JP4903320B2 - Manufacturing method of wiring board with electronic element - Google Patents

Manufacturing method of wiring board with electronic element Download PDF

Info

Publication number
JP4903320B2
JP4903320B2 JP2001228420A JP2001228420A JP4903320B2 JP 4903320 B2 JP4903320 B2 JP 4903320B2 JP 2001228420 A JP2001228420 A JP 2001228420A JP 2001228420 A JP2001228420 A JP 2001228420A JP 4903320 B2 JP4903320 B2 JP 4903320B2
Authority
JP
Japan
Prior art keywords
insulating layer
electronic element
wiring board
conductor
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001228420A
Other languages
Japanese (ja)
Other versions
JP2003046215A (en
Inventor
拓司 世利
桂 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001228420A priority Critical patent/JP4903320B2/en
Publication of JP2003046215A publication Critical patent/JP2003046215A/en
Application granted granted Critical
Publication of JP4903320B2 publication Critical patent/JP4903320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that, when the size of a wiring board with electronic element is reduced and the packaging density of the board is increased, the thermal shock resistance and connection reliability of the board have not been improved. SOLUTION: The wiring board 5 with electronic element is provided with an insulating layer 1a, wiring conductors 2 arranged on the layer 1a, and through conductors 3b electrically connected to the conductors 2 and the electrodes 4a of an electronic element 4. The board 5 is also provided with the electronic element 4 the electrodes 4a of which are electrically connected to the through conductors 3b. The electrodes 4a of the element 4 are formed in projecting states and, at the same time, the front end sections of the electrodes 4a are embedded in the conductors 3b. Since the electrodes 4a of the element 4 are firmly connected to the conductors 3b by anchoring effects, no by peeling disconnection caused occurs between the element 4 and wiring conductors 2 even when the wiring board 5 is subjected to thermal shock tests and reflow soldering. Consequently, the thermal shock resistance and connection reliability of the wiring board 5 are improved.

Description

【0001】
【発明の属する技術分野】
本発明は、各種AV機器や家電機器・通信機器・コンピュータやその周辺機器等の電子機器に使用される配線基板に関し、特に配線基板の一部に電子素子を搭載して成る電子素子付配線基板に関する。
【0002】
【従来の技術】
従来、電子素子付配線基板はアルミナ等のセラミックス材料から成る絶縁層あるいはガラスエポキシ樹脂等の有機樹脂材料から成る絶縁層の内部および表面に複数の配線導体を形成し、この表面に半導体素子やコンデンサ・抵抗素子等の電子素子を搭載取着するとともにこれらの電極を各配線導体に接続することによって形成されている。
【0003】
しかしながら、近年、電子機器は、移動体通信機器に代表されるように小型・薄型・軽量化が要求されてきており、このような電子機器に搭載される電子素子付配線基板も小型・高密度化が要求されるようになってきている。このため、電子素子付配線基板に搭載する電子素子も小型のものが採用され、できるだけ実装面積を小さくすることが必要になってきている。
【0004】
また、最近では電子素子付配線基板の表面に実装される電子素子の数を減らして電子素子付配線基板を小型化する目的で、配線基板内部に電子素子を実装することも提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、近年、ますます小型・高密度化が要求されるようになり、電子素子付配線基板の配線導体が微細化するとともに、電子素子付配線基板表面あるいは内部に実装される電子素子も小型化し、電子素子と配線導体との接続部の面積が小さくなり、高温と低温のサイクル試験である熱衝撃試験を行なった場合、電子素子の電極と絶縁層との熱膨張係数の差により両者に大きな応力が発生して、電子素子と配線導体間で剥離して断線してしまうという問題点を有していた。
【0006】
また、電子素子を配線基板上に搭載する際の、高温リフロー工程において、絶縁層の熱膨張と電子素子の熱膨張の差によって、電子素子の位置ずれが発生してしまい、その結果、電子素子の電極と配線導体の接続が正常にできないという問題点も有していた。
【0007】
本発明はかかる従来技術の問題点に鑑み案出されたものであり、その目的は、耐熱衝撃性・接続信頼性に優れた小型で軽量な電子素子付配線基板を提供することにある。
【0010】
【課題を解決するための手段】
本発明の電子素子を内蔵した電子素子付き配線基板の製造方法は、第1、第2および第3絶縁層を準備する工程と、前記第2絶縁層に貫通孔を形成し、該貫通孔に導電性ペーストを充填した後、前記第2絶縁層の一主面側に位置する前記導電性ペーストの露出部分に、該導電性ペーストの前記露出部分と接続されるように配線導体を前記第2絶縁層の一主面に転写する工程と、前記第3絶縁層に貫通穴に形成する工程と、前記第2絶縁層の前記一主面が前記第1絶縁層に、前記第2絶縁層の他主面が前記第3絶縁層に、それぞれ当接するように前記第1ないし第3絶縁層を順次積層するとともに、突起状の電極を有する電子素子を前記第3絶縁層の前記貫通穴に収容しつつ前記第2絶縁層の他主面上に搭載し、前記電極の先端部を前記絶縁層の前記他主面側より前記導電性ペーストに埋め込む工程と、前記導電性ペーストを硬化させる工程とを具備することを特徴とするものである。
【0014】
【発明の実施の形態】
次に本発明の電子素子付配線基板を添付の図面に基づいて詳細に説明する。
【0015】
図1は、本発明の電子素子付配線基板の参考例を示す断面図であり、また、図2は、本発明の電子素子付配線基板において電子素子を配線基板内部に搭載した場合の参考例を示す断面図である。これらの図において、1aは絶縁層、1は複数の絶縁層1aから成る絶縁基板、2は配線導体、3aは貫通孔、3bは貫通導体、4はコンデンサ等の電子素子で、主にこれらで本発明の電子素子付配線基板5が構成されている。なお、図1には2層の絶縁層1aを積層して、図2には5層の絶縁層1aを積層して電子素子付配線基板5を製作した例を示している。また、図2の参考例では、絶縁層1aの一部(本例では二層)には電子素子4を収納する貫通穴6が設けられており、この貫通穴6に電子素子4が埋設されている。さらに、絶縁層1a表面には配線導体2が配設され、貫通導体3bを介して電子素子4の電極4aと電気的に接続している。また、本発明の電子素子付配線基板5では電子素子4の電極4aは突起状であり、貫通導体3bに埋め込まれている。
【0016】
絶縁層1aは、配線導体2や電子素子4の支持体としての機能を有し、アルミナやガラスセラミックス等のセラミック材料、あるいはエポキシ樹脂やビスマレイミドトリアジン樹脂・熱硬化性ポリフェニレンエーテル樹脂・液晶ポリマー樹脂等の有機樹脂材料から成り、特に、軽量化・微細化・高周波特性・加工性の観点からは熱硬化性ポリフェニレンエーテル樹脂や液晶ポリマー樹脂等の有機樹脂材料から成ることが好ましい。
【0017】
なお、絶縁層1aが有機樹脂材料から成る場合は、機械的強度を向上させるためのシラン系やチタネート系等のカップリング剤、熱安定性を改善するための酸化防止剤や耐光性を改善するための紫外線吸収剤等の光安定剤、難燃性を改善するためのハロゲン系もしくはリン酸系の難燃性剤、アンチモン系化合物やホウ酸亜鉛・メタホウ酸バリウム・酸化ジルコニウム等の難燃助剤、潤滑性を改善するための高級脂肪酸や高級脂肪酸エステル・高級脂肪酸金属塩・フルオロカーボン系界面活性剤等の滑剤、熱膨張係数を調整するためおよび/または機械的強度を向上させるための酸化アルミニウム・酸化珪素・酸化チタン・酸化バリウム・酸化ストロンチウム・酸化ジルコニウム・酸化カルシウム・ゼオライト・窒化珪素・窒化アルミニウム・炭化珪素・チタン酸カリウム・チタン酸バリウム・チタン酸ストロンチウム・チタン酸カルシウム・ホウ酸アルミニウム・スズ酸バリウム・ジルコン酸バリウム・ジルコン酸ストロンチウム等の充填材、あるいは、繊維状ガラスを布状に織り込んだガラスクロス等を含有させてもよい。
【0018】
このような絶縁層1aは、例えば粒径が0.1〜15μm程度の酸化アルミニウム・窒化珪素・窒化アルミニウム・炭化珪素・酸化チタン・酸化バリウム・酸化ストロンチウム・酸化ジルコニウム・酸化カルシウム等の無機絶縁粉末に、エポキシ樹脂・フェノール樹脂・ポリイミド樹脂・ビスマレイミド樹脂・熱硬化性ポリフェニレンエーテル樹脂等の熱硬化性樹脂または液晶ポリエステル・ポリフェニレンエーテル樹脂等の熱可塑性樹脂と溶剤・可塑剤・分散剤等を添加して得たペーストを従来周知のドクタブレード法等のシート成型法を採用してシート状となすことによって、あるいは、上記のペースト中に繊維状ガラスを布状に織り込んだガラスクロスガラスを浸漬し垂直に引き上げ乾燥することによって絶縁層1aと成る前駆体シートを形成し、しかる後、所望の大きさに切断することによって得られる。
【0019】
なお、搭載される電子素子4が図2に断面図で示すように絶縁基板1の内部に形成される場合は、一部の絶縁層1aに電子素子4を収容するための貫通穴6が穿設されている。このような貫通穴6は、従来周知のレーザ加工法による穿設加工やパンチング法による打ち抜き加工を施すことにより絶縁層1aに、電子素子4の大きさ・形状に合わせて形成される。
【0020】
また、絶縁層1aには、上下面の少なくとも1つの面に配線導体2が被着形成されている。配線導体2は、その厚みが2〜30μm程度で銅・金等の良導電性の金属箔や銅や銀・タングステン・モリブデン等の導電性ペーストから成り、電子素子付配線基板5に搭載される電子素子4を外部電気回路(図示せず)に電気的に接続する機能を有する。
【0021】
このような配線導体2は、絶縁層1aとなる前駆体シートに、公知のフォトレジストを用いたサブトラクティブ法によりパターン形成した、例えば銅から成る金属箔を転写法等により被着形成することによって、あるいは銅や銀・タングステン・モリブデン等の金属粉末を熱硬化性樹脂または熱可塑性樹脂および溶剤・可塑剤・分散剤等を添加して得た導電性ペーストを従来周知のスクリーン印刷法を用いて印刷することによって形成される。
【0022】
さらに、絶縁層1aには、直径が20〜150μm程度の貫通導体3bが形成されている。貫通導体3bは、絶縁層1aを挟んで上下に位置する配線導体2同士および配線導体2と電子素子4の電極4aとを電気的に接続する機能を有する。このような貫通導体3aは、絶縁層1aにレーザにより穿設加工を施すことにより貫通孔3aを形成した後、この貫通孔3aに銅・銀・金・半田等から成る導電性ペーストを従来周知のスクリーン印刷法により埋め込むことによって形成される。
【0023】
そしてこの貫通導体3bの一部には、搭載される電子素子4の各電極4aが電気的に接続されおり、本発明の電子素子付配線基板5においては、電子素子4の電極4aが突起状であるとともに、その先端部が貫通導体3bに埋め込まれている。また、このことが重要である。
【0024】
本発明の電子素子付配線基板5によれば、電子素子4の電極4aを突起状とするとともに、その先端部が貫通導体3bに埋め込まれていることから、電子素子4の電極4aが貫通導体3bにアンカー効果により強固に接続され、高温と低温のサイクル試験である熱衝撃試験を行なった場合でも、電子素子4と配線導体2間で剥離して断線してしまうことがない。また、電子素子4を実装する際の高温リフローの際に、電子素子4と絶縁層1aの熱膨張に差が生じたとしても、突起状の電極4aが貫通導体3bにアンカー効果により強固に接続されるため電子素子4の位置ずれを抑制することができ、その結果、電子素子4の電極4aと配線導体2の接続が良好な接続信頼性に優れた電子素子付配線基板5とすることができる。
【0025】
このような電子素子4の突起状の電極4aは、電子素子4の表面に銅や銀・タングステン・モリブデン等の導電性ペーストを従来周知のスクリーン印刷法を採用して繰り返し印刷することにより形成される。
【0026】
なお、電子素子4の電極4aの突起形状は、絶縁層1aに平行な方向の断面が円形や楕円形あるいは多角形でもよいが、接続部の応力を緩和するという観点からは、円形や楕円形であることが好ましい。また、絶縁層1aに平行な方向の電極4aの断面積は、突起状の電極4aを貫通導体3bに埋め込む際に空気のかみ込みを防止するという観点からは、電子素子4との接続部よりも先端部の方が小さくなっていることが好ましい。さらに、電極4aの高さTは、絶縁層1aの厚さをtとした時に0.1t〜0.5tの範囲が好ましく、電極4aの高さTが0.1t未満であると十分なアンカー効果が得られず、その結果、熱衝撃試験で接続部が断線してしまう傾向があり、0.5tを超えると電子素子付配線基板5を最終的に加圧・加熱して多層化する際、導電性ペーストが貫通孔3aから大きくはみだしてしまい、絶縁層1a同士の密着不良を発生させてしまう危険性がある。従って、電極4aの高さTは、絶縁層1の厚さtに対して0.1t〜0.5tであることが好ましい。
【0027】
また、突起状の電極4aの絶縁層1aに平行な方向の断面の径は、貫通穴6の直径よりやや小さく、求められる位置精度により決めればよい。さらに、電子素子4と貫通導体3bの接続は、電子素子4の突起状の電極4aを未硬化の貫通導体3b中に差し込こみ、しかる後、加熱して貫通導体3bを硬化することによって行なわれる
このような電子素子付配線基板5は、次の方法により製作される。まず、絶縁層1aと成る前駆体シートの所望の位置にレーザ穿設加工等により貫通孔3aを形成し、この貫通孔3aに銅等から成る導電性ペーストを、例えばスクリーン印刷法を用いて充填し貫通導体3bを形成した後、パターン形成した、例えば銅の金属箔を、温度が100〜200℃、圧力が0.5〜10MPaの条件で10分〜1時間ホットプレスして絶縁層1aに転写して配線導体2と貫通導体3bとを電気的に接続し、配線導体2および貫通導体3bが形成された第1の絶縁層1aを得る。なお、この時、貫通導体3bは完全に硬化していない未硬化状態としておくことが好ましい。次に、上記の絶縁層1aとは別に、絶縁層1aと成る前駆体シートの所望の位置にレーザ穿設加工等により貫通孔3aを形成し、この貫通孔3aに銅等から成る導電性ペーストを、例えばスクリーン印刷法を用いて充填して貫通導体3bを形成した後、電子素子4をその突起状の電極4aが貫通導体3bに埋入されるように搭載し、電子素子4を有する第2の絶縁層1aを得る。そして、第1および第2の絶縁層1aを、第1の絶縁層1aの配線導体2と第2のの絶縁層1aの貫通導体3bとが重なるように積層し、しかる後、温度が150〜300℃、圧力が0.5〜10MPaの条件で30分〜24時間ホットプレスして前駆体シートおよび導電性ペーストを完全硬化させることによって製作される。
【0028】
なお、電子素子4を配線基板内部に形成する場合は、第2の絶縁層1aの上面に、電子素子4と対応する領域に電子素子4よりも若干大きめの貫通穴6を形成した第1の絶縁層1aを積層し、しかる後、上記と同様の条件でホットプレスすればよい。また、電子素子4を搭載した第2の絶縁層1に配線導体2を形成しておいてもよい。この場合、貫通導体3bを完全に硬化していない未硬化状態にしておくことにより、電子素子4の突起状の電極4aを貫通導体3bに容易に埋入することができる。
【0029】
かくして本発明の電子素子付配線基板5によれば、電子素子4の電極4aを突起状とするとともに、その先端部が貫通導体3bに埋め込まれていることから、電子素子4の電極4aが貫通導体3bにアンカー効果により強固に接続され、高温と低温のサイクル試験である熱衝撃試験を行なった場合においても、電子素子4と配線導体2間で剥離して断線してしまうことがない。また、電子素子4を実装する際の高温リフローの際に、電子素子4と絶縁層1aの熱膨張に差が生じたとしても、突起状電極4aが貫通導体3bに埋めこまれていることから位置ずれを抑制することができ、その結果、電子素子4の電極4aと配線導体2の接続が良好な接続信頼性に優れた電子素子付配線基板5とすることができる。
【0030】
次に、本発明の電子素子付配線基板の製造方法を図3に基づいて詳細に説明する。図3は、図2の電子素子付配線基板を製作するための工程毎の断面図である。
【0031】
まず、図3(a)に断面図で示すように、絶縁層11aと成る未硬化の前駆体シートを準備し、この前駆体シートにレーザ加工により所望の個所に直径が20〜150μm程度の貫通孔13aを穿設する。
【0032】
このような絶縁層11aと成る未硬化の前駆体シートは、アルミナやガラスセラミックス等のセラミック材料、あるいはエポキシ樹脂やビスマレイミドトリアジン樹脂・熱硬化性ポリフェニレンエーテル樹脂・液晶ポリマー樹脂等の有機樹脂材料から成り、絶縁層11aが有機樹脂材料から成る場合は、機械的強度を向上させるためのシラン系やチタネート系等のカップリング剤、熱安定性を改善するための酸化防止剤や耐光性を改善するための紫外線吸収剤等の光安定剤、難燃性を改善するためのハロゲン系もしくはリン酸系の難燃性剤、アンチモン系化合物やホウ酸亜鉛・メタホウ酸バリウム・酸化ジルコニウム等の難燃助剤、潤滑性を改善するための高級脂肪酸や高級脂肪酸エステル・高級脂肪酸金属塩・フルオロカーボン系界面活性剤等の滑剤、熱膨張係数を調整するためおよび/または機械的強度を向上させるための酸化アルミニウム・酸化珪素・酸化チタン・酸化バリウム・酸化ストロンチウム・酸化ジルコニウム・酸化カルシウム・ゼオライト・窒化珪素・窒化アルミニウム・炭化珪素・チタン酸カリウム・チタン酸バリウム・チタン酸ストロンチウム・チタン酸カルシウム・ホウ酸アルミニウム・スズ酸バリウム・ジルコン酸バリウム・ジルコン酸ストロンチウム等の充填材、あるいは、繊維状ガラスを布状に織り込んだガラスクロス等を含有させてもよい。
【0033】
このような前駆体シートは、例えば、絶縁材料として熱硬化性樹脂と無機絶縁粉末との複合材料を用いる場合、以下の方法によって製作される。まず、前述した無機絶縁粉末に熱硬化性樹脂を無機絶縁粉末量が20〜80体積%となるように溶媒とともに加えてた混合物を得、この混合物を混練機(ニーダ)や3本ロール等の手段によって混合してペーストを製作する。そして、このペーストを圧延法や押し出し法・射出法・ドクターブレード法などのシート成形法を採用してシート状に成形した後、熱硬化性樹脂が完全硬化しない温度に加熱して乾燥することにより絶縁層11aとなる前駆体シートが製作する。なお、ペーストは、好適には、熱硬化性樹脂と無機絶縁粉末の複合材料に、トルエン、酢酸ブチル、メチルエチルケトン、メタノール、メチルセロソルブアセテート、イソプロピルアルコール、メチルイソブチルケトン、ジメチルホルムアミド等の溶媒を添加してなる所定の粘度を有する流動体であり、その粘度は、シート成形法にもよるが100〜3000ポイズが好ましい。
【0034】
次に、図3(b)に断面図で示すように、貫通孔13a内に銅・銀・金・半田等から成る導電性ペーストを従来周知のスクリーン印刷法等を採用して充填し、貫通導体13bを形成する。
【0035】
次に、図3(c)に断面図で示すように、前駆体シートの表面と裏面とに被着する配線導体12を準備する。そして、図3(d)に断面図で示すように、配線導体12を前駆体シートの表面および裏面に、必要な配線導体12と貫通導体13aとが電気的に接続するように重ね合わせて転写する。
【0036】
なお、本実施例では、配線導体12の形成を転写法によって行っており、このような配線導体12は、次に述べる方法により形成される。まず、離型シート等の支持体20の表面にメッキ法などによって製作され、銅・金・銀・アルミニウム等から選ばれる1種または2種以上の合金からなる厚さ1〜35μmの電解金属箔を接着し、その表面に所望の配線パターンの鏡像パターンとなるようにレジスト層を形成した後、エッチング、レジスト除去によって所定の配線パターンの鏡像の配線導体12が形成される。次に、配線導体12の前駆体シートの表面および裏面への被着は、配線導体12が形成された支持体20を前駆体シートの表面および裏面へ重ね合わせ、しかる後、圧力が0.5〜10MPa、温度が60〜150℃の条件で加圧加熱した後、支持体20を剥がすことにより、図3(e)に断面図に示すように配線導体12が前駆体シートに被着される。なお、この時、貫通導体13bは、完全に硬化していない未硬化状態としておくことが重要である。
【0037】
また、支持体20としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリイミド、ポリフェニレンサルファイド、塩化ビニル、ポリプロピレン等公知のものが使用できる。支持体の厚みは10〜100μmが適当であり、望ましくは25〜50μmが良い。支持体の厚みが10μm未満であると支持体の変形や折れ曲がりにより形成した配線導体12が断線し易くなり、厚みが100μmを超えると支持体の柔軟性がなくなって、前駆体シートからの支持体20の剥離が困難となる傾向がある。また、支持体20表面に電解金属箔を形成するために、アクリル系やゴム系・シリコン系・エポキシ系等公知の接着剤を使用してもよい。
【0038】
そして、図3(f)に断面図で示すように、上記(a)〜(f)の工程を経て製作した複数の前駆体シートと、突起状の電極14aを有する電子素子14とを準備し、次に、電極14aの先端部を導電性ペーストから成る貫通導体13bに埋めこむとともに前駆体シートを積層し、温度が150〜300℃、圧力が0.5〜10MPaの条件で30分〜24時間ホットプレスして前駆体シートおよび導電性ペーストを完全硬化させることによって、図3(g)に断面図で示す本発明の電子素子付配線基板15が完成する。
【0039】
なお、図3では、電子素子14を配線基板の内部に形成した例を示しているが、電子素子14を収容する貫通穴16は、前駆体シートを積層する前に、前駆体シートの電子素子14が収容される個所にレーザ法やパンチング法により穿設しておけばよい。
【0040】
以上説明したように、本発明の電子素子付配線基板15の製造方法によれば、電子素子14の突起状の電極14aを貫通導体13bを形成する導電性ペーストに埋め込む際に、導電性ペーストが未硬化状態であるために容易に埋め込むことができるとともに導電性ペーストを硬化させることによって電子素子14の電極14aを導電性ペーストから成る貫通導体13bに強固に固着することができ、その結果、熱衝撃試験を行なった場合においても、電子素子14と配線導体12間で剥離して断線してしまうことのない電子素子付配線基板15を容易に製作できる。
【0041】
なお、電子素子14の突起状の電極14aは、電子素子14の表面に銅や銀・タングステン・モリブデン等の導電性ペーストを従来周知のスクリーン印刷法を採用して繰り返し印刷することにより形成される。さらに、電子素子14の電極14aの突起形状は、絶縁層11aに平行な方向の断面が円形や楕円形あるいは多角形でもよいが、接続部の応力を緩和するという観点からは、円形や楕円形であることが好ましい。また、絶縁層11aに平行な方向の電極14aの断面積は、突起状の電極14aを貫通導体13bに埋め込む際に空気のかみ込みを防止するという観点からは、電子素子14との接続部よりも先端部の方が小さくなっていることが好ましい。さらに、電極14aの高さTは、絶縁層11aの厚さをtとした時に0.1t〜0.5tの範囲が好ましく、電極14aの高さTが0.1t未満であると十分なアンカー効果が得られず、その結果、熱衝撃試験で接続部が断線してしまう傾向があり、0.5tを超えると電子素子付配線基板15を最終的に加圧・加熱して多層化する際、導電性ペーストが貫通孔13aから大きくはみだしてしまい、絶縁層11a同士の密着不良を発生させてしまう危険性がある。従って、電極14aの高さTは、絶縁層11aの厚さtに対して0.1t〜0.5tであることが好ましい。また、突起状の電極14aの絶縁層11aに平行な方向の断面の径は、貫通穴16の直径よりやや小さく、求められる位置精度により決めればよい。
【0042】
かくして本発明の電子素子付配線基板の製造方法によれば、電子素子の電極と配線導体の接続が良好な接続信頼性に優れた電子素子付配線基板を提供することができる。
【0043】
なお、上述の例では電子素子付配線基板に搭載される電子素子が1個の場合の例を示したが、複数の電子素子を配線基板の表面や内部に形成することは何ら問題ない。
【0046】
【発明の効果】
本発明の電子素子を内蔵した電子素子付き配線基板の製造方法は、第1、第2および第3絶縁層を準備する工程と、前記第2絶縁層に貫通孔を形成し、該貫通孔に導電性ペーストを充填した後、前記第2絶縁層の一主面側に位置する前記導電性ペーストの露出部分に、該導電性ペーストの前記露出部分と接続されるように配線導体を前記第2絶縁層の一主面に転写する工程と、前記第3絶縁層に貫通穴に形成する工程と、前記第2絶縁層の前記一主面が前記第1絶縁層に、前記第2絶縁層の他主面が前記第3絶縁層に、それぞれ当接するように前記第1ないし第3絶縁層を順次積層するとともに、突起状の電極を有する電子素子を前記第3絶縁層の前記貫通穴に収容しつつ前記第2絶縁層の他主面上に搭載し、前記電極の先端部を前記絶縁層の前記他主面側より前記導電性ペーストに埋め込む工程と、前記導電性ペーストを硬化させる工程とを具備することから、電子素子の突起状の電極を貫通導体に埋め込む際に、貫通導体を形成する導電性ペーストが未硬化状態であるために容易に埋め込むことができるとともに導電性ペーストを硬化させることによって電子素子の電極を貫通導体に強固に固着することができ、その結果、熱衝撃試験を行なった場合においても、電子素子と配線導体間で剥離して断線してしまうことのない電子素子付配線基板を容易に製作することができる。
【図面の簡単な説明】
【図1】 本発明の電子素子付配線基板の参考例を示す断面図である。
【図2】 本発明の電子素子付配線基板の参考例を示す断面図である。
【図3】 (a)〜(g)は、本発明の電子素子付配線基板の製造方法を説明するための
工程毎の断面図である。
【符号の説明】
1a・・・・・・・・・・・絶縁層
1、11a ・・・・・・・・・絶縁基板
2、12・・・・・・・・・・配線導体
3a、13a・・・・・・・・貫通孔
3b、13b・・・・・・・・貫通導体
4、14・・・・・・・・・・電子素子
4a、14a・・・・・・・・突起状の電極
5、15・・・・・・・・・・電子素子付配線基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wiring board used for various AV equipment, home appliances, communication equipment, computers and electronic equipment such as peripheral equipment thereof, and more particularly to a wiring board with electronic elements in which an electronic element is mounted on a part of the wiring board. About.
[0002]
[Prior art]
Conventionally, a wiring board with electronic elements has a plurality of wiring conductors formed inside and on the surface of an insulating layer made of a ceramic material such as alumina or an organic resin material such as glass epoxy resin, and a semiconductor element or capacitor is formed on the surface. It is formed by mounting and attaching an electronic element such as a resistance element and connecting these electrodes to each wiring conductor.
[0003]
However, in recent years, electronic devices have been required to be small, thin, and lightweight as represented by mobile communication devices, and wiring boards with electronic elements mounted on such electronic devices are also small and high density. There is a need to make it easier. For this reason, a small electronic element to be mounted on the wiring board with an electronic element is adopted, and it is necessary to reduce the mounting area as much as possible.
[0004]
Recently, in order to reduce the number of electronic elements mounted on the surface of the wiring board with electronic elements and reduce the size of the wiring board with electronic elements, it has also been proposed to mount electronic elements inside the wiring board.
[0005]
[Problems to be solved by the invention]
However, in recent years, more and more miniaturization and higher density have been demanded, and the wiring conductor of the wiring board with electronic elements has been miniaturized, and the electronic elements mounted on or inside the wiring board with electronic elements have also been downsized. When the thermal shock test, which is a high-temperature and low-temperature cycle test, is performed when the area of the connection portion between the electronic element and the wiring conductor is reduced, both of them are large due to the difference in thermal expansion coefficient between the electrode of the electronic element and the insulating layer There has been a problem that stress is generated and the electronic element and the wiring conductor are separated and disconnected.
[0006]
Further, in the high-temperature reflow process when mounting the electronic element on the wiring board, the position of the electronic element is shifted due to the difference between the thermal expansion of the insulating layer and the thermal expansion of the electronic element. There was also a problem that the connection between the electrode and the wiring conductor could not be performed normally.
[0007]
The present invention has been devised in view of the problems of the prior art, and an object of the present invention is to provide a small and lightweight wiring board with electronic elements that is excellent in thermal shock resistance and connection reliability.
[0010]
[Means for Solving the Problems]
According to the present invention, there is provided a method of manufacturing a wiring board with an electronic element incorporating an electronic element, the steps of preparing first, second and third insulating layers, and forming a through hole in the second insulating layer, after filling the conductive paste, the exposed portion of the conductive paste positioned on one principal surface of the second insulating layer, wherein the wiring conductor to be connected to the exposed portion of the conductive paste second A step of transferring to one main surface of the insulating layer, a step of forming a through hole in the third insulating layer, the one main surface of the second insulating layer being formed on the first insulating layer, and a step of forming the second insulating layer on the second insulating layer. The first to third insulating layers are sequentially stacked so that the other main surface is in contact with the third insulating layer, and an electronic element having a protruding electrode is accommodated in the through hole of the third insulating layer. and while mounted on the other main surface of the second insulating layer, the insulating layer distal end portion of the electrode Burying from the other main surface to the conductive paste, it is characterized in that it comprises a step of curing the conductive paste.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, the wiring board with electronic elements of the present invention will be described in detail with reference to the accompanying drawings.
[0015]
FIG. 1 is a cross-sectional view showing a reference example of the wiring board with electronic elements of the present invention. FIG. 2 shows a reference example when the electronic elements are mounted inside the wiring board in the wiring board with electronic elements of the present invention. FIG. In these figures, 1a is an insulating layer, 1 is an insulating substrate composed of a plurality of insulating layers 1a, 2 is a wiring conductor, 3a is a through hole, 3b is a through conductor, 4 is an electronic element such as a capacitor, The wiring board 5 with an electronic element of the present invention is configured. FIG. 1 shows an example in which two layers of insulating layers 1a are stacked, and FIG. 2 shows a case where the wiring substrate 5 with electronic elements is manufactured by stacking five layers of insulating layers 1a. In addition, in the reference example of FIG. 2, a through hole 6 that houses the electronic element 4 is provided in a part of the insulating layer 1 a (two layers in this example), and the electronic element 4 is embedded in the through hole 6. ing. Further, a wiring conductor 2 is disposed on the surface of the insulating layer 1a, and is electrically connected to the electrode 4a of the electronic element 4 through the through conductor 3b. Moreover, in the wiring board 5 with an electronic element of the present invention, the electrode 4a of the electronic element 4 has a protruding shape and is embedded in the through conductor 3b.
[0016]
The insulating layer 1a functions as a support for the wiring conductor 2 and the electronic element 4, and is made of a ceramic material such as alumina or glass ceramic, or an epoxy resin, a bismaleimide triazine resin, a thermosetting polyphenylene ether resin, or a liquid crystal polymer resin. In particular, from the viewpoints of weight reduction, miniaturization, high-frequency characteristics, and processability, it is preferably made of an organic resin material such as a thermosetting polyphenylene ether resin or a liquid crystal polymer resin.
[0017]
When the insulating layer 1a is made of an organic resin material, a coupling agent such as silane or titanate for improving mechanical strength, an antioxidant for improving thermal stability, or light resistance is improved. Light stabilizers such as ultraviolet absorbers, halogen or phosphoric acid flame retardants to improve flame retardancy, flame retardant aids such as antimony compounds, zinc borate, barium metaborate, zirconium oxide Agents, higher fatty acids to improve lubricity, lubricants such as higher fatty acid esters, higher fatty acid metal salts, fluorocarbon surfactants, aluminum oxide for adjusting thermal expansion coefficient and / or improving mechanical strength・ Silicon oxide, titanium oxide, barium oxide, strontium oxide, zirconium oxide, calcium oxide, zeolite, silicon nitride, aluminum nitride, Weaving fillers such as silicon hydride, potassium titanate, barium titanate, strontium titanate, calcium titanate, aluminum borate, barium stannate, barium zirconate, strontium zirconate, or fibrous glass Glass cloth or the like may be included.
[0018]
Such an insulating layer 1a is, for example, an inorganic insulating powder such as aluminum oxide, silicon nitride, aluminum nitride, silicon carbide, titanium oxide, barium oxide, strontium oxide, zirconium oxide, calcium oxide having a particle size of about 0.1 to 15 μm, Add thermosetting resin such as epoxy resin, phenol resin, polyimide resin, bismaleimide resin, thermosetting polyphenylene ether resin, or thermoplastic resin such as liquid crystal polyester, polyphenylene ether resin and solvent, plasticizer, dispersant, etc. The obtained paste is made into a sheet by adopting a sheet molding method such as a conventionally known doctor blade method, or a glass cloth glass in which a fibrous glass is woven into a cloth is immersed in the above paste so as to be vertical. Forming a precursor sheet to become the insulating layer 1a by pulling and drying After that, it is obtained by cutting into a desired size.
[0019]
When the electronic element 4 to be mounted is formed inside the insulating substrate 1 as shown in a sectional view in FIG. 2, a through hole 6 for accommodating the electronic element 4 is formed in a part of the insulating layer 1a. It is installed. Such a through-hole 6 is formed in the insulating layer 1a in accordance with the size and shape of the electronic element 4 by performing drilling processing by a conventionally known laser processing method or punching processing by a punching method.
[0020]
In addition, the wiring conductor 2 is deposited on at least one of the upper and lower surfaces of the insulating layer 1a. The wiring conductor 2 has a thickness of about 2 to 30 μm and is made of a highly conductive metal foil such as copper or gold, or a conductive paste such as copper, silver, tungsten, or molybdenum, and is mounted on the wiring board 5 with an electronic element. It has a function of electrically connecting the electronic element 4 to an external electric circuit (not shown).
[0021]
Such a wiring conductor 2 is formed by depositing a metal foil made of copper, for example, formed by patterning by a subtractive method using a known photoresist on a precursor sheet to be an insulating layer 1a by a transfer method or the like. Alternatively, a conductive paste obtained by adding a metal powder such as copper, silver, tungsten, or molybdenum to a thermosetting resin or thermoplastic resin and a solvent, a plasticizer, a dispersant, or the like using a conventionally known screen printing method. It is formed by printing.
[0022]
Furthermore, a through conductor 3b having a diameter of about 20 to 150 μm is formed in the insulating layer 1a. The through conductor 3b has a function of electrically connecting the wiring conductors 2 positioned above and below the insulating layer 1a and the wiring conductor 2 and the electrode 4a of the electronic element 4. In such a through conductor 3a, a through hole 3a is formed by drilling the insulating layer 1a with a laser, and a conductive paste made of copper, silver, gold, solder, or the like is conventionally known in the through hole 3a. It is formed by embedding by the screen printing method.
[0023]
Each electrode 4a of the electronic element 4 to be mounted is electrically connected to a part of the through conductor 3b. In the wiring board 5 with an electronic element of the present invention, the electrode 4a of the electronic element 4 has a protruding shape. In addition, the tip is embedded in the through conductor 3b. This is also important.
[0024]
According to the wiring board 5 with an electronic element of the present invention, the electrode 4a of the electronic element 4 is formed in a protruding shape, and its tip is embedded in the through conductor 3b. Even when a thermal shock test, which is a high-temperature and low-temperature cycle test, is firmly connected to 3b by the anchor effect, the electronic element 4 and the wiring conductor 2 are not separated and disconnected. Further, even when a difference in thermal expansion occurs between the electronic element 4 and the insulating layer 1a during high-temperature reflow when the electronic element 4 is mounted, the protruding electrode 4a is firmly connected to the through conductor 3b by the anchor effect. Therefore, the positional shift of the electronic element 4 can be suppressed, and as a result, the wiring board 5 with an electronic element having excellent connection reliability with good connection between the electrode 4a of the electronic element 4 and the wiring conductor 2 can be obtained. it can.
[0025]
The protruding electrode 4a of the electronic element 4 is formed by repeatedly printing a conductive paste such as copper, silver, tungsten, or molybdenum on the surface of the electronic element 4 by using a conventionally well-known screen printing method. The
[0026]
The protrusion shape of the electrode 4a of the electronic element 4 may be circular, elliptical, or polygonal in cross section in the direction parallel to the insulating layer 1a. However, from the viewpoint of relaxing the stress at the connection portion, circular or elliptical. It is preferable that In addition, the cross-sectional area of the electrode 4a in the direction parallel to the insulating layer 1a is determined from the connection with the electronic element 4 from the viewpoint of preventing air entrapment when the protruding electrode 4a is embedded in the through conductor 3b. Also, it is preferable that the tip portion is smaller. Further, the height T of the electrode 4a is preferably in the range of 0.1t to 0.5t, where t is the thickness of the insulating layer 1a. If the height T of the electrode 4a is less than 0.1t, a sufficient anchor effect is obtained. As a result, the connection part tends to be disconnected in the thermal shock test, and when it exceeds 0.5 t, the conductive paste is used when the wiring board 5 with electronic elements is finally pressed and heated to form a multilayer. May protrude significantly from the through-holes 3a, and there is a risk of causing poor adhesion between the insulating layers 1a. Therefore, the height T of the electrode 4 a is preferably 0.1 t to 0.5 t with respect to the thickness t of the insulating layer 1.
[0027]
Further, the diameter of the cross section of the protruding electrode 4a in the direction parallel to the insulating layer 1a is slightly smaller than the diameter of the through hole 6, and may be determined by the required position accuracy. Further, the connection between the electronic element 4 and the through conductor 3b is performed by inserting the protruding electrode 4a of the electronic element 4 into the uncured through conductor 3b, and then heating to cure the through conductor 3b. Such a wiring board 5 with an electronic element is manufactured by the following method. First, a through hole 3a is formed at a desired position of the precursor sheet to be the insulating layer 1a by laser drilling or the like, and the through hole 3a is filled with a conductive paste made of copper or the like using, for example, a screen printing method. After forming the through conductors 3b, a patterned metal foil of copper, for example, is hot-pressed at a temperature of 100 to 200 ° C. and a pressure of 0.5 to 10 MPa for 10 minutes to 1 hour and transferred to the insulating layer 1a. Thus, the wiring conductor 2 and the through conductor 3b are electrically connected to obtain the first insulating layer 1a in which the wiring conductor 2 and the through conductor 3b are formed. At this time, the through conductor 3b is preferably left in an uncured state that is not completely cured. Next, apart from the insulating layer 1a, a through hole 3a is formed by laser drilling or the like at a desired position of the precursor sheet to be the insulating layer 1a, and a conductive paste made of copper or the like is formed in the through hole 3a. After the through conductor 3b is formed by using, for example, a screen printing method, the electronic element 4 is mounted so that the protruding electrode 4a is embedded in the through conductor 3b. 2 insulating layers 1a are obtained. Then, the first and second insulating layers 1a are laminated so that the wiring conductor 2 of the first insulating layer 1a and the through conductor 3b of the second insulating layer 1a overlap each other. The precursor sheet and the conductive paste are completely cured by hot pressing at 300 ° C. and a pressure of 0.5 to 10 MPa for 30 minutes to 24 hours.
[0028]
When the electronic element 4 is formed inside the wiring board, a first through hole 6 slightly larger than the electronic element 4 is formed in a region corresponding to the electronic element 4 on the upper surface of the second insulating layer 1a. The insulating layer 1a is laminated and then hot-pressed under the same conditions as described above. Further, the wiring conductor 2 may be formed on the second insulating layer 1 on which the electronic element 4 is mounted. In this case, by setting the through conductor 3b to an uncured state that is not completely cured, the protruding electrode 4a of the electronic element 4 can be easily embedded in the through conductor 3b.
[0029]
Thus, according to the wiring board 5 with an electronic element of the present invention, the electrode 4a of the electronic element 4 is formed in a protruding shape, and its tip is embedded in the through conductor 3b. Even when a thermal shock test, which is a high-temperature and low-temperature cycle test, is firmly connected to the conductor 3b by an anchor effect, the electronic element 4 and the wiring conductor 2 are not separated and disconnected. Further, even when a difference in thermal expansion occurs between the electronic element 4 and the insulating layer 1a during high-temperature reflow when mounting the electronic element 4, the protruding electrode 4a is embedded in the through conductor 3b. The positional deviation can be suppressed, and as a result, the wiring board 5 with an electronic element having excellent connection reliability in which the connection between the electrode 4a of the electronic element 4 and the wiring conductor 2 can be obtained.
[0030]
Next, the manufacturing method of the wiring board with an electronic element of this invention is demonstrated in detail based on FIG. FIG. 3 is a cross-sectional view for each process for manufacturing the wiring board with electronic elements of FIG.
[0031]
First, as shown in a cross-sectional view in FIG. 3A, an uncured precursor sheet to be an insulating layer 11a is prepared, and this precursor sheet is penetrated into a desired portion by a diameter of about 20 to 150 μm by laser processing. Hole 13a is drilled.
[0032]
Such an uncured precursor sheet to be the insulating layer 11a is made of ceramic materials such as alumina and glass ceramics, or organic resin materials such as epoxy resin, bismaleimide triazine resin, thermosetting polyphenylene ether resin, and liquid crystal polymer resin. When the insulating layer 11a is made of an organic resin material, a coupling agent such as silane or titanate for improving mechanical strength, an antioxidant for improving thermal stability, or light resistance is improved. Light stabilizers such as ultraviolet absorbers, halogen or phosphoric acid flame retardants to improve flame retardancy, flame retardant aids such as antimony compounds, zinc borate, barium metaborate, zirconium oxide Lubricants, higher fatty acid esters, higher fatty acid esters, higher fatty acid metal salts, fluorocarbon surfactants, etc. to improve lubricity Aluminum oxide, silicon oxide, titanium oxide, titanium oxide, barium oxide, strontium oxide, zirconium oxide, calcium oxide, zeolite, silicon nitride, aluminum nitride, silicon carbide for adjusting the thermal expansion coefficient and / or improving the mechanical strength・ Potassium titanate ・ Barium titanate ・ Strontium titanate ・ Calcium titanate ・ Aluminum borate ・ Barium stannate ・ Barium zirconate ・ Strontium zirconate Etc. may be included.
[0033]
Such a precursor sheet is manufactured by the following method when, for example, a composite material of a thermosetting resin and an inorganic insulating powder is used as an insulating material. First, a mixture is obtained by adding a thermosetting resin to the above-mentioned inorganic insulating powder together with a solvent so that the amount of the inorganic insulating powder is 20 to 80% by volume, and this mixture is used in a kneader (kneader), three rolls, or the like. Mix by means to make a paste. Then, this paste is formed into a sheet by using a sheet forming method such as a rolling method, an extrusion method, an injection method, or a doctor blade method, and then dried by heating to a temperature at which the thermosetting resin is not completely cured. A precursor sheet to be the insulating layer 11a is manufactured. The paste is preferably prepared by adding a solvent such as toluene, butyl acetate, methyl ethyl ketone, methanol, methyl cellosolve acetate, isopropyl alcohol, methyl isobutyl ketone, dimethylformamide to a composite material of thermosetting resin and inorganic insulating powder. The fluid having a predetermined viscosity is preferably 100 to 3000 poise depending on the sheet molding method.
[0034]
Next, as shown in the cross-sectional view of FIG. 3B, the through-hole 13a is filled with a conductive paste made of copper, silver, gold, solder, or the like by using a conventionally known screen printing method or the like. A conductor 13b is formed.
[0035]
Next, as shown in a cross-sectional view in FIG. 3C, a wiring conductor 12 to be attached to the front and back surfaces of the precursor sheet is prepared. Then, as shown in a cross-sectional view in FIG. 3D, the wiring conductor 12 is superimposed and transferred onto the front and back surfaces of the precursor sheet so that the necessary wiring conductor 12 and the through conductor 13a are electrically connected. To do.
[0036]
In this embodiment, the wiring conductor 12 is formed by a transfer method. Such a wiring conductor 12 is formed by the method described below. First, an electrolytic metal foil having a thickness of 1 to 35 μm made of one or more alloys selected from copper, gold, silver, aluminum, etc., which is manufactured on the surface of the support 20 such as a release sheet by plating. And a resist layer is formed on the surface so as to be a mirror image pattern of a desired wiring pattern, and then a wiring conductor 12 having a mirror image of a predetermined wiring pattern is formed by etching and resist removal. Next, the deposition of the wiring conductor 12 on the front and back surfaces of the precursor sheet is performed by superimposing the support 20 on which the wiring conductor 12 is formed on the front and back surfaces of the precursor sheet, and then the pressure is 0.5 to 10 MPa. After pressurizing and heating at a temperature of 60 to 150 ° C., the support 20 is peeled off, so that the wiring conductor 12 is attached to the precursor sheet as shown in the sectional view of FIG. At this time, it is important that the through conductor 13b is in an uncured state that is not completely cured.
[0037]
As the support 20, known materials such as polyethylene terephthalate, polyethylene naphthalate, polyimide, polyphenylene sulfide, vinyl chloride, and polypropylene can be used. The thickness of the support is suitably 10-100 μm, preferably 25-50 μm. If the thickness of the support is less than 10 μm, the wiring conductor 12 formed by deformation or bending of the support is likely to break, and if the thickness exceeds 100 μm, the support becomes inflexible and the support from the precursor sheet Twenty peels tend to be difficult. Further, in order to form the electrolytic metal foil on the surface of the support 20, a known adhesive such as acrylic, rubber, silicon or epoxy may be used.
[0038]
Then, as shown in a sectional view in FIG. 3 (f), a plurality of precursor sheets manufactured through the steps (a) to (f) and an electronic element 14 having a protruding electrode 14a are prepared. Next, the tip of the electrode 14a is embedded in the through conductor 13b made of a conductive paste and a precursor sheet is laminated, and the temperature is 150 to 300 ° C. and the pressure is 0.5 to 10 MPa. The precursor sheet and the conductive paste are completely cured by pressing to complete the electronic element-equipped wiring board 15 of the present invention shown in a sectional view in FIG.
[0039]
Note that FIG. 3 shows an example in which the electronic element 14 is formed inside the wiring board. However, the through hole 16 that accommodates the electronic element 14 has an electronic element on the precursor sheet before the precursor sheet is laminated. It is only necessary to drill the part 14 to be accommodated by a laser method or a punching method.
[0040]
As described above, according to the method for manufacturing the wiring board 15 with an electronic element of the present invention, when the protruding electrode 14a of the electronic element 14 is embedded in the conductive paste forming the through conductor 13b, the conductive paste Since it is in an uncured state, it can be embedded easily, and by curing the conductive paste, the electrode 14a of the electronic element 14 can be firmly fixed to the through conductor 13b made of the conductive paste. Even when an impact test is performed, it is possible to easily manufacture the wiring board 15 with an electronic element that is not peeled off and disconnected between the electronic element 14 and the wiring conductor 12.
[0041]
The protruding electrode 14a of the electronic element 14 is formed by repeatedly printing a conductive paste such as copper, silver, tungsten, or molybdenum on the surface of the electronic element 14 using a conventionally known screen printing method. . Furthermore, the protrusion shape of the electrode 14a of the electronic element 14 may be circular, elliptical, or polygonal in cross section in the direction parallel to the insulating layer 11a. From the viewpoint of relieving the stress at the connection portion, circular or elliptical. It is preferable that Further, the cross-sectional area of the electrode 14a in the direction parallel to the insulating layer 11a is larger than the connection with the electronic element 14 from the viewpoint of preventing air entrapment when the protruding electrode 14a is embedded in the through conductor 13b. Also, it is preferable that the tip portion is smaller. Further, the height T of the electrode 14a is preferably in the range of 0.1t to 0.5t, where t is the thickness of the insulating layer 11a. If the height T of the electrode 14a is less than 0.1t, a sufficient anchor effect is obtained. As a result, there is a tendency that the connection part is disconnected in the thermal shock test, and when it exceeds 0.5 t, the conductive paste is used when the wiring board 15 with electronic elements is finally pressed and heated to form a multilayer. However, there is a risk that it will protrude greatly from the through-hole 13a and cause poor adhesion between the insulating layers 11a. Therefore, the height T of the electrode 14a is preferably 0.1 t to 0.5 t with respect to the thickness t of the insulating layer 11a. Further, the diameter of the cross section of the projecting electrode 14a in the direction parallel to the insulating layer 11a is slightly smaller than the diameter of the through hole 16, and may be determined according to the required position accuracy.
[0042]
Thus, according to the method for manufacturing a wiring board with an electronic element of the present invention, it is possible to provide a wiring board with an electronic element having excellent connection reliability in which the electrodes of the electronic element and the wiring conductor are well connected.
[0043]
In the above-described example, an example in which the number of electronic elements mounted on the wiring board with electronic elements is one is shown. However, there is no problem in forming a plurality of electronic elements on the surface or inside of the wiring board.
[0046]
【Effect of the invention】
According to the present invention, there is provided a method of manufacturing a wiring board with an electronic element incorporating an electronic element, the steps of preparing first, second and third insulating layers, and forming a through hole in the second insulating layer, after filling the conductive paste, the exposed portion of the conductive paste positioned on one principal surface of the second insulating layer, wherein the wiring conductor to be connected to the exposed portion of the conductive paste second A step of transferring to one main surface of the insulating layer, a step of forming a through hole in the third insulating layer, the one main surface of the second insulating layer being formed on the first insulating layer, and a step of forming the second insulating layer on the second insulating layer. The first to third insulating layers are sequentially stacked so that the other main surface is in contact with the third insulating layer, and an electronic element having a protruding electrode is accommodated in the through hole of the third insulating layer. and while mounted on the other main surface of the second insulating layer, the insulating layer distal end portion of the electrode Burying from the other main surface to the conductive paste, since it comprises a step of curing the conductive paste, when embedding the protruding electrodes of the electronic element to the through conductors, to form the through conductors Since the conductive paste is in an uncured state, it can be embedded easily and by hardening the conductive paste, the electrodes of the electronic device can be firmly fixed to the through conductor, and as a result, a thermal shock test is performed. Even in this case, it is possible to easily manufacture a wiring board with an electronic element that does not peel off and break between the electronic element and the wiring conductor.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a reference example of a wiring board with an electronic device of the present invention.
FIG. 2 is a cross-sectional view showing a reference example of a wiring board with electronic elements of the present invention.
FIGS. 3A to 3G are cross-sectional views for each process for explaining a method for manufacturing a wiring board with an electronic device according to the present invention. FIGS.
[Explanation of symbols]
1a ··············· Insulating layer 1, 11a ··········· Insulated substrate 2, 12 ······ Wiring conductors 3a, 13a .... Through-holes 3b, 13b ..... Penetration conductors 4,14 ..... Electronic elements 4a, 14a ..... Projection-like electrode 5. , 15 ... Wiring board with electronic elements

Claims (1)

第1、第2および第3絶縁層を準備する工程と、
前記第2絶縁層に貫通孔を形成し、該貫通孔に導電性ペーストを充填した後、前記第2絶縁層の一主面側に位置する前記導電性ペーストの露出部分に、該導電性ペーストの前記露出部分と接続されるように配線導体を前記第2絶縁層の一主面に転写する工程と、
前記第3絶縁層に貫通穴に形成する工程と、
前記第2絶縁層の前記一主面が前記第1絶縁層に、前記第2絶縁層の他主面が前記第3絶縁層に、それぞれ当接するように前記第1ないし第3絶縁層を順次積層するとともに、突起状の電極を有する電子素子を前記第3絶縁層の前記貫通穴に収容しつつ前記第2絶縁層の他主面上に搭載し、前記電極の先端部を前記第2絶縁層の前記他主面側より前記導電性ペーストに埋め込む工程と、
前記導電性ペーストを硬化させる工程とを具備することを特徴とする前記電子素子を内蔵した電子素子付き配線基板の製造方法。
Preparing first, second and third insulating layers;
After forming a through hole in the second insulating layer and filling the through hole with a conductive paste, the conductive paste is formed on an exposed portion of the conductive paste located on one main surface side of the second insulating layer. Transferring a wiring conductor to one main surface of the second insulating layer so as to be connected to the exposed portion of
Forming a through hole in the third insulating layer;
The first to third insulating layers are sequentially arranged so that the one main surface of the second insulating layer is in contact with the first insulating layer and the other main surface of the second insulating layer is in contact with the third insulating layer. as well as laminated, while accommodating the electronic device having a protruding electrode in the through hole of the third insulating layer mounted on the other main surface of the second insulating layer, the second insulating the tip of the electrode Embedding in the conductive paste from the other principal surface side of the layer;
And a step of curing the conductive paste. A method of manufacturing a wiring board with an electronic element incorporating the electronic element.
JP2001228420A 2001-07-27 2001-07-27 Manufacturing method of wiring board with electronic element Expired - Fee Related JP4903320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001228420A JP4903320B2 (en) 2001-07-27 2001-07-27 Manufacturing method of wiring board with electronic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001228420A JP4903320B2 (en) 2001-07-27 2001-07-27 Manufacturing method of wiring board with electronic element

Publications (2)

Publication Number Publication Date
JP2003046215A JP2003046215A (en) 2003-02-14
JP4903320B2 true JP4903320B2 (en) 2012-03-28

Family

ID=19060932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001228420A Expired - Fee Related JP4903320B2 (en) 2001-07-27 2001-07-27 Manufacturing method of wiring board with electronic element

Country Status (1)

Country Link
JP (1) JP4903320B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4346333B2 (en) * 2003-03-26 2009-10-21 新光電気工業株式会社 Method for manufacturing multilayer circuit board incorporating semiconductor element
JP4493563B2 (en) * 2003-04-16 2010-06-30 Okiセミコンダクタ株式会社 Mounting structure of semiconductor device
JP4432517B2 (en) * 2004-02-06 2010-03-17 株式会社村田製作所 Composite multilayer board
US7750247B2 (en) 2004-10-29 2010-07-06 Murata Manufacturing Co., Ltd. Multilayer substrate with built-in-chip-type electronic component and method for manufacturing the same
KR100688768B1 (en) 2004-12-30 2007-03-02 삼성전기주식회사 Embedded chip print circuit board and method for fabricating the same
JP4765330B2 (en) * 2005-02-02 2011-09-07 株式会社村田製作所 MULTILAYER WIRING BOARD HAVING MULTILAYER ELECTRONIC COMPONENT AND METHOD FOR PRODUCING MULTILAYER WIRING BOARD
KR102450576B1 (en) * 2016-01-22 2022-10-07 삼성전자주식회사 Electronic component package and manufactruing method of the same
WO2019240179A1 (en) 2018-06-14 2019-12-19 株式会社フジクラ Component-incorporating substrate
JP7375295B2 (en) * 2018-07-20 2023-11-08 株式会社レゾナック Electronic components and electronic component manufacturing methods

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226421A (en) * 1994-02-09 1995-08-22 Toshiba Corp Ic chip mounting circuit device and method of mounting ic chip
JP3207174B2 (en) * 1999-02-01 2001-09-10 京セラ株式会社 Wiring board mounted with electric element and method of manufacturing the same

Also Published As

Publication number Publication date
JP2003046215A (en) 2003-02-14

Similar Documents

Publication Publication Date Title
JP2005072328A (en) Multilayer wiring board
JP4903320B2 (en) Manufacturing method of wiring board with electronic element
JP4501961B2 (en) Module aggregate
JP2008270778A (en) Method of manufacturing wiring board with built-in component
JP2005019686A (en) Multilayer circuit board incorporating capacitor element
JP2004172305A (en) Multilayer wiring board
JP4051194B2 (en) Multi-layer wiring board with built-in capacitor element
JP3872360B2 (en) Multilayer wiring board
JP2005135999A (en) Circuit board with built-in electrical component and its manufacturing method
JP2004119732A (en) Multilayer wiring board with built-in capacitor
JP2003198139A (en) Capacitor element built-in type multilayer wiring board
JP2004172412A (en) Capacitor element and multilayer wiring board with built-in capacitor element
JP2006191145A (en) Multilayer wiring board
JP4936756B2 (en) Manufacturing method of ceramic capacitor element for built-in multilayer wiring board
JP4959066B2 (en) Insulating film and multilayer wiring board using the same
JP4772132B2 (en) Multi-layer wiring board with built-in capacitor element
JP2003309145A (en) Wiring board with electronic element and method of manufacturing the same
JP3961362B2 (en) Electronic device built-in multilayer wiring board
JP4429282B2 (en) Manufacturing method of wiring board with built-in capacitor element
JP3878832B2 (en) Multilayer wiring board
JP4511511B2 (en) Manufacturing method of multilayer wiring board with built-in capacitor element
JP4429375B2 (en) Manufacturing method of wiring board with built-in capacitor element
JP2007149718A (en) Wiring board incorporating via array capacitor and its manufacturing process
JP2004296574A (en) Multilayer wiring board with built-in electronic element
JP2005050877A (en) Wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

LAPS Cancellation because of no payment of annual fees