ゴムスリーブ1
4の一部を構成する所定厚さの緩衝用ゴム層で覆われて
いる。
Note that the rubber sleeve 14 is attached to the stopper metal fitting 5.
4 is vulcanized and molded to the inner cylindrical fitting 10 which is press-fitted and fixed. Further, the stopper portion 60 protruding toward the cavity 34 side of the stopper fitting 54 is connected to the rubber sleeve 1.
4 and is covered with a cushioning rubber layer having a predetermined thickness.

そして、ここでは、第4図および第5図に示されている
ように、かかるストッパ金具54の受圧室44内に突出
せしめられたストッパ部58の先端面に雌ネジ穴62が
形成され、第1図および第2図に示されているように、
その雌ネジ穴62に螺合された雄ネジ64により、外周
縁部がそのストッパ部58の周囲の側方に延び出すよう
に、換言すれば、外周縁部がストッパ部58からマウン
ト軸心方向およびマウント周方向にそれぞれ所定寸法突
出する状態で、略円弧状断面の矩形板状の側方延出部材
66が固着されている。
Here, as shown in FIGS. 4 and 5, a female threaded hole 62 is formed in the distal end surface of the stopper part 58 that protrudes into the pressure receiving chamber 44 of the stopper fitting 54. As shown in Figures 1 and 2,
The male screw 64 screwed into the female screw hole 62 causes the outer peripheral edge to extend laterally around the stopper part 58, in other words, the outer peripheral edge extends from the stopper part 58 in the mount axis direction. A rectangular plate-shaped lateral extending member 66 having a substantially arcuate cross section is fixed to the mount so as to protrude by a predetermined distance in the circumferential direction of the mount.

本実施例では、かかる側方延出部材66により、受圧室
44が前記両金具10.12の偏心方向、すなわち振動
入力方向に相当するブツシュ径方向において略2分され
ていると共に、かかる側方延出部材66の外周縁部と受
圧室44の内壁との間に、振動入力方向に直角な方向の
環状の狭窄部67が形成されているのであり、振動入力
によって内筒金具IOと外筒金具12とがそれらの偏心
方向に相対移動せしめられると、受圧室44内の非圧縮
性流体がかかる狭窄部67を通じてブツシュ径方向に流
動せしめられるようになっているのである。
In this embodiment, the lateral extending member 66 divides the pressure receiving chamber 44 into approximately two halves in the bush radial direction corresponding to the eccentric direction of both metal fittings 10.12, that is, the vibration input direction. An annular narrowed portion 67 in a direction perpendicular to the vibration input direction is formed between the outer peripheral edge of the extending member 66 and the inner wall of the pressure receiving chamber 44, and the inner cylinder fitting IO and the outer cylinder are separated by the vibration input. When the fitting 12 is moved relative to the fitting 12 in their eccentric direction, the incompressible fluid within the pressure receiving chamber 44 is caused to flow in the radial direction of the bushing through the narrowed portion 67.

なお、かかる狭窄部67は、振動人力方向(両金具10
.12の偏心方向)における長さ:l(第1図および第
2図参照)と断面積(振動人力方向に直角な方向におけ
る狭窄部67の面積)とが、前記オリフィス50.52
のチューニング周波数よりも高い周波数に対応して設定
されており、これにより、かかる狭窄部67に位置する
非圧縮性流体の側方延出部材66に対する相対的な流動
に従う慣性質量効果乃至は液柱共振作用に基づいて、そ
の狭窄部67のチューニング周波数に対応した高周波数
域の入力振動が良好に遮断せしめられるようになってい
る。
Note that the narrowed portion 67 is formed in the vibration direction (both metal fittings 10
.. The length l (see FIGS. 1 and 2) in the eccentric direction of the orifice 50.
The tuning frequency is set to correspond to a frequency higher than the tuning frequency of Based on the resonance effect, input vibrations in a high frequency range corresponding to the tuning frequency of the narrowed portion 67 can be effectively blocked.

また、ここにおいて、側方延出部材66は、雄ネジ64
によってストッパ部58に固着される補強金具68と、
その外周面に一体加硫成形された所定厚さの緩衝ゴム層
70とからなっており、緩衝ゴム層70には、雄ネジ6
4を雌ネジ穴62に螺合させるための通孔72か形成さ
れている。
Moreover, here, the side extending member 66 has a male thread 64.
a reinforcing metal fitting 68 fixed to the stopper part 58 by;
It consists of a buffer rubber layer 70 of a predetermined thickness integrally vulcanized on its outer peripheral surface, and the buffer rubber layer 70 has a male screw 6.
4 is formed into a through hole 72 for screwing into the female screw hole 62.

さらに、前述の説明から明らかなように、本実施例では
、ストンパ部58の先端部から側方に突出した側方延出
部+166の外周縁部分が側方延出部を構成している。
Furthermore, as is clear from the above description, in this embodiment, the outer peripheral edge portion of the lateral extension part +166 that protrudes laterally from the tip of the stomper part 58 constitutes a lateral extension part.

従って、このような構造のエンジンマウントによれば、
内筒金具10と外筒金具12との間で受圧室44と空所
34との対向方向に低周波−大振幅の振動が入力される
と、受圧室44と各平衡室、16.48との間でオリフ
ィス50.52を通じて非圧縮性流体が流動せしめられ
ることとなり、従来の流体封入式マウントと同様に、そ
れらオリフィス50.52を流動する、乃至はそこに位
置する非圧縮性流体の慣性質量効果乃至は液柱共振作用
に基づいて、その低周波−大振幅の振動が良好に減衰さ
れることとなる。なお、非圧縮性流体の各平衡室46.
48内への流入は、それらを画成する薄肉壁部36.3
8の膨出変形によって許容され、またそれら平衡室46
.48から受圧室44への非圧縮性流体の流出は、それ
ら薄肉壁部36.38の収縮変形によって行なわれるこ
ととなる。
Therefore, according to the engine mount with this structure,
When low-frequency, large-amplitude vibration is input between the inner cylinder fitting 10 and the outer cylinder fitting 12 in the direction facing the pressure receiving chamber 44 and the cavity 34, the pressure receiving chamber 44, each equilibrium chamber, 16.48 An incompressible fluid is forced to flow through the orifices 50, 52 between the incompressible fluid and the inertia of the incompressible fluid flowing through or located in the orifices 50, 52, similar to conventional fluid-filled mounts. Based on the mass effect or liquid column resonance effect, the low frequency and large amplitude vibrations are well damped. Note that each equilibrium chamber 46 of the incompressible fluid.
48 through the thin walls 36.3 that define them.
8, and their equilibrium chambers 46
.. The incompressible fluid flows out from 48 into the pressure receiving chamber 44 by contraction and deformation of the thin wall portions 36 and 38.

また、受圧室44と空所34との対向方向に入力される
振動が高周波−小振幅のものである場合には、最早、非
圧縮性流体がオリフィス50.52を通じて流動するこ
とが困難となるところから、非圧縮性流体がそれらオリ
フィス50.52を通じて流動することによって達成さ
れる動ハネ定数の低下は殆ど期待できなくなる。しかし
、この場合には、受圧室44内の非圧縮性流体が前記狭
窄部67を通じてマウント径方向に流動することが許容
されていることによって、その狭窄部67に位置する非
圧縮性流体の側方延出部材42に対する相対的な流動作
用に従う慣性質量効果乃至は液柱共振作用に基づいて、
その高周波−小振幅の振動が良好に遮断されることとな
る。つまり、そのような狭窄部67が形成されていない
従来のエンジンマウントに比へて、高周波−小振幅振動
に対する遮断効果が大幅に向上するのである。
Furthermore, if the vibration input in the opposite direction between the pressure receiving chamber 44 and the cavity 34 is of high frequency and small amplitude, it becomes difficult for the incompressible fluid to flow through the orifice 50, 52. Therefore, the reduction in dynamic spring constant achieved by flowing an incompressible fluid through the orifices 50, 52 is hardly expected. However, in this case, since the incompressible fluid in the pressure receiving chamber 44 is allowed to flow in the radial direction of the mount through the narrowed part 67, the side of the incompressible fluid located in the narrowed part 67 is Based on the inertial mass effect or liquid column resonance effect according to the relative flow action on the horizontally extending member 42,
The high frequency and small amplitude vibrations are effectively blocked. In other words, compared to a conventional engine mount in which such a narrowed portion 67 is not formed, the effect of blocking high-frequency, small-amplitude vibrations is greatly improved.

このように、本実施例に従う円筒型エンジンマウントに
よれば、受圧室44と空所34との対向方向に人力する
低周波−大振幅の振動に対して、従来と同様に、良好な
減衰効果を発揮さセることができる−・力、高周波−小
振幅の振動に対して、従来よりも良好な遮断効果を発揮
させることができるのであり、従ってマウント径方向に
入力される振動を従来のマウントよりも有利に減衰乃至
ば遮断することができるのである。
As described above, the cylindrical engine mount according to the present embodiment has a good damping effect, as in the conventional case, against low-frequency, large-amplitude vibrations that are manually applied in the opposite direction between the pressure receiving chamber 44 and the cavity 34. It is possible to exhibit a better isolation effect than conventional methods against small-amplitude vibrations, such as force and high frequency. It can provide better attenuation or isolation than a mount.

しかも、本実施例のエンジンマウントによれば、そのよ
うな防振機能が極めて簡単な構造で得られるのであり、
その製造コストも安価に抑え得るのである。
Moreover, according to the engine mount of this embodiment, such a vibration isolation function can be obtained with an extremely simple structure.
The manufacturing cost can also be kept low.

また、本実施例によれば、受圧室44および空所34内
に突出してそれぞれストッパ部58,60が設&Jられ
ていることから、内筒金具10と外筒金具12との過大
な変位、ひいてはパワーユニントと車体との過大な変位
を良好に防止できるといった利点もある。
Further, according to this embodiment, since the stopper portions 58 and 60 are provided protruding into the pressure receiving chamber 44 and the cavity 34, respectively, excessive displacement between the inner cylindrical metal fitting 10 and the outer cylindrical metal fitting 12, Furthermore, there is also the advantage that excessive displacement between the power unit and the vehicle body can be effectively prevented.

以上、本発明の一実施例を詳細に説明乙たが、これはあ
くまでも例示であって、本発明が、かかる具体例に限定
しで解釈されるべきものでないことは、勿論である。
Although one embodiment of the present invention has been described in detail above, this is merely an example, and it goes without saying that the present invention should not be interpreted as being limited to this specific example.

例えば、前記実施例では、側方延出部を構成する側方延
出部材66がストッパ金具54とは別体に構成されてい
たが、側方延出部材66、ずなわち側方延出部材66の
補強金具68は、ストンパ金具54と一体に構成するこ
とも可能である。なお、空所34側に突出せしめられる
ストッパ部60は必ずしも設ける必要はなく、またスト
ンパ金具54の厚さくマウント軸心方向の厚さ)も必ず
しも一定である必要はない。
For example, in the above embodiment, the side extending member 66 constituting the side extending portion was configured separately from the stopper fitting 54, but the side extending member 66, that is, the side extending member 66, The reinforcing metal fitting 68 of the member 66 can also be configured integrally with the stomper metal fitting 54. Note that the stopper portion 60 that protrudes toward the space 34 does not necessarily need to be provided, and the thickness of the stopper fitting 54 (thickness in the mount axis direction) does not necessarily need to be constant.

また、前記実施例では、平衡室46.48を構成する凹
所40.42が、外筒金具12の窓部22のそれぞれ一
部を開口部とする状態で形成されていたが、それら平衡
室46.48の凹所40゜42は、外筒金具12に形成
された互いに独立した窓部を開口部とする状態で形成す
ることも可能である。また、それら平衡室46.48は
1つの平衡室として形成することも可能であり、それら
平衡室46.48の一方のみを平衡室として採用するこ
とも可能である。
In addition, in the embodiment described above, the recesses 40.42 constituting the equilibrium chambers 46,48 were formed with each of the windows 22 of the outer cylinder fitting 12 as openings; The recesses 40° 42 of 46.48 can also be formed with mutually independent windows formed in the outer cylindrical fitting 12 as openings. Moreover, the equilibrium chambers 46, 48 can also be formed as one equilibrium chamber, and it is also possible to employ only one of the equilibrium chambers 46, 48 as an equilibrium chamber.

さらに、前記実施例では、内筒金具10と外筒金具12
とがマウント径方向において所定量偏心した状態で配置
されていたが、それらを同心的に配置させることも可能
である。
Furthermore, in the embodiment, the inner cylinder fitting 10 and the outer cylinder fitting 12
Although these are arranged eccentrically by a predetermined amount in the radial direction of the mount, it is also possible to arrange them concentrically.

また、前記実施例では、本発明をFF車の円筒型エンジ
ンマウントに適用した例について述べたが、本発明は、
自動車用のサスペンションブツシュ等、FF車の円筒型
エンジンマウント以外の防振ブツシュや防振マウントに
も適用することが可能である。
Furthermore, in the above embodiment, an example was described in which the present invention was applied to a cylindrical engine mount for a front-wheel drive vehicle.
It can also be applied to vibration-proof bushings and vibration-proof mounts other than cylindrical engine mounts for front-wheel drive vehicles, such as suspension bushes for automobiles.

その他、−々列挙はしないが、本発明が、その趣旨を逸
脱しない範囲内において、種々なる変更。
Although not listed here, various other modifications may be made without departing from the spirit of the present invention.

修正、改良等を施した態様で実施できることは、言うま
でもないところである。
It goes without saying that the present invention can be implemented with modifications, improvements, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に従うFF車用の円筒型エンジンマウン
トの一例を示す横断面図であり、第2図および第3図は
それぞれ第1図における■−■断面図および■〜■断面
図である。第4図は第1119のエンジンマウントにお
けるゴムスリーブの一体加硫成形品を示す第1図に対応
する断面図であり、第5図、第6図および第7図はそれ
ぞれ第4図におけるV−■断面図、 vr−vr断面図
および■−■断面図である。 10:内筒金具(内筒部材) 12:外筒金具(外筒部材) 14:ゴムスリーブ(ゴム弾性体) 16:金属スリーブ(シールスリーブ)20.22:窓
部 24.26Fオリフイス溝 32:ポケット部   34:空所 36.38:薄肉壁部 40,42:凹所44:受圧室
     46,48:平衡室50.52ニオリフイス 54:ストッパ金具 58.60:ストッパ部 66:側方延出部材  67:狭窄部 68:補強金具    70:緩衝ゴム層出願人  東
海ゴム工業株式会社 第1図 第4図
FIG. 1 is a cross-sectional view showing an example of a cylindrical engine mount for a front-wheel drive vehicle according to the present invention, and FIGS. be. FIG. 4 is a sectional view corresponding to FIG. 1 showing an integrally vulcanized product of the rubber sleeve in the engine mount of No. 1119, and FIGS. They are a sectional view, a vr-vr sectional view, and a sectional view taken along the line ■-■. 10: Inner cylinder metal fitting (inner cylinder member) 12: Outer cylinder metal fitting (outer cylinder member) 14: Rubber sleeve (rubber elastic body) 16: Metal sleeve (seal sleeve) 20.22: Window part 24.26F orifice groove 32: Pocket portion 34: Vacant space 36.38: Thin wall portion 40, 42: Recess 44: Pressure receiving chamber 46, 48: Equilibrium chamber 50.52 Niorifice 54: Stopper fitting 58. 60: Stopper portion 66: Laterally extending member 67: Narrowed portion 68: Reinforcement fitting 70: Buffer rubber layer Applicant: Tokai Rubber Industries, Ltd. Figure 1 Figure 4

Claims (1)

【特許請求の範囲】 内筒部材と、 該内筒部材の外側に同心的に若しくは偏心して配置され
た、複数の窓部を有する外筒部材と、該外筒部材の外周
面に嵌装され、前記複数の窓部を流体密に閉塞するシー
ルスリーブと、 前記外筒部材と前記内筒部材との間に介装せしめられて
それらを連結する、前記内筒部材を挟んで対向する部位
の一方に位置して前記外筒部材の窓部の一つを開口部と
するポケット部を有すると共に、他方に位置して軸心方
向に貫通する空所を備えたゴム弾性体と、 該ゴム弾性体の前記ポケット部がその開口する窓部にお
いて前記シールスリーブで流体密に閉塞せしめられるこ
とによって形成された、防振すべき振動が入力せしめら
れる受圧室と、 前記ゴム弾性体の軸心方向の貫通空所内において、前記
外筒部材の窓部の残りのものを開口部とする状態で形成
された、膨出変形の容易なゴム弾性材料から成る薄肉壁
部で囲まれた凹所が、その開口する窓部において前記シ
ールスリーブで流体密に閉塞せしめられることによって
形成された平衡室と、 該平衡室と前記受圧室とに封入された所定の非圧縮性流
体と、 前記平衡室と前記受圧室とを相互に連通せしめ、該非圧
縮性流体がそれら平衡室と受圧室との間で相互に流動す
ることを許容するオリフィスと、前記受圧室内において
、前記ポケット部の底部から径方向外側に向かって延び
出す状態で設けられた、所定高さのストッパ部と、 該ストッパ部の先端側部分から側方に延び出す状態で設
けられ、前記受圧室の内壁との間で所定の狭窄部を周り
に形成する側方延出部とを、含むことを特徴とする流体
封入式防振ブッシュ。
[Scope of Claims] An inner cylindrical member; an outer cylindrical member having a plurality of windows disposed concentrically or eccentrically on the outside of the inner cylindrical member; , a sealing sleeve that fluid-tightly closes the plurality of windows; and a sealing sleeve that is interposed between the outer cylinder member and the inner cylinder member to connect them, and that faces across the inner cylinder member. a rubber elastic body having a pocket located on one side and having one of the windows of the outer cylindrical member as an opening, and a cavity located on the other side passing through in the axial direction; a pressure-receiving chamber into which vibrations to be damped are input, which is formed by fluid-tightly closing the opening of the pocket portion of the body with the sealing sleeve; A recess surrounded by a thin wall made of a rubber elastic material that is easily expanded and deformed is formed in the through space with the remainder of the window of the outer cylinder member serving as an opening. an equilibrium chamber formed by fluid-tightly closing the opening window with the seal sleeve; a predetermined incompressible fluid sealed in the equilibrium chamber and the pressure receiving chamber; and the equilibrium chamber and the pressure receiving chamber. an orifice that communicates with the chamber and allows the incompressible fluid to mutually flow between the equilibrium chamber and the pressure receiving chamber; A stopper portion of a predetermined height, which is provided so as to extend from the top, and an inner wall of the pressure receiving chamber, which is provided so as to extend laterally from a distal end portion of the stopper portion, around a predetermined narrowed portion. and a lateral extension formed in the fluid-filled vibration damping bushing.
JP10340988A 1988-04-26 1988-04-26 Fluid sealing type vibrationproof bush Granted JPS63289349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10340988A JPS63289349A (en) 1988-04-26 1988-04-26 Fluid sealing type vibrationproof bush

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10340988A JPS63289349A (en) 1988-04-26 1988-04-26 Fluid sealing type vibrationproof bush

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP25642688A Division JPH01153831A (en) 1988-10-12 1988-10-12 Fluid sealed type vibration isolating bush
JP63256425A Division JPH0681975B2 (en) 1988-10-12 1988-10-12 Fluid filled anti-vibration bush

Publications (2)

Publication Number Publication Date
JPS63289349A true JPS63289349A (en) 1988-11-25
JPH0555739B2 JPH0555739B2 (en) 1993-08-17

Family

ID=14353254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10340988A Granted JPS63289349A (en) 1988-04-26 1988-04-26 Fluid sealing type vibrationproof bush

Country Status (1)

Country Link
JP (1) JPS63289349A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210431A (en) * 1987-02-20 1988-09-01 Tokai Rubber Ind Ltd Fluid-sealed type vibrationproof bush
JPH02190638A (en) * 1989-01-17 1990-07-26 Marugo Rubber Kogyo Kk Liquid seal type elastic bush
JPH02113037U (en) * 1989-02-27 1990-09-10
JPH02275130A (en) * 1989-04-14 1990-11-09 Tokai Rubber Ind Ltd Upper support for suspension
JPH02292543A (en) * 1989-04-28 1990-12-04 Tokai Rubber Ind Ltd Spring insulator for suspension
FR2650356A1 (en) * 1989-07-31 1991-02-01 Hutchinson IMPROVEMENTS MADE TO MAN CHONS HYDRAULIC ANTI-VIBRATOR
US4998345A (en) * 1989-07-05 1991-03-12 Tokai Rubber Industries, Ltd. Method of manufacturing fluid-filled elastic mount having pressure-receiving and equilibrium chambers
DE4031114A1 (en) * 1989-10-03 1991-04-18 Tokai Rubber Ind Ltd Fluid filled resilient bearing with inner and outer sleeves - enclosed chamber between both sleeves, spaced from pressure retention chamber
US5333847A (en) * 1991-11-13 1994-08-02 Tokai Rubber Industries, Ltd. Elastic mount having at least two orifices formed by rubber filler on orifice-defining structure which extends along at least one of two fluid chambers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566934A (en) * 1979-06-29 1981-01-24 Gomma Antivibranti Applic Shock absorbing mountings
JPS60104824A (en) * 1983-11-09 1985-06-10 Honda Motor Co Ltd Fluid-contained engine mount
JPS60211140A (en) * 1984-04-05 1985-10-23 Bridgestone Corp Elastic bush
JPS60249749A (en) * 1984-05-24 1985-12-10 Bridgestone Corp Vibro-isolator
EP0172700A1 (en) * 1984-08-07 1986-02-26 Avon Industrial Polymers Limited Hydraulically damped mounting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566934A (en) * 1979-06-29 1981-01-24 Gomma Antivibranti Applic Shock absorbing mountings
JPS60104824A (en) * 1983-11-09 1985-06-10 Honda Motor Co Ltd Fluid-contained engine mount
JPS60211140A (en) * 1984-04-05 1985-10-23 Bridgestone Corp Elastic bush
JPS60249749A (en) * 1984-05-24 1985-12-10 Bridgestone Corp Vibro-isolator
EP0172700A1 (en) * 1984-08-07 1986-02-26 Avon Industrial Polymers Limited Hydraulically damped mounting device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210431A (en) * 1987-02-20 1988-09-01 Tokai Rubber Ind Ltd Fluid-sealed type vibrationproof bush
JPH02190638A (en) * 1989-01-17 1990-07-26 Marugo Rubber Kogyo Kk Liquid seal type elastic bush
JPH02113037U (en) * 1989-02-27 1990-09-10
JPH02275130A (en) * 1989-04-14 1990-11-09 Tokai Rubber Ind Ltd Upper support for suspension
JPH02292543A (en) * 1989-04-28 1990-12-04 Tokai Rubber Ind Ltd Spring insulator for suspension
US4998345A (en) * 1989-07-05 1991-03-12 Tokai Rubber Industries, Ltd. Method of manufacturing fluid-filled elastic mount having pressure-receiving and equilibrium chambers
FR2650356A1 (en) * 1989-07-31 1991-02-01 Hutchinson IMPROVEMENTS MADE TO MAN CHONS HYDRAULIC ANTI-VIBRATOR
DE4031114A1 (en) * 1989-10-03 1991-04-18 Tokai Rubber Ind Ltd Fluid filled resilient bearing with inner and outer sleeves - enclosed chamber between both sleeves, spaced from pressure retention chamber
JPH0355937U (en) * 1989-10-03 1991-05-29
US5333847A (en) * 1991-11-13 1994-08-02 Tokai Rubber Industries, Ltd. Elastic mount having at least two orifices formed by rubber filler on orifice-defining structure which extends along at least one of two fluid chambers

Also Published As

Publication number Publication date
JPH0555739B2 (en) 1993-08-17

Similar Documents

Publication Publication Date Title
JPH0430442Y2 (en)
JPH06677Y2 (en) Fluid filled anti-vibration bush
US4749173A (en) Fluid-filled resilient bushing having damping means within fluid chambers
JP2598969B2 (en) Fluid-filled cylindrical mounting device
JPS63145837A (en) Cylindrical vibro-isolating support of fluid sealed-in type
JPH03121327A (en) Fluid sealed type cylindrical mount apparatus
JPH0330736B2 (en)
JPH0369013B2 (en)
JPS63289349A (en) Fluid sealing type vibrationproof bush
JP2002327788A (en) Vibrationproof device sealed with fluid
JPH0266335A (en) Cylinder-formed liquid sealing vibrationproofing mount
JPH0545810B2 (en)
JP2827846B2 (en) Fluid-filled bush
JPH0523866Y2 (en)
JPH0454099B2 (en)
JPH0369015B2 (en)
JPH022498B2 (en)
JPH0643555Y2 (en) Fluid-filled cylindrical mount device
JPH0570008B2 (en)
JP3627397B2 (en) Fluid filled cylindrical mount
JPH0324914Y2 (en)
JPH01153831A (en) Fluid sealed type vibration isolating bush
JPH0349317Y2 (en)
WO1990006455A1 (en) Fluid seal type cylindrical mount apparatus
JP2000088035A (en) Liquid sealed vibration isolating device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees