JPS61109934A - Engine mount for ff car - Google Patents

Engine mount for ff car

Info

Publication number
JPS61109934A
JPS61109934A JP23052584A JP23052584A JPS61109934A JP S61109934 A JPS61109934 A JP S61109934A JP 23052584 A JP23052584 A JP 23052584A JP 23052584 A JP23052584 A JP 23052584A JP S61109934 A JPS61109934 A JP S61109934A
Authority
JP
Japan
Prior art keywords
fluid
engine
rubber elastic
outer cylindrical
metal fitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23052584A
Other languages
Japanese (ja)
Inventor
Yoshiki Funahashi
舟橋 芳樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP23052584A priority Critical patent/JPS61109934A/en
Publication of JPS61109934A publication Critical patent/JPS61109934A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/14Units of the bushing type, i.e. loaded predominantly radially

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combined Devices Of Dampers And Springs (AREA)
  • Arrangement Of Transmissions (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

PURPOSE:To improve durability of the titled engine mount by mitigating tensile stress of an elastic material of a fluid-filled bushing, by a method wherein a fitment whose outside is in a cylindrical state is arranged further in an eccentric state on the outside of the fluid-filled bushing, which are connected by a second rubber elastic material with each other. CONSTITUTION:Two fluid chambers 22, 24 which are communicated by an orifice 32 with each other are formed on an inner fluid-filled bushing 12 provided with a first rubber elastic material 10 in a thick and cylindrical state. A fitment 14 whose outside is in a cylindrical state is arranged on a position outside of the inner fluid-filled bushing 12 at a predetermined interval to the inner fluid-filled bushing 12 and deviated by a predetermined quantity and both the component 12, 14 are connected by a second rubber elastic material 16 with each other. As a quantity of deviation is absorbed by the second rubber elastic material 16 at the time of application of a static load of an engine to the titled engine mount, tensile stress to be generated on the first rubber elastic material 10 can be reduced and durability can be improved.

Description

【発明の詳細な説明】 芸玉分1 本発明は、FF車のエンシン(好適には横置きエンジン
)を車体に防振支持させるエンジンマウントに係り、特
に流体の流通抵抗を利用して減衰作用を為すものにおけ
る耐久性を向上させる技術に関するものである。
[Detailed Description of the Invention] The present invention relates to an engine mount that supports an engine (preferably a horizontally mounted engine) of a front-wheel drive vehicle in a vibration-proof manner on a vehicle body, and particularly relates to an engine mount that provides vibration-proof support for an engine (preferably a horizontally mounted engine) of a front-wheel drive vehicle. It relates to technology that improves the durability of products that perform

従」迂とえ丑 従来より、フロントエンジン・フロントドライブ車両(
FF車)のエンジン(狭義のエンジンのみならず、[・
ランスミッションや差動装置等も含む)を車体に防振支
持させるために、ブツシュ型のエンジンマウントが使用
されているが、近年、エンジンシェイクやこもり音等を
低減させる要求が高まっているところから、かかるエン
ジンマウントに、高減衰特性と低い動ばね特性とが求め
られている。そのため、ブツシュ内に所定の非圧縮性流
体を封入した流体入りマウントが検討されている。
Traditionally, front engine/front drive vehicles (
FF car) engines (not only engines in the narrow sense, but also [・
Bush-type engine mounts are used to provide anti-vibration support to the vehicle body (including transmissions, differentials, etc.), but in recent years there has been an increasing demand for reducing engine shake and muffled noise. Such engine mounts are required to have high damping characteristics and low dynamic spring characteristics. Therefore, a fluid-filled mount in which a predetermined incompressible fluid is sealed in a bushing is being considered.

これは、内筒金具と外筒金具との間に筒状のゴム弾性体
を介挿して、その内部に所定の非圧縮性流体が封入せし
められた複数の流体室を形成し、且つそれら流体室の流
体をオリフィスによって相互に流通させ得る構造とする
ことにより、ゴム弾性体の弾性と流体の流通抵抗とによ
って、良好な防振特性を発揮させようとするものである
。そして、かかる流体入りブツシュの内筒金具と外筒金
具との何れか一方がエンジン側部材に、また他方が車体
側部材に、それぞれ取り付けられて使用されるが、主に
エンジンの自重を受けるものでは、取付は前の無負荷状
態において、内筒金具と外筒金具とを一定量偏心させて
おき、取付は時にエンジンの自重を受けた状態で、それ
ら内筒金具と外筒金具とがほぼ同心的となるようにし、
そして加振入力時には、ゴム弾性体を弾性変形させつつ
、内筒金具と外筒金具とが相対変位するようにされてい
る。
In this method, a cylindrical rubber elastic body is inserted between an inner cylindrical metal fitting and an outer cylindrical metal fitting to form a plurality of fluid chambers in which predetermined incompressible fluids are sealed. By creating a structure in which the fluids in the chambers can be mutually circulated through an orifice, good vibration damping characteristics are exhibited by the elasticity of the rubber elastic body and the resistance to flow of the fluid. One of the inner and outer metal fittings of such a fluid-filled bushing is attached to an engine side member, and the other to a vehicle body side member, and is used, but it mainly bears the dead weight of the engine. In this case, the installation is performed by making the inner and outer cylinder fittings eccentric by a certain amount under the previous no-load condition, and then installing the inner cylinder fittings and the outer cylinder fittings with the engine's own weight at times so that the inner cylinder fittings and the outer cylinder fittings are approximately aligned. be concentric,
When the vibration is input, the rubber elastic body is elastically deformed, and the inner cylindrical metal fitting and the outer cylindrical metal fitting are relatively displaced.

日が ンしようとするロ 礫 しかし、このような従来のブツシュ型流体入りエンジン
マウントにおいては、無負荷状態で互いに偏心させられ
ている内筒金具および外筒金具がエンジンの静荷重を受
けて同心的な状態となるとき、ゴム弾性体に相当な引張
応力が作用し、その上、大きな加振入力時には、内筒金
具と外筒金具との大変位で、ゴム弾性体に生じる引張応
力は更に大きなものとなる。このようなことから、従来
のブツシュ型流体入りエンジンマウントでは、ゴム弾性
体の一部に大きな引張荷重が作用することとなり、その
ため充分な耐久性を維持することが難しいという問題が
あった。
However, in such conventional bush-type fluid-filled engine mounts, the inner and outer metal fittings, which are eccentric to each other under no-load conditions, become concentric due to the static load of the engine. When this happens, considerable tensile stress acts on the rubber elastic body, and on top of that, when a large vibration input occurs, the tensile stress generated on the rubber elastic body is further increased due to the large displacement between the inner and outer metal fittings. It becomes something big. For this reason, in the conventional bush-type fluid-filled engine mount, a large tensile load acts on a portion of the rubber elastic body, which poses a problem in that it is difficult to maintain sufficient durability.

ロ 占 ”°  るための 本発明は、このような従来のエンジンマウントにおける
耐久性の問題を解消するために為されたものであって、
その特徴とするところは、流体入りブツシュの外側に更
に外側筒状金具を偏心配置し、それらを第二のゴム弾性
体で連結した二重ブツシュ構造を採用した点にある。
The present invention has been made in order to solve the durability problem in conventional engine mounts.
Its feature is that it adopts a double bushing structure in which an outer cylindrical metal fitting is eccentrically arranged outside the fluid-filled bushing and these are connected by a second rubber elastic body.

より詳しく言えば、内側の流体入りブツシュは、所定間
隔をおいて同心的に配置された内筒金具と外筒金具との
間に筒状の第一のゴム弾性体が介挿されると共に、その
第一のゴム弾性体に形成された複数の流体室に所定の非
圧縮性流体がそれぞれ封入せしめられ、且つそれら流体
室がオリフィスによって相互に連通させられて、上記流
体がそのオリフィスを流通させられる際の流通抵抗によ
って振動減衰作用を為す構造を有するものである。
More specifically, in the inner fluid-filled bushing, a cylindrical first rubber elastic body is inserted between an inner cylindrical metal fitting and an outer cylindrical metal fitting that are arranged concentrically at a predetermined interval. A predetermined incompressible fluid is sealed in each of a plurality of fluid chambers formed in the first rubber elastic body, and the fluid chambers are communicated with each other through an orifice, and the fluid is caused to flow through the orifice. This structure has a vibration damping effect due to the current flow resistance.

また、外側筒状金具は、内側流体入りブツシュの外側に
所定間隔をおいて設けられ、且つエンジンの静荷重を受
けない状態においては内側流体入りブツシュの中心線に
対して偏心するように位置させられる。
Further, the outer cylindrical metal fitting is provided at a predetermined interval on the outside of the inner fluid-filled bushing, and is positioned eccentrically with respect to the center line of the inner fluid-filled bushing when the static load of the engine is not applied. It will be done.

更に、第二のゴム弾性体は、内側流体入りブツシュの外
筒金具と上記外側筒状金具との間に設けられ、且つエン
ジンの静荷重に対して剪断変形を受ける状態で、それら
外筒金具と外側筒状金具とを連結するものである。
Furthermore, the second rubber elastic body is provided between the outer cylindrical metal fittings of the inner fluid-filled bushing and the outer cylindrical metal fittings, and is in a state where the second rubber elastic body is subjected to shear deformation due to the static load of the engine. and the outer cylindrical metal fitting.

そして、このような構成において、内側流体入りブツシ
ュの内筒金具と上記外側筒状金具との何れか一方がエン
ジン側部材に、また他方が車体側部材に、それぞれ取り
付けられるが、エンジンの静荷重を受けた状態において
は、内側流体入りブツシュと外側筒状金具とがほぼ同心
的な状態となるようにされているのである。
In such a configuration, one of the inner cylindrical metal fitting of the inner fluid-filled bushing and the above-mentioned outer cylindrical metal fitting is attached to the engine side member, and the other to the vehicle body side member, but the static load of the engine In the received state, the inner fluid-filled bushing and the outer cylindrical metal fitting are substantially concentric.

および  の“ このように構成されたエンジンマウントにおいては、減
衰機能を果たす内側流体入りブツシュの第一のゴム弾性
体と、エンジン自重分の偏心量(オフセット変位)を吸
収する第二のゴム弾性体とが、別個独立のものとされて
いるため、エンジン静荷重の負荷時に、内側流体入りブ
ツシュの第一のゴム弾性体に大きな引張応力が生じるこ
とを有効に回避することができる。また、加振入力時に
おいては、内側の流体入りブツシュが前記流体の流通抵
抗に基づいて有効な振動減衰作用を発揮するのである。
In the engine mount configured in this way, the first rubber elastic body of the inner fluid-filled bushing performs a damping function, and the second rubber elastic body absorbs the eccentricity (offset displacement) of the engine's own weight. Since these are separate and independent, it is possible to effectively avoid generating large tensile stress in the first rubber elastic body of the inner fluid-filled bushing when the engine static load is applied. During vibrational force, the inner fluid-filled bushing exerts an effective vibration damping effect based on the fluid flow resistance.

しかも、大きな加振入力に対しても、第二のゴム弾性体
の剪断変形にて主として吸収されるため、内側流体入り
ブツシュの第一のゴム弾性体に生じる引張応力が、その
ような加振時においても緩和され、前述したエンジン静
荷重の負荷時における引張応力の緩和と併せて、流体入
りエンジンマウントの耐久性を向上させることとなる。
Furthermore, even large vibration inputs are absorbed mainly through shear deformation of the second rubber elastic body, so the tensile stress generated in the first rubber elastic body of the inner fluid-filled bushing is absorbed by such vibrations. In addition to the above-mentioned relaxation of the tensile stress when the engine static load is applied, the durability of the fluid-filled engine mount is improved.

夫−施一班 以下、本発明を更に具体的に明らかにするために、その
一つの実施例を、図面に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to clarify the present invention more specifically, one embodiment thereof will be described in detail with reference to the drawings.

先ず、第1図は、本発明の一実施例である流体入りエン
ジンマウントの横断面図を示すものである。このエンジ
ンマウントは、厚肉円筒状の第一のゴム弾性体10を備
えた内側流体入りブツシュ12(以下、内側ブツシュと
も称する)と、この内側ブツシュ12の外側に偏心配置
された円筒状の外側筒状金具14と、更にそれら内側ブ
ツシュ12と外側筒状金具14とを橋掛は形態で連結す
る第二のゴム弾性体16とを備えた構造を有している。
First, FIG. 1 shows a cross-sectional view of a fluid-filled engine mount that is an embodiment of the present invention. This engine mount includes an inner fluid-filled bushing 12 (hereinafter also referred to as an inner bushing) that includes a thick-walled cylindrical first rubber elastic body 10, and a cylindrical outer bushing that is eccentrically arranged outside the inner bushing 12. It has a structure that includes a cylindrical metal fitting 14 and a second rubber elastic body 16 that connects the inner bushing 12 and the outer cylindrical metal fitting 14 in the form of a bridge.

そして、内側ブツシュ12は、互いに所定路離隔てて同
心的に配置された円筒状の内筒金具17および外筒金具
18を備え、これら内筒金具17と外筒金具18との間
に、前記第一のゴム弾性体10が介挿されている。この
ゴム弾性体10は、内周面において内筒金具16に加硫
接着され、また外周面において外側スリーブ20に加硫
接着されており、この外側スリーブ20を介して外筒金
具18内に圧入されている。なお、見方を変えれば、こ
の外側スリーブ20を内側ブツシュ12の外筒金具と見
る一方、上述の外筒金具18を、第二のゴム弾性体16
を備えた外側ブツシュの内筒金具と見ることもできる。
The inner bushing 12 includes an inner cylindrical metal fitting 17 and an outer cylindrical metal fitting 18 which are arranged concentrically and spaced apart from each other by a predetermined distance. A first rubber elastic body 10 is inserted. This rubber elastic body 10 is vulcanized and bonded to the inner cylindrical metal fitting 16 on the inner circumferential surface, and is vulcanized and bonded to the outer sleeve 20 on the outer circumferential surface, and is press-fitted into the outer cylindrical metal fitting 18 via this outer sleeve 20. has been done. From a different perspective, this outer sleeve 20 can be seen as an outer cylindrical fitting of the inner bushing 12, while the above-mentioned outer cylindrical fitting 18 can be seen as the second rubber elastic body 16.
It can also be seen as an inner cylinder fitting of an outer bushing.

また、上記ゴム弾性体10の内部には、内筒金具17に
関して対称的に、横断面が円弧状を成す2個の流体室2
2.24が形成されている。これらの流体室22.24
は、第2図から明らかなように、ゴム弾性体10内に内
筒金具17と平行に形成された2個の凹所の開口部が、
カシメプレート26を介して閉塞プレート28で塞がれ
ることによってそれぞれ形成されている。そして、これ
ら流体室22.24内には、ポリアルキレングリコール
、アルキレングリコール、シリコーン油。
Further, inside the rubber elastic body 10, two fluid chambers 2 having an arcuate cross section are arranged symmetrically with respect to the inner cylinder fitting 17.
2.24 is formed. These fluid chambers 22.24
As is clear from FIG. 2, the openings of the two recesses formed in the rubber elastic body 10 parallel to the inner cylinder fitting 17 are
They are each formed by being closed with a closing plate 28 via a caulking plate 26. In these fluid chambers 22 and 24, polyalkylene glycol, alkylene glycol, and silicone oil are contained.

低分子量重合体あるいは水等の所定の非圧縮性流体がそ
れぞれ封入されている。
A predetermined incompressible fluid such as a low molecular weight polymer or water is sealed in each case.

上記カシメプレート26は、ゴム弾性体10の一端面に
加硫接着されているが、流体室22,24の主体を成す
各凹所の開口部に対応する窓部30をそれぞれ備え、且
つ外周縁部が閉塞プレート28にカシメ付けられること
により閉塞プレート28と一体化されている。そして、
これらカシメプレート26と閉塞プレート28との合わ
せ面には、窓部30.30の互いに近接する端部同士を
繋ぐように、第3図に示されるオリフィス32が形成さ
れており、このオリフィス32が、第1図から明らかな
ように、双方の流体室22と24とを互いに連通させ、
それらの間で上記流体の流通を許容するようになってい
る。
The caulking plate 26 is vulcanized and bonded to one end surface of the rubber elastic body 10, and is provided with a window 30 corresponding to the opening of each recess forming the main body of the fluid chambers 22, 24, and has a window 30 on the outer periphery. The portion is integrated with the closing plate 28 by being caulked to the closing plate 28. and,
An orifice 32 shown in FIG. 3 is formed on the mating surface of the caulking plate 26 and the closing plate 28 so as to connect the mutually adjacent ends of the window portions 30 and 30. , as is clear from FIG. 1, both fluid chambers 22 and 24 are communicated with each other,
The fluid is allowed to flow between them.

このような構造の内側流体入りブツシュ12の外側に、
前記外側筒状金具14が所定間隔をおいて設けられてい
るのであるが、この外(Jt!I筒状金具14は、当該
エンジンマウントの無負荷状態”、すなわちエンジンの
静荷重を受、けない状態においては、内側ブツシュ12
の中心線に対して、流体室22.24が対向する方向に
一定量偏心した位胃を占めるようにされている。
On the outside of the inner fluid-filled bushing 12 having such a structure,
The outer cylindrical fittings 14 are provided at predetermined intervals. Inner bushing 12
The fluid chambers 22, 24 are arranged to occupy positions eccentric by a certain amount in opposite directions with respect to the centerline of the fluid chambers 22,24.

更に、これら外側筒状金具14と内側ブツシュ12とを
連結する前記第二のゴム弾性体16は、流体室22.2
4の対向方向の両側に空所か生しる状態で、かかる対向
方向にほぼ直角な方向に延び、内側ブツシュ12の外筒
金具18と上記外側筒状金具14とに、それぞれ加硫接
着せしめられている。従って、この第二のゴム弾性体1
6は、流体室22および24の対向方向に作用する主振
動荷重に対して剪断変形を生じることとなるのである。
Further, the second rubber elastic body 16 connecting the outer cylindrical fitting 14 and the inner bushing 12 is connected to the fluid chamber 22.2.
4, extending in a direction substantially perpendicular to the opposing direction, and bonded by vulcanization to the outer cylindrical fitting 18 of the inner bushing 12 and the outer cylindrical fitting 14, respectively. It is being Therefore, this second rubber elastic body 1
6 causes shear deformation in response to the main vibration load acting in opposite directions of the fluid chambers 22 and 24.

なお、そのような主振動荷重の作用方向に対向して、外
側筒状金具14の内面にはストッパゴム34.36が設
けられており、これらのストッパゴム34.36が、内
側ブツシュ12と外側筒状金具14との相対的な過大変
位を防止する役割を果たすようになっている。
In addition, stopper rubbers 34 and 36 are provided on the inner surface of the outer cylindrical fitting 14, facing the acting direction of the main vibration load, and these stopper rubbers 34 and 36 are arranged between the inner bush 12 and the outer bush. This serves to prevent excessive displacement relative to the cylindrical metal fitting 14.

以上のような二重ブツシュ構造のエンジンマウントは、
FF車のエンジンと車体との間に介在させられることと
なるが、特にFF横置きエンジンの左右に設けられて、
主にエンジン荷重を分担するものとして好適に用いるこ
とができる。そして、例えば内側ブツシュ12の内筒金
具17内に車体側の取付軸が挿通される一方、外側筒状
金具14がエンジン側の筒状ブラケット内に嵌め込まれ
て使用されることとなり、そのような状態でエンジンの
静荷重を受けると、第1図において外側筒状金具14が
下方に変位し、内側ブツシュ12とほぼ同心的な状態と
なる。
The engine mount with the double bushing structure shown above is
It will be interposed between the engine and the vehicle body of a FF car, but it is especially installed on the left and right sides of the FF horizontal engine.
It can be suitably used to mainly share the engine load. For example, the mounting shaft on the vehicle body side is inserted into the inner cylindrical metal fitting 17 of the inner bush 12, while the outer cylindrical metal fitting 14 is fitted into the cylindrical bracket on the engine side. When the static load of the engine is applied in this state, the outer cylindrical metal fitting 14 is displaced downward as shown in FIG. 1, and becomes approximately concentric with the inner bushing 12.

このように、偏心的な状態から同心的な状態となるとき
の変位は、はぼ第二のゴム弾性体16で吸収され、内側
ブツシュ12のゴム弾性体10には大きな引張荷重は生
じない。また、第1図において、上下方向の大きな加振
入力が作用した場合でも、同様に、第二のゴム弾性体1
6がそれを吸収して内側ブツシュ12のゴム弾性体10
に生じる引張応力を緩和するため、内側ブツシュ12の
ゴム弾性体10の耐久性が従来に比べて大幅に高められ
る。また、第二のゴム弾性体16についても、剪断変形
を主体とするものであって引張荷重をあまり受けないた
め、十分な耐久性が維持される。
In this way, the displacement when changing from an eccentric state to a concentric state is absorbed by the second rubber elastic body 16, and no large tensile load is generated on the rubber elastic body 10 of the inner bushing 12. In addition, in FIG. 1, even when a large vibration input in the vertical direction is applied, the second rubber elastic body 1
6 absorbs it and the rubber elastic body 10 of the inner bush 12
Since the tensile stress generated in the inner bushing 12 is alleviated, the durability of the rubber elastic body 10 of the inner bushing 12 is greatly increased compared to the conventional one. Further, the second rubber elastic body 16 is also mainly subjected to shear deformation and does not receive much tensile load, so that sufficient durability is maintained.

しかも、所定の加振入力に対しては、内側ブツシュ12
の流体室22.24の容積の増減に伴い、その内部に存
在する流体がオリフィス32を介して流通させられ、そ
の際に生じる流通抵抗によって有効な振動減衰作用が発
揮され、エンジンシェイク等を効果的に低減させること
ができる。
Moreover, in response to a predetermined vibration input, the inner bush 12
As the volume of the fluid chambers 22 and 24 increases and decreases, the fluid present inside the fluid chambers 22 and 24 is caused to flow through the orifice 32, and the flow resistance generated at this time exerts an effective vibration damping effect, which effectively reduces engine shake, etc. can be reduced.

このように、マウントの外側に従来のゴムマウントと類
似形状のゴム弾性体を配し、また内側には流体入りブツ
シュ12を配した二重ブツシュ構造によって、良好な防
振特性を発揮させつつ、耐久性を向上せしめ得たエンジ
ンマウントを提供スることが可能となったのである。
In this way, the double bushing structure has a rubber elastic body with a similar shape to a conventional rubber mount on the outside of the mount, and a fluid-filled bushing 12 on the inside, which provides good vibration isolation characteristics. This made it possible to provide an engine mount with improved durability.

なお、第二のゴム弾性体16が多く弾性変形することに
より、減衰作用に関与する内側ブツシュ12の内筒金具
17および外筒金具18間の相対変位量は小さくなるが
、オリフィス32の断面積。
Note that as the second rubber elastic body 16 undergoes a large amount of elastic deformation, the amount of relative displacement between the inner cylindrical fitting 17 and the outer cylindrical fitting 18 of the inner bushing 12, which are involved in the damping effect, becomes smaller, but the cross-sectional area of the orifice 32 .

長さ等を調整すること(例えば、通常の場合よりオリフ
ィス断面積を小さくして流通抵抗を増大させる)により
、所望の高減衰特性を得ることができる。
By adjusting the length, etc. (for example, by making the cross-sectional area of the orifice smaller than usual to increase the flow resistance), desired high attenuation characteristics can be obtained.

また、以上説明した実施例では、外側筒状金具14が円
筒状のものであったが、角筒状のものであっても良い。
Further, in the embodiment described above, the outer cylindrical metal fitting 14 is cylindrical, but it may be cylindrical.

また内側ブツシュ12において外側スリーブ20は不可
欠というものではなく、省略することもできる。また、
オリフィス32を、双方の流体室22.24の周方向に
おいて互いに近接する部分に1本ずつ、都合2本設ける
こともできる。更に、流体室についても2個に限定され
るわけではない。
Furthermore, the outer sleeve 20 is not essential to the inner bushing 12 and may be omitted. Also,
Two orifices 32 may be provided in each of the fluid chambers 22, 24 in circumferentially adjacent portions. Furthermore, the number of fluid chambers is not limited to two.

その他にも、本発明には、当業者の知識に基づき種々の
変形、改良等を施した態様が存在することは、改めて言
うまでもないところである。
It goes without saying that the present invention includes other embodiments in which various modifications and improvements are made based on the knowledge of those skilled in the art.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例であるエンジンマウントの
横断面図(第2図におけるI−I断面図)であり、第2
図は、第1図における■−■断面図である。第3図は、
第1図に示すオリフィス部分の部分断面図である。 10:第一のゴム弾性体 12:内側流体入りブツシュ 14:外側筒状金具 16:第二のコム弾性体17:内
筒金具  18:外筒金具 22.24:流体室 32;オリフィス
FIG. 1 is a cross-sectional view (I-I sectional view in FIG. 2) of an engine mount that is an embodiment of the present invention.
The figure is a sectional view taken along the line ■-■ in FIG. Figure 3 shows
FIG. 2 is a partial cross-sectional view of the orifice portion shown in FIG. 1; 10: First rubber elastic body 12: Inner fluid-filled bush 14: Outer cylindrical fitting 16: Second comb elastic body 17: Inner cylindrical fitting 18: Outer cylindrical fitting 22. 24: Fluid chamber 32; Orifice

Claims (1)

【特許請求の範囲】 FF車のエンジンを車体に防振支持させるエンジンマウ
ントにして、 (a)所定間隔をおいて同心的に配置された内筒金具と
外筒金具との間に筒状の第一のゴム弾性体が介挿される
と共に、該第一のゴム弾性体に形成された複数の流体室
に所定の非圧縮性流体がそれぞれ封入せしめられ、且つ
それら流体室がオリフィスによって相互に連通させられ
て、前記流体がそのオリフィスを流通させられる際の流
通抵抗によって振動減衰作用を為す構造の内側流体入り
ブッシュと、 (b)該内側流体入りブッシュの外側に所定間隔をおい
て設けられ、且つ前記エンジンの静荷重を受けない状態
においては該内側流体入りブッシュの中心線に対して偏
心するように位置させられた外側筒状金具と、 (c)前記内側流体入りブッシュの外筒金具と該外側筒
状金具との間に設けられ、且つ前記エンジンの静荷重に
対して剪断変形を生じる状態で、それら外筒金具と外側
筒状金具とを連結する第二のゴム弾性体とを含み、 且つ、前記内側流体入りブッシュの内筒金具と前記外側
筒状金具との何れか一方がエンジン側部材に、また他方
が車体側部材にそれぞれ取り付けられ、そして前記エン
ジンの静荷重を受けた状態においては、前記内側流体入
りブッシュと前記外側筒状金具とがほぼ同心的な状態と
なるようにされていることを特徴とするFF車用エンジ
ンマウント。
[Claims] An engine mount for supporting an engine of a front-wheel-drive vehicle in a vibration-proof manner on a vehicle body, including (a) a cylindrical mount between an inner cylindrical metal fitting and an outer cylindrical metal fitting arranged concentrically at a predetermined interval; A first rubber elastic body is inserted, a predetermined incompressible fluid is sealed in each of a plurality of fluid chambers formed in the first rubber elastic body, and the fluid chambers communicate with each other through an orifice. an inner fluid-filled bushing having a structure that performs a vibration damping effect by the flow resistance when the fluid is caused to flow through the orifice; (b) provided at a predetermined interval on the outside of the inner fluid-filled bushing; and (c) an outer cylindrical metal fitting of the inner fluid-filled bushing, which is positioned eccentrically with respect to the center line of the inner fluid-filled bushing when the static load of the engine is not applied. a second rubber elastic body provided between the outer cylindrical fitting and connecting the outer cylindrical fitting and the outer cylindrical fitting in a state where shearing deformation occurs in response to the static load of the engine; , and one of the inner cylindrical metal fitting and the outer cylindrical metal fitting of the inner fluid-filled bush is attached to an engine side member, and the other is attached to a vehicle body side member, and is subjected to the static load of the engine. An engine mount for a front-wheel drive vehicle, characterized in that the inner fluid-filled bush and the outer cylindrical metal fitting are substantially concentric.
JP23052584A 1984-10-31 1984-10-31 Engine mount for ff car Pending JPS61109934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23052584A JPS61109934A (en) 1984-10-31 1984-10-31 Engine mount for ff car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23052584A JPS61109934A (en) 1984-10-31 1984-10-31 Engine mount for ff car

Publications (1)

Publication Number Publication Date
JPS61109934A true JPS61109934A (en) 1986-05-28

Family

ID=16909107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23052584A Pending JPS61109934A (en) 1984-10-31 1984-10-31 Engine mount for ff car

Country Status (1)

Country Link
JP (1) JPS61109934A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2622268A1 (en) * 1987-10-22 1989-04-28 Freudenberg Carl RUBBER BUSHING SPRING
EP0324457A2 (en) * 1988-01-12 1989-07-19 Nissan Motor Co., Ltd. Vibration isolator of bushing type with liquid chambers in elastic body
FR2640712A1 (en) * 1987-10-05 1990-06-22 Tokai Rubber Ind Ltd FLUID-FILLED CYLINDRICAL ELASTIC FIXATION
EP0384007A2 (en) * 1989-02-24 1990-08-29 Firma Carl Freudenberg Rubber bushing
FR2701299A1 (en) * 1993-02-05 1994-08-12 Hutchinson Suspension device including at least one elastic system and at least one damping system mounted in series
WO2009050560A2 (en) * 2007-10-19 2009-04-23 Jaguar Cars Limited Bushing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124739A (en) * 1980-02-29 1981-09-30 Toyoda Gosei Co Ltd Vibration proof device with encosed fluid
JPS5830538A (en) * 1981-08-04 1983-02-23 ボコ・フランツ−ヨゼフ・ボルフ・ウント・コンパニ− Spring element and its application

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124739A (en) * 1980-02-29 1981-09-30 Toyoda Gosei Co Ltd Vibration proof device with encosed fluid
JPS5830538A (en) * 1981-08-04 1983-02-23 ボコ・フランツ−ヨゼフ・ボルフ・ウント・コンパニ− Spring element and its application

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2640712A1 (en) * 1987-10-05 1990-06-22 Tokai Rubber Ind Ltd FLUID-FILLED CYLINDRICAL ELASTIC FIXATION
FR2622268A1 (en) * 1987-10-22 1989-04-28 Freudenberg Carl RUBBER BUSHING SPRING
DE3735698A1 (en) * 1987-10-22 1989-05-03 Freudenberg Carl Fa SLEEVE RUBBER SPRING
JPH01145439A (en) * 1987-10-22 1989-06-07 Carl Freudenberg:Fa Sleeve type rubber shock absorber
EP0324457A2 (en) * 1988-01-12 1989-07-19 Nissan Motor Co., Ltd. Vibration isolator of bushing type with liquid chambers in elastic body
EP0384007A2 (en) * 1989-02-24 1990-08-29 Firma Carl Freudenberg Rubber bushing
FR2701299A1 (en) * 1993-02-05 1994-08-12 Hutchinson Suspension device including at least one elastic system and at least one damping system mounted in series
WO2009050560A2 (en) * 2007-10-19 2009-04-23 Jaguar Cars Limited Bushing
WO2009050560A3 (en) * 2007-10-19 2009-06-04 Jaguar Cars Bushing
US8967598B2 (en) 2007-10-19 2015-03-03 Jaguar Land Rover Limited Bushing

Similar Documents

Publication Publication Date Title
JP3193253B2 (en) Fluid-filled anti-vibration bush
US4717111A (en) Fluid-filled resilient engine mount
JPH0430442Y2 (en)
JPH0547733B2 (en)
JPS61109934A (en) Engine mount for ff car
JPS62261731A (en) Cylindrical fluid containing type vibration damper support body
JPS62274128A (en) Liquid seal type elastic bush
JP3998491B2 (en) Fluid filled anti-vibration bush
JPS62209241A (en) Fluid charged type member mount stopper
JPH0323777B2 (en)
JP2008111558A (en) Fluid filled system toe correct bush and suspension mechanism using it
JP2002327787A (en) Vibrationproof device sealed with fluid
JPH11153180A (en) Cylindrical vibration control assembly and its manufacture
JP3289471B2 (en) Liquid-filled cylindrical mount
JPH0729318Y2 (en) Fluid-filled cylinder mount device
JP3771028B2 (en) Liquid-filled engine mount
JPH0624595Y2 (en) Fluid filled anti-vibration support
JP3627397B2 (en) Fluid filled cylindrical mount
JP2827846B2 (en) Fluid-filled bush
JPH0523866Y2 (en)
JPH022498B2 (en)
JP3830259B2 (en) Liquid-filled engine mount
JPH06330983A (en) Liquid-sealed type vibration isolating support device
JPH0716127Y2 (en) Fluid filled cylinder mount
JPH082513Y2 (en) Cylindrical anti-vibration support