JP4051194B2 - Multi-layer wiring board with built-in capacitor element - Google Patents

Multi-layer wiring board with built-in capacitor element Download PDF

Info

Publication number
JP4051194B2
JP4051194B2 JP2001333281A JP2001333281A JP4051194B2 JP 4051194 B2 JP4051194 B2 JP 4051194B2 JP 2001333281 A JP2001333281 A JP 2001333281A JP 2001333281 A JP2001333281 A JP 2001333281A JP 4051194 B2 JP4051194 B2 JP 4051194B2
Authority
JP
Japan
Prior art keywords
capacitor element
wiring board
multilayer wiring
built
electrode portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001333281A
Other languages
Japanese (ja)
Other versions
JP2003142830A (en
JP2003142830A5 (en
Inventor
忠 長澤
桂 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001333281A priority Critical patent/JP4051194B2/en
Publication of JP2003142830A publication Critical patent/JP2003142830A/en
Publication of JP2003142830A5 publication Critical patent/JP2003142830A5/ja
Application granted granted Critical
Publication of JP4051194B2 publication Critical patent/JP4051194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種AV機器や家電機器・通信機器・コンピュータやその周辺機器等の電子機器に使用される配線基板に関する。
【0002】
【従来の技術】
従来、配線基板はアルミナ等のセラミック材料から成る絶縁層あるいはガラスエポキシ樹脂等の有機樹脂材料から成る絶縁層の内部および表面に複数の配線導体を形成し、上下に位置する配線導体間を絶縁層に形成した貫通導体を介して電気的に接続して成り、この配線基板の表面に半導体素子やコンデンサ・抵抗素子等の電子素子を搭載取着するとともにこれらの電極を各配線導体に接続することによって電子機器に使用される電子装置が形成されている。
【0003】
しかしながら、近年、電子機器は、移動体通信機器に代表されるように小型・薄型・軽量化が要求されてきており、このような電子機器に搭載される配線基板も小型・高密度化が要求されるようになってきている。
【0004】
このような要求に対応するために、配線基板の表面に搭載される電子素子の数を減らして配線基板を小型化する目的で、配線基板の内部にチップ状コンデンサ素子を実装することが提案されている。
【0005】
【発明が解決しようとする課題】
近年、電子機器のさらなる小型化が要求される中で、配線基板の小型化とともに配線基板に内蔵されるコンデンサ素子もより小型化が要求されるようになってきている。
【0006】
しかしながら、従来のチップ状コンデンサ素子を配線基板に内蔵して配線基板内部の配線導体あるいは貫通導体と電気的な接続を行うためには、コンデンサ素子の上面および/あるいは下面に半田や導電性ペーストから成る表面電極をスクリーン印刷法等の方法によって形成する必要があるが、コンデンサ素子の小型化にともない微細な表面電極を形成することが困難と成り、配線基板内蔵用のコンデンサ素子の小型化が困難であるという問題点を有していた。
【0007】
また、従来のコンデンサ素子の上面および/あるいは下面に電極を形成するためには、まず、コンデンサ素子の側面を研磨することにより内部電極を露出させた後、コンデンサ素子の側面にこれらの内部電極と接続する端面電極を形成し、続いて、コンデンサ素子の上面および/あるいは下面に端面電極と接続される表面電極を形成しなければならず、工程が複雑になるという問題点を有していた。
【0008】
さらに、コンデンサ素子と絶縁層の熱膨張係数が異なるために、高温と低温のサイクル試験である熱衝撃試験を行なった場合、コンデンサ素子と絶縁層との熱膨張係数の差により両者間に大きな応力が発生して、コンデンサ素子の電極と絶縁層表面に配設した配線導体との間で断線してしまうという問題点を有していた。
【0009】
また、近年、通信速度の高速化に伴い通信機器等の電子機器類は周波数が数100MHz以上の高周波領域で使用されるようになってきており、このような高周波領域においてはコンデンサ素子の電極と半導体素子等の電子部品とをつなぐ配線導体の長さに起因するインダクタンス成分が無視できなくなり、チップ状コンデンサ素子を内蔵した場合、コンデンサ素子の各電極層からコンデンサ素子側面の端面電極への電極引き出し、さらにはコンデンサ素子の上面および/あるいは下面への電極引き出しといった電極の引き回しがあるため、引き回し電極の長さに起因するインダクタンス成分が大きくなり、△V=LdI/dt(△Vは電源ノイズ、Lはインダクタンス、Iは電流値、tは時間)で定義されるインダクタンス成分により発生する電源ノイズ△Vが無視できないほど大きくなってしまい、通信機器等の電子機器類に誤動作を発生させてしまう等の問題点を有していた。
【0010】
本発明はかかる従来技術の問題点に鑑み案出されたものであり、その目的は、接続信頼性・電気特性に優れた小型で軽量なコンデンサ素子内蔵多層配線基板を提供することにある。
【0011】
【課題を解決するための手段】
本発明のコンデンサ素子内蔵多層配線基板は、有機材料により形成された複数の絶縁層と、これら絶縁層の表面に形成される配線導体と、前記配線導体と電気的に接続され、前記絶縁層を厚み方向に貫通する複数の貫通導体と、を有する多層配線基板と、
多数の電極層およびセラミックにより形成された誘電体層を交互に積層して成る積層体と、前記積層体を積層方向に貫通する複数の貫通孔に導体が充填されて成る第1、第2の引き出し電極部と、を有するコンデンサ素子と、を備え、
前記多層配線基板は、前記絶縁層の少なくとも一層に前記コンデンサ素子が内蔵される空洞部を有し
記コンデンサ素子の最上層及び最下層に位置する前記誘電体層の表面が、前記多層配線基板の前記絶縁層の主面と略同一面上に位置しており、
前記貫通導体の一つは前記第1の引き出し電極部の直上に位置して該第1の引き出し電極部と接続され、前記貫通導体の他の一つは前記第2の引き出し電極部と重ならない位置に配されるとともに前記略同一面上に存在する前記配線導体を介して前記第2の引き出し電極部と接続されていることを特徴とする。
【0012】
また、本発明のコンデンサ内蔵多層配線基板は、前記第1の引き出し電極部と前記第2の引き出し電極部とは異なる電極層にそれぞれ接続されていることを特徴とする。
また、本発明のコンデンサ内蔵多層配線基板は、有機材料により形成された複数の絶縁層と、これら絶縁層の表面に形成される配線導体と、前記配線導体と電気的に接続され、前記絶縁層を厚み方向に貫通する複数の貫通導体と、を有する多層配線基板と、多数の電極層およびセラミックにより形成された誘電体層を交互に積層して成る積層体と、前記積層体を積層方向に貫通する貫通孔に導体が充填されて成る引き出し電極部と、を有するコンデンサ素子と、を備え、前記多層配線基板は、前記絶縁層の少なくとも一層に前記コンデンサ素子が内蔵される空洞部を有し、前記コンデンサ素子の最上層及び最下層に位置する前記誘電体層の表面が、前記多層配線基板の前記絶縁層の主面と略同一面上に位置しており、前記貫通導体の一つは前記引き出し電極部と対応する箇所に位置して該引き出し電極部の一方端と接続され、前記貫通導体の他の一つは前記引き出し電極部と重ならない位置に配されるとともに前記略同一面上に存在する前記配線導体を介して前記引き出し電極部の他方端と接続されていることを特徴とする。
また、本発明のコンデンサ内蔵多層配線基板は、上記コンデンサ素子内蔵多層配線基板において、前記コンデンサ素子の最表面に位置する前記誘電体の表面は、前記多層配線基板の前記空洞部を構成する前記絶縁層に対して密着していることを特徴とする。
さらに、本発明のコンデンサ内蔵多層配線基板は、上記コンデンサ素子内蔵多層配線基板において、前記コンデンサ素子の側面は、前記多層配線基板の前記空洞部を構成する前記絶縁層に対して密着していることを特徴とする。
また、本発明のコンデンサ内蔵多層配線基板は、上記コンデンサ素子内蔵多層配線基板において、前記コンデンサ素子の前記積層体の表面は、表面粗さの最大値が0.2μmより大きいことを特徴とする。
さらに、本発明のコンデンサ内蔵多層配線基板は、上記コンデンサ素子内蔵多層配線基板において、前記引き出し電極部の前記電極層に対して垂直方向の断面形状が台形状であることを特徴とする。
さらに、本発明のコンデンサ内蔵多層配線基板は、上記コンデンサ素子内蔵多層配線基板において、前記貫通導体と、前記コンデンサ素子の前記引き出し電極部とが、略直線状に配列されることを特徴とする。
【0013】
本発明のコンデンサ素子内蔵多層配線基板によれば、コンデンサ素子を、多数の電極層に対して垂直方向に貫通する貫通孔に導体が充填されて成る引き出し電極部を有するものとし、この引き出し電極部を介して多数の電極層と多層配線基板の貫通導体および/または配線導体とを電気的に接続したことから、コンデンサ素子に端面電極や表面電極を印刷する必要がないために工程を簡単化することができるとともに、直径が数10μmという微細な引き出し電極を容易に形成することができるためコンデンサ素子を小さなものとすることができコンデンサ素子内蔵多層配線基板を小型化することができる。
【0014】
また、コンデンサ素子側面に端面電極を配設して電極を引き回しする必要がなく、電極層の直上に最短距離で引き出し電極を形成することができるので、インダクタンス成分を小さくすることが可能で、高周波領域においても電源ノイズの小さい電気特性に優れたものとすることができる。
【0015】
さらに、コンデンサ素子の、引き出し電極部の電極層に対して垂直方向の断面形状を台形状としたことから、コンデンサ素子に形成した貫通孔に半田あるいは導電性ペーストを充填して引き出し電極部を形成する際に、半田あるいは導電性ペーストを貫通孔の底辺が長い方から充填することにより良好に充填することができ、その結果、引き出し電極部の抵抗がより小さく、かつインダクタンス成分がより小さなものとすることができる。
【0016】
さらに、上記構成において、内蔵するコンデンサ素子のセラミック誘電体層表面の表面粗さの最大値を0.2μmより大きくしたことから、絶縁層とコンデンサ素子との密着が強固なものとなり、温度サイクル試験を行った際に両者の熱膨張係数の差により応力が発生したとしても、絶縁層がコンデンサ素子に拘束されることにより、コンデンサ素子の電極と絶縁層表面に配設した配線導体との間で剥離して断線してしまうこともない。
【0017】
【発明の実施の形態】
次に本発明の多層配線基板を添付の図面に基づいて詳細に説明する。図1は、本発明の多層配線基板の実施の形態の一例を示す断面図であり、本例では、コンデンサを1個内蔵した場合を示している。また、図2は、本発明のコンデンサ内蔵多層配線基板に内蔵されるコンデンサ素子の実施の形態の一例を示す断面図である。これらの図において、1は絶縁層、2は配線導体、3は貫通導体、7はコンデンサ素子で、主にこれらで本発明のコンデンサ素子内蔵多層配線基板8が構成されている。なお、本例のコンデンサ内蔵多層配線基板8は、絶縁層1を3層積層して成るとともに、絶縁層1の少なくとも1層には空洞部4が形成されており、その内部には、コンデンサ素子7が埋設されている。
【0018】
コンデンサ内蔵多層配線基板8に内蔵されるコンデンサ素子7は、縦・横・高さがそれぞれ1〜5μmの直方体であり、図2に断面図で示すように、電極層5とセラミック誘電体層6とを交互に積層することにより形成されている。
【0019】
このようなセラミック誘電体層6の材料としては、種々の誘電体セラミック材料を用いることができ、例えば、BaTiO3やLaTiO3・CaTiO3・SrTiO3等のセラミック組成物、あるいは、BaTiO3の構成元素であるBaをCaで、TiをZrやSnで部分的に置換した固溶体等のチタン酸バリウム系材料や、鉛系ペロブスカイト型構造化合物等が挙げられる。
【0020】
また、電極層5を形成する材料としては、例えばPdやAg・Pt・Ni・Cu・Pb等の金属やそれらの合金が用いられる。
【0021】
さらに、コンデンサ素子7は、多数の電極層5に対して垂直方向に貫通する貫通孔9に導体が充填されて成る引き出し電極部10を有している。また、本発明においてはこのことが重要である。
【0022】
本発明のコンデンサ内蔵多層配線基板8によれば、コンデンサ素子7を、多数の電極層5に対して垂直方向に貫通する貫通孔9に導体が充填されて成る引き出し電極部10を有するものとし、この引き出し電極部10を介して電極層5と貫通導体3および/または配線導体2とを電気的に接続したことから、コンデンサ素子7に端面電極や表面電極を印刷する必要がないために工程が簡単になるとともに、直径が数10μmという微細な引出し電極10を容易に形成することができることからコンデンサ素子7を微細化でき、その結果、コンデンサ素子内蔵多層配線基板8を小型化することができる。また、コンデンサ素子7側面に端面電極を配設して電極を引き回しする必要は無く、電極層5の直上に最短距離で引き出し電極10を形成することができるので、インダクタンス成分を小さくすることが可能で、高周波領域においても電源ノイズが小さい電気特性に優れたものとすることができる。
【0023】
このようなコンデンサ素子7に形成される貫通孔9は、電極層5とセラミック誘電体層6とから成る積層体に、パンチングによる打ち抜き加工やUV−YAGレーザやエキシマレーザ・炭酸ガスレーザ等によるレーザ穿設加工等の方法により形成され、特に微細な貫通孔9とするためには、レーザによる穿設加工により形成されることが好ましい。また、貫通孔9の径は数10μm〜数mmであり、コンデンサ素子7の大きさにあわせて適宜決めればよい。
【0024】
なお、貫通孔9は、内部に充填される導体と電極層5との電気的接続を良好にするために、打ち抜き加工やレーザ穿設加工後に超音波洗浄処理やデスミア処理等を施しても良い。
【0025】
また、貫通孔9に充填される導体としては、PdやAg・Pt・Ni・Cu・Pb等の金属やそれらの合金が用いられ、特に電極層5との電気的接続を良好にするという観点からは、電極層5と同じ材質のものを含有することが好ましい。
【0026】
このような貫通孔9に充填される導体は、有機溶剤に有機バインダ樹脂を溶解させた有機ビヒクル中に金属粉末を分散させて成る導電ペーストを貫通孔9にスクリーン印刷法等の方法で充填されることにより形成される。なお、ビヒクル中には、これらの他、各種分散剤・活性剤・可塑剤などが必要に応じて添加されても良い。
【0027】
また、導電ペーストに用いられる有機バインダ樹脂は、金属粉末を均質に分散させるとともに貫通孔9への埋め込みに適正な粘度とレオロジーを与える役割をもっており、例えば、アクリル樹脂やフェノール樹脂・アルキッド樹脂・ロジンエステル・エチルセルロース・メチルセルロース・PVA(ポリビニルアルコール)・ポリビニルブチラート等が挙げられる。特に、金属粉末の分散性を良くするという観点からは、アクリル樹脂を用いることが好ましい。
【0028】
さらに、導電ペーストに用いられる有機溶剤は、有機バインダ樹脂を溶解して金属粉末粒子を分散させ、このような混合系全体をペースト状にする役割をなし、例えば、α-テルピネオールやベンジルアルコール等のアルコール系や炭化水素系・エーテル系・BCA(ブチルカルビトールアセテート)等のエステル系・ナフサ等が用いられ、特に、金属粉末の分散性を良くするという観点からは、α-テルピネオール等のアルコール系溶剤を用いることが好ましい。
【0029】
さらにまた、導電ペーストは、埋め込み・焼成後のコンデンサ磁器への接着強度を上げるために、ガラスフリットやセラミックフリットを加えたペーストとすることができる。この場合のガラスフリットやセラミックフリットとしては特に限定されるものではなく、例えば、ホウ珪酸塩系やホウ珪酸亜鉛系のガラス・チタニア・チタン酸バリウムなどのチタン系酸化物などを適宜用いることができる。
【0030】
このようなコンデンサ素子7は、次の方法により製作される。まず、周知のシート成形法により作成された誘電体層6と成る、例えばBaTiO3誘電体セラミックグリーンシート表面に、周知のペースト作成法により作成したNi金属ペーストをスクリーン印刷法により所定形状と成るように印刷して未焼成電極層を形成し、続いてこれらを所定順序に積層し、圧着して積層体を得る。そして、この積層体にレーザにより所定の位置に複数の貫通孔9を形成後、超音波洗浄により貫通孔9を水洗し、この貫通孔9に例えばNi金属粉末とアクリル樹脂とα-テルピネオールとから成る導電ペーストをスクリーン印刷法により充填する。しかる後、これらを800〜1600℃の温度で焼成することにより製作される。
【0031】
なお、貫通孔9に充填された導体は、焼成後有機バインダ樹脂や溶剤が除去され、引き出し電極部10と成り、コンデンサ素子7表面に露出した引き出し電極部10の端部でコンデンサ素子内臓多層配線基板8の貫通導体3および/または配線導体2と電気的に接続される。
【0032】
また、本発明では、引出し電極部10の電極層5に対して垂直方法の断面形状を台形状とすることが好ましく、また、重要である。本発明の多層配線基板8によれば、引き出し電極部10の電極層5に対して垂直方向の断面形状を台形状としたことから、コンデンサ素子7に形成した貫通孔9に導電性ペーストを充填して引き出し電極部10を形成する際に、導電性ペーストを貫通孔9の底辺が長い方の開口から充填することにより良好に充填することができ、その結果、導電性ペーストの充填率を高め引き出し電極部10の抵抗を小さくすることができるとともにインダクタンス成分をより小さくすることができる。
【0033】
なお、引き出し電極部10の台形状の断面形状は、長い方の底辺の長さが短い方の底辺の長さの1.2〜3倍であることが好ましく、1.2倍未満であると引き出し電極部10を形成する導電ペーストを貫通孔9に良好に充填できなくなる傾向があり、また、3倍を超えると貫通孔9の径が大きくなりコンデンサ素子7を小型化することが困難と成る傾向がある。従って、引き出し電極部10の台形状の断面形状は、長い方の底辺の長さが短い方の底辺の長さの1.2〜3倍であることが好ましい。また、引き出し電極部10は、その長い方の底辺あるいは短い方の底辺のどちらがコンデンサ素子7の上面あるいは下面に位置するように形成してもよい。
【0034】
また、コンデンサ素子7の表面は、セラミック誘電体層6の表面の算術平均粗さRの最大値Rmaxが0.2μmより大きく、望ましくは0.5μm以上、最適には1.0μm以上とすることが好ましい。
【0035】
本発明のコンデンサ素子内蔵多層配線基板8によれば、内蔵するコンデンサ素子のセラミック誘電体層6の表面を、表面粗さRの最大値Rmaxを0.2μmより大きくしたことから、温度サイクル試験を行った場合でも、絶縁層1とコンデンサ素子7の接着性が向上するため、絶縁層1の熱膨張係数がコンデンサ素子7の熱膨脹係数よりも大きくても絶縁層1がコンデンサ素子7に拘束されることにより、熱膨張係数の差により発生する応力は減少し、コンデンサ素子7の電極と絶縁層1表面に配設した配線導体2間とが断線してしまうということもない。なお、セラミック誘電体層6の表面粗さRの最大値Rmaxが5μmを超えると、コンデンサ素子に割れや欠けが発生し易くなる傾向があるため、表面粗さRの最大値Rmaxを5μm以下としておくことが好ましい。
【0036】
このようなコンデンサ素子表面のセラミック誘電体層6の表面は、焼成前のグリーンシート積層体の段階で、積層体の表面をブラシ研磨による粗化処理やあらかじめ凹凸加工した平板を押し付けるなどの方法で物理的に凹凸をつけた後、あるいはレーザによりグリーンシート積層体表面に非貫通孔を開けることによりディンプル加工を施した後、焼成することにより所望の表面粗さとすることができる。また、セラミック誘電体層6に用いられるセラミック材料よりも焼成時の耐熱性が高く平均粒子径が10μm以上のセラミック粉末、あるいはセラミック誘電体層6に用いられるセラミック材料の一部と反応性を有し平均径が10μm以上のセラミック粉末を一部が埋入するようにグリーンシート積層体表面に付着させて焼成することによって所望の表面粗さとしても良い。さらに、グリーンシート積層体の焼成後のコンデンサ素子の表面をサンドブラスト等の物理的手法あるいはエッチング等の化学的手法により粗化しても良い。
【0037】
次に、本発明のコンデンサ素子内蔵多層配線基板8の製造方法を添付の図3に基づいて詳細に説明する。図3は、図1のコンデンサ素子内蔵多層配線基板8を製作するための工程毎の断面図である。
【0038】
まず、図3(a)に断面図で示すように、絶縁層1と成る未硬化の前駆体シートを準備し、この前駆体シートにレーザ加工により所望の個所に直径が17〜150μm程度の貫通孔11を穿設する。
【0039】
このような絶縁層1と成る未硬化の前駆体シートは、エポキシ樹脂やビスマレイミドトリアジン樹脂・熱硬化性ポリフェニレンエーテル樹脂・液晶ポリマー樹脂等の有機樹脂材料から成り、機械的強度を向上させるためのシラン系やチタネート系等のカップリング剤、熱安定性を改善するための酸化防止剤や耐光性を改善するための紫外線吸収剤等の光安定剤、難燃性を改善するためのハロゲン系もしくはリン酸系の難燃性剤、アンチモン系化合物やホウ酸亜鉛・メタホウ酸バリウム・酸化ジルコニウム等の難燃助剤、潤滑性を改善するための高級脂肪酸や高級脂肪酸エステル・高級脂肪酸金属塩・フルオロカーボン系界面活性剤等の滑剤、熱膨張係数を調整するためおよび/または機械的強度を向上させるための酸化アルミニウム・酸化珪素・酸化チタン・酸化バリウム・酸化ストロンチウム・酸化ジルコニウム・酸化カルシウム・ゼオライト・窒化珪素・窒化アルミニウム・炭化珪素・ホウ酸アルミニウム・スズ酸バリウム・ジルコン酸バリウム・ジルコン酸ストロンチウム等の充填材、あるいは、繊維状ガラスを布状に織り込んだガラスクロス等や耐熱性有機樹脂繊維から成る不織布等の基材を含有させてもよい。
【0040】
このような前駆体シートは、例えば、絶縁材料として熱硬化性樹脂と無機絶縁粉末との複合材料を用いる場合、以下の方法によって製作される。まず、前述した無機絶縁粉末に熱硬化性樹脂を無機絶縁粉末量が17〜80体積%となるように溶媒とともに加えた混合物を得、この混合物を混練機(ニーダ)や3本ロール等の手段によって混合してペーストを製作する。そして、このペーストを圧延法や押し出し法・射出法・ドクターブレード法などのシート成形法を採用してシート状に成形した後、熱硬化性樹脂が完全硬化しない温度に加熱して乾燥することにより絶縁層1となる前駆体シートが製作される。なお、ペーストは、好適には、熱硬化性樹脂と無機絶縁粉末の複合材料に、トルエン・酢酸ブチル・メチルエチルケトン・メタノール・メチルセロソルブアセテート・イソプロピルアルコール・メチルイソブチルケトン・ジメチルホルムアミド等の溶媒を添加してなる所定の粘度を有する流動体であり、その粘度は、シート成形法にもよるが100〜3000ポイズが好ましい。
【0041】
次に、図3(b)に断面図で示すように、貫通孔11内に銅・銀・金・半田等から成る導電性ペーストを従来周知のスクリーン印刷法等を採用して充填し、貫通導体3を形成する。
【0042】
次に、図3(c)に断面図で示すように、前駆体シートの表面と裏面とに被着する配線導体2を準備する。そして、図3(d)に断面図で示すように、配線導体2を前駆体シートの表面および裏面に、必要な配線導体2と貫通導体3とが電気的に接続するように重ね合わせて転写する。
【0043】
なお、本実施例では、配線導体2の形成を転写法によって行っており、このような配線導体2は、次に述べる方法により形成される。まず、離型シート等の支持体12の表面にめっき法などによって製作され、銅・金・銀・アルミニウム等から選ばれる1種または2種以上の合金からなる厚さ1〜35μmの電解金属箔を接着し、その表面に所望の配線パターンの鏡像パターンとなるようにレジスト層を形成した後、エッチング・レジスト除去によって所定の配線パターンの鏡像の配線導体2が形成する。次に、配線導体2の前駆体シートの表面および裏面への被着は、配線導体2が形成された支持体12を前駆体シートの表面および裏面へ重ね合わせ、しかる後、圧力が0.5〜10MPa、温度が60〜150℃の条件で加圧加熱した後、支持体12を剥がすことにより、図3(e)に断面図に示すように配線導体2が前駆体シートに被着される。なお、この時、貫通導体3は、完全に硬化していない未硬化状態としておくことが重要である。
【0044】
また、支持体12としては、ポリエチレンテレフタレートやポリエチレンナフタレート・ポリイミド・ポリフェニレンサルファイド・塩化ビニル・ポリプロピレン等公知のものが使用できる。支持体12の厚みは10〜100μmが適当であり、望ましくは25〜50μmが良い。支持体12の厚みが10μm未満であると支持体12の変形や折れ曲がりにより形成した配線導体2が断線し易くなり、厚みが100μmを超えると支持体12の柔軟性がなくなって、前駆体シートからの支持体12の剥離が困難となる傾向がある。また、支持体12表面に電解金属箔を形成するために、アクリル系やゴム系・シリコン系・エポキシ系等公知の接着剤を使用してもよい。
【0045】
そして、図3(f)に断面図で示すように、上記(a)〜(f)の工程を経て製作した複数の前駆体シートと、コンデンサ素子7とを準備し、次に、引き出し電極部10の先端部と貫通導体3および配線導体2との位置合わせを行い載置するとともに前駆体シートを積層し、温度が150〜300℃、圧力が0.5〜10MPaの条件で30分〜24時間ホットプレスして前駆体シートおよび導電性ペーストを完全硬化させることによって、図3(g)に断面図で示す本発明のコンデンサ素子内蔵多層配線基板8が完成する。
【0046】
また、コンデンサ素子7を収容する空洞部4は、前駆体シートを積層する前に、前駆体シートのコンデンサ素子7が収容される個所にレーザ法やパンチング法により穿設しておけばよい。
【0047】
なお、本発明のコンデンサ素子内蔵多層配線基板8は上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能であり、例えば、上述の実施例では3層の絶縁層1を積層することによってコンデンサ素子内蔵多層配線基板8を製作したが、4層や5層以上の絶縁層を積層してコンデンサ内蔵多層配線基板8を製作してもよい。また、上述の実施例ではコンデンサを含む絶縁層を1層としたが、2層(連続層を含む)以上としてもよい。
【0048】
さらに、内蔵するコンデンサ素子7に形成した引き出し電極部10の数は一つの電極につき2個以上形成してもよい。
【0049】
【発明の効果】
本発明のコンデンサ素子内蔵多層配線基板によれば、コンデンサ素子を、多数の電極層に対して垂直方向に貫通する貫通孔に導体が充填されて成る引き出し電極部を有するものとし、この引き出し電極部を介して多数の電極層と多層配線基板の貫通導体および/または配線導体とを電気的に接続したことから、コンデンサ素子に端面電極や表面電極を印刷する必要がないために工程を簡単化することができるとともに、直径が数10μmという微細な引き出し電極を容易に形成することができるためコンデンサ素子を小さなものとすることができコンデンサ素子内蔵多層配線基板を小型化することができる。
【0050】
また、コンデンサ素子側面に端面電極を配設して電極を引き回しする必要がなく、電極層の直上に最短距離で引き出し電極を形成することができるので、インダクタンス成分を小さくすることが可能で、高周波領域においても電源ノイズの小さい電気特性に優れたものとすることができる。
【0051】
さらに、コンデンサ素子の、引き出し電極部の電極層に対して垂直方向の断面形状を台形状としたことから、コンデンサ素子に形成した貫通孔に半田あるいは導電性ペーストを充填して引き出し電極部を形成する際に、半田あるいは導電性ペーストを貫通孔の底辺が長い方から充填することにより良好に充填することができ、その結果、引き出し電極部の抵抗がより小さく、かつインダクタンス成分がより小さなものとすることができる。
【0052】
さらに、上記構成において、内蔵するコンデンサ素子のセラミック誘電体層表面の表面粗さの最大値を0.2μmより大きくしたことから、絶縁層とコンデンサ素子との密着が強固なものとなり、温度サイクル試験を行った際に両者の熱膨張係数の差により応力が発生したとしても、絶縁層がコンデンサ素子に拘束されることにより、コンデンサ素子の電極と絶縁層表面に配設した配線導体との間で剥離して断線してしまうこともない。
【図面の簡単な説明】
【図1】 本発明のコンデンサ素子内蔵多層配線基板の実施の形態の一例を示す断面図である。
【図2】 本発明のコンデンサ素子内蔵多層配線基板に内蔵されるコンデンサ素子の実施の形態の一例を示す断面図である。
【図3】 (a)〜(g)は、それぞれ本発明のコンデンサ素子内蔵多層配線基板の製造方法を説明するための工程毎の断面図である。
【符号の説明】
1・・・・・・・・・絶縁層
2・・・・・・・・・配線導体
3・・・・・・・・・貫通導体
4・・・・・・・・・空洞部
5・・・・・・・・・電極層
6・・・・・・・・・セラミック誘電体層
7・・・・・・・・・コンデンサ素子
8・・・・・・・・・コンデンサ素子内蔵多層配線基板
9・・・・・・・・・貫通孔
10 ・・・・・・・・引き出し電極部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wiring board used in various AV devices, home appliances, communication devices, computers, and electronic devices such as peripheral devices.
[0002]
[Prior art]
Conventionally, a wiring board has a plurality of wiring conductors formed inside and on the surface of an insulating layer made of a ceramic material such as alumina or an organic resin material such as glass epoxy resin, and an insulating layer is formed between upper and lower wiring conductors. Electrically connected through through conductors formed on the board, and mounting and mounting electronic elements such as semiconductor elements, capacitors and resistance elements on the surface of this wiring board, and connecting these electrodes to each wiring conductor Thus, an electronic device used for an electronic device is formed.
[0003]
However, in recent years, electronic devices have been required to be small, thin, and lightweight as represented by mobile communication devices, and wiring boards mounted on such electronic devices are also required to be small and high in density. It has come to be.
[0004]
In order to meet such demands, it has been proposed to mount chip capacitor elements inside the wiring board in order to reduce the number of electronic elements mounted on the surface of the wiring board and reduce the size of the wiring board. ing.
[0005]
[Problems to be solved by the invention]
In recent years, a further miniaturization of electronic devices has been demanded, and along with the miniaturization of the wiring board, the capacitor element incorporated in the wiring board has also been demanded to be miniaturized.
[0006]
However, in order to incorporate a conventional chip capacitor element into a wiring board and make an electrical connection with a wiring conductor or through conductor inside the wiring board, solder or conductive paste is applied to the upper surface and / or lower surface of the capacitor element. It is necessary to form the surface electrode by a method such as a screen printing method. However, it is difficult to form a fine surface electrode as the capacitor element is downsized, and it is difficult to downsize the capacitor element built in the wiring board. It had the problem of being.
[0007]
In order to form electrodes on the upper surface and / or lower surface of a conventional capacitor element, first, the internal electrodes are exposed by polishing the side surfaces of the capacitor elements, and then these internal electrodes are formed on the side surfaces of the capacitor elements. An end face electrode to be connected has to be formed, and subsequently, a surface electrode to be connected to the end face electrode has to be formed on the upper surface and / or the lower surface of the capacitor element, which has a problem that the process becomes complicated.
[0008]
Furthermore, since the thermal expansion coefficients of the capacitor element and the insulating layer are different, when a thermal shock test, which is a high-temperature and low-temperature cycle test, is performed, a large stress is caused between the capacitor element and the insulating layer due to the difference in the thermal expansion coefficient Has occurred, and there has been a problem of disconnection between the electrode of the capacitor element and the wiring conductor disposed on the surface of the insulating layer.
[0009]
In recent years, electronic devices such as communication devices have been used in a high frequency region having a frequency of several hundred MHz or more with an increase in communication speed. In such a high frequency region, the electrode of the capacitor element is used. The inductance component due to the length of the wiring conductor that connects to electronic components such as semiconductor elements can no longer be ignored, and when chip capacitor elements are built-in, the electrode leads from each electrode layer of the capacitor element to the end electrode on the side of the capacitor element Furthermore, since there is electrode routing such as electrode drawing to the upper surface and / or lower surface of the capacitor element, the inductance component due to the length of the routing electrode increases, and ΔV = LdI / dt (ΔV is power supply noise, L is the inductance, I is the current value, and t is the time). The noise ΔV becomes so large that it cannot be ignored, which causes problems such as malfunctions in electronic devices such as communication devices.
[0010]
The present invention has been devised in view of the problems of the prior art, and an object thereof is to provide a small and lightweight multilayer wiring board with a built-in capacitor element that is excellent in connection reliability and electrical characteristics.
[0011]
[Means for Solving the Problems]
  The multilayer wiring board with a built-in capacitor element according to the present invention includes a plurality of insulating layers formed of an organic material, wiring conductors formed on the surfaces of these insulating layers, and the wiring conductors electrically connected to the insulating layers. Penetrates in the thickness directionpluralA multilayer wiring board having a through conductor;
  A laminate in which a large number of electrode layers and dielectric layers made of ceramic are alternately laminated, and a plurality of through holes that penetrate the laminate in the lamination direction are filled with a conductor.1st, 2ndA capacitor element having a lead electrode portion,
The multilayer wiring board has a cavity portion in which the capacitor element is built in at least one layer of the insulating layer.,
  in frontThe surface of the dielectric layer located in the uppermost layer and the lowermost layer of the capacitor element is located substantially on the same plane as the main surface of the insulating layer of the multilayer wiring board.And
  One of the through conductors is located immediately above the first lead electrode portion and is connected to the first lead electrode portion, and the other one of the through conductors does not overlap the second lead electrode portion. And is connected to the second lead electrode portion via the wiring conductor that is disposed on the substantially same plane.It is characterized by being.
[0012]
  Moreover, the multilayer wiring board with a built-in capacitor of the present invention isThe first lead electrode portion and the second lead electrode portion are connected to different electrode layers, respectively.
  Moreover, the multilayer wiring board with a built-in capacitor of the present invention isA plurality of insulating layers formed of an organic material, wiring conductors formed on the surfaces of these insulating layers, a plurality of through conductors electrically connected to the wiring conductors and penetrating the insulating layer in the thickness direction; A multi-layer wiring board having a plurality of electrode layers and dielectric layers made of ceramics, and a lead-out formed by filling a conductor in a through-hole penetrating in the stacking direction. The multilayer wiring board has a cavity portion in which the capacitor element is built in at least one layer of the insulating layer, and is located in the uppermost layer and the lowermost layer of the capacitor element. The surface of the dielectric layer is positioned substantially on the same plane as the main surface of the insulating layer of the multilayer wiring board, and one of the through conductors is positioned at a location corresponding to the lead electrode portion. The pull The lead electrode portion is connected to one end of the lead electrode portion, and the other one of the through conductors is arranged at a position not overlapping with the lead electrode portion, and the lead electrode portion is interposed via the wiring conductor existing on the substantially same plane. It is connected with the other end of this.
  The multilayer wiring board with a built-in capacitor according to the present invention is the above-described multilayer wiring board with a built-in capacitor element, wherein the surface of the dielectric located at the outermost surface of the capacitor element is the insulating part that forms the cavity of the multilayer wiring board. It is characterized by being in close contact with the layer.
  Furthermore, in the multilayer wiring board with a built-in capacitor according to the present invention, the side surface of the capacitor element is in close contact with the insulating layer constituting the cavity of the multilayer wiring board. It is characterized by.
  The multilayer wiring board with a built-in capacitor according to the present invention is characterized in that, in the multilayer wiring board with a built-in capacitor element, the surface of the multilayer body of the capacitor element has a maximum surface roughness greater than 0.2 μm.
  Furthermore, the multilayer wiring board with a built-in capacitor according to the present invention is characterized in that, in the multilayer wiring board with a built-in capacitor element, a cross-sectional shape in a direction perpendicular to the electrode layer of the lead electrode portion is a trapezoid.
  Furthermore, the multilayer wiring board with a built-in capacitor according to the present invention is characterized in that, in the multilayer wiring board with a built-in capacitor element, the through conductor and the lead electrode portion of the capacitor element are arranged in a substantially straight line.
[0013]
According to the multilayer wiring board with a built-in capacitor element of the present invention, the capacitor element has a lead electrode portion in which a conductor is filled in a through-hole penetrating in a vertical direction with respect to a large number of electrode layers. Since a large number of electrode layers and the through conductors and / or wiring conductors of the multilayer wiring board are electrically connected via the wiring, it is not necessary to print end face electrodes or surface electrodes on the capacitor element, thereby simplifying the process. In addition, since a fine lead electrode having a diameter of several tens of μm can be easily formed, the capacitor element can be made small, and the multilayer wiring board with a built-in capacitor element can be miniaturized.
[0014]
In addition, it is not necessary to provide an end face electrode on the side surface of the capacitor element and route the electrode, and the lead electrode can be formed at the shortest distance immediately above the electrode layer, so that the inductance component can be reduced and the high frequency Even in the region, it can be made excellent in electrical characteristics with small power source noise.
[0015]
Furthermore, since the cross-sectional shape in the direction perpendicular to the electrode layer of the lead electrode portion of the capacitor element is trapezoidal, the lead electrode portion is formed by filling the through holes formed in the capacitor element with solder or conductive paste. In this case, the solder or conductive paste can be satisfactorily filled by filling from the long side of the through hole, and as a result, the resistance of the lead electrode portion is smaller and the inductance component is smaller. can do.
[0016]
Furthermore, in the above configuration, since the maximum value of the surface roughness of the ceramic dielectric layer surface of the built-in capacitor element is larger than 0.2 μm, the adhesion between the insulating layer and the capacitor element becomes strong, and the temperature cycle test is performed. Even if stress occurs due to the difference in thermal expansion coefficient between the two, the insulating layer is constrained by the capacitor element, and the capacitor element electrode and the wiring conductor disposed on the surface of the insulating layer are separated. And there is no disconnection.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Next, the multilayer wiring board of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing an example of an embodiment of a multilayer wiring board according to the present invention. In this example, a case where one capacitor is built is shown. FIG. 2 is a cross-sectional view showing an example of an embodiment of the capacitor element built in the multilayer wiring board with built-in capacitor of the present invention. In these drawings, reference numeral 1 is an insulating layer, 2 is a wiring conductor, 3 is a through conductor, and 7 is a capacitor element. The capacitor element built-in multilayer wiring board 8 of the present invention is mainly constituted by these. The multilayer wiring board 8 with a built-in capacitor according to this example is formed by laminating three insulating layers 1, and a cavity 4 is formed in at least one layer of the insulating layer 1. 7 is buried.
[0018]
The capacitor element 7 incorporated in the multilayer wiring substrate 8 with a built-in capacitor is a rectangular parallelepiped having a length, width, and height of 1 to 5 μm, respectively. As shown in a sectional view in FIG. 2, the electrode layer 5 and the ceramic dielectric layer 6 Are alternately stacked.
[0019]
As the material of the ceramic dielectric layer 6, various dielectric ceramic materials can be used, for example, BaTiO.ThreeAnd LaTiOThree・ CaTiOThree・ SrTiOThreeOr ceramic composition such as BaTiOThreeAnd barium titanate-based materials such as solid solutions in which Ba is partially substituted with Ca and Ti is partially substituted with Zr or Sn, and lead-based perovskite structural compounds.
[0020]
Moreover, as a material which forms the electrode layer 5, metals, such as Pd, Ag * Pt * Ni * Cu * Pb, and those alloys are used, for example.
[0021]
Further, the capacitor element 7 has a lead electrode portion 10 formed by filling a through hole 9 penetrating in a vertical direction with respect to a large number of electrode layers 5. This is important in the present invention.
[0022]
According to the multilayer wiring board 8 with a built-in capacitor of the present invention, the capacitor element 7 has the lead electrode portion 10 formed by filling the through holes 9 penetrating in the vertical direction with respect to the multiple electrode layers 5, Since the electrode layer 5 and the through conductor 3 and / or the wiring conductor 2 are electrically connected via the lead electrode portion 10, there is no need to print the end face electrode or the surface electrode on the capacitor element 7, so that the process is performed. In addition to simplification, the capacitor element 7 can be miniaturized because a fine extraction electrode 10 having a diameter of several tens of μm can be easily formed. As a result, the capacitor element built-in multilayer wiring substrate 8 can be miniaturized. In addition, it is not necessary to provide an end face electrode on the side surface of the capacitor element 7 and route the electrode, and the lead electrode 10 can be formed at the shortest distance directly above the electrode layer 5, so that the inductance component can be reduced. Thus, even in a high frequency region, it is possible to achieve excellent electrical characteristics with low power supply noise.
[0023]
The through hole 9 formed in the capacitor element 7 is formed by punching a laminated body composed of the electrode layer 5 and the ceramic dielectric layer 6 or performing laser punching by UV-YAG laser, excimer laser, carbon dioxide gas laser, or the like. It is preferably formed by a laser drilling process in order to form the fine through-hole 9 by a method such as an installation process. Further, the diameter of the through hole 9 is several tens of μm to several mm, and may be appropriately determined according to the size of the capacitor element 7.
[0024]
The through hole 9 may be subjected to an ultrasonic cleaning process, a desmear process, or the like after the punching process or the laser drilling process in order to improve the electrical connection between the conductor filled inside and the electrode layer 5. .
[0025]
Moreover, as a conductor with which the through-hole 9 is filled, metals, such as Pd, Ag * Pt * Ni * Cu * Pb, and those alloys are used, and especially the viewpoint of making the electrical connection with the electrode layer 5 favorable. Is preferably made of the same material as the electrode layer 5.
[0026]
The conductor filled in the through hole 9 is filled with a conductive paste in which metal powder is dispersed in an organic vehicle in which an organic binder resin is dissolved in an organic solvent, by a method such as screen printing. Is formed. In addition to these, various dispersants, activators, plasticizers and the like may be added to the vehicle as necessary.
[0027]
Further, the organic binder resin used for the conductive paste has a role of uniformly dispersing the metal powder and imparting an appropriate viscosity and rheology for embedding in the through-hole 9. For example, acrylic resin, phenol resin, alkyd resin, rosin Examples include ester, ethyl cellulose, methyl cellulose, PVA (polyvinyl alcohol), and polyvinyl butyrate. In particular, it is preferable to use an acrylic resin from the viewpoint of improving the dispersibility of the metal powder.
[0028]
Further, the organic solvent used in the conductive paste has a role of dissolving the organic binder resin to disperse the metal powder particles and making the entire mixed system into a paste, such as α-terpineol or benzyl alcohol. Alcohol-based, hydrocarbon-based, ether-based, ester-based such as BCA (butyl carbitol acetate), naphtha, etc. are used. Especially from the viewpoint of improving the dispersibility of metal powder, alcohol-based such as α-terpineol It is preferable to use a solvent.
[0029]
Furthermore, the conductive paste can be a paste to which glass frit or ceramic frit is added in order to increase the adhesive strength to the capacitor ceramic after embedding and firing. In this case, the glass frit or ceramic frit is not particularly limited, and for example, borosilicate-based or zinc borosilicate-based glass, titania, barium titanate-based oxides such as barium titanate can be used as appropriate. .
[0030]
Such a capacitor element 7 is manufactured by the following method. First, a dielectric layer 6 made by a well-known sheet forming method, for example, BaTiO.ThreeOn the surface of the dielectric ceramic green sheet, a Ni metal paste prepared by a well-known paste preparation method is printed so as to have a predetermined shape by a screen printing method to form an unfired electrode layer, which is then laminated in a predetermined order. The laminate is obtained by pressure bonding. Then, after forming a plurality of through holes 9 at predetermined positions by laser in this laminated body, the through holes 9 are washed with water by ultrasonic cleaning. The through holes 9 are made of, for example, Ni metal powder, acrylic resin, and α-terpineol. The conductive paste is filled by screen printing. Thereafter, these are manufactured by firing at a temperature of 800 to 1600 ° C.
[0031]
The conductor filled in the through-hole 9 is removed from the organic binder resin and the solvent after firing to form the lead electrode portion 10, and the capacitor element built-in multilayer wiring at the end of the lead electrode portion 10 exposed on the surface of the capacitor element 7 It is electrically connected to the through conductor 3 and / or the wiring conductor 2 of the substrate 8.
[0032]
Further, in the present invention, it is preferable and important that the cross-sectional shape of the vertical method with respect to the electrode layer 5 of the extraction electrode portion 10 is a trapezoid. According to the multilayer wiring board 8 of the present invention, since the cross-sectional shape in the direction perpendicular to the electrode layer 5 of the extraction electrode portion 10 is trapezoidal, the through-hole 9 formed in the capacitor element 7 is filled with the conductive paste. Thus, when forming the lead electrode portion 10, the conductive paste can be satisfactorily filled by filling from the opening with the longer bottom of the through hole 9, and as a result, the filling rate of the conductive paste is increased. The resistance of the extraction electrode portion 10 can be reduced and the inductance component can be further reduced.
[0033]
The trapezoidal cross-sectional shape of the extraction electrode portion 10 is preferably 1.2 to 3 times the length of the shorter bottom side, and is less than 1.2 times the extraction electrode portion 10. There is a tendency that the through-hole 9 cannot be satisfactorily filled with the conductive paste that forms, and when it exceeds three times, the diameter of the through-hole 9 is increased and it is difficult to miniaturize the capacitor element 7. Accordingly, it is preferable that the trapezoidal cross-sectional shape of the extraction electrode portion 10 is 1.2 to 3 times the length of the shorter base side. The lead electrode portion 10 may be formed so that either the longer base or the shorter base is located on the upper surface or the lower surface of the capacitor element 7.
[0034]
Further, the surface of the capacitor element 7 preferably has a maximum value Rmax of the arithmetic average roughness R of the surface of the ceramic dielectric layer 6 larger than 0.2 μm, desirably 0.5 μm or more, and optimally 1.0 μm or more.
[0035]
According to the multilayer wiring board 8 with built-in capacitor element of the present invention, the surface of the ceramic dielectric layer 6 of the built-in capacitor element is subjected to a temperature cycle test because the maximum value Rmax of the surface roughness R is larger than 0.2 μm. Even in this case, since the adhesion between the insulating layer 1 and the capacitor element 7 is improved, the insulating layer 1 is restrained by the capacitor element 7 even if the thermal expansion coefficient of the insulating layer 1 is larger than the thermal expansion coefficient of the capacitor element 7. Thus, the stress generated due to the difference in thermal expansion coefficient is reduced, and there is no disconnection between the electrode of the capacitor element 7 and the wiring conductor 2 disposed on the surface of the insulating layer 1. If the maximum value Rmax of the surface roughness R of the ceramic dielectric layer 6 exceeds 5 μm, the capacitor element tends to be cracked or chipped. Therefore, the maximum value Rmax of the surface roughness R is set to 5 μm or less. It is preferable to keep it.
[0036]
The surface of the ceramic dielectric layer 6 on the surface of the capacitor element is formed at a stage of the green sheet laminate before firing by a method such as roughening treatment by brush polishing on the surface of the laminate or pressing a flat plate processed in advance. The surface roughness can be set to a desired surface roughness by physically baking or baking the surface of the green sheet laminated body with a laser to form a non-through hole and then firing. In addition, the ceramic material used for the ceramic dielectric layer 6 has higher heat resistance during firing and is more reactive with ceramic powder having an average particle size of 10 μm or more, or a part of the ceramic material used for the ceramic dielectric layer 6. Then, the ceramic powder having an average diameter of 10 μm or more may be adhered to the surface of the green sheet laminate so as to be partially embedded and fired to obtain a desired surface roughness. Further, the surface of the capacitor element after firing the green sheet laminate may be roughened by a physical method such as sandblasting or a chemical method such as etching.
[0037]
Next, the manufacturing method of the multilayer wiring board 8 with a built-in capacitor element according to the present invention will be described in detail with reference to FIG. FIG. 3 is a cross-sectional view for each process for manufacturing the multilayer wiring board 8 with a built-in capacitor element shown in FIG.
[0038]
First, as shown in a sectional view in FIG. 3A, an uncured precursor sheet to be the insulating layer 1 is prepared, and this precursor sheet is penetrated into a desired portion by a diameter of about 17 to 150 μm by laser processing. Hole 11 is drilled.
[0039]
Such an uncured precursor sheet that forms the insulating layer 1 is made of an organic resin material such as an epoxy resin, a bismaleimide triazine resin, a thermosetting polyphenylene ether resin, or a liquid crystal polymer resin, and improves mechanical strength. Silane and titanate coupling agents, antioxidants to improve thermal stability, light stabilizers such as UV absorbers to improve light resistance, halogens to improve flame retardancy or Phosphoric acid flame retardants, antimony compounds, flame retardant aids such as zinc borate, barium metaborate, zirconium oxide, higher fatty acids, higher fatty acid esters, higher fatty acid metal salts, fluorocarbons to improve lubricity Lubricants such as surfactants, aluminum oxide and silicon oxide for adjusting thermal expansion coefficient and / or improving mechanical strength・ Fillers such as titanium oxide, barium oxide, strontium oxide, zirconium oxide, calcium oxide, zeolite, silicon nitride, aluminum nitride, silicon carbide, aluminum borate, barium stannate, barium zirconate, strontium zirconate, or fibers You may contain base materials, such as a glass cloth etc. which woven glass-like glass into cloth shape, and the nonwoven fabric which consists of a heat resistant organic resin fiber.
[0040]
Such a precursor sheet is manufactured by the following method when, for example, a composite material of a thermosetting resin and an inorganic insulating powder is used as an insulating material. First, a mixture obtained by adding a thermosetting resin to the inorganic insulating powder described above together with a solvent so that the amount of the inorganic insulating powder is 17 to 80% by volume is obtained, and this mixture is used as a kneader (kneader) or means such as three rolls. To make a paste. Then, this paste is formed into a sheet by using a sheet forming method such as a rolling method, an extrusion method, an injection method, or a doctor blade method, and then dried by heating to a temperature at which the thermosetting resin is not completely cured. A precursor sheet to be the insulating layer 1 is manufactured. The paste is preferably prepared by adding a solvent such as toluene, butyl acetate, methyl ethyl ketone, methanol, methyl cellosolve acetate, isopropyl alcohol, methyl isobutyl ketone, or dimethylformamide to the composite material of thermosetting resin and inorganic insulating powder. The fluid having a predetermined viscosity is preferably 100 to 3000 poise depending on the sheet molding method.
[0041]
Next, as shown in a cross-sectional view in FIG. 3B, the through-hole 11 is filled with a conductive paste made of copper, silver, gold, solder, or the like by using a conventionally known screen printing method or the like. Conductor 3 is formed.
[0042]
Next, as shown in a cross-sectional view in FIG. 3C, a wiring conductor 2 to be attached to the front and back surfaces of the precursor sheet is prepared. Then, as shown in the cross-sectional view of FIG. 3D, the wiring conductor 2 is superimposed and transferred onto the front and back surfaces of the precursor sheet so that the necessary wiring conductor 2 and the through conductor 3 are electrically connected. To do.
[0043]
In this embodiment, the wiring conductor 2 is formed by a transfer method. Such a wiring conductor 2 is formed by the method described below. First, an electrolytic metal foil having a thickness of 1 to 35 μm, which is manufactured by plating or the like on the surface of a support 12 such as a release sheet and is made of one or more alloys selected from copper, gold, silver, aluminum and the like. And a resist layer is formed on the surface so as to be a mirror image pattern of a desired wiring pattern, and then a mirror image wiring conductor 2 of a predetermined wiring pattern is formed by etching and resist removal. Next, the deposition of the wiring conductor 2 on the front and back surfaces of the precursor sheet is performed by superimposing the support 12 on which the wiring conductor 2 is formed on the front and back surfaces of the precursor sheet, and then the pressure is 0.5 to 10 MPa. After pressurizing and heating at a temperature of 60 to 150 ° C., the support 12 is peeled off, so that the wiring conductor 2 is attached to the precursor sheet as shown in the sectional view of FIG. At this time, it is important that the through conductor 3 is in an uncured state that is not completely cured.
[0044]
As the support 12, known materials such as polyethylene terephthalate, polyethylene naphthalate, polyimide, polyphenylene sulfide, vinyl chloride, and polypropylene can be used. The thickness of the support 12 is suitably 10-100 μm, preferably 25-50 μm. If the thickness of the support 12 is less than 10 μm, the wiring conductor 2 formed by deformation or bending of the support 12 is likely to break, and if the thickness exceeds 100 μm, the flexibility of the support 12 is lost. There is a tendency that peeling of the support 12 becomes difficult. In addition, in order to form the electrolytic metal foil on the surface of the support 12, a known adhesive such as acrylic, rubber, silicon, or epoxy may be used.
[0045]
Then, as shown in a sectional view in FIG. 3 (f), a plurality of precursor sheets manufactured through the steps (a) to (f) and the capacitor element 7 are prepared, and then the extraction electrode portion Position and place the tip of 10 through conductor 3 and wiring conductor 2 and stack precursor sheets, hot for 30 minutes to 24 hours under conditions of temperature 150 to 300 ° C and pressure 0.5 to 10 MPa The precursor sheet and the conductive paste are completely cured by pressing to complete the capacitor element built-in multilayer wiring board 8 of the present invention shown in a sectional view in FIG.
[0046]
Further, the cavity 4 for accommodating the capacitor element 7 may be formed by a laser method or a punching method at a location where the capacitor element 7 of the precursor sheet is accommodated before the precursor sheet is laminated.
[0047]
The multilayer wiring board 8 with a built-in capacitor element according to the present invention is not limited to the above-described embodiments, and various modifications are possible without departing from the gist of the present invention. Then, the multilayer wiring substrate 8 with a built-in capacitor element is manufactured by laminating the three insulating layers 1, but the multilayer wiring substrate 8 with a built-in capacitor may be fabricated by laminating four or five or more insulating layers. In the above-described embodiment, the insulating layer including the capacitor is one layer, but may be two layers (including a continuous layer) or more.
[0048]
Furthermore, the number of lead electrode portions 10 formed in the built-in capacitor element 7 may be two or more per electrode.
[0049]
【The invention's effect】
According to the multilayer wiring board with a built-in capacitor element of the present invention, the capacitor element has a lead electrode portion in which a conductor is filled in a through-hole penetrating in a vertical direction with respect to a large number of electrode layers. Since a large number of electrode layers and the through conductors and / or wiring conductors of the multilayer wiring board are electrically connected via the wiring, it is not necessary to print end face electrodes or surface electrodes on the capacitor element, thereby simplifying the process. In addition, since a fine lead electrode having a diameter of several tens of μm can be easily formed, the capacitor element can be made small, and the multilayer wiring board with a built-in capacitor element can be miniaturized.
[0050]
In addition, it is not necessary to provide an end face electrode on the side surface of the capacitor element and route the electrode, and the lead electrode can be formed at the shortest distance immediately above the electrode layer, so that the inductance component can be reduced and the high frequency Even in the region, it can be made excellent in electrical characteristics with small power source noise.
[0051]
Furthermore, since the cross-sectional shape in the direction perpendicular to the electrode layer of the lead electrode portion of the capacitor element is trapezoidal, the lead electrode portion is formed by filling the through holes formed in the capacitor element with solder or conductive paste. In this case, the solder or conductive paste can be satisfactorily filled by filling from the long side of the through hole, and as a result, the resistance of the lead electrode portion is smaller and the inductance component is smaller. can do.
[0052]
Furthermore, in the above configuration, since the maximum value of the surface roughness of the ceramic dielectric layer surface of the built-in capacitor element is larger than 0.2 μm, the adhesion between the insulating layer and the capacitor element becomes strong, and the temperature cycle test is performed. Even if stress occurs due to the difference in thermal expansion coefficient between the two, the insulating layer is constrained by the capacitor element, and the capacitor element electrode and the wiring conductor disposed on the surface of the insulating layer are separated. And there is no disconnection.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a multilayer wiring board with a built-in capacitor element according to the present invention.
FIG. 2 is a cross-sectional view showing an example of an embodiment of a capacitor element built in a multilayer wiring board with a built-in capacitor element of the present invention.
FIGS. 3A to 3G are cross-sectional views for each step for explaining a method of manufacturing a multilayer wiring board with a built-in capacitor element according to the present invention.
[Explanation of symbols]
1 ... Insulating layer
2 .... Wiring conductor
3 ... Penetration conductor
4 ..... Cavity
5 ... ・ ・ ・ ・ ・ Electrode layer
6 ..... Ceramic dielectric layer
7 ・ ・ ・ ・ ・ ・ ・ ・ Capacitor element
8 ······· Capacitor element built-in multilayer wiring board
9 ・ ・ ・ ・ ・ ・ ・ ・ ・ Through hole
10 ・ ・ ・ ・ ・ ・ ・ ・ Extraction electrode part

Claims (8)

有機材料により形成された複数の絶縁層と、これら絶縁層の表面に形成される配線導体と、前記配線導体と電気的に接続され、前記絶縁層を厚み方向に貫通する複数の貫通導体と、を有する多層配線基板と、
多数の電極層およびセラミックにより形成された誘電体層を交互に積層して成る積層体と、前記積層体を積層方向に貫通する複数の貫通孔に導体が充填されて成る第1、第2の引き出し電極部と、を有するコンデンサ素子と、を備え、
前記多層配線基板は、前記絶縁層の少なくとも一層に前記コンデンサ素子が内蔵される空洞部を有し
記コンデンサ素子の最上層及び最下層に位置する前記誘電体層の表面が、前記多層配線基板の前記絶縁層の主面と略同一面上に位置しており、
前記貫通導体の一つは前記第1の引き出し電極部の直上に位置して該第1の引き出し電極部と接続され、前記貫通導体の他の一つは前記第2の引き出し電極部と重ならない位置に配されるとともに前記略同一面上に存在する前記配線導体を介して前記第2の引き出し電極部と接続されていることを特徴とするコンデンサ素子内蔵多層配線基板。
A plurality of insulating layers formed of an organic material, wiring conductors formed on the surfaces of these insulating layers, a plurality of through conductors electrically connected to the wiring conductors and penetrating the insulating layer in the thickness direction; A multilayer wiring board having
A laminated body in which a large number of electrode layers and dielectric layers made of ceramic are alternately laminated, and a first and a second in which conductors are filled in a plurality of through holes that penetrate the laminated body in the laminating direction . A capacitor element having a lead electrode portion,
The multilayer wiring board has a cavity in which the capacitor element is built in at least one layer of the insulating layer ,
The top layer and the surface of the dielectric layer located in the lowermost layer of the front Symbol capacitor element located in the multilayer wiring board wherein an insulating layer of the main surface and substantially coplanar, and
One of the through conductors is located immediately above the first lead electrode portion and is connected to the first lead electrode portion, and the other one of the through conductors does not overlap the second lead electrode portion. A multilayer wiring board with a built-in capacitor element, wherein the multilayer wiring board has a capacitor element and is connected to the second lead electrode portion via the wiring conductor that is disposed at a position and is substantially on the same plane .
前記第1の引き出し電極部と前記第2の引き出し電極部とは異なる電極層にそれぞれ接続されていることを特徴とする請求項1に記載のコンデンサ素子内蔵多層基板。2. The multilayer substrate with a built-in capacitor element according to claim 1, wherein the first lead electrode portion and the second lead electrode portion are respectively connected to different electrode layers. 有機材料により形成された複数の絶縁層と、これら絶縁層の表面に形成される配線導体と、前記配線導体と電気的に接続され、前記絶縁層を厚み方向に貫通する複数の貫通導体と、を有する多層配線基板と、A plurality of insulating layers formed of organic materials, wiring conductors formed on the surfaces of these insulating layers, a plurality of through conductors electrically connected to the wiring conductors and penetrating the insulating layer in the thickness direction; A multilayer wiring board having
多数の電極層およびセラミックにより形成された誘電体層を交互に積層して成る積層体と、前記積層体を積層方向に貫通する貫通孔に導体が充填されて成る引き出し電極部と、を有するコンデンサ素子と、を備え、A capacitor having a laminated body in which a large number of electrode layers and dielectric layers made of ceramic are alternately laminated, and a lead electrode portion in which a through hole penetrating the laminated body in the laminating direction is filled with a conductor An element,
前記多層配線基板は、前記絶縁層の少なくとも一層に前記コンデンサ素子が内蔵される空洞部を有し、The multilayer wiring board has a cavity in which the capacitor element is built in at least one layer of the insulating layer,
前記コンデンサ素子の最上層及び最下層に位置する前記誘電体層の表面が、前記多層配線基板の前記絶縁層の主面と略同一面上に位置しており、The surface of the dielectric layer located in the uppermost layer and the lowermost layer of the capacitor element is located on substantially the same plane as the main surface of the insulating layer of the multilayer wiring board,
前記貫通導体の一つは前記引き出し電極部と対応する箇所に位置して該引き出し電極部の一方端と接続され、前記貫通導体の他の一つは前記引き出し電極部と重ならない位置に配されるとともに前記略同一面上に存在する前記配線導体を介して前記引き出し電極部の他方端と接続されていることを特徴とするコンデンサ素子内蔵多層配線基板。One of the through conductors is located at a position corresponding to the lead electrode portion and connected to one end of the lead electrode portion, and the other one of the through conductors is arranged at a position not overlapping the lead electrode portion. And a capacitor element built-in multilayer wiring board, which is connected to the other end of the lead electrode portion through the wiring conductor existing on the substantially same plane.
請求項1乃至請求項3のいずれかに記載のコンデンサ素子内蔵多層配線基板において、
前記コンデンサ素子の最表面に位置する前記誘電体の表面は、前記多層配線基板の前記空洞部を構成する前記絶縁層に対して密着していることを特徴とするコンデンサ素子内蔵多層配線基板。
In the multilayer wiring board with a built-in capacitor element according to any one of claims 1 to 3,
The multilayer wiring board with a built-in capacitor element, wherein the surface of the dielectric located on the outermost surface of the capacitor element is in close contact with the insulating layer constituting the cavity of the multilayer wiring board.
請求項1乃至請求項4のいずれかに記載のコンデンサ素子内蔵多層配線基板において、
前記コンデンサ素子の側面は、前記多層配線基板の前記空洞部を構成する前記絶縁層に対して密着していることを特徴とするコンデンサ素子内蔵多層配線基板。
In the multilayer wiring board with a built-in capacitor element according to any one of claims 1 to 4,
The capacitor element-embedded multilayer wiring board, wherein the side surface of the capacitor element is in intimate contact with the insulating layer constituting the cavity of the multilayer wiring board.
請求項1乃至請求項5のいずれかに記載のコンデンサ素子内蔵多層配線基板において、
前記コンデンサ素子の前記積層体の表面は、表面粗さの最大値が0.2μmより大きいことを特徴とするコンデンサ素子内蔵多層配線基板。
In the multilayer wiring board with a built-in capacitor element according to any one of claims 1 to 5,
The multilayer wiring board with a built-in capacitor element, wherein the surface of the multilayer body of the capacitor element has a maximum surface roughness greater than 0.2 μm.
請求項1乃至請求項6のいずれかに記載のコンデンサ素子内蔵多層配線基板において、
前記引き出し電極部の前記電極層に対して垂直方向の断面形状が台形状であることを特徴とするコンデンサ素子内蔵多層配線基板。
In the multilayer wiring board with a built-in capacitor element according to any one of claims 1 to 6,
A multilayer wiring board with a built-in capacitor element, wherein a cross-sectional shape in a direction perpendicular to the electrode layer of the extraction electrode portion is trapezoidal.
請求項1乃至請求項7のいずれかに記載のコンデンサ素子内蔵多層配線基板において、
前記貫通導体と、前記コンデンサ素子の前記引き出し電極部とが、略直線状に配列されることを特徴とするコンデンサ素子内蔵多層配線基板。
In the multilayer wiring board with a built-in capacitor element according to any one of claims 1 to 7,
The multilayer wiring board with a built-in capacitor element, wherein the through conductor and the lead electrode portion of the capacitor element are arranged substantially linearly.
JP2001333281A 2001-10-30 2001-10-30 Multi-layer wiring board with built-in capacitor element Expired - Fee Related JP4051194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001333281A JP4051194B2 (en) 2001-10-30 2001-10-30 Multi-layer wiring board with built-in capacitor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001333281A JP4051194B2 (en) 2001-10-30 2001-10-30 Multi-layer wiring board with built-in capacitor element

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2006076657A Division JP4429282B2 (en) 2006-03-20 2006-03-20 Manufacturing method of wiring board with built-in capacitor element
JP2006076656A Division JP4936756B2 (en) 2006-03-20 2006-03-20 Manufacturing method of ceramic capacitor element for built-in multilayer wiring board

Publications (3)

Publication Number Publication Date
JP2003142830A JP2003142830A (en) 2003-05-16
JP2003142830A5 JP2003142830A5 (en) 2006-05-18
JP4051194B2 true JP4051194B2 (en) 2008-02-20

Family

ID=19148575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001333281A Expired - Fee Related JP4051194B2 (en) 2001-10-30 2001-10-30 Multi-layer wiring board with built-in capacitor element

Country Status (1)

Country Link
JP (1) JP4051194B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4544909B2 (en) * 2003-05-28 2010-09-15 京セラ株式会社 Manufacturing method of multilayer ceramic electronic component
JP4457779B2 (en) * 2004-06-30 2010-04-28 Tdk株式会社 Semiconductor IC built-in substrate
KR100674842B1 (en) 2005-03-07 2007-01-26 삼성전기주식회사 Print Circuit Board Having the Embedded Multilayer Chip Capacitor
KR100979066B1 (en) * 2006-11-22 2010-08-30 가부시키가이샤 무라타 세이사쿠쇼 Multilayer electronic device and method for manufacturing the same
KR101452130B1 (en) 2013-08-30 2014-10-16 삼성전기주식회사 Embedded multilayer ceramic electronic part and print circuit board having embedded multilayer ceramic electronic part

Also Published As

Publication number Publication date
JP2003142830A (en) 2003-05-16

Similar Documents

Publication Publication Date Title
JP5095398B2 (en) Multilayer printed wiring board
JP4773531B2 (en) Wiring board and manufacturing method thereof
JP2010087499A (en) Method of manufacturing capacitor device
JP2012033968A (en) Printed wiring board and method of manufacturing the same
JP2005072328A (en) Multilayer wiring board
JP2006222440A (en) Capacitor element
JP4530605B2 (en) Multi-layer wiring board with built-in capacitor element
JP4051194B2 (en) Multi-layer wiring board with built-in capacitor element
JP2009043769A (en) Wiring substrate with built-in capacitor, its manufacturing method, and capacitor with support
JP4718314B2 (en) Dielectric laminated structure, manufacturing method thereof, and wiring board
JP2003188048A (en) Capacitor element and multilayer wiring board having built-in capacitor element
JP4903320B2 (en) Manufacturing method of wiring board with electronic element
JP2006210536A (en) Method of manufacturing electronic component and wiring board therewith
JP2005019686A (en) Multilayer circuit board incorporating capacitor element
JP4772132B2 (en) Multi-layer wiring board with built-in capacitor element
JP2003198139A (en) Capacitor element built-in type multilayer wiring board
JP4936756B2 (en) Manufacturing method of ceramic capacitor element for built-in multilayer wiring board
JP2004172305A (en) Multilayer wiring board
JP2004119732A (en) Multilayer wiring board with built-in capacitor
JP2004172412A (en) Capacitor element and multilayer wiring board with built-in capacitor element
JP4467612B2 (en) Multi-layer wiring board with built-in capacitor element
JP4429282B2 (en) Manufacturing method of wiring board with built-in capacitor element
JP4429375B2 (en) Manufacturing method of wiring board with built-in capacitor element
JP4511511B2 (en) Manufacturing method of multilayer wiring board with built-in capacitor element
JP5038360B2 (en) Manufacturing method of multilayer wiring board with built-in capacitor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071203

R150 Certificate of patent or registration of utility model

Ref document number: 4051194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees