JP4508472B2 - Multilayer wiring board - Google Patents

Multilayer wiring board Download PDF

Info

Publication number
JP4508472B2
JP4508472B2 JP2001161689A JP2001161689A JP4508472B2 JP 4508472 B2 JP4508472 B2 JP 4508472B2 JP 2001161689 A JP2001161689 A JP 2001161689A JP 2001161689 A JP2001161689 A JP 2001161689A JP 4508472 B2 JP4508472 B2 JP 4508472B2
Authority
JP
Japan
Prior art keywords
layer
wiring board
liquid crystal
multilayer wiring
crystal polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001161689A
Other languages
Japanese (ja)
Other versions
JP2002353634A (en
Inventor
桂 林
隆弘 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001161689A priority Critical patent/JP4508472B2/en
Priority to US10/091,114 priority patent/US6663946B2/en
Publication of JP2002353634A publication Critical patent/JP2002353634A/en
Application granted granted Critical
Publication of JP4508472B2 publication Critical patent/JP4508472B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種AV機器や家電機器・通信機器・コンピュータおよびその周辺機器等の電子機器に使用される多層配線基板に関するものであり、特に絶縁層の一部に液晶ポリマー層を用いた多層配線基板に関する。
【0002】
【従来の技術】
従来、半導体素子等の能動部品や容量素子・抵抗素子等の受動部品を多数搭載して所定の電子回路を構成した混成集積回路を形成するための多層配線基板は、通常、ガラスクロスにエポキシ樹脂を含浸させて成る絶縁層にドリルによって上下に貫通孔を形成し、この貫通孔内部および絶縁層表面に複数の配線導体を形成した配線基板を、多数積層することによって形成されている。
【0003】
一般に、現在の電子機器は、移動体通信機器に代表されるように小型・薄型・軽量・高性能・高機能・高品質・高信頼性が要求されており、このような電子機器に搭載される混成集積回路等の電子部品も小型・高密度化が要求されるようになってきており、このような高密度化の要求に応えるために、電子部品を構成する多層配線基板も、配線導体の微細化や絶縁層の薄層化・貫通孔の微細化が必要となってきている。このため、近年、貫通孔を微細化するために、ドリル加工より微細加工が可能なレーザ加工が用いられるようになってきた。
【0004】
しかしながら、ガラスクロスにエポキシ樹脂を含浸させて成る絶縁層は、ガラスクロスをレーザにより穿設加工することが困難なために貫通孔の微細化には限界があり、また、ガラスクロスの厚みが不均一のために均一な孔径の貫通孔を形成することが困難であるという問題点を有していた。
【0005】
このような問題点を解決するために、アラミド樹脂繊維で製作した不織布にエポキシ樹脂を含浸させた絶縁基材や、ポリイミドフィルムにエポキシ系接着剤を塗布した絶縁基材を絶縁層に用いた多層配線基板が提案されている。
【0006】
しかしながら、アラミド不織布やポリイミドフィルムを用いた絶縁基材は吸湿性が高く、吸湿した状態で半田リフローを行なうと半田リフローの熱により吸湿した水分が気化してガスが発生し、絶縁層間で剥離してしまう等の問題点を有していた。
【0007】
このような問題点を解決するために、多層配線基板の絶縁層の材料として液晶ポリマーを用いることが検討されている。液晶ポリマーから成る層は、剛直な分子で構成されているとともに分子同士がある程度規則的に並んだ構成をしており分子間力が強いことから、高耐熱性・高弾性率・高寸法安定性・低吸湿性を示し、ガラスクロスのような強化材を用いる必要がなく、また、微細加工性にも優れるという特徴を有している。さらに、高周波領域においても、低誘電率・低誘電正接であり高周波特性に優れるという特徴を有している。
【0008】
このような液晶ポリマーの特徴を活かし、特開平8-97565号公報には、第1の液晶ポリマーを含む回路層間に第1の液晶ポリマーの融点よりも低い融点を有する第2の液晶ポリマーを含む接着剤層を挿入して成る多層プリント回路基板が提案されており、また、特開2000-269616号公報には熱可塑性液晶ポリマーフィルムと金属箔とをエポキシ系接着剤を用いて接着した高周波回路基板が提案されている。
【0009】
しかしながら、特開平8-97565号公報に提案された多層プリント回路基板は、回路層を間に液晶ポリマーを含む接着剤層を挿入して熱圧着により接着する際、液晶ポリマー分子が剛直で動き難いために回路層表面の微細な凹部に入ることができず、その結果、十分なアンカー効果を発揮することができず、回路層と接着剤層との密着性が悪く高温バイアス試験で絶縁不良が発生してしまうという問題点を有していた。
【0010】
また、特開2000-269616号公報に提案された高周波回路基板は、エポキシ系接着剤の誘電率が液晶ポリマーの誘電率と大きく異なることから、積層時の加圧によって生じるわずかな厚みばらつきにより、高周波領域、特に100MHz以上の周波数領域においては伝送特性が低下してしまうという問題点を有していた。
【0011】
このような問題点を解決するために、本願出願人は、特願2001−53834において、液晶ポリマー層の上下面にポリフェニレンエーテル系有機物から成る被覆層を形成して成る絶縁層を複数積層した多層配線基板を提案した。
【0012】
【発明が解決しようとする課題】
しかしながら液晶ポリマー層の上下面にポリフェニレンエーテル系有機物から成る被覆層を形成して成る絶縁層を複数積層して成る多層配線基板は、被覆層の熱膨張係数と液晶ポリマー層の熱膨張係数とが異なるために、急激な温度変化をともなう温度サイクル試験においては被覆層にクラックが生じ易いという傾向があった。また、被覆層に無機絶縁粉末を高密度に充填し被覆層の熱膨張係数を液晶ポリマー層の熱膨脹係数と略一致させて温度サイクル試験におけるクラックを防止するという方法もあるが、この場合、被覆層と配線導体との密着性が悪くなり配線導体を被着形成することができなくなるとともに、絶縁層同士を接着する際、絶縁層を形成する被覆層同士の密着性が悪くなって絶縁層間で剥離して絶縁性が低下してしまい易いという傾向があった。
【0013】
本発明はかかる従来技術の問題点に鑑み案出されたものであり、その目的は、高密度な配線を有するとともに、半田耐熱性・絶縁性・高周波伝送特性・温度サイクル性に優れた多層配線基板を提供することに有る。
【0014】
【課題を解決するための手段】
本発明の多層配線基板は、液晶ポリマー層と、該液晶ポリマー層の上下に配置された有機材料から成る一対の被覆層と、該一対の被覆層の少なくとも一方の被覆層の表面に、該表面と平坦面を構成するように埋設された金属箔から成る配線導体と、を有する複数の絶縁層を積層することにより形成された多層配線基板であって、前記絶縁層を挟んで上下に位置する前記配線導体間を前記絶縁層に形成された貫通導体を介して電気的に接続し、前記被覆層は、ポリフェニレンエーテル系有機物およびこれよりも低弾性率の有機物から成り、前記液晶ポリマー層は、層方向における熱膨張係数が−20〜20ppm/℃であるとともに、引張り弾性率が2GPa以上であり、前記被覆層は、層方向の引張り弾性率が0.2〜1.5GPaであり、前記液晶ポリマー層は、強化材を含まないことを特徴とするものである。
【0015】
また、本発明の多層配線基板は、被覆層が、低弾性率の有機物を5〜60体積%含有することを特徴とするものである。
【0016】
さらに、本発明の多層配線基板は、低弾性率の有機物が20〜80体積%のスチン系有機物を含有することを特徴とするものである。
【0017】
また、本発明の多層配線基板は、被覆層の厚みの合計が絶縁層の厚みの10〜70%であることを特徴とするものである。
【0018】
本発明の多層配線基板によれば、絶縁層を、液晶ポリマー層の表面にポリフェニレンエーテル系有機物およびこれよりも低弾性率の有機物から成る被覆層を形成して成るものとしたことから、微細な貫通孔を穿設することが可能となり、その結果、高密度な配線を有する多層配線基板とすることができ、また、液晶ポリマー層と被覆層の誘電率の周波数挙動がほぼ等しいことから、積層の際にわずかな厚みばらつきが生じたとしても高周波領域における伝送特性の低下を生じることのない高周波伝送特性に優れたものとすることができる。また、液晶ポリマー層を、その層方向における熱膨張係数が−20〜20ppm/℃であるとともに、引張り弾性率が2GPa以上であるものとし、被覆層を、その層方向の引張り弾性率が0.2〜1.5GPaであるものとしたことから、熱膨張係数が比較的大きいポリフェニレンエーテル系有機物から成る被覆層が温度変化により熱膨張・熱収縮する際に、この被覆層の弾性率が0.2〜1.5GPaと低弾性であるために、被覆層の熱膨張・熱収縮が、熱膨張係数が小さくて高弾性率の液晶ポリマー層に拘束され、被覆層の熱膨張・熱収縮を小さなものとすることができる。この結果、急激な温度変化をともなう温度サイクル試験においても被覆層にクラックが生じることが無い。また、被覆層に無機絶縁粉末を高密度に充填する必要がないことから、被覆層同士の密着性を良好とすることができるとともに、絶縁層間で剥離して絶縁性が低下してしまうこともない。
【0019】
また、本発明の多層配線基板によれば、上記構成において、被覆層がポリフェニレンエーテル系有機物よりも低弾性率の有機物を5〜60体積%含有することから、被覆層の弾性率を容易に0.2〜1.5GPaの範囲にすることができる。
【0020】
さらに、本発明の多層配線基板によれば、上記構成において、低弾性率の有機物が20〜80体積%のスチレン系有機物を含有することから、このスチレン系有機物が低誘電率・低誘電正接であることにより、100MHz以上の高周波においても伝送特性に優れた多層配線基板とすることができる。
【0021】
また、本発明の多層配線基板によれば、上記構成において、被覆層の厚みの合計を絶縁層の厚みの10〜70%としたことから、配線導体との密着性が良好で高耐熱性・低吸湿性・高寸法安定性の多層配線基板とすることができる。
【0022】
【発明の実施の形態】
次に本発明の多層配線基板を添付の図面に基づいて詳細に説明する。
【0023】
図1は、本発明の多層配線基板に半導体素子を搭載して成る混成集積回路の実施の形態の一例を示す断面図であり、また、図2は、図1に示す多層配線基板の要部拡大断面図である。これらの図において1は絶縁層、2は配線導体、3は貫通導体で、主にこれらで本発明の多層配線基板4が構成されている。なお、本例では、絶縁層1を4層積層して成る多層配線基板4を示している。
【0024】
絶縁層1は、液晶ポリマー層5と、その表面に被着形成されたポリフェニレンエーテル系有機物およびこれよりも低弾性率の有機物から成る被覆層6とから構成されており、多層配線基板4に搭載される電子部品7や配線導体2の支持体としての機能を有する。
【0025】
なお、ここで液晶ポリマーとは、溶融時に液晶状態あるいは光学的に複屈折する性質を有するポリマーを指し、一般に溶液状態で液晶性を示すリオトロピック液晶ポリマーや溶融時に液晶性を示すサーモトロピック液晶ポリマー、あるいは、熱変形温度で分類される1型・2型・3型すべての液晶ポリマーを含むものである。また、ポリフェニレンエーテル系有機物とは、ポリフェニレンエーテル樹脂やポリフェニレンエーテルに種々の官能基が結合した樹脂、あるいはこれらの誘導体・重合体を意味するものである。
【0026】
本発明の多層配線基板4においては、液晶ポリマー層5を、温度サイクル信頼性・半田耐熱性・加工性の観点からは、層方向における熱膨張係数が−20〜20ppm/℃であるとともに、引張り弾性率が2GPa以上、融点が200〜400℃であるものとすることが好ましい。液晶ポリマー層5は、熱膨張係数が−20ppm/℃未満であると、液晶ポリマー層5と被覆層6との熱膨張係数の差が大きくなって被覆層6にクラックを生じ易くなる傾向があり、20ppm/℃を超えると、絶縁層1と配線導体2との熱膨張係数の差が大きくなって、配線導体2付近で被覆層6にクラックを生じ易くなる傾向がある。また、引張り弾性率が2GPa未満であると、絶縁層1の曲げ強度が小さくなって多層配線基板4に反りを生じやすくなる傾向がある。従って、液晶ポリマー層5は、層方向における熱膨張率が−20〜20ppm/℃であるとともに、引張り弾性率が2GPa以上であることが好ましく、特に電子部品7を実装した時の接続信頼性の観点からは熱膨張率が−10〜10ppm/℃、融点が250〜350℃であるものが好ましい。
【0027】
なお、液晶ポリマー層5は、層としての物性を損なわない範囲内で、熱安定性を改善するための酸化防止剤や耐光性を改善するための紫外線吸収剤等の光安定剤、難燃性を改善するためのハロゲン系もしくはリン酸系の難燃性剤、アンチモン系化合物やホウ酸亜鉛・メタホウ酸バリウム・酸化ジルコニウム等の難燃助剤、潤滑性を改善するための高級脂肪酸や高級脂肪酸エステル・高級脂肪酸金属塩・フルオロカーボン系界面活性剤等の滑剤、熱膨張係数を調整するため、および/または機械的強度を向上するための酸化アルミニウムや酸化珪素・酸化チタン・酸化バリウム・酸化ストロンチウム・酸化ジルコニウム・酸化カルシウム・ゼオライト・窒化珪素・窒化アルミニウム・炭化珪素・チタン酸カリウム・チタン酸バリウム・チタン酸ストロンチウム・チタン酸カルシウム・ホウ酸アルミニウム・スズ酸バリウム・ジルコン酸バリウム・ジルコン酸ストロンチウム等の充填材を含有してもよい。
【0028】
また、上記の充填材等の粒子形状は、略球状・針状・フレーク状等があり、充填性の観点からは略球状が好ましい。さらに、粒子径は、通常0.1〜15μm程度であり、液晶ポリマー層5の厚みよりも小さい。
【0029】
さらに、液晶ポリマー層5は、被覆層6との密着性を高めるために、その表面をバフ研磨・ブラスト研磨・ブラシ研磨・プラズマ処理・コロナ処理・紫外線処理・薬品処理等の方法を用いて中心線表面粗さRaが0.05〜5μmの値となるように粗化しておくことが好ましい。中心線表面粗さRaは、半田リフローの際に液晶ポリマー層5と被覆層6との剥離を防止するという観点からは0.05μm以上であることが好ましく、表面に被覆層6を形成する際に空気のかみ込みを防止するという観点からは5μm以下であることが好ましい。
【0030】
次に、被覆層6は、絶縁層1に配線導体2を被着形成する際の接着剤の機能を有するとともに、絶縁層1同士を積層する際の接着剤の役目を果たす。このような被覆層6は、ポリフェニレンエーテル系有機物およびこれよりも低弾性率の有機物から成り、層方向の引っ張り弾性率が0.2〜1.5GPaであることが好ましい。また、このことが重要である。
【0031】
本発明の多層配線基板4によれば、絶縁層1を、液晶ポリマー層5の表面にポリフェニレンエーテル系有機物およびこれよりも低弾性率の有機物から成る被覆層6を形成して成るものとしたことから、微細な貫通孔を穿設することが可能となり、その結果、高密度な配線を有する多層配線基板4とすることができ、また、液晶ポリマー層5と被覆層6の誘電率の周波数挙動がほぼ等しいことから、積層の際にわずかな厚みばらつきが生じたとしても高周波領域における伝送特性の低下を生じることのない高周波伝送特性に優れたものとすることができる。
【0032】
なお、ポリフェニレンエーテル系有機物は、被覆層6に20〜80体積%含有されており、ポリフェニレンエーテル樹脂やその誘導体、または、これらのポリマーアロイ等が用いられる。とりわけ熱サイクル信頼性や積層時の位置精度の観点からは、アリル変性ポリフェニレンエーテル等の熱硬化性ポリフェニレンエーテルを含有することが好ましい。また、ポリフェニレンエーテル系有機物の含有量が20体積%未満であると、混練性が低下する傾向にあり、80体積%を超えると、液晶ポリマー層5表面に被覆層6を形成する際に、被覆層6の厚みバラツキが大きくなる傾向がある。従って、ポリフェニレンエーテル系有機物の含有量は、20〜80体積%の範囲が好ましい。
【0033】
また、本発明の多層配線基板4によれば、被覆層6の層方向の引っ張り弾性率を0.2〜1.5GPaとしたことから、熱膨張係数が比較的大きいポリフェニレンエーテル系有機物を含む被覆層6が温度変化により熱膨張・熱収縮する際に、この被覆層6の弾性率が0.2〜1.5GPaと低弾性であるために、被覆層6の熱膨張・熱収縮が、熱膨張係数が小さくて高弾性率の液晶ポリマー層5に拘束され、被覆層6の熱膨張・熱収縮を小さなものとすることができる。この結果、急激な温度変化をともなう温度サイクル試験においても被覆層6にクラックが生じることが無い。また、被覆層6に無機絶縁粉末を高密度に充填する必要がないことから、被覆層6同士の密着性を良好とすることができるとともに、絶縁層1間で剥離して絶縁性が低下してしまうこともない。
【0034】
なお、被覆層6の引張り弾性率が0.2GPa未満であると多層配線基板4の剛性が小さくなり、多層配線基板4に反りが発生して配線導体層2が断線してしまう傾向にある。また、1.5GPaを越えると、高温下で液晶ポリマー層5が被覆層6を拘束することが困難と成る傾向があり、その結果、液晶ポリマー層5を引き伸ばして多層配線基板4の熱膨張を大きなものとしてしまい、電子部品7との接続部で断線を生じてしまう傾向にある。従って、被覆層6は引張り弾性率を0.2〜1.5GPa、好適には0.7〜1.2GPaとすることが好ましい。
【0035】
また、被覆層6は、ポリフェニレンエーテル系有機物よりも低弾性率の有機物を5〜60体積%含有しており、そして、このことが重要である。
【0036】
本発明の多層配線基板4によれば、被覆層6がポリフェニレンエーテル系有機物よりも低弾性率の有機物を5〜60体積%含有していることから、被覆層6の弾性率を容易に0.2〜1.5GPaの範囲にすることができる。なお、ポリフェニレンエーテル系有機物よりも低弾性率の有機物の含有率が5体積%未満であると、被覆層6の引張り弾性率を低くする効果が現れなくなる傾向にあり、また、60体積%を超えると被覆層6の引張り弾性率が低くなりすぎて多層配線基板4が柔らかくなって反ってしまい、その結果、配線導体層2が断線してしまう傾向にある。従って、被覆層6のポリフェニレンエーテル系有機物よりも低弾性率の有機物の含有率を5〜60体積%、最適には20〜40体積%とすることが好ましい。
【0037】
このようなポリフェニレンエーテル系有機物よりも低弾性率の有機物としては、1GPa以下の弾性率の樹脂やゴム状弾性体が用いられ、例えば、天然ゴムやポリブタジエン・ポリイソプレン・ポリイソブチレン・ネオプレン・ポリスルフィドゴム・チオコールゴム・アクリルゴム・ウレタンゴム・シリコーンゴム・エビクロロヒドリンゴム・スチレン−ブタジエンブロック共重合体(SBR)・水素添加スチレン−ブタジエンブロック共重合体(SEB・SEBC)・スチレン−ブタジエン−スチレンブロック共重合体(SBS)・水素添加スチレン−ブタジエン−スチレンブロック共重合体(SEBS)・スチレン−イソプレンブロック共重合体(SIR)・水素添加スチレン−イソプレンブロック共重合体(SEP)・スチレン−イソプレン−スチレンブロック共重合体(SIS)・水素添加スチレン−イソプレン−スチレンブロック共重合体(SEPS)・エチレンプロピレンゴム(EPR)・エチレンプロピレンジエンゴム(EPDM)・ブタジエン−アクリロニトリル−スチレン−コアシェルゴム(ABS)・メチルメタクリレート−ブタジエン−スチレン−コアシェルゴム(MBS)・メチルメタクリレート−ブチルアクリレート−スチレン−コアシェルゴム(MAS)・オクチルアクリレート−ブタジエン−スチレン−コアシェルゴム(MABS)・アルキルアクリレート−ブタジエン−アクリロニトリル−スチレンコアシェルゴム(AABS)・ブタジエン−スチレン−コアシェルゴム(SBR)およびメチルメタクリレート−ブチルアクリレートシロキサンをはじめとするシロキサン含有コアシェルゴム等のコアシェルタイプの粒子状弾性体、またはこれらを変性したゴム等が用いられる。
【0038】
なお、これらの低弾性率の有機物は無水マレイン酸やエポキシ等の極性基を有する変性剤により変性を行ってもよい。さらに、これらの低弾性率の有機物は1種のみを単独で用いても良く、あるいは2種以上を組み合わせて用いても良い。
【0039】
また、本発明の多層配線基板4においては、低弾性率の有機物が20〜80体積%のスチレン系有機物を含有することが好ましい。本発明の多層配線基板4によれば、スチレン系有機物が低誘電率・低誘電正接であることから、100MHz以上の高周波においても伝送特性に優れた多層配線基板4とすることができる。
【0040】
このようなスチレン系有機物を含有する低弾性率の有機物としては、分子構造中にモノマー単位としてスチレンを有する有機物であり、特に、SBRやSEB・SEBC・SBS・SEBS・SIR・SEP・SISおよびSEPS、またはこれらを変性した低弾性率の有機物が用いられる。
【0041】
なお、スチレン系有機物の含有量が20体積%未満であると、低弾性率の有機物の誘電率・誘電正接が大きなものとなって100MHZ以上の高周波領域における伝送特性が低下してしまう傾向があり、80体積%を超えると低弾性率の有機物の弾性率が大きくなるために被覆層6の引張り弾性率を所望の範囲とすることが困難となる傾向がある。従って、スチレン系有機物の含有量は20〜80体積%が好ましい。
【0042】
また、被覆層6は、液晶ポリマー層5との接着性や配線導体2・貫通導体3との密着性を良好にするという観点からは、重合反応可能な官能基を2個以上有する多官能性モノマーあるいは多官能性重合体等の添加剤を含有することが好ましく、例えば、トリアリルシアヌレートやトリアリルイソシアヌレートおよびこれらの重合体等を含有することが好ましい。
【0043】
さらに、絶縁層1を積層して加圧する際に、被覆層6の流動性を抑制し、後述する貫通導体3の位置ずれや被覆層6の厚みばらつきを防止するという観点からは、被覆層6は充填材として10体積%以上の無機絶縁粉末を含有することが好ましい。また、液晶ポリマー層5との接着界面および配線導体2との接着界面での半田リフロー時の剥離を防止するという観点からは、充填材の含有量を70体積%以下とすることが好ましい。従って、被覆層6に、10〜70体積%の充填材を含有させておくことが好ましい。
【0044】
なお、絶縁層1の厚みは絶縁信頼性を確保するという観点からは10〜200μmであることが好ましく、また、被覆層6の厚みの合計は、配線導体2との接着性を良好にするという観点からは絶縁層1の厚みの10%以上とすることが好ましい。さらに、高耐熱性・低吸湿性・高寸法安定性を確保するという観点からは、70%以下とすることが好ましい。従って、被覆層6の厚みの合計は、絶縁層1の厚みの10〜70%とすることが好ましい。
【0045】
このような絶縁層1は、例えば粒径が0.1〜15μm程度の酸化珪素等の無機絶縁粉末に、熱硬化性ポリフェニレンエーテル樹脂とこれより低弾性率の有機物・溶剤・可塑剤・分散剤等を添加して得たペーストを液晶ポリマー層5の上下表面に従来周知のドクタブレード法等のシート成型法を採用して被覆層6を形成した後、あるいは上記のペースト中に液晶ポリマー層5を浸漬し垂直に引き上げることによって液晶ポリマー層5の表面に被覆層6を形成した後、これを60〜100℃の温度で5分〜3時間加熱・乾燥することにより製作される。
【0046】
次に、絶縁層1には、上下面の少なくとも1つの面に配線導体2が被着形成されている。配線導体2は、その厚みが2〜30μmで銅・金等の良導電性の金属箔から成り、多層配線基板4に搭載される電子部品7を外部電気回路(図示せず)に電気的に接続する機能を有する。
【0047】
このような配線導体2は、絶縁層1を複数積層する際、配線導体2の周囲にボイドが発生するのを防止するという観点から、被覆層6に、少なくとも配線導体2の表面と被覆層6の表面とが平坦となるように埋設されていることが好ましい。また、配線導体2を被覆層6に埋設する際に、被覆層6の乾燥状態での気孔率を3〜40体積%としておくと、配線導体2周囲の被覆層6の樹脂盛り上がりを生じさせず平坦化することができるとともに配線導体2と被覆層6の間に挟まれる空気の排出を容易にして気泡の巻き込みを防止することができる。なお、乾燥状態での気孔率が40体積%を超えると、複数積層した絶縁層1を加圧・加熱硬化した後に被覆層6内に気孔が残存し、この気孔が空気中の水分を吸着して絶縁性が低下してしまうおそれがあるので、被覆層6の乾燥状態での気孔率を3〜40体積%の範囲としておくことが好ましい。
【0048】
このような被覆層6の乾燥状態での気孔率は、被覆層6を液晶ポリマー層5の表面上に塗布し乾燥する際に、乾燥温度や昇温速度等の乾燥条件を適宜調整することにより気孔率を所望の値とすることができる。
【0049】
また、配線導体2と液晶ポリマー層5の間に位置する被覆層6の厚みを3〜35μmの厚みとしておくことが好ましい。配線導体2と液晶ポリマー層5の間に位置する被覆層6の厚みを3〜35μmの厚みとして、配線導体2と誘電正接の低い液晶ポリマー層5とを近づけることにより、配線導体2周囲の誘電正接を低くすることができ、その結果、高周波領域、特に100MHz以上の周波数領域における伝送特性をより向上させることができる。なお、被覆層6の厚みが3μm未満であると、配線導体2の熱膨張・熱収縮により発生する応力を被覆層6で有効に緩和することができず、配線導体2のコーナー部からクラックが発生してしまう傾向があり、35μmを超えると配線導体2周囲の誘電正接を低くする効果が低下してしまう傾向がある。従って、配線導体2と液晶ポリマー層5の間に位置する被覆層6の厚みを3〜35μmの範囲としておくことが好ましい。
【0050】
さらに、絶縁層1に配設された配線導体2の幅方向の断面形状を、絶縁層1側の底辺の長さが対向する底辺の長さよりも短い台形状とするとともに、絶縁層1側の底辺と側辺との成す角度を95〜150°とすることが好ましい。絶縁層1に配設された配線導体2の幅方向の断面形状を、絶縁層1側の底辺の長さが対向する底辺の長さよりも短い台形状とするとともに、絶縁層1側の底辺と側辺との成す角度を95〜150°とすることにより、配線導体2を被覆層6に埋設する際に、配線導体2を被覆層6に容易に埋設することができる。なお、気泡をかみ込むことなく埋設するという観点からは、絶縁層1側の底辺と側辺との成す角度を95°以上とすることが好ましく、配線導体2を微細化するという観点からは150°以下とすることが好ましい。
【0051】
また、絶縁層1の層間において、配線導体2の長さの短い底辺と液晶ポリマー層5との間に位置する被覆層6の厚みx(μm)が、上下の液晶ポリマー層5間の距離をT(μm)、配線導体2の厚みをt(μm)としたときに、3μm≦0.5T−t≦x≦0.5T≦35μm(ただし、8μm≦T≦70μm、1μm≦t≦32μm)であることが好ましい。
【0052】
液晶ポリマー層6間の距離をT(μm)、配線導体2の厚みをt(μm)としたときに、配線導体2の長さの短い底辺と液晶ポリマー層5間の被覆層6の厚みx(μm)を3μm≦0.5T−t≦x≦0.5T≦35μmとすることにより、配線導体2の長さの短い底辺と液晶ポリマー層5間の距離および配線導体2の長さの長い底辺と隣接する液晶ポリマー層5間の距離の差をt(μm)未満と小さくでき、配線導体2周囲の誘電正接バラツキを小さなものとすることができ、その結果、伝送特性が低下することを防止できる。従って、配線導体2の台形状の上底側表面と液晶ポリマー層5の間に位置する、被覆層6の厚みx(μm)を、液晶ポリマー層6間の距離をT(μm)、配線導体2の厚みをt(μm)としたときに、3μm≦0.5T−t≦x≦0.5T≦35μmの範囲とすることが好ましい。
【0053】
このような配線導体2は、絶縁層1となる前駆体シートに、公知のフォトレジストを用いたサブトラクティブ法によりパターン形成した、例えば銅から成る金属箔を転写法等により被着形成することにより形成される。先ず、支持体と成るフィルム上に銅から成る金属箔を接着剤を介して接着した金属箔転写用フィルムを用意し、次に、フィルム上の金属箔を公知のフォトレジストを用いたサブトラクティブ法を使用してパターン状にエッチングする。この時、パターンの表面側の側面は、フィルム側の側面に較べてエッチング液に接する時間が長いためにエッチングされやすく、パターンの幅方向の断面形状を台形状とすることができる。なお、台形の形状は、エッチング液の濃度やエッチング時間を調整することにより短い底辺と側辺とのなす角度を95〜150°の台形状とすることができる。そして、この金属箔転写用フィルムを絶縁層1と成る前駆体シートに積層し、温度が100〜200℃で圧力が0.5〜10MPaの条件で10分〜1時間ホットプレスした後、支持体と成るフィルムを剥離除去して金属箔を絶縁層1と成る前駆体シート表面に転写させることにより、台形状の短い底辺が被覆層6に埋設された配線導体2を形成することができる。
【0054】
なお、配線導体2の長さの短い底辺と対向する液晶ポリマー層5間の被覆層6の厚みx(μm)は、金属箔転写時のホットプレスの圧力を調整することにより3〜35μmの範囲とすることができる。また、配線導体2は被覆層6との密着性を高めるためにその表面にバフ研磨・ブラスト研磨・ブラシ研磨・薬品処理等の処理で表面を粗化しておくことが好ましい。
【0055】
また、絶縁層1には、直径が20〜150μm程度の貫通導体3が形成されている。貫通導体3は、絶縁層1を挟んで上下に位置する配線導体2を電気的に接続する機能を有し、絶縁層1にレーザにより穿設加工を施すことにより貫通孔を形成した後、この貫通孔に銅・銀・金・半田等から成る導電性ペーストを従来周知のスクリーン印刷法により埋め込むことにより形成される。
【0056】
本発明の多層配線基板4によれば、絶縁層1を液晶ポリマー層5の上下面にポリフェニレンエーテル系有機物およびこれより低弾性率の有機物から成る被覆層6を有したものとしたことから、液晶ポリマー層5が高耐熱性・高弾性率・高寸法安定性・低吸湿性であり、ガラスクロスのような強化材を用いなくとも絶縁層1を構成することが可能となり、その結果、レーザによる穿設加工が容易となり微細で均一な貫通孔を形成できる。
【0057】
このような多層配線基板4は、上述したような方法で製作した絶縁層1と成る前駆体シートの所望の位置に貫通導体3を形成した後、パターン形成した例えば銅の金属箔を、温度が100〜200℃で圧力が0.5〜10MPaの条件で10分〜1時間ホットプレスして転写し、これらを積層して最終的に温度が150〜300℃で圧力が0.5〜10MPaの条件で30分〜24時間ホットプレスして完全硬化させることにより製作される。
【0058】
かくして本発明の多層配線基板4によれば、絶縁層1を、液晶ポリマー層5の表面にポリフェニレンエーテル系有機物およびこれよりも低弾性率の有機物から成る被覆層6を形成して成るものとし、液晶ポリマー層5を、層方向における熱膨張係数が−20〜20ppm/℃であるとともに、引張り弾性率が2GPa以上とし、被覆層6を、層方向の引張り弾性率が0.2〜1.5GPaとしたことから、高密度な配線を有するとともに、半田耐熱性・絶縁性・高周波伝送特性・温度サイクル性に優れた多層配線基板4とすることができる。
【0059】
なお、本発明の多層配線基板4は上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能であり、例えば、上述の実施例では4層の絶縁層1を積層することによって多層配線基板4を製作したが、2層や3層、あるいは5層以上の絶縁層1を積層して多層配線基板4を製作してもよい。また、本発明の多層配線基板4の上下表面に、1層や2層、あるいは3層以上の有機樹脂を主成分とする絶縁層から成るビルドアップ層やソルダーレジスト層を形成してもよい。
【0060】
【発明の効果】
本発明の多層配線基板によれば、絶縁層を、液晶ポリマー層の表面にポリフェニレンエーテル系有機物およびこれよりも低弾性率の有機物から成る被覆層を形成して成るものとしたことから、微細な貫通孔を穿設することが可能となり、その結果、高密度な配線を有する多層配線基板とすることができ、また、液晶ポリマー層と被覆層の誘電率の周波数挙動がほぼ等しいことから、積層の際にわずかな厚みばらつきが生じたとしても高周波領域における伝送特性の低下を生じることのない高周波伝送特性に優れたものとすることができる。また、液晶ポリマー層を、その層方向における熱膨張係数が−20〜20ppm/℃であるとともに、引張り弾性率が2GPa以上であるものとし、被覆層を、その層方向の引張り弾性率が0.2〜1.5GPaであるものとしたことから、熱膨張係数が比較的大きいポリフェニレンエーテル系有機物から成る被覆層が温度変化により熱膨張・熱収縮する際に、この被覆層の弾性率が0.2〜1.5GPaと低弾性であるために、被覆層の熱膨張・熱収縮が、熱膨張係数が小さくて高弾性率の液晶ポリマー層に拘束され、被覆層の熱膨張・熱収縮を小さなものとすることができる。この結果、急激な温度変化をともなう温度サイクル試験においても被覆層にクラックが生じることが無い。また、被覆層に無機絶縁粉末を高密度に充填する必要がないことから、被覆層同士の密着性を良好とすることができるとともに、絶縁層間で剥離して絶縁性が低下してしまうこともない。
【0061】
また、本発明の多層配線基板によれば、被覆層がポリフェニレンエーテル系有機物よりも低弾性率の有機物を5〜60体積%含有することから、被覆層の弾性率を容易に0.2〜1.5GPaの範囲にすることができる。
【0062】
さらに、本発明の多層配線基板によれば、低弾性率の有機物が20〜80体積%のスチレン系有機物を含有することから、このスチレン系有機物が低誘電率・低誘電正接であることにより、100MHz以上の高周波においても伝送特性に優れた多層配線基板とすることができる。
【0063】
また、本発明の多層配線基板によれば、被覆層の厚みの合計を絶縁層の厚みの10〜70%としたことから、配線導体との密着性が良好で高耐熱性・低吸湿性・高寸法安定性の多層配線基板とすることができる。
【図面の簡単な説明】
【図1】本発明の多層配線基板に半導体素子を搭載して成る混成集積回路の実施の形態の一例である。
【図2】本発明の多層配線基板の要部拡大断面図である。
【符号の説明】
1・・・・・・・・・・・絶縁層
2・・・・・・・・・・・配線導体
3・・・・・・・・・・・貫通導体
4・・・・・・・・・・・多層配線基板
5・・・・・・・・・・・液晶ポリマー層
6・・・・・・・・・・・被覆層
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a multilayer wiring board used for various AV devices, home appliances, communication devices, computers and electronic devices such as peripheral devices thereof, and in particular, a multilayer wiring using a liquid crystal polymer layer as a part of an insulating layer. Regarding the substrate.
[0002]
[Prior art]
Conventionally, a multilayer wiring board for forming a hybrid integrated circuit in which a predetermined electronic circuit is configured by mounting a large number of active components such as semiconductor elements and passive components such as capacitance elements and resistance elements is usually an epoxy resin on a glass cloth. A through-hole is formed in the insulating layer impregnated with the top and bottom by a drill, and a plurality of wiring boards are formed by laminating a plurality of wiring conductors in the through-hole and on the surface of the insulating layer.
[0003]
In general, current electronic devices are required to be small, thin, lightweight, high performance, high functionality, high quality, and high reliability, as represented by mobile communication devices. Electronic components such as hybrid integrated circuits are required to be smaller and higher in density, and in order to meet the demand for higher density, multilayer wiring boards constituting electronic components are also used as wiring conductors. Therefore, it is necessary to reduce the thickness of the insulating layer, the thickness of the insulating layer, and the size of the through hole. For this reason, in recent years, in order to miniaturize the through hole, laser processing capable of performing fine processing rather than drill processing has been used.
[0004]
However, an insulating layer formed by impregnating an epoxy resin into a glass cloth has a limit in miniaturizing the through-hole because it is difficult to drill the glass cloth with a laser, and the thickness of the glass cloth is not sufficient. For the sake of uniformity, there is a problem that it is difficult to form a through hole having a uniform hole diameter.
[0005]
In order to solve such problems, an insulating base material in which a non-woven fabric made of aramid resin fibers is impregnated with an epoxy resin, or an insulating base material in which an epoxy adhesive is applied to a polyimide film is used as an insulating layer. A wiring board has been proposed.
[0006]
However, insulating base materials using aramid nonwoven fabric or polyimide film are highly hygroscopic, and if solder reflow is performed while moisture is absorbed, moisture absorbed by the heat of solder reflow is vaporized and gas is generated, which is separated between insulating layers. There was a problem such as.
[0007]
In order to solve such problems, it has been studied to use a liquid crystal polymer as a material for an insulating layer of a multilayer wiring board. The layer made of liquid crystal polymer is composed of rigid molecules and has a structure in which the molecules are regularly arranged to some extent and the intermolecular force is strong, so it has high heat resistance, high elastic modulus, and high dimensional stability. -It has low hygroscopicity, does not require the use of a reinforcing material such as glass cloth, and is excellent in fine workability. Furthermore, the high frequency region also has the characteristics of low dielectric constant and low dielectric loss tangent and excellent high frequency characteristics.
[0008]
Taking advantage of such characteristics of the liquid crystal polymer, JP-A-8-97565 includes a second liquid crystal polymer having a melting point lower than that of the first liquid crystal polymer between circuit layers including the first liquid crystal polymer. A multilayer printed circuit board in which an adhesive layer is inserted has been proposed, and Japanese Patent Application Laid-Open No. 2000-269616 discloses a high-frequency circuit in which a thermoplastic liquid crystal polymer film and a metal foil are bonded using an epoxy adhesive. A substrate has been proposed.
[0009]
However, in the multilayer printed circuit board proposed in Japanese Patent Laid-Open No. 8-97565, the liquid crystal polymer molecules are rigid and difficult to move when the circuit layer is bonded by thermocompression bonding with an adhesive layer containing a liquid crystal polymer interposed therebetween. For this reason, it is not possible to enter the fine recesses on the surface of the circuit layer, and as a result, a sufficient anchor effect cannot be exhibited, and the adhesion between the circuit layer and the adhesive layer is poor, resulting in poor insulation in the high temperature bias test. It had the problem that it would occur.
[0010]
In addition, the high frequency circuit board proposed in Japanese Patent Application Laid-Open No. 2000-269616, because the dielectric constant of the epoxy adhesive is significantly different from the dielectric constant of the liquid crystal polymer, due to slight thickness variations caused by pressure during lamination, There is a problem that transmission characteristics deteriorate in a high frequency region, particularly in a frequency region of 100 MHz or higher.
[0011]
In order to solve such problems, the applicant of the present application disclosed in Japanese Patent Application No. 2001-53834 a multilayer in which a plurality of insulating layers formed by forming coating layers made of a polyphenylene ether organic material on the upper and lower surfaces of a liquid crystal polymer layer. A wiring board was proposed.
[0012]
[Problems to be solved by the invention]
However, a multilayer wiring board in which a plurality of insulating layers formed by forming a coating layer made of a polyphenylene ether organic material on the upper and lower surfaces of a liquid crystal polymer layer has a thermal expansion coefficient of the coating layer and a thermal expansion coefficient of the liquid crystal polymer layer. Due to the difference, there was a tendency that cracks were likely to occur in the coating layer in the temperature cycle test with rapid temperature change. Another method is to prevent cracks in the temperature cycle test by filling the coating layer with inorganic insulating powder at a high density and making the thermal expansion coefficient of the coating layer substantially coincide with the thermal expansion coefficient of the liquid crystal polymer layer. Adhesion between the layer and the wiring conductor is deteriorated so that the wiring conductor cannot be deposited and formed, and when the insulating layers are bonded to each other, the adhesion between the coating layers forming the insulating layer is deteriorated and the insulating layer is not bonded. There was a tendency that the insulating properties were liable to be peeled off.
[0013]
The present invention has been devised in view of the problems of the prior art, and its purpose is a multilayer wiring having high-density wiring and excellent in solder heat resistance, insulation, high-frequency transmission characteristics, and temperature cycle characteristics. To provide a substrate.
[0014]
[Means for Solving the Problems]
The multilayer wiring board of the present invention is A surface of the liquid crystal polymer layer, a pair of coating layers made of an organic material disposed above and below the liquid crystal polymer layer, and a surface of at least one of the pair of coating layers are configured to form a flat surface. A multilayer wiring board formed by laminating a plurality of insulating layers having a wiring conductor made of an embedded metal foil, The wiring conductors positioned above and below the insulating layer are electrically connected via a through conductor formed in the insulating layer. The coating layer is From polyphenylene ether organic materials and organic materials with lower elastic modulus Consisting of The liquid crystal polymer layer has a thermal expansion coefficient in the layer direction of −20 to 20 ppm / ° C. and a tensile elastic modulus of 2 GPa or more, and the covering layer has a tensile elastic modulus in the layer direction of 0.2 to 1. 5 GPa, and the liquid crystal polymer layer does not contain a reinforcing material.
[0015]
In the multilayer wiring board of the present invention, the coating layer contains 5 to 60% by volume of an organic substance having a low elastic modulus.
[0016]
Furthermore, the multilayer wiring board of the present invention is characterized in that the organic material having a low elastic modulus contains 20 to 80% by volume of a stannous organic material.
[0017]
The multilayer wiring board of the present invention is characterized in that the total thickness of the covering layer is 10 to 70% of the thickness of the insulating layer.
[0018]
According to the multilayer wiring board of the present invention, the insulating layer is formed by forming a coating layer made of a polyphenylene ether-based organic substance and an organic substance having a lower elastic modulus on the surface of the liquid crystal polymer layer. Through holes can be drilled. As a result, a multilayer wiring board having high-density wiring can be obtained, and the frequency behavior of the dielectric constant of the liquid crystal polymer layer and that of the coating layer are almost equal, so that lamination is possible. In this case, even if a slight thickness variation occurs, it is possible to achieve excellent high frequency transmission characteristics without causing deterioration of transmission characteristics in the high frequency region. The liquid crystal polymer layer has a thermal expansion coefficient in the layer direction of −20 to 20 ppm / ° C. and a tensile elastic modulus of 2 GPa or more, and the covering layer has a tensile elastic modulus in the layer direction of 0.2 to Since it was assumed to be 1.5 GPa, when the coating layer made of polyphenylene ether organic material having a relatively large thermal expansion coefficient thermally expands and contracts due to temperature change, the elastic modulus of this coating layer is 0.2 to 1.5 GPa. Due to the low elasticity, the thermal expansion / shrinkage of the coating layer is constrained by the liquid crystal polymer layer having a small thermal expansion coefficient and a high elastic modulus, and the thermal expansion / thermal shrinkage of the coating layer can be reduced. . As a result, cracks do not occur in the coating layer even in a temperature cycle test with a rapid temperature change. In addition, since it is not necessary to fill the coating layer with the inorganic insulating powder at a high density, the adhesion between the coating layers can be improved, and the insulating properties may be reduced by peeling between the insulating layers. Absent.
[0019]
Further, according to the multilayer wiring board of the present invention, in the above configuration, the coating layer contains 5 to 60% by volume of an organic material having a lower elastic modulus than the polyphenylene ether-based organic material. It can be in the range of ~ 1.5 GPa.
[0020]
Furthermore, according to the multilayer wiring board of the present invention, in the above configuration, since the organic material having a low elastic modulus contains 20 to 80% by volume of a styrene organic material, the styrene organic material has a low dielectric constant and a low dielectric loss tangent. As a result, a multilayer wiring board having excellent transmission characteristics even at a high frequency of 100 MHz or higher can be obtained.
[0021]
Further, according to the multilayer wiring board of the present invention, in the above configuration, the total thickness of the coating layer is 10 to 70% of the thickness of the insulating layer, so that the adhesion with the wiring conductor is good and the heat resistance is high. A multilayer wiring board having low hygroscopicity and high dimensional stability can be obtained.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Next, the multilayer wiring board of the present invention will be described in detail with reference to the accompanying drawings.
[0023]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a hybrid integrated circuit in which a semiconductor element is mounted on the multilayer wiring board of the present invention, and FIG. 2 is a main part of the multilayer wiring board shown in FIG. It is an expanded sectional view. In these drawings, reference numeral 1 denotes an insulating layer, 2 denotes a wiring conductor, and 3 denotes a through conductor. The multilayer wiring board 4 of the present invention is mainly constituted by these. In this example, a multilayer wiring board 4 in which four insulating layers 1 are laminated is shown.
[0024]
The insulating layer 1 is composed of a liquid crystal polymer layer 5 and a coating layer 6 made of a polyphenylene ether organic material deposited on the surface thereof and an organic material having a lower elastic modulus than that of the liquid crystal polymer layer 5. It has a function as a support body of the electronic component 7 and the wiring conductor 2 which are made.
[0025]
Here, the liquid crystal polymer refers to a polymer having a property of being in a liquid crystal state or optically birefringent when melted, generally a lyotropic liquid crystal polymer exhibiting liquid crystallinity in a solution state, or a thermotropic liquid crystal polymer exhibiting liquid crystallinity when melted, Alternatively, all liquid crystal polymers of type 1, type 2, and type 3 classified by the heat distortion temperature are included. The polyphenylene ether-based organic material means a polyphenylene ether resin, a resin in which various functional groups are bonded to polyphenylene ether, or a derivative / polymer thereof.
[0026]
In the multilayer wiring board 4 of the present invention, the liquid crystal polymer layer 5 has a thermal expansion coefficient in the layer direction of −20 to 20 ppm / ° C. and is tensioned from the viewpoint of temperature cycle reliability, solder heat resistance, and workability. It is preferable that the elastic modulus is 2 GPa or more and the melting point is 200 to 400 ° C. If the thermal expansion coefficient of the liquid crystal polymer layer 5 is less than −20 ppm / ° C., the difference in thermal expansion coefficient between the liquid crystal polymer layer 5 and the coating layer 6 tends to increase, and the coating layer 6 tends to crack. If it exceeds 20 ppm / ° C., the difference in thermal expansion coefficient between the insulating layer 1 and the wiring conductor 2 tends to increase, and cracks tend to occur in the coating layer 6 near the wiring conductor 2. Further, if the tensile elastic modulus is less than 2 GPa, the bending strength of the insulating layer 1 tends to be small and the multilayer wiring board 4 tends to be warped. Therefore, the liquid crystal polymer layer 5 preferably has a thermal expansion coefficient in the layer direction of −20 to 20 ppm / ° C. and a tensile elastic modulus of 2 GPa or more, and particularly has a connection reliability when the electronic component 7 is mounted. From the viewpoint, it is preferable that the coefficient of thermal expansion is −10 to 10 ppm / ° C. and the melting point is 250 to 350 ° C.
[0027]
The liquid crystal polymer layer 5 is a light stabilizer such as an antioxidant for improving thermal stability and an ultraviolet absorber for improving light resistance, and flame retardancy within a range that does not impair the physical properties of the layer. Halogen or phosphoric acid flame retardants for improving quality, antimony compounds, flame retardant aids such as zinc borate, barium metaborate and zirconium oxide, higher fatty acids and higher fatty acids for improving lubricity Lubricants such as esters, higher fatty acid metal salts, fluorocarbon surfactants, aluminum oxide, silicon oxide, titanium oxide, barium oxide, strontium oxide, for adjusting the thermal expansion coefficient and / or improving mechanical strength Zirconium oxide, calcium oxide, zeolite, silicon nitride, aluminum nitride, silicon carbide, potassium titanate, barium titanate, titanic acid A filler, such as strontium-calcium titanate, aluminum borate, barium stannate, barium zirconate, strontium zirconate may contain.
[0028]
In addition, the particle shape of the filler or the like includes a substantially spherical shape, a needle shape, a flake shape, and the like, and a substantially spherical shape is preferable from the viewpoint of filling properties. Further, the particle diameter is usually about 0.1 to 15 μm and smaller than the thickness of the liquid crystal polymer layer 5.
[0029]
Further, the liquid crystal polymer layer 5 is formed by using a method such as buff polishing, blast polishing, brush polishing, plasma treatment, corona treatment, ultraviolet ray treatment, chemical treatment, etc. in order to improve the adhesion with the coating layer 6. Roughening is preferably performed so that the line surface roughness Ra has a value of 0.05 to 5 μm. The center line surface roughness Ra is preferably 0.05 μm or more from the viewpoint of preventing peeling between the liquid crystal polymer layer 5 and the coating layer 6 at the time of solder reflow, and when the coating layer 6 is formed on the surface. From the viewpoint of preventing air entrapment, it is preferably 5 μm or less.
[0030]
Next, the coating layer 6 has a function of an adhesive when the wiring conductor 2 is deposited on the insulating layer 1 and also serves as an adhesive when laminating the insulating layers 1. Such a coating layer 6 is made of a polyphenylene ether organic material and an organic material having a lower elastic modulus than that, and preferably has a tensile elastic modulus in the layer direction of 0.2 to 1.5 GPa. This is also important.
[0031]
According to the multilayer wiring board 4 of the present invention, the insulating layer 1 is formed by forming a coating layer 6 made of a polyphenylene ether organic material and an organic material having a lower elastic modulus than that on the surface of the liquid crystal polymer layer 5. Therefore, it is possible to make fine through holes, and as a result, the multilayer wiring board 4 having high-density wiring can be obtained, and the frequency behavior of the dielectric constant of the liquid crystal polymer layer 5 and the covering layer 6 can be obtained. Therefore, even if slight thickness variations occur during lamination, the transmission characteristics in the high-frequency region are not degraded, and the high-frequency transmission characteristics are excellent.
[0032]
The polyphenylene ether-based organic substance is contained in the coating layer 6 in an amount of 20 to 80% by volume, and a polyphenylene ether resin, a derivative thereof, or a polymer alloy thereof is used. In particular, from the viewpoint of thermal cycle reliability and positional accuracy during lamination, it is preferable to contain a thermosetting polyphenylene ether such as allyl-modified polyphenylene ether. Further, if the content of the polyphenylene ether organic material is less than 20% by volume, the kneadability tends to be reduced. If it exceeds 80% by volume, the coating layer 6 is coated when the coating layer 6 is formed on the surface of the liquid crystal polymer layer 5. The thickness variation of the layer 6 tends to increase. Therefore, the content of the polyphenylene ether organic material is preferably in the range of 20 to 80% by volume.
[0033]
Further, according to the multilayer wiring board 4 of the present invention, since the tensile elastic modulus in the layer direction of the covering layer 6 is 0.2 to 1.5 GPa, the covering layer 6 containing a polyphenylene ether organic material having a relatively large thermal expansion coefficient is provided. When the thermal expansion / shrinkage is caused by temperature change, the coating layer 6 has a low elastic modulus of 0.2 to 1.5 GPa, so that the thermal expansion / thermal shrinkage of the coating layer 6 is high with a small thermal expansion coefficient. Restrained by the liquid crystal polymer layer 5 having an elastic modulus, the thermal expansion / shrinkage of the coating layer 6 can be reduced. As a result, cracks do not occur in the coating layer 6 even in a temperature cycle test with a rapid temperature change. Further, since it is not necessary to fill the coating layer 6 with the inorganic insulating powder at a high density, the adhesion between the coating layers 6 can be improved, and the insulating properties are reduced by peeling between the insulating layers 1. There is no end to it.
[0034]
If the tensile elastic modulus of the covering layer 6 is less than 0.2 GPa, the rigidity of the multilayer wiring board 4 is reduced, and the wiring conductor layer 2 tends to be disconnected due to warpage of the multilayer wiring board 4. Further, if it exceeds 1.5 GPa, it tends to be difficult for the liquid crystal polymer layer 5 to restrain the coating layer 6 at a high temperature. As a result, the liquid crystal polymer layer 5 is stretched to increase the thermal expansion of the multilayer wiring board 4. As a result, the connection with the electronic component 7 tends to be disconnected. Therefore, it is preferable that the coating layer 6 has a tensile modulus of 0.2 to 1.5 GPa, preferably 0.7 to 1.2 GPa.
[0035]
Moreover, the coating layer 6 contains 5 to 60% by volume of an organic material having a lower elastic modulus than the polyphenylene ether-based organic material, and this is important.
[0036]
According to the multilayer wiring board 4 of the present invention, the coating layer 6 contains 5 to 60% by volume of an organic material having a lower elastic modulus than the polyphenylene ether-based organic material. It can be in the range of 1.5 GPa. If the content of the organic material having a lower elastic modulus than the polyphenylene ether-based organic material is less than 5% by volume, the effect of lowering the tensile elastic modulus of the coating layer 6 tends not to appear, and exceeds 60% by volume. As a result, the tensile elastic modulus of the covering layer 6 becomes too low and the multilayer wiring board 4 becomes soft and warps, and as a result, the wiring conductor layer 2 tends to break. Therefore, the content of the organic material having a lower elastic modulus than the polyphenylene ether-based organic material of the coating layer 6 is preferably 5 to 60% by volume, and most preferably 20 to 40% by volume.
[0037]
As such an organic substance having a lower elastic modulus than the polyphenylene ether organic substance, a resin or rubber-like elastic body having an elastic modulus of 1 GPa or less is used. For example, natural rubber, polybutadiene, polyisoprene, polyisobutylene, neoprene, polysulfide rubber・ Thiocol rubber ・ Acrylic rubber ・ Urethane rubber ・ Silicone rubber ・ Ebichlorohydrin rubber ・ Styrene-butadiene block copolymer (SBR) ・ Hydrogenated styrene-butadiene block copolymer (SEB / SEBC) ・ Styrene-butadiene-styrene block co Polymer (SBS), Hydrogenated styrene-butadiene-styrene block copolymer (SEBS), Styrene-isoprene block copolymer (SIR), Hydrogenated styrene-isoprene block copolymer (SEP), Styrene-iso Rene-styrene block copolymer (SIS), hydrogenated styrene-isoprene-styrene block copolymer (SEPS), ethylene propylene rubber (EPR), ethylene propylene diene rubber (EPDM), butadiene-acrylonitrile-styrene-core shell rubber ( ABS), methyl methacrylate-butadiene-styrene-core shell rubber (MBS), methyl methacrylate-butyl acrylate-styrene-core shell rubber (MAS), octyl acrylate-butadiene-styrene-core shell rubber (MABS), alkyl acrylate-butadiene-acrylonitrile- Styrene core-shell rubber (ABS), butadiene-styrene-core shell rubber (SBR) and methyl methacrylate-butyl acrylate siloxane Siloxane-containing core shell rubber particles like elastomer of the core-shell type, such that a dimethyl or rubber obtained by modifying them is used.
[0038]
These organic materials having a low elastic modulus may be modified with a modifying agent having a polar group such as maleic anhydride or epoxy. Furthermore, these organic substances having a low elastic modulus may be used alone or in combination of two or more.
[0039]
Moreover, in the multilayer wiring board 4 of this invention, it is preferable that the organic substance with a low elastic modulus contains 20-80 volume% styrene-type organic substance. According to the multilayer wiring board 4 of the present invention, since the styrenic organic substance has a low dielectric constant and a low dielectric loss tangent, the multilayer wiring board 4 having excellent transmission characteristics can be obtained even at a high frequency of 100 MHz or higher.
[0040]
Such low-modulus organic substances containing styrenic organic substances are organic substances having styrene as a monomer unit in the molecular structure, and in particular, SBR, SEB, SEBC, SBS, SEBS, SIR, SEP, SIS and SEPS. Alternatively, organic materials having a low elastic modulus obtained by modifying them are used.
[0041]
If the content of the styrene-based organic material is less than 20% by volume, the low-modulus organic material has a large dielectric constant and dielectric loss tangent, which tends to deteriorate the transmission characteristics in the high frequency region of 100 MHz or higher. If it exceeds 80% by volume, the elastic modulus of the organic material having a low elastic modulus is increased, so that it is difficult to make the tensile elastic modulus of the coating layer 6 within a desired range. Therefore, the content of the styrenic organic material is preferably 20 to 80% by volume.
[0042]
The coating layer 6 is a polyfunctional compound having two or more functional groups capable of polymerization reaction from the viewpoint of improving the adhesion to the liquid crystal polymer layer 5 and the adhesion to the wiring conductor 2 and the through conductor 3. It is preferable to contain an additive such as a monomer or a polyfunctional polymer. For example, it is preferable to contain triallyl cyanurate, triallyl isocyanurate, a polymer thereof or the like.
[0043]
Furthermore, when laminating and pressurizing the insulating layer 1, from the viewpoint of suppressing the fluidity of the coating layer 6 and preventing the displacement of the through conductor 3 and the thickness variation of the coating layer 6 described later, the coating layer 6. Preferably contains 10% by volume or more of an inorganic insulating powder as a filler. Further, from the viewpoint of preventing peeling at the time of solder reflow at the bonding interface with the liquid crystal polymer layer 5 and the bonding interface with the wiring conductor 2, the content of the filler is preferably 70% by volume or less. Therefore, it is preferable that the coating layer 6 contains 10 to 70% by volume of a filler.
[0044]
The thickness of the insulating layer 1 is preferably 10 to 200 μm from the viewpoint of ensuring the insulation reliability, and the total thickness of the covering layer 6 is said to improve the adhesion to the wiring conductor 2. From the viewpoint, it is preferable to set the thickness of the insulating layer 1 to 10% or more. Furthermore, from the viewpoint of ensuring high heat resistance, low hygroscopicity, and high dimensional stability, it is preferably 70% or less. Therefore, the total thickness of the covering layer 6 is preferably 10 to 70% of the thickness of the insulating layer 1.
[0045]
Such an insulating layer 1 is made of, for example, an inorganic insulating powder such as silicon oxide having a particle size of about 0.1 to 15 μm, a thermosetting polyphenylene ether resin and an organic substance, a solvent, a plasticizer, a dispersant, etc. having a lower elastic modulus. After the paste obtained by adding the coating layer 6 is formed on the upper and lower surfaces of the liquid crystal polymer layer 5 by using a conventionally known sheet molding method such as a doctor blade method, the liquid crystal polymer layer 5 is immersed in the paste. The coating layer 6 is formed on the surface of the liquid crystal polymer layer 5 by pulling it up vertically, and then heated and dried at a temperature of 60 to 100 ° C. for 5 minutes to 3 hours.
[0046]
Next, a wiring conductor 2 is formed on the insulating layer 1 on at least one of the upper and lower surfaces. The wiring conductor 2 has a thickness of 2 to 30 μm and is made of a highly conductive metal foil such as copper or gold. The electronic component 7 mounted on the multilayer wiring board 4 is electrically connected to an external electric circuit (not shown). Has a function to connect.
[0047]
Such a wiring conductor 2 has at least the surface of the wiring conductor 2 and the coating layer 6 from the viewpoint of preventing voids from being generated around the wiring conductor 2 when a plurality of insulating layers 1 are stacked. It is preferably embedded so that the surface thereof is flat. Further, when the wiring conductor 2 is embedded in the coating layer 6, if the porosity of the coating layer 6 in the dry state is 3 to 40% by volume, the resin swell of the coating layer 6 around the wiring conductor 2 does not occur. In addition to being able to flatten, it is possible to easily discharge the air sandwiched between the wiring conductor 2 and the covering layer 6 and prevent entrainment of bubbles. If the porosity in the dry state exceeds 40% by volume, pores remain in the coating layer 6 after pressurizing and heat-curing the laminated insulating layer 1, and the pores adsorb moisture in the air. Therefore, it is preferable that the porosity of the coating layer 6 in the dry state is in the range of 3 to 40% by volume.
[0048]
The porosity of the coating layer 6 in the dry state can be determined by appropriately adjusting the drying conditions such as the drying temperature and the heating rate when the coating layer 6 is applied on the surface of the liquid crystal polymer layer 5 and dried. The porosity can be set to a desired value.
[0049]
Moreover, it is preferable to make the thickness of the coating layer 6 located between the wiring conductor 2 and the liquid crystal polymer layer 5 into a thickness of 3 to 35 μm. The thickness of the coating layer 6 located between the wiring conductor 2 and the liquid crystal polymer layer 5 is set to 3 to 35 μm, and the wiring conductor 2 and the liquid crystal polymer layer 5 having a low dielectric loss tangent are brought close to each other, whereby the dielectric around the wiring conductor 2 is The tangent can be lowered, and as a result, the transmission characteristics in the high frequency region, particularly in the frequency region of 100 MHz or higher can be further improved. If the thickness of the coating layer 6 is less than 3 μm, the stress generated by the thermal expansion / contraction of the wiring conductor 2 cannot be effectively reduced by the coating layer 6, and cracks are generated from the corners of the wiring conductor 2. When the thickness exceeds 35 μm, the effect of lowering the dielectric loss tangent around the wiring conductor 2 tends to be reduced. Therefore, it is preferable to set the thickness of the coating layer 6 located between the wiring conductor 2 and the liquid crystal polymer layer 5 in the range of 3 to 35 μm.
[0050]
Furthermore, the cross-sectional shape in the width direction of the wiring conductor 2 disposed in the insulating layer 1 is a trapezoid whose base side on the insulating layer 1 side is shorter than the opposing base side, and The angle formed between the bottom side and the side side is preferably 95 to 150 °. The cross-sectional shape in the width direction of the wiring conductor 2 disposed in the insulating layer 1 is a trapezoid in which the length of the base on the insulating layer 1 side is shorter than the length of the opposing base, and the base on the insulating layer 1 side By setting the angle formed with the side to 95 to 150 °, the wiring conductor 2 can be easily embedded in the covering layer 6 when the wiring conductor 2 is embedded in the covering layer 6. From the viewpoint of embedding without entrapment of bubbles, it is preferable that the angle formed between the bottom and the side on the insulating layer 1 side is 95 ° or more, and from the viewpoint of miniaturizing the wiring conductor 2. It is preferable to set it to ° or less.
[0051]
In addition, the thickness x (μm) of the covering layer 6 positioned between the short base of the wiring conductor 2 and the liquid crystal polymer layer 5 between the insulating layers 1 determines the distance between the upper and lower liquid crystal polymer layers 5. When T (μm) and the thickness of the wiring conductor 2 are t (μm), 3 μm ≦ 0.5 T−t ≦ x ≦ 0.5 T ≦ 35 μm (however, 8 μm ≦ T ≦ 70 μm, 1 μm ≦ t ≦ 32 μm). It is preferable.
[0052]
When the distance between the liquid crystal polymer layers 6 is T (μm) and the thickness of the wiring conductor 2 is t (μm), the thickness x of the coating layer 6 between the short bottom of the wiring conductor 2 and the liquid crystal polymer layer 5 By setting (μm) to 3 μm ≦ 0.5 T−t ≦ x ≦ 0.5 T ≦ 35 μm, the distance between the short base of the wiring conductor 2 and the liquid crystal polymer layer 5 and the long base of the wiring conductor 2 are The difference in the distance between the adjacent liquid crystal polymer layers 5 can be reduced to less than t (μm), the dielectric loss tangent variation around the wiring conductor 2 can be reduced, and as a result, deterioration of transmission characteristics can be prevented. . Therefore, the thickness x (μm) of the covering layer 6 located between the trapezoidal upper bottom surface of the wiring conductor 2 and the liquid crystal polymer layer 5, the distance between the liquid crystal polymer layers 6 is T (μm), and the wiring conductor When the thickness of 2 is t (μm), the range of 3 μm ≦ 0.5 T−t ≦ x ≦ 0.5 T ≦ 35 μm is preferable.
[0053]
Such a wiring conductor 2 is formed by depositing a metal foil made of copper, for example, by a transfer method or the like on a precursor sheet to be the insulating layer 1 by pattern formation by a subtractive method using a known photoresist. It is formed. First, a metal foil transfer film in which a metal foil made of copper is bonded to a support film with an adhesive is prepared, and then the metal foil on the film is subtractive using a known photoresist. Is used to etch into a pattern. At this time, the side surface on the surface side of the pattern is easily etched because it takes a longer time to contact the etching solution than the side surface on the film side, and the cross-sectional shape in the width direction of the pattern can be trapezoidal. The trapezoidal shape can be a trapezoid whose angle between the short base and the side is 95 to 150 ° by adjusting the concentration of the etching solution and the etching time. And this metal foil transfer film is laminated | stacked on the precursor sheet | seat used as the insulating layer 1, and it becomes a support body after hot-pressing for 10 minutes to 1 hour on the conditions whose temperature is 100-200 degreeC and a pressure is 0.5-10 MPa. By peeling off the film and transferring the metal foil to the surface of the precursor sheet to be the insulating layer 1, the wiring conductor 2 in which the trapezoidal short base is embedded in the covering layer 6 can be formed.
[0054]
The thickness x (μm) of the coating layer 6 between the liquid crystal polymer layer 5 facing the short base of the wiring conductor 2 is in the range of 3 to 35 μm by adjusting the hot press pressure during metal foil transfer. It can be. Further, in order to improve the adhesion to the coating layer 6, the surface of the wiring conductor 2 is preferably roughened by a process such as buffing, blasting, brushing, or chemical treatment.
[0055]
A through conductor 3 having a diameter of about 20 to 150 μm is formed in the insulating layer 1. The through conductor 3 has a function of electrically connecting the wiring conductors 2 positioned above and below the insulating layer 1. After forming a through hole by drilling the insulating layer 1 with a laser, It is formed by embedding a conductive paste made of copper, silver, gold, solder or the like in the through hole by a conventionally known screen printing method.
[0056]
According to the multilayer wiring board 4 of the present invention, the insulating layer 1 has the coating layer 6 made of a polyphenylene ether organic material and an organic material having a lower elastic modulus than the liquid crystal polymer layer 5 on the upper and lower surfaces. The polymer layer 5 has high heat resistance, high elastic modulus, high dimensional stability, and low hygroscopicity, and it is possible to configure the insulating layer 1 without using a reinforcing material such as a glass cloth. The drilling process is facilitated and fine and uniform through holes can be formed.
[0057]
In such a multilayer wiring board 4, the through conductor 3 is formed at a desired position of the precursor sheet to be the insulating layer 1 manufactured by the method as described above, and then the patterned metal foil of copper, for example, is heated. It is transferred by hot pressing for 10 minutes to 1 hour at 100 to 200 ° C. under a pressure of 0.5 to 10 MPa, and these are laminated and finally 30 minutes under a temperature of 150 to 300 ° C. and a pressure of 0.5 to 10 MPa. Manufactured by hot pressing for 24 hours to complete curing.
[0058]
Thus, according to the multilayer wiring board 4 of the present invention, the insulating layer 1 is formed by forming the coating layer 6 made of a polyphenylene ether-based organic material and an organic material having a lower elastic modulus on the surface of the liquid crystal polymer layer 5, The liquid crystal polymer layer 5 has a thermal expansion coefficient in the layer direction of −20 to 20 ppm / ° C., a tensile elastic modulus of 2 GPa or more, and the covering layer 6 has a tensile elastic modulus in the layer direction of 0.2 to 1.5 GPa. Therefore, the multilayer wiring board 4 having high-density wiring and excellent in solder heat resistance, insulation, high-frequency transmission characteristics, and temperature cycle characteristics can be obtained.
[0059]
The multilayer wiring board 4 of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. For example, in the above-described embodiment, four layers are possible. The multilayer wiring board 4 is manufactured by laminating the insulating layers 1, but the multilayer wiring board 4 may be fabricated by laminating two, three, or five or more insulating layers 1. In addition, a build-up layer or a solder resist layer made of an insulating layer mainly composed of one, two, or three or more organic resins may be formed on the upper and lower surfaces of the multilayer wiring board 4 of the present invention.
[0060]
【The invention's effect】
According to the multilayer wiring board of the present invention, the insulating layer is formed by forming a coating layer made of a polyphenylene ether-based organic substance and an organic substance having a lower elastic modulus on the surface of the liquid crystal polymer layer. Through holes can be drilled. As a result, a multilayer wiring board having high-density wiring can be obtained, and the frequency behavior of the dielectric constant of the liquid crystal polymer layer and that of the coating layer are almost equal, so that lamination is possible. In this case, even if a slight thickness variation occurs, it is possible to achieve excellent high frequency transmission characteristics without causing deterioration of transmission characteristics in the high frequency region. The liquid crystal polymer layer has a thermal expansion coefficient in the layer direction of −20 to 20 ppm / ° C. and a tensile elastic modulus of 2 GPa or more, and the covering layer has a tensile elastic modulus in the layer direction of 0.2 to Since it was assumed to be 1.5 GPa, when the coating layer made of polyphenylene ether organic material having a relatively large thermal expansion coefficient thermally expands and contracts due to temperature change, the elastic modulus of this coating layer is 0.2 to 1.5 GPa. Due to the low elasticity, the thermal expansion / shrinkage of the coating layer is constrained by the liquid crystal polymer layer having a small thermal expansion coefficient and a high elastic modulus, and the thermal expansion / thermal shrinkage of the coating layer can be reduced. . As a result, cracks do not occur in the coating layer even in a temperature cycle test with a rapid temperature change. In addition, since it is not necessary to fill the coating layer with the inorganic insulating powder at a high density, the adhesion between the coating layers can be improved, and the insulating properties may be reduced by peeling between the insulating layers. Absent.
[0061]
Moreover, according to the multilayer wiring board of the present invention, since the coating layer contains 5-60% by volume of organic material having a lower elastic modulus than the polyphenylene ether-based organic material, the elastic modulus of the coating layer is easily 0.2-1.5 GPa. Can range.
[0062]
Furthermore, according to the multilayer wiring board of the present invention, since the organic material having a low elastic modulus contains 20 to 80% by volume of a styrene organic material, the styrene organic material has a low dielectric constant and a low dielectric loss tangent. A multilayer wiring board having excellent transmission characteristics even at a high frequency of 100 MHz or higher can be obtained.
[0063]
In addition, according to the multilayer wiring board of the present invention, the total thickness of the coating layer is 10 to 70% of the thickness of the insulating layer, so that the adhesiveness with the wiring conductor is good, and high heat resistance, low moisture absorption, A multilayer wiring board having high dimensional stability can be obtained.
[Brief description of the drawings]
FIG. 1 is an example of an embodiment of a hybrid integrated circuit in which a semiconductor element is mounted on a multilayer wiring board of the present invention.
FIG. 2 is an enlarged cross-sectional view of a main part of the multilayer wiring board of the present invention.
[Explanation of symbols]
1. Insulating layer
2 .... Wiring conductor
3 .... Penetration conductor
4 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Multilayer Wiring Board
5 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Liquid crystal polymer layer
6 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Coating layer

Claims (5)

液晶ポリマー層と、該液晶ポリマー層の上下に配置された有機材料から成る一対の被覆層と、該一対の被覆層の少なくとも一方の被覆層の表面に、該表面と平坦面を構成するように埋設された金属箔から成る配線導体と、を有する複数の絶縁層を積層することにより形成された多層配線基板であって、
前記絶縁層を挟んで上下に位置する前記配線導体間を前記絶縁層に形成された貫通導体を介して電気的に接続し
前記被覆層は、ポリフェニレンエーテル系有機物およびこれよりも低弾性率の有機物から成り、
前記液晶ポリマー層は、層方向における熱膨張係数が−20〜20ppm/℃であるとともに、引張り弾性率が2GPa以上であり、
前記被覆層は、層方向の引張り弾性率が0.2〜1.5GPaであり、
前記液晶ポリマー層は、強化材を含まないことを特徴とする多層配線基板。
A surface of the liquid crystal polymer layer, a pair of coating layers made of an organic material disposed above and below the liquid crystal polymer layer, and a surface of at least one of the pair of coating layers are configured to form a flat surface. A multilayer wiring board formed by laminating a plurality of insulating layers having a wiring conductor made of embedded metal foil,
Electrically connected via a through conductor between the wiring conductors formed on the insulating layer located above and below across the insulating layer,
The coating layer is made of a polyphenylene ether-based organic material and an organic material having a lower elastic modulus than this ,
The liquid crystal polymer layer has a thermal expansion coefficient in the layer direction of -20 to 20 ppm / ° C and a tensile modulus of 2 GPa or more,
The coating layer has a tensile modulus in the layer direction of 0.2 to 1.5 GPa,
The liquid crystal polymer layer does not contain a reinforcing material, and is a multilayer wiring board.
前記貫通導体は、隣接する前記絶縁層それぞれに形成されるとともに上下方向に互いに重なる第1貫通導体及び第2貫通導体を有し、
前記配線導体は、前記第1貫通導体と前記第2貫通導体との間に介され、幅方向への長さが第1及び第2貫通導体よりも大きく、隣接する前記被覆層の上下面に当接する第1配線導体を有することを特徴とする請求項1記載の多層配線基板。
The penetrating conductor has a first penetrating conductor and a second penetrating conductor that are formed in each of the adjacent insulating layers and overlap each other in the vertical direction,
The wiring conductor is interposed between the first penetrating conductor and the second penetrating conductor, and the length in the width direction is larger than that of the first and second penetrating conductors. The multilayer wiring board according to claim 1, further comprising a first wiring conductor in contact with the first wiring conductor .
前記被覆層は、前記低弾性率の有機物を5〜60体積%含有することを特徴とする請求項1記載の多層配線基板。  The multilayer wiring board according to claim 1, wherein the coating layer contains 5 to 60% by volume of the organic material having a low elastic modulus. 前記低弾性率の有機物は、20〜80体積%のスチレン系有機物を含有することを特徴とする請求項1記載の多層配線基板。2. The multilayer wiring board according to claim 1, wherein the organic material having a low elastic modulus contains 20 to 80% by volume of a styrenic organic material. 請求項1に記載の多層配線基板と、
前記多層配線基板に搭載された半導体素子と、
を備えたことを特徴とする混成集積回路。
A multilayer wiring board according to claim 1;
A semiconductor element mounted on the multilayer wiring board;
A hybrid integrated circuit comprising:
JP2001161689A 2001-02-28 2001-05-30 Multilayer wiring board Expired - Fee Related JP4508472B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001161689A JP4508472B2 (en) 2001-05-30 2001-05-30 Multilayer wiring board
US10/091,114 US6663946B2 (en) 2001-02-28 2002-02-28 Multi-layer wiring substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001161689A JP4508472B2 (en) 2001-05-30 2001-05-30 Multilayer wiring board

Publications (2)

Publication Number Publication Date
JP2002353634A JP2002353634A (en) 2002-12-06
JP4508472B2 true JP4508472B2 (en) 2010-07-21

Family

ID=19004928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001161689A Expired - Fee Related JP4508472B2 (en) 2001-02-28 2001-05-30 Multilayer wiring board

Country Status (1)

Country Link
JP (1) JP4508472B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697614A (en) * 1992-09-10 1994-04-08 Mitsubishi Shindoh Co Ltd Multilayer board
JPH09174786A (en) * 1995-12-22 1997-07-08 Japan Gore Tex Inc Oriented material of liquid crystal polymer film having adhesive surface or metallic surface
JPH1034742A (en) * 1996-07-19 1998-02-10 Japan Gore Tex Inc Liquid crystal polymer film and its laminate
JPH10178241A (en) * 1996-12-17 1998-06-30 Multi:Kk Printed wiring board and method for manufacturing the same
JPH11140298A (en) * 1997-11-12 1999-05-25 Mitsubishi Eng Plast Corp Highly vibration-damping molded form for oa equipment part
JP2000094586A (en) * 1998-09-17 2000-04-04 Asahi Chem Ind Co Ltd Heat-resistant film laminate and its manufacture
JP2000277926A (en) * 1999-03-19 2000-10-06 Kanegafuchi Chem Ind Co Ltd Calculation method for dimension change rate of multilayer bonding sheet, its calculation system, multilayer bonding sheet and flexible both-side metal- plated laminated board thereby, and manufacture thereof
JP2001053198A (en) * 1999-08-12 2001-02-23 Shinko Electric Ind Co Ltd Method for manufacturing multilayer wiring board

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697614A (en) * 1992-09-10 1994-04-08 Mitsubishi Shindoh Co Ltd Multilayer board
JPH09174786A (en) * 1995-12-22 1997-07-08 Japan Gore Tex Inc Oriented material of liquid crystal polymer film having adhesive surface or metallic surface
JPH1034742A (en) * 1996-07-19 1998-02-10 Japan Gore Tex Inc Liquid crystal polymer film and its laminate
JPH10178241A (en) * 1996-12-17 1998-06-30 Multi:Kk Printed wiring board and method for manufacturing the same
JPH11140298A (en) * 1997-11-12 1999-05-25 Mitsubishi Eng Plast Corp Highly vibration-damping molded form for oa equipment part
JP2000094586A (en) * 1998-09-17 2000-04-04 Asahi Chem Ind Co Ltd Heat-resistant film laminate and its manufacture
JP2000277926A (en) * 1999-03-19 2000-10-06 Kanegafuchi Chem Ind Co Ltd Calculation method for dimension change rate of multilayer bonding sheet, its calculation system, multilayer bonding sheet and flexible both-side metal- plated laminated board thereby, and manufacture thereof
JP2001053198A (en) * 1999-08-12 2001-02-23 Shinko Electric Ind Co Ltd Method for manufacturing multilayer wiring board

Also Published As

Publication number Publication date
JP2002353634A (en) 2002-12-06

Similar Documents

Publication Publication Date Title
JP2005072328A (en) Multilayer wiring board
JP4903320B2 (en) Manufacturing method of wiring board with electronic element
JP4508472B2 (en) Multilayer wiring board
JP4462872B2 (en) Wiring board and manufacturing method thereof
JP2006191145A (en) Multilayer wiring board
JP4959066B2 (en) Insulating film and multilayer wiring board using the same
JP2002261453A (en) Multilayer interconnection board
JP4508498B2 (en) Multilayer wiring board
JP3872360B2 (en) Multilayer wiring board
JP3878832B2 (en) Multilayer wiring board
JP3694673B2 (en) Insulating film and multilayer wiring board using the same
JP4025695B2 (en) Insulating layer with protective film and method for producing wiring board
JP2003069237A (en) Insulation film and multilayer interconnection board using the same
JP2003347454A (en) Multilayer wiring board
JP2006191146A (en) Method of manufacturing multilayer wiring board
JP2005050877A (en) Wiring board
JP2003046259A (en) Multilayer interconnection board
JP2004179011A (en) Insulating film and multilayer wiring board using this
JP2003039602A (en) Insulating film and multilayered wiring board
JP2003158379A (en) Multi-layer wiring board
JP2002290055A (en) Multilayer wiring board
JP2003062942A (en) Insulating film and multilayered wiring board using the same
JP2002324978A (en) Multilayer wiring board
JP2003101242A (en) Multilayer wiring board
JP2004082554A (en) Insulating film and multilayer printed circuit board using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees