JP4505032B2 - スパッタリング装置 - Google Patents

スパッタリング装置 Download PDF

Info

Publication number
JP4505032B2
JP4505032B2 JP2008252312A JP2008252312A JP4505032B2 JP 4505032 B2 JP4505032 B2 JP 4505032B2 JP 2008252312 A JP2008252312 A JP 2008252312A JP 2008252312 A JP2008252312 A JP 2008252312A JP 4505032 B2 JP4505032 B2 JP 4505032B2
Authority
JP
Japan
Prior art keywords
target
sputtering
shutter plate
shutter
targets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008252312A
Other languages
English (en)
Other versions
JP2009041108A (ja
Inventor
秀二 野村
歩 三好
洋 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Priority to JP2008252312A priority Critical patent/JP4505032B2/ja
Publication of JP2009041108A publication Critical patent/JP2009041108A/ja
Application granted granted Critical
Publication of JP4505032B2 publication Critical patent/JP4505032B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明は、多元スパッタ成膜装置に関し、特に、単一チャンバ内に材質の異なる複数のターゲットを備えかつ二重回転シャッタ機構を利用して多層膜をスパッタ成膜する多元スパッタ成膜装置でクロスコンタミネーションの防止に好適な二重シャッタ制御方法に係るスパッタリング装置に関する。
本出願人は先に磁性多層膜作製装置を提案した(特許文献1および特許文献2)。なお特許文献2は、特許文献1に係る日本出願を基礎とする米国出願の公開公報である。この磁性多層膜作製装置では、GMR素子やTMR素子から成る磁気ヘッドやMRAM等の生産において、必要とされる多層膜を、1つの成膜チャンバ内において基板上の最下層から最上層まで中断することなく継続して連続的にスパッタ成膜することができ、一度に多数の磁性膜を堆積させることができる。
上記のような多層膜のスパッタ成膜を行えるようにするために、当該成膜装置では、1つのチャンバ内に例えば5つの材質の異なるターゲットをチャンバ天井部、すなわち成膜対象である基板の上方空間に配置し、かつスパッタ成膜に使用するターゲットを選択するためのシャッタ機構を設けている。このシャッタ機構は、それぞれ独立に回転する二重シャッタの構造を有し、2枚のシャッタ板の各々には、基板側から見て、選択したターゲットを見ることができる所要数の孔が所要位置に形成されている。二重回転シャッタ機構は、成膜しない材質のターゲットはシールドし、スパッタ成膜しようとするターゲットは上記孔を通して基板に対して現われることになる。二重回転シャッタ機構では、平行に配置された、基板から見てほぼ円形状の2つのシャッタ板を独立に回転させることにより、各シャッタ板の孔の位置の一致・不一致を選択して、成膜すべき材料のターゲットが孔を通して基板に臨めるようにし、スパッタ成膜に使用するターゲットを選択するために使用される。
上記の多層膜作製装置は、1つのスパッタ成膜チャンバ内に材質の異なる複数のターゲットを備え、基板上に異なる材質の膜を順次に堆積して多層膜を形成する多元スパッタ成膜装置である。この多元スパッタ成膜装置では、上記のごとく、1つのスパッタ成膜チャンバ内で材質の異なる5つのターゲットを二重回転シャッタ機構で適宜にシールドしつつかつスパッタ成膜すべきターゲットを選択し、予め設定された成膜順序に従ってスパッタ成膜処理を行う。
材質の異なる複数のターゲットを二重回転シャッタ機構で選択して特定の順序でスパッタ成膜するとき、ターゲット間でクロスコンタミネーションを生じる可能性がある。
例えば上記スパッタ成膜では、スパッタ成膜をしようとするターゲットについて、シャッタ機構で覆った状態で放電を発生させてスパッタ状態を開始する「プリスパッタ」の状態と、シャッタ機構を完全に開いた状態にして基板に対してスパッタ成膜を行う「本スパッタ」の状態とが存在する。このとき、(1)シャッタ板のターゲットに対向した面に堆積した異種物質がプリスパッタ時のスパッタ作用でターゲット表面に付着する、(2)本スパッタ時にターゲット表面に付着した異種物質が基板へスパッタされる、あるいは(3)本スパッタの最中に基板から反跳したスパッタ原子が他のターゲット表面に付着する等によって、上記クロスコンタミネーションが生じることになる。プリスパッタから本スパッタに移行するため、プリスパッタ用のシャッタを回転して本スパッタに移行するときに、シャッタ板回転中に異種の物質の堆積した箇所を通過すると、(1)で述べたコンタミネーションが起り、顕著な問題となる。
膜性能の良好な多層膜を基板上に堆積させるためには、上記のような各種のクロスコンタミネーションを防止することが必須となる。
ところで、特許文献2に開示された構成によれば、さらにその図5(A)と図5(B)において二重回転シャッタ機構における1つの動作方法が示されている。ターゲット側の第1シャッタ板と基板側の第2シャッタ板の位置合わせで、最初の状態では、スパッタ成膜しようとするターゲットに第2シャッタ板の孔を位置合わせし、シャッタ1は、成膜しようとするターゲットから外れた位置に孔を位置合わせし、プリスパッタが開始される。当該プリスパッタはターゲットの表面の酸化物等の表面汚染物を除去するためのスパッタリングである。次に、第1シャッタ板を回転させてその孔を第2シャッタ板の孔に一致させ、成膜すべきターゲットを基板に対して露出させ、基板に対して本スパッタを行う。本スパッタは成膜のための本来のスパッタリングである。このように、本スパッタを行うときには、成膜すべきターゲットのみが、本スパッタ時のみに基板に対して露出させることにより、他のターゲットの材料が混入するのを防止し、もってクロスコンタミネーションを防止するための二重回転シャッタ機構の動作が示される。
しかしながら、前述したようにクロスコンタミネーションの発生はターゲットの数や孔の数等の状況に応じて複雑な現象であり、各種のクロスコンタミネーションが発生する。また特許文献2のシャッタ板の回転動作の方法では、プリスパッタの際のシャッタ板にターゲット材料の扱いについてはまったく議論されていない。以上のごとく、特許文献2に開示された二重回転シャッタ機構の動作方法だけでは、発生する可能性のあるクロスコンタミネーションに対して十分に対応できるものではない。
特開平2002−167661号公報(特願2000−365696号) 米国特許出願公開公報2002/0064595
本発明の課題は、単一のスパッタ成膜チャンバ内に材質の異なる複数のターゲットを備えて基板上に多層膜をスパッタ成膜すると共に、複数のターゲットの成膜空間側に成膜時のターゲットを選択するための二重回転シャッタ機構を備える多元スパッタ成膜装置で、多層膜の成膜順序に従って二重シャッタに付着するターゲット物質が他のターゲットを汚染するのを防止するように、二重のシャッタ板のシールド動作の順序を最適に制御しようとするものである。
本発明の目的は、上記の課題に鑑み、1つのチャンバ内に複数のターゲットを備えて多層膜をスパッタ成膜しかつ二重回転シャッタ機構でターゲットの選択を行うようにした多元スパッタ成膜装置で、シャッタ板に付着するターゲット物質等に起因してターゲット間にクロスコンタミネーションが生じることを防止できる多元スパッタ成膜装置の二重シャッタ制御方法を実施するためのスパッタリング装置を提供することにある。
本発明の第は、スパッタリング用成膜チャンバ、
前記スパッタリング用成膜チャンバ内に位置し、基板を載置するための基板ホルダ、
前記スパッタリング用成膜チャンバ内に位置し、第1ターゲット及び該第1ターゲットと相違する物質からなる第2ターゲットを載置するためのターゲット載置手段、並びに、
前記スパッタリング用成膜チャンバ内に位置したシャッタ機構であって、スパッタリング時のスパッタ粒子を通過させる通過箇所と、該スパッタ粒子を遮断する遮断箇所とからなる第1及び第2シャッタ板を有する二重シャッタ板、並びに、該第1シャッタ板と第2シャッタ板とを独立に回転駆動させる回転駆動手段を有するシャッタ機構を備え、
前記シャッタ機構は、更に、
前記第1シャッタ板を回転し、前記第1シャッタ板の遮断箇所で前記第1ターゲットと前記基板との間を遮断し、前記第1ターゲットをスパッタする第1のスパッタ工程を行い、その後に、前記第1および第2のシャッタ板の前記通過箇所を通して、前記第1ターゲットと前記基板とが位置合わせされた状態で前記第1ターゲットをスパッタする第2のスパッタ工程を行い、さらにその後、前記第1のスパッタ程を行う際、前記第1シャッタ板における前記第1ターゲットの材料が付着された箇所が前記第1ターゲットの対向位置になるように前記第1シャッタ板を回転するための、前記回転駆動手段の回転角度を制御する制御手段を有する、ことを特徴とするスパッタリング装置である。
本発明の第は、スパッタリング用成膜チャンバ、
前記スパッタリング用成膜チャンバ内に位置し、基板を載置するための基板ホルダ、
前記スパッタリング用成膜チャンバ内に位置し、第1ターゲット及び該第1ターゲットと相違する物質からなる第2ターゲットを載置するためのターゲット載置手段、並びに、
前記スパッタリング用成膜チャンバ内に位置したシャッタ機構であって、スパッタリング時のスパッタ粒子を通過させる通過箇所と、該スパッタ粒子を遮断する遮断箇所とからなる第1及び第2シャッタ板を有する二重シャッタ板、並びに、該第1シャッタ板と第2シャッタ板とを独立に回転駆動させる回転駆動手段を有するシャッタ機構を備え、
前記シャッタ機構は、更に、
前記第1シャッタ板を回転し、前記第1シャッタ板の遮断箇所で前記第1ターゲットと前記基板との間を遮断し、前記第1ターゲットをスパッタする第1のスパッタ工程を行い、その後に、前記第1および第2のシャッタ板の前記通過箇所を通して、前記第1ターゲットと前記基板とが位置合わせされた状態で前記第1ターゲットをスパッタする第2のスパッタ工程を行い、さらにその後、前記第1のスパッタ程を行う際、前記第1シャッタ板における前記第1ターゲットの材料が付着された箇所が前記第1ターゲットの対向位置になるように前記第1シャッタ板を回転し、さらにその後に、前記第1のスパッタ工程から前記第2のスパッタ工程へ移行するとき、前記第1シャッタ板における前記第1のターゲットの材料と異なる材料の付着箇所が前記第1のターゲットに対向して通過しないように前記第1シャッタ板を回転するための、前記回転駆動手段の回転角度を制御する制御手段を有する、ことを特徴とするスパッタリング装置である。
本発明の第は、スパッタリング用成膜チャンバ、
前記スパッタリング用成膜チャンバ内に位置し、基板を載置するための基板ホルダ、
前記スパッタリング用成膜チャンバ内に位置し、第1ターゲット及び該第1ターゲットと相違する物質からなる第2ターゲットを載置するためのターゲット載置手段、並びに、
前記スパッタリング用成膜チャンバ内に位置したシャッタ機構であって、スパッタリング時のスパッタ粒子を通過させる通過箇所と、該スパッタ粒子を遮断する遮断箇所とからなる第1及び第2シャッタ板を有する二重シャッタ板、並びに、該第1シャッタ板と第2シャッタ板とを独立に回転駆動させる回転駆動手段を有するシャッタ機構を備え、
前記シャッタ機構は、更に、
前記第1シャッタ板を回転し、前記第1シャッタ板の遮断箇所で前記第1ターゲットと前記基板との間を遮断し、前記第1ターゲットをスパッタする第1のスパッタ工程を行い、その後に、前記第1および第2のシャッタ板の前記通過箇所を通して、前記第1ターゲットと前記基板とが位置合わせされた状態で前記第1ターゲットをスパッタする第2のスパッタ工程を行い、さらにその後、前記第1シャッタ板の遮断箇所で前記第2ターゲットと前記基板との間を遮断し、前記第2ターゲットをスパッタする第3のスパッタ工程を行う際、前記第1シャッタ板における前記第1ターゲットの材料が付着された箇所が前記第2ターゲットの対向位置にならないように前記第1シャッタ板を回転するため、前記回転駆動手段の回転角度を制御する制御手段を有する、ことを特徴とするスパッタリング装置である。
本発明の第は、スパッタリング用成膜チャンバ、
前記スパッタリング用成膜チャンバ内に位置し、基板を載置するための基板ホルダ、
前記スパッタリング用成膜チャンバ内に位置し、第1ターゲット及び該第1ターゲットと相違する物質からなる第2ターゲットを載置するためのターゲット載置手段、並びに、
前記スパッタリング用成膜チャンバ内に位置したシャッタ機構であって、スパッタリング時のスパッタ粒子を通過させる通過箇所と、該スパッタ粒子を遮断する遮断箇所とからなる第1及び第2シャッタ板を有する二重シャッタ板、並びに、該第1シャッタ板と第2シャッタ板とを独立に回転駆動させる回転駆動手段を有するシャッタ機構を備え、
前記シャッタ機構は、更に、
前記第1シャッタ板を回転し、前記第1シャッタ板の遮断箇所で前記第1ターゲットと前記基板との間を遮断し、前記第1ターゲットをスパッタする第1のスパッタ工程を行い、その後に、前記第1および第2のシャッタ板の前記通過箇所を通して、前記第1ターゲットと前記基板とが位置合わせされた状態で前記第1ターゲットをスパッタする第2のスパッタ工程を行い、さらにその後、前記第1シャッタ板の遮断箇所で前記第2ターゲットと前記基板との間を遮断し、前記第2ターゲットをスパッタする第3のスパッタ工程を行う際、前記第1シャッタ板における前記第1ターゲットの材料が付着された箇所が前記第2ターゲットの対向位置にならないように前記第1シャッタ板を回転し、さらにその後に、前記第3のスパッタ工程から前記第1および第2のシャッタ板の前記通過箇所を通して、前記第2ターゲットと前記基板とが位置合わせされた状態で前記第2ターゲットをスパッタする第4のスパッタ工程へ移行するとき、前記第1シャッタ板における前記第2のターゲットの材料と異なる材料の付着箇所が前記第2のターゲットに対向して通過しないように前記第1シャッタ板を回転するための、前記回転駆動手段の回転角度を制御する制御手段を有する、ことを特徴とするスパッタリング装置。
本発明のスパッタリング装置に係る二重シャッタ制御方法は、上記目的を達成するために、次のように構成される。
第1の本発明に係る二重シャッタ制御方法:この二重シャッタ制御方法は、単一のチャンバ内に設けられた少なくとも3つのターゲットと、これらのターゲットに対して配備され、独立に回転しかつ所定位置に孔が形成された第1および第2のシャッタ板を有する二重回転シャッタ機構とを備える多元スパッタ成膜装置において、第1シャッタ板および第2シャッタ板の孔の組合せで少なくとも3つのターゲットからスパッタ成膜するターゲットを選択し、選択されたターゲットに対して放電を継続しプリスパッタ工程と本スパッタ工程を行って基板に膜を堆積させる方法で実施される上記二重回転シャッタ機構のシャッタ制御方法である。この二重シャッタ制御方法では、プリスパッタ工程で選択されたターゲットを第1シャッタ板で覆いかつ第2シャッタ板で基板に対して露出可能とし、本スパッタ工程で選択されたターゲットを第1シャッタ板で基板に対して露出可能にするように、第1シャッタ板を回転動作させ、さらに、プリスパッタ工程を行う時、選択されたターゲットを覆う第1シャッタ板の対向箇所の付着物は、選択されたターゲットの物質と同じ物質となるように、かつプリスパッタを行う第1シャッタの位置がシャッタ板の孔に隣接した位置になるように、第1シャッタ板の回転動作を制御する。
上記の二重シャッタ制御方法では、プリスパッタ時にスパッタ成膜対象として選択された特定のターゲットやその他のターゲットを第1シャッタ板で覆い、本スパッタの時に第1シャッタ板を回転させ、その1つの孔で当該選択されたターゲットを基板側に露出させる。ターゲットに近い第1シャッタ板のプリスパッタ時および本スパッタ時の回転動作について、プリスパッタの放電時に第1シャッタ板のターゲット側の面に複数のターゲットの各物質が付着するが、プリスパッタ中、およびプリスパッタから本スパッタに移行する時に、選択されたターゲットの前に他のターゲットの物質が堆積した箇所が存在しないように第1シャッタ板の回転動作が制御される。これによって、プリスパッタ時にスパッタ成膜しようとするターゲットの表面に他のターゲット物質が付着するのを防止でき、本スパッタ時にクロスコンタミネーションが発生するのを防止することができる。
第2の二重シャッタ制御方法は、好ましくは、放電時に第1シャッタ板における選択されたターゲットと異なる物質を付着した箇所が、選択されたターゲット放電中に対向しないように、第1シャッタ板および第2シャッタ板の回転動作を制御することを特徴とする。プリスパッタ工程等の放電時に、第1シャッタ板が回転するとき、スパッタ成膜対象として選択されたターゲットの対向面位置を、第1シャッタ板に付着した他のターゲット物質が通過しない限り、クロスコンタミネーションの発生を避けることができる。プリスパッタから本スパッタに移行するため、プリスパッタ用のシャッタを回転して本スパッタに移行するときに、シャッタ板回転中に異種の物質の堆積した箇所を通過すると、(1)で述べたコンタミネーションが起り、顕著な問題となる。
第3の二重シャッタ制御方法は、好ましくは、本スパッタの時には、基板から見て、第1および第2のシャッタ板の孔を通して、選択されたターゲットのみが露出することで特徴づけられる。本スパッタが行われる際には、選択されたターゲットはスパッタされ、スパッタされたターゲット物質の粒子は第1シャッタ板および第2シャッタ板の各孔を通して基板に向かって移動し、基板の表面に堆積することになる。
第4の二重シャッタ制御方法は、好ましくは、単スパッタの場合には、選択された1つのターゲットが露出することで特徴づけられる。単スパッタの場合には1つのターゲットで与えられる物質のみを基板に堆積させるので、基板側から見て選択された1つのターゲットが第1および第2のシャッタ板の孔を通して覗くことになる。
第5の二重シャッタ制御方法は、好ましくは、CO−スパッタの場合には、選択された少なくとも2つのターゲットが露出することで特徴づけられる。CO−スパッタの場合には、物質の異なる2種類のターゲットを同時にスパッタすることにより基板上に膜を堆積させることになるので、基板側から見て選択された少なくとも2つのターゲットが第1および第2のシャッタ板の孔を通して覗くことになる。
第6の二重シャッタ制御方法は、好ましくは、複数のターゲットの数が偶数個(n:n>3)であるとき、第1シャッタ板の孔の数はn/2であることで特徴づけられる。
第7の二重シャッタ制御方法は、好ましくは、複数のターゲットの数が奇数個(n:n≧3)であるとき、第1シャッタ板の孔の数は(n/2)+1であることで特徴づけられる。
他の観点に基づく本発明に係る第8の二重シャッタ制御方法は、チャンバ内に設けられた種類の異なる5つのターゲットと、5つのターゲットに対して配備され、独立に回転しかつそれぞれ2つの孔が形成された第1および第2のシャッタ板を有する二重回転シャッタ機構とを備える多元スパッタ成膜装置で、第1シャッタ板および第2シャッタ板の孔の組合せで5つのターゲットからスパッタ成膜するターゲットを2つまたは1つを適宜に選択し、選択された前記ターゲットに対して放電を継続しプリスパッタ工程と本スパッタ工程を行って基板に膜を堆積させCO−スパッタまたは単スパッタを行う方法であり、上記のCO−スパッタと単スパッタにおいて、プリスパッタ工程による第1および第2のシャッタ板での膜の付着については同じ箇所に同じターゲット物質を付着させるように第1および第2のシャッタ板を動作させ、これによりCO−スパッタと単スパッタを1つのチャンバ装置で行うようにする二重シャッタ制御方法である。
上記の二重シャッタ制御方法では、1つのスパッタ成膜チャンバで、CO−スパッタのプリスパッタ工程時および単スパッタのプリスパッタ工程時のそれぞれで第1シャッタ板と第2シャッタ板の同じ箇所に同じ物質による付着物が付着するようにし、これによりクロスコンタミネーションを生じることなくCO−スパッタと単スパッタを行うことが可能となる。
第9の二重シャッタ制御方法は、好ましくは、上記のCO−スパッタと単スパッタのうちCO−スパッタが優先されるように第1および第2のシャッタ板の各動作が制御されることで特徴づけられる。
第10の二重シャッタ制御方法は、好ましくは、先にCO−スパッタが実行され、その後単スパッタが実行されることで特徴づけられる。
第11の二重シャッタ制御方法は、好ましくは、本スパッタの時には、基板から見て、第1および第2のシャッタ板の孔を通して選択されたターゲットのみが露出することで特徴づけられる。
本発明によれば、多元スパッタ成膜装置の1つのチャンバ内に配置された複数のターゲットに対する二重回転シャッタ機構において独立に回転し得る二重シャッタの制御方法では、ターゲットに近い第1シャッタ板のプリスパッタ時および本スパッタ時の回転動作について、プリスパッタの放電時に第1シャッタ板のターゲット側の面に複数のターゲットの各物質が付着するが、プリスパッタの放電中、および放電状態を保ってプリスパッタから本スパッタに移行する時に、スパッタ対象として選択されたターゲットの前に他のターゲットの物質が堆積した箇所が存在しないように第1シャッタ板の回転動作が制御され、また第1と第2のシャッタ板の動きを切り替えてプリスパッタから本スパッタへの移行時に異種の堆積物の上を通過しないように、シャッタ板の回転動作が制御され、これによりプリスパッタ時にターゲットの表面に他のターゲット物質が付着するを防止でき、本スパッタ時にクロスコンタミネーションが発生するのを防止できる。
また本発明によれば、1つのスパッタ成膜チャンバ内に5つのターゲットを備え、かつそれぞれ所定角度の2つの孔を有する第1シャッタ板と第2シャッタ板を有すると共にこれらが独立に適宜に回転動作制御される二重回転シャッタ機構を備えるスパッタ成膜装置において、この1つの共通の装置構成でCO−スパッタと単スパッタを適宜な手順で行うことができる。
以下に、本発明の好適な実施形態(実施例)を添付図面に基づいて説明する。
最初に図1を参照して本発明に係る二重シャッタ制御方法が適用される多元スパッタ成膜装置の実施形態を示す。この多元スパッタ成膜装置は、多層膜をスパッタリングで製作する装置である。この例では、多層膜は磁性多層膜の例を示している。図1は、磁性多層膜作製装置の内部機構の概略構成が分かる程度に示された平面図である。この磁性多層膜作製装置10はクラスタ型であり、複数の成膜チャンバを備えている。ロボット搬送装置11が備えられた搬送チャンバ12が中央位置に設置されている。ロボット搬送装置11は、伸縮自在なアーム13と基板を搭載するためのハンド14とを備えている。アーム13の基端部は搬送チャンバ12の中心部12aに回転自在に取り付けられている。
磁性多層膜作製装置10の搬送チャンバ12には、ロード/アンロードチャンバ15,16が設けられている。ロード/アンロードチャンバ15によって、外部から磁性多層膜作製装置10に処理対象の基板を搬入すると共に、磁性多層膜の成膜処理が終了した基板を磁性多層膜作製装置10から外部へ搬出する。ロード/アンロードチャンバ16も同じ機能を有し、ロード/アンロードチャンバ16を経由して搬入された基板は、同チャンバから搬出される。ロード/アンロードチャンバを2つ設けた理由は、2つのチャンバを交互に使い分けることにより、生産性を高めるためである。
この磁性多層膜作製装置10では、搬送チャンバ12の周囲に、3つの成膜チャンバ17A,17B,17Cと、1つの酸化膜成膜チャンバ18と、1つのクリーニングチャンバ19とが設けられている。2つのチャンバの間には、両チャンバを隔離し、かつ必要に応じて開閉自在なゲートバルブ20が設けられている。なお各チャンバには真空排気機構、原料ガス導入機構、電力供給機構等が付設されているが、それらの図示は省略されている。
成膜チャンバ17A,17B,17Cの各々は、グループに属する複数の磁性膜を同じチャンバ内で連続して成膜するための成膜チャンバである。この実施形態によれば、基板上に堆積される磁性多層膜を下側から例えば3つのグループA,B,Cに分け、各グループごとの複数の磁性膜を1つの共通の成膜チャンバで堆積させるように構成している。これによりクラスタ型の磁性多層膜作製装置が実現されている。A,B,Cでグループ化され、各グループに属する複数の磁性膜を堆積させる成膜チャンバ17A,17B,17Cの各々ではスパッタリングを利用したPVD(Physical Vapor Deposition)法によって磁性膜を堆積する。
グループAに属する磁性膜を成膜する成膜チャンバ17Aでは、例えば4種の磁性膜のそれぞれが所定順序で連続的に堆積される。このため、成膜チャンバ17Aでは、その底部中央の基板ホルダ21上に配置された基板22に対し、天井部に、4種の磁性材料のそれぞれに対応する4つのターゲット23〜26が取り付けられている。なお図1において、成膜チャンバ17Aの内部を所要の真空状態にするため真空排気機構、ターゲット23〜26のスパッタに要する電力を供給するための機構、プラズマを生成するための機構等の図示は省略されており、このことは他の成膜チャンバ等でも同じである。
グループBに属する磁性膜を成膜する成膜チャンバ17Bでも、異なる複数種類の磁性膜のそれぞれが所定順序で連続的に堆積され、上記と同様に、その底部中央の基板ホルダ27上に配置された基板28に対し、天井部に、各種磁性材料のそれぞれに対応するターゲット29〜32が取り付けられている。
グループCに属する磁性膜を成膜する成膜チャンバ17Cでも、異なる複数種類の磁性膜のそれぞれが所定順序で連続的に堆積され、上記と同様に、その底部中央の基板ホルダ33上に配置された基板34に対し、天井部に、各種磁性材料のそれぞれに対応するターゲット35〜38が取り付けられている。
酸化膜成膜チャンバ18では金属層を酸化する表面化学反応が行われる。酸化膜成膜チャンバ18で、39は基板ホルダ、40は基板である。
クリーニングチャンバ19では、イオンビームエッチング機構とRFスパッタエッチング機構が設けられ、表面平坦化が行われる。クリーニングチャンバ19で、41は基板ホルダ、42は基板である。
上記構成を有する磁性多層膜製作装置10において、ロード/アンロードチャンバ15を通して内部に搬入された基板43は、ロボット搬送装置11によって、成膜チャンバ17A,17B,17C、酸化膜成膜チャンバ18と、クリーニングチャンバ19のそれぞれに、作製対象である磁性多層膜デバイスに応じて予め定められた順序で導入され、各チャンバでは所定の成膜やエッチング等の処理が行われる。
次に、成膜チャンバ17A〜17Cの各々に設けられる特徴的な構造を図2を参照してより詳しく説明する。図2の(A)は一例として成膜チャンバ17Cの平面図であり、(B)は特徴的構造を示す縦断面図である。図2において、図1で説明した要素と実質的に同一の要素には同一の符号を付している。
成膜チャンバ17Cの容器51の天井部52には前述の通り4つのターゲット35〜38が設けられている。これらのターゲット35〜38は天井部52において傾斜した状態にて取り付けられている。この図示例では、説明の便宜上、35〜38としてターゲットそのものを示しているが、実際のターゲットは、基板側に向かう面に開口部を有するターゲットハウジングの中に収容されている。
成膜チャンバ17Cの底面部の中央に回転自在に設けられた基板ホルダ33は基板34を水平状態にて搭載している。基板34へのスパッタ成膜のとき基板34は回転状態にある。なお基板ホルダ33上の基板34の周囲にはリング状のマグネット53が設置されている。傾斜して設けられたターゲット35〜38は、それぞれ、下方で水平に配置された基板34の上面に対して向くような姿勢にて配置されている。これらのターゲットと基板34の間には二重回転シャッタ機構54が配置されている。二重回転シャッタ機構54は独立に回転する1枚のシャッタ板を二重構造にて有している。シャッタ機構54の動作によって、4つのターゲット35〜38のうちスパッタ成膜に使用されるターゲットが選択される。かかる構成によって、スパッタされたターゲット物質の斜め入射を実現し、多層成膜において高均一な膜厚分布を達成し、かつターゲット相互の汚染や磁性膜同士で汚染が生じるのを防止している。
図3を参照して二重回転シャッタ機構54の構造と動作を、概念的に、より詳しく説明する。この図では、4つのターゲット35〜38は、説明簡略のために平行に配置した状態を示している。二重回転シャッタ機構54は、2枚のシャッタ板61,62を実質的に平行に配置し、それぞれを個別に軸63の周りに自在に回転できるように設けられている。図2(B)では、ターゲット35〜38や二重回転シャッタ機構54のシャッタ板は傾斜した姿勢で配置されているが、それぞれ互いに平行な位置関係にあるので、その点に着目して図3は示されている。
二重回転シャッタ機構54において、シャッタ板61はターゲット側シャッタ板(第1シャッタ板)であり、シャッタ板62は基板側シャッタ板(第2シャッタ板)である。シャッタ板61には例えば直径方向に並んだ2つの孔61a,61bが形成され、シャッタ板62には例えば1つの孔62aが形成されている。孔の数や位置は一例であって、後述するごとくこれに限定されるものではない。
図3に示された状態では、ターゲット38に対してシャッタ板61の孔61aとシャッタ板62の孔62aの位置を重ねることによりターゲット38を利用したスパッタ成膜が行われ、回転中の基板34の表面に所定の磁性膜を堆積させる。このときターゲット36,37は2枚のシャッタ板61,62で覆われ、スパッタされたターゲット物質が付着されるのを防止される。またターゲット35はシャッタ板61では孔61bに対向しているが、シャッタ板62で覆われているので、同様に保護される。上記のごとく、二重回転シャッタ機構54のシャッタ板61,62によれば、基板34からターゲットの方向を見れば、基板のスパッタ成膜時に露出するのは1つのターゲットのみであり、スパッタ成膜をしないターゲットはシャッタ板で覆われているので、この意味で、ターゲット間の基本的なクロスコンタミネーション防止が図られる。
図1〜図3で説明した上記の多元スパッタ成膜装置では成膜チャンバ17A〜17Cの各々に4つのターゲットを設けた例を説明したが、1つの成膜チャンバに設けられるターゲットの数は4つに限定されず、例えば5つでもまたは3つでもよい。ターゲットが5つの場合には、二重回転シャッタ機構54の各シャッタ板61,62に形成される上記孔の数も成膜の条件に応じて適宜に選択される。例えば2つのシャッタ板61,62には2つの孔が形成される。
また上記の多元スパッタ成膜装置では、基板34に堆積される多層膜の各層は、単一のターゲットによって単一のターゲット物質による膜を作る単スパッタである。しかしながら、堆積される膜については、例えば、それぞれ2つの孔が形成されたシャッタ板61,62を用いることにより、2種類のターゲットを用いて異なるターゲット物質を混入させて堆積を行うスパッタ(「CO−スパッタ」という)も行うことができる。
次に、多元スパッタ成膜装置において実施される二重シャッタ制御方法の実施例を詳述する。以下の二重シャッタ制御方法の実施例の説明では、上記のターゲットの個数や符号については、前述した多元スパッタ成膜装置の構成から離れて適宜に説明される。
この二重シャッタ制御方法は、前述した基本的なクロスコンタミネーション防止の機能に加えて、プリスパッタおよび本スパッタ等の複雑な関係の下で発生するクロスコンタミネーションを防止しようとするものである。この二重シャッタ制御方法は、前述した二重回転シャッタ機構54の2枚のシャッタ板61,62の動かし方に関して、基板34に成膜する多層膜の成膜順序に従って使用するターゲットを選択するように動かすと共に、その動きの中で、プリスパッタの放電状態と本スパッタの放電状態の発生に関連して、或るターゲットをスパッタすることが他のターゲットを汚染するというクロスコンタミネーションを防止するための制御方法である。
図4に示すごとくコントローラ71で二重回転シャッタ機構54の各シャッタ板61,62の回転動作を独立に制御することにより上記の二重シャッタ制御方法は実施される。二重回転シャッタ機構54は、2つのシャッタ板61,62のそれぞれを駆動する駆動部72,73を備える。コントローラ71は、駆動部72,73のそれぞれの動作を個別に制御する。シャッタ板61,62の各回転軸74,75は例えば同軸構造で形成されている。
ここで、図5を参照して、シャッタ板61,62へのターゲット物質の付着現象という観点から本発明に係る二重シャッタ制御方法で防止しようとするクロスコンタミネーションの現象を詳述する。図5で、(A)はプリスパッタ時を示し、(B)は本スパッタ時を示す。図5で81はスパッタ成膜に用いるターゲット、82は隣接した位置にあるスパッタしない他のターゲットである。プリスパッタ時には、ターゲット81にシャッタ板62の孔62aを一致させ、かつシャッタ板61でターゲット81を覆う。この状態で放電をを生じプリスパッタが行われる。なおスパッタしないターゲットに対しては電源が投入されず、放電は生じさせない。この例では、シャッタ板61には2つの孔61a,61bが形成され、シャッタ板62にも2つの孔62a,62bが形成されている。
従来の多元スパッタ成膜による上記二重回転シャッタ機構54の動作では、プリスパッタ時(A)において、例えば前段階でのスパッタ動作で、ターゲット81に対向するシャッタ板61の面に他のターゲットの物質91が付着した状態(シャッタ付着物)が発生させていたため、プリスパッタ時の放電でターゲット物質91がスパッタされ、ターゲット81の表面に付着することになる。従って本スパッタ(B)の際には、ターゲット81の表面に付着する他のターゲット物質91が基板34の表面に付着し、クロスコンタミネーションが起きてしまう。(A)では、プリスパッタ時のためシャッタ61は静止しているが、(A)から(B)で移行するときに、シャッタ61を回転移動するときにも同様なことが起こる。すなわち、ターゲット81はプリスパッタから本スパッタまで連続して放電しているので、シャッタ62の回転中にターゲット81と別の物質の上を通過すると、前述のクロスコンタミネーションと同様なことが起こる。さらに、基板34に付着した他のターゲット物質91および物質81が、例えば開口部分92を通して隣接するターゲット82に付着することもある。このようにして他のクロスコンタミネーションも起きる。なお93は他のターゲットのシャッタ付着物である。
本発明による二重シャッタ制御方法は、上記のクロスコンタミネーションが発生しないようにするためのものであり、以下の実施例において詳しく説明される。
本発明の二重シャッタ制御方法の基本的な考え方は、第1に、或るターゲット(例えばターゲット81をスパッタ成膜しようとするときにおいて、本スパッタの直前のプリスパッタにおいてシャッタ板の上記ターゲットと同じターゲット物質が堆積している箇所で覆うようにする(または、シャッタ回転動作中に、異なる他のターゲット物質が付着した箇所が対向面位置に来ない)こと、第2に防着板を利用してシャッタ板の孔の周縁部のターゲット物質の付着をなくすこと、としたものである。これにより、プリスパッタの際にターゲット側のシャッタ板の対向面におけるシャッタ付着物がスパッタされても、あるいは本スパッタの際に成膜対象のターゲットがスパッタされても同じ種類の材質であるので、基板上に堆積される膜は高品質に保たれる。
本発明に係る二重シャッタ制御方法の基本的な構成を、図6および図7を参照して説明する。
まず、図6を参照して、本発明に係る二重シャッタ制御方法に基づくシャッタ板61,62へのターゲット物質の付着現象を説明する。図6で(A)はプリスパッタ時を示し、(B)は本スパッタ時を示す。図6で81はスパッタ成膜に用いるターゲットである。この多元スパッタ成膜装置では、ターゲット81のターゲット面近傍に防着板94が配置されている。防着板94は孔94aが形成された部材であり、ターゲット81の周囲空間をシールドし、かつ孔94aを通してターゲットスパッタ面を基板側に対して露出させている。プリスパッタ時、ターゲット81にシャッタ板62の孔62aを一致させ、かつシャッタ板61でターゲット81を覆う。この状態でプリスパッタが行われる。後述される制御の仕方に基づき、シャッタ板61の対向面にはターゲット81の物質81Aが付着されている。ターゲット81はプリスパッタされても、正面の対向面には同じターゲット物質が付着されているので、汚染は生じない。また本スパッタの時には、図6(B)に示すごとくシャッタ板61の孔61aがターゲット81に一致し、基板34の表面にターゲット81による物質81Aが付着する。この場合にも、ターゲット81の表面がプリスパッタ時に汚染されていないので、前述したクロスコンタミネーションは生じない。図6において、防着板94を設けるようにしたため、孔61aの周縁部61a−1にターゲット付着物が堆積するのを防止することができる。
次に、図7を参照して、本発明に係るスパッタ成膜の場合における図5で説明した状況と同じ状況を説明する。図7で、図5で説明した要素と実質的に同一の要素には同一の符号を付している。図7の場合と図5の場合との相違点は、ターゲット81をスパッタ成膜して基板34にターゲット81による物質の膜を形成するとき、プリスパッタの段階で、ターゲット81,82のそれぞれの対向面箇所に同じ物質81a,82aが堆積されている、または同じ物質が堆積された箇所しか通過しないようにしたという点である。また孔61aの周縁部61a−1でターゲット付着物が堆積しないという点である。さらにシャッタ板62の静止位置が異なり、図5の場合プリスパッタ時にはターゲット81に孔62aを一致させかつターゲット82に孔62bを一致させていたが、図7の場合にはプリスパッタ時にターゲット81に孔62bを一致させかつターゲット82は覆うようにしている。従って、図7で示した本発明に係るスパッタ成膜の場合によれば、図5で説明したクロスコンタミネーションの発生をすべて確実に防止することができる。
二重回転シャッタ機構54を利用したスパッタ成膜において図6および図7で説明されたクロスコンタミネーションの防止を行う場合において、重要な点は、特に、ターゲット81のスパッタ成膜で、本スパッタ直前のプリスパッタの際にシャッタ板61またはシャッタ板62のターゲット対面箇所にターゲット81と同じターゲット物質が堆積しているということである。複数のターゲットのうち或るターゲットを選択してスパッタ成膜するとき、本スパッタ前のプリスパッタ時に当該選択されたターゲットを覆うシャッタ板61の部分に同じ物質を堆積させる、すなわち他のターゲット物質が堆積されていないという関係を作るため、さらには、プリスパッタから本スパッタへ移行するときに、放電状態の或るターゲット前に他のターゲットによる堆積物質が通過しないという関係を作るため、二重回転シャッタ機構54の2枚のシャッタ板61,62の回転動作に関して、以下に説明されるような二重シャッタ制御方法が実施される。
以下では、ターゲット数およびスパッタの種類(単スパッタ、CO−スパッタ)に応じて本発明に係る二重シャッタ制御方法の代表的ないくつかの実施例が説明される。
図8〜図11を参照して二重シャッタ制御方法の第1実施例を説明する。この第1実施例は、ターゲットの数が4つであり、2つ孔の第1シャッタ板と1つ孔の第2シャッタ板を使用し、単スパッタを行う例である。第1実施例に係る二重シャッタ制御方法は、図1〜図3で示した装置の構成に対応したものである。図8および図9では、説明を概念的に行う便宜上、4つのターゲットは符号T1〜T4で示され、ターゲットに面する第1シャッタ板61の2つの孔は符号H1,H2で示され、基板側の第2シャッタ板62の1つの孔は符合H3で示されている。
ターゲットT1〜T4は図3に示したターゲット35〜38に対応し、孔H1,H2は孔61a,61bに対応し、孔H3は孔62aに対応している。第1シャッタ板61において2つの孔H1,H2は180°離れた位置に形成される。また図8と図9において、円101は、2つのシャッタ板61,62が回転したときの孔H1〜H3の移動軌跡を示す。
図10の(A)〜(D)に、4つのターゲットT1〜T4をT1,T2,T3,T4の順序で順次に本スパッタする場合の第1シャッタ板61と第2シャッタ板62の回転移動位置が示されている。下記の説明で、或るターゲットに関して本スパッタの工程が行われる前にはプリスパッタの工程が行われるものとする。またプリスパッタと本スパッタを行うための電源からの電力供給は、スパッタ対象となるターゲットごとに行われる。従って図10で斜線ブロックで示されたターゲット(T1〜T4)は電力を供給され放電状態にあることを示しており、単なる白抜きブロックで示された他のターゲットは電力を供給されず非放電状態にあることを示している。ターゲット(T1〜T5)を表すブロックの表示に関する当該事項は、以下で説明されるすべての実施例でも同じである。なお実施例1において、実際には、T1,T2,T3,T4の順とは異なる別の順序で本スパッタする場合もある。
図10の(A)はターゲットT1を本スパッタする状態を示す。第1シャッタ板61の面に堆積した付着物T1aは、その前のプリスパッタの段階で付着したターゲットT1〜T4の物質である。
図11において、一例として、ターゲットT1に関してプリスパッタ(A)と本スパッタ(B)の関係を示す。プリスパッタ時には第2シャッタ板62の孔H3はターゲットT1に一致させられ、第1シャッタ板61は覆われるように制御される。プリスパッタから本スパッタに移るときには第1シャッタ板61が矢印63のごとく回転動作し、孔H1がターゲットT1に一致し、ターゲットT1は基板34に露出する。この状態において、第1シャッタ板61におけるターゲットT1に対向する箇所には、同じ物質が堆積した付着物T1aしか存在しない。
従って図10の(A)に示すごとく、プリスパッタの時には第1シャッタ板61の回転動作は、付着物T1aの箇所がターゲットT1に対向するような位置に制御される。ターゲットT1を本スパッタするときにはプリスパッタの時点で第2シャッタ板62の孔H3をターゲットT1に一致させ、その後、付着物T1aが堆積された第1シャッタ板61を、その孔H1がターゲットT1に一致するように回転させる。これにより第1シャッタ板61の孔H1と第2シャッタ板62の孔H3が一致し、ターゲットT1が基板34に対して露出して本スパッタが行われる。上記において、放電状態を保ってプリスパッタ状態から本スパッタ状態への第1シャッタ板61の回転動作でターゲットT1の正面対向位置を通過するのは付着物T1aのみである。そのため、前述したクロスコンタミネーションの発生を防止することができる。なおプリスパッタ状態から本スパッタ状態への第1シャッタ板61の回転動作で、ターゲットT1の正面対向位置を他のターゲット物質が通過することはない。
図10の(B)は、次にターゲットT2を本スパッタする状態を示す。第1シャッタ板61の面に堆積した付着物T1a,T2aのそれぞれは、その前のプリスパッタ等の段階で付着したターゲットT1,T2の物質である。ターゲットT2を本スパッタするときにはプリスパッタの時点で第2シャッタ板61の孔H3をターゲットT2に一致させ、その後、付着物T1a,T2aが堆積された第1シャッタ板61を、その孔H1がターゲットT2に一致するように回転させる。これにより第1シャッタ板61の孔H1と第2シャッタ板62の孔H3が一致し、ターゲットT2が基板に対して露出して本スパッタが行われる。上記において、放電状態を保ってプリスパッタ状態から本スパッタ状態への第1シャッタ板61の回転動作でターゲットT2の正面対向位置を通過するのは付着物T2aのみであり、他のターゲット物質は通過しない。そのため、ターゲットT2、および他のターゲットT1,T3,T4で上記のクロスコンタミネーションの発生を防止することができる。
図10の(C)は、次にターゲットT3を本スパッタする状態を示す。第1シャッタ板61の面に堆積した付着物T1a,T2a,T3aのそれぞれは、その前のプリスパッタ等の段階で付着したターゲットT1〜T3の物質である。ターゲットT3を本スパッタするときにはプリスパッタの時点で第2シャッタ板62の孔H3をターゲットT3に一致させ、その後、付着物T1a〜T3aが堆積された第1シャッタ板61を、その孔H2がターゲットT3に一致するように回転させる。これにより第1シャッタ板61の孔H2と第2シャッタ板62の孔H3が一致し、ターゲットT3が基板に対して露出して本スパッタが行われる。上記において、放電状態を保ってプリスパッタ状態から本スパッタ状態への第1シャッタ板61の回転動作でターゲットT3の正面対向位置を通過するのは付着物T3aのみであり、他のターゲット物質は通過しない。そのため、ターゲットT3、および他のターゲットT1,T2,T4で上記のクロスコンタミネーションの発生を防止することができる。
図10の(D)は、次にターゲットT4を本スパッタする状態を示す。第1シャッタ板61の面に堆積した付着物T1a,T2a,T3a,T4aのそれぞれは、その前のプリスパッタ等の段階で付着したターゲットT1〜T4の物質である。ターゲットT4を本スパッタするときにはプリスパッタの時点で第2シャッタ板62の孔H3をターゲットT4に一致させ、その後、付着物T1a〜T4aが堆積された第1シャッタ板61を、その孔H2がターゲットT4に一致するように回転させる。これにより第1シャッタ板61の孔H2と第2シャッタ板62の孔H3が一致し、ターゲットT4が基板に対して露出して本スパッタが行われる。上記において、放電状態を保ってプリスパッタ状態から本スパッタ状態への第1シャッタ板61の回転動作でターゲットT4の正面対向位置を通過するのは付着物T4aのみであり、他のターゲット物質は通過しない。そのため、ターゲットT4、および他のターゲットT1,T2,T3で上記のクロスコンタミネーションの発生を防止することができる。
次に、ターゲットの数が5つでありかつ第1シャッタ板と第2シャッタ板のそれぞれが2つの孔を有する場合の二重シャッタ制御方法であり、多元スパッタ成膜装置の1つの成膜チャンバの共通の装置構成を用いて「単スパッタ制御」と「CO−スパッタ制御」を行うことのできる実施例について説明する。この実施例の説明では、最初に、実施例2としてCO−スパッタ制御の例を説明し、次に実施例3として、CO−スパッタ制御が行われたことを前提として引き続き行われる単スパッタ制御の例を説明する。
図12、図13、図14A〜図14Dを参照して二重シャッタ制御方法の第2実施例を説明する。この第2実施例は、ターゲットの数が5つであり、それぞれ2つ孔の第1シャッタ板と第2シャッタ板を使用し、CO−スパッタを行う例である。
図12および図13で、5つのターゲットは符号T1〜T5で、ターゲットに面する第1シャッタ板61の2つの孔は符号H11,H12で、基板側のシャッタ板62の2つの孔は符号H13,H14で示されている。第1シャッタ板61における孔H11,H12は時計回りで144°の角度で離れた位置に形成され、第2シャッタ板62における孔H13,H14も時計回りで144°の角度で離れた位置に形成されている。また図12と図13において、円101は、シャッタ板61,62が回転したときの孔H11〜H14の移動軌跡を示す。
図14A〜図14Dには5つのターゲットT1〜T5に基づき、(T1,T3)のCO−スパッタ、(T2,T4)のCO−スパッタ、(T1,T4)のCO−スパッタ、(T2,T5)のCO−スパッタ順次に行う場合の第1シャッタ板61と第2シャッタ板62の回転移動位置が示されている。図14A〜図14Dのそれぞれでは、上段(A)にプリスパッタ中の状態が示され、下段(B)に本スパッタ中の状態が示されている。第1シャッタ板61または第2シャッタ板62がプリスパッタ中の位置から移動することにより本スパッタを行う状態に移行する。
なお5つのターゲットT1〜T5に関するCO−スパッタでは、現状の装置構成では、スパッタ電源の接続関係およびシャッタ孔の制約に基づき隣同士のターゲットではCO−スパッタできないというルールに基づき、上記のごとく(T1,T3),(T2,T4),(T1,T4),(T2,T5)の4通りの組のCO−スパッタが行われる。
図14Aは、最初に、2つのターゲットT1,T3をCO−スパッタする状態を示す。最初の状態では、第1シャッタ板61と第2シャッタ板62のいずれもにも膜は堆積していない。ターゲットT1,T3のCO−スパッタを行うため、ターゲットT1,T3のそれぞれに電源から電力が供給され、ターゲットT1,T3に関してのみ放電状態が作られている。
図14Aで、斜線ブロックで示されたターゲットT1,T3は放電状態にあることを示し、白抜きブロックで示されたターゲットT2,T4,T5は非放電状態にあることを示している。プリスパッタ中の放電状態に基づき第1シャッタ板61の面には付着物T1a,T3aが堆積する。付着物T1a,T3aは、それぞれ、プリスパッタ中に放電状態であるターゲットT1,T3に基づき対向面箇所に付着したターゲットT1,T3の物質である。
図14Aに示すごとく、プリスパッタの時には第1シャッタ板61の回転動作は、孔H11をターゲットT1,T2の間の位置に一致させ、孔H12をターゲットT3,T4
に一致させるように制御する。またプリスパッタの時、第2シャッタ板62の回転動作は、孔H13をターゲットT1に一致させ、孔H14をターゲットT3に一致させるように制御する。第2シャッタ板61の表面には付着物は存在しない。
次にターゲットT1,T3を本スパッタするときには、その後、付着物T1a,T3aが堆積された第1シャッタ板61を、孔H11,H12がターゲットT1,T3にそれぞれ一致するように回転させる。これにより、第1シャッタ板61の孔H11と第2シャッタ板62の孔H13が一致しかつ第2シャッタ板61の孔H12と第2シャッタ板62の孔H14が一致し、ターゲットT1とターゲットT3が基板に対して露出して本スパッタが行われる。
上記において、放電を保って第1シャッタ板61をプリスパッタ状態から本スパッタ状態へ回転させる時、ターゲットT1,T3の正面対向位置を通過するのはそれぞれ付着物T1a,T3aのみである。そのため、前述したクロスコンタミネーションの発生を防止することができる。
図14Bは、図14Aで示した本スパッタの終了後において、次にターゲットT2,T4をCO−スパッタする場合の状態を示す。この場合にはターゲットT2,T4は放電状態になり、ターゲットT1,T3,T5は非放電状態になる。さらにこの場合、プリスパッタ時には、第1シャッタ板61の回転動作は再び孔H11をターゲットT1,T2の間の位置に一致させ、孔H12をターゲットT3,T4の間の位置に一致させるように制御し、第2シャッタ板62の回転動作は孔H13をターゲットT2に一致させ、孔H14をターゲットT4に一致させるように制御する。第2シャッタ板61の表面には付着物は存在しない。
第1シャッタ板61の面にはプリスパッタにより新たに付着物T2a,T4aが堆積する。付着物T1a〜T4aのそれぞれは、前回のCO−スパッタと今回のプリスパッタの段階で付着したターゲットT1〜T4の物質である。ターゲットT2,T4を本スパッタするときには,プリスパッタの時点で第2シャッタ板62の孔H13,H14をターゲットT2,T4に一致させた状態で、付着物T1a〜T4aが堆積された第1シャッタ板61を、その孔H11,H12がそれぞれターゲットT2,T4に一致するように回転させる。これにより、第1シャッタ板61の孔H11,H12と第2シャッタ板62の孔H13,H14がそれぞれ一致し、ターゲットT2,T4が基板に対して露出して本スパッタが行われる。
上記において、放電を保って第1シャッタ板61をプリスパッタ状態から本スパッタ状態へ回転させる時、ターゲットT2,T4が正面対向位置を通過するのは付着物T2a,T4aのみである。そのため、ターゲットT2,T4で、前述したクロスコンタミネーションの発生を防止することができる。
図14Cは、図14Bで示した本スパッタ終了の後において、次にターゲットT1,T4をCO−スパッタする場合の状態を示す。この場合にはターゲットT1,T4は放電状態になり、ターゲットT2,T3,T5は非放電状態になる。さらにこの場合、プリスパッタ時には、第1シャッタ板61の回転動作は孔H12をターゲットT1に一致させ、孔H11をターゲットT4に一致させるように制御し、第2シャッタ板62の回転動作は孔H14をターゲットT1,T2の間の位置に一致させ、孔H13をターゲットT4,T5の間の位置に一致させるように制御する。第1シャッタ板61の面に堆積した付着物T1a〜T4aのそれぞれは、その前のプリスパッタ等の段階で付着したターゲットT1〜T4の物質である。また今回のプリスパッタによって第2シャッタ板62の表面には付着物T1a,T4aが形成される。
ターゲットT1,T4を本スパッタするときには、その後、付着物T1a,T4aが堆積した第2シャッタ板62を、その孔H14,H13がターゲットT1,T4にそれぞれ一致するように回転させる。これにより、第1シャッタ板61の孔H12,H11と第2シャッタ板62の孔H14,H13がそれぞれ一致し、ターゲットT1,T4が基板に対して露出して本スパッタが行われる。
上記において、放電を保って第1シャッタ板61をプリスパッタ状態から本スパッタ状態へ回転させる時、ターゲットT1,T4が正面対向位置を通過するのは付着物T1a,T4aのみである。そのため、ターゲットT1,T4で上記のクロスコンタミネーションの発生を防止することができる。
図14Dは、図14Cで示した本スパッタ終了の後において、次にターゲットT2,T5をCO−スパッタする場合の状態を示す。この場合にはターゲットT2,T5は放電状態になり、ターゲットT1,T3,T4は非放電状態になる。さらにこの場合、プリスパッタ時には、第1シャッタ板61の回転動作は孔H12をターゲットT2に一致させ、孔H11をターゲットT5に一致させるように制御し、第2シャッタ板62の回転動作は孔H14をターゲットT1,T2の間の位置に一致させ、孔H13をターゲットT4,T5の間の位置に一致させるように制御する。第1シャッタ板61の面に堆積した付着物T1a〜T4aのそれぞれは、その前のプリスパッタ等の段階で付着したターゲットT1〜T4の物質である。また今回のプリスパッタによって第2シャッタ板62の表面には付着物T1a,T4aに加え、新たに付着物T2a,T5aが形成される。
ターゲットT2,T5を本スパッタするときには、その後、付着物T1a,T2a,T4a,T5aが堆積した第2シャッタ板62を、その孔H14,H13がターゲットT2,T5にそれぞれ一致するように回転させる。これにより、第1シャッタ板61の孔H12,H11と第2シャッタ板62の孔H14,H13がそれぞれ一致し、ターゲットT2,T5が基板に対して露出して本スパッタが行われる。
上記において、放電を保って第1シャッタ板61をプリスパッタ状態から本スパッタ状態へ回転させる時、ターゲットT2,T5が正面対向位置を通過するのは付着物T2a,T5aのみである。そのため、ターゲットT2,T5で上記のクロスコンタミネーションの発生を防止することができる。
次に、図15A〜図15Eを参照して二重シャッタ制御方法の第3実施例を説明する。この第3実施例は、図12と図13で説明した、上記第2実施例と同じ装置構成を用いる単スパッタ制御の方法であって、第2実施例のCO−スパッタに引き続いて単スパッタを行う方法である。従って第3実施例の二重シャッタ制御方法は、ターゲットの数が5つであり、それぞれ2つ孔の第1シャッタ板と第2シャッタ板を使用し、単スパッタを行う例である。さらに第3実施例による単スパッタでは、第2実施例での最終本スパッタの終了時点で最終的に膜が付着している位置(図14Dの本スパッタの時の膜付着位置)を利用してプリスパッタが実施される。
図15A〜図15Eで、5つのターゲットT1〜T5、ターゲットに面する第1シャッタ板61の2つの孔H11,H12、基板側のシャッタ板62の2つの孔H13,H14は第2実施例の場合と同じである。
図15A〜図15Eには、5つのターゲットT1〜T5をT1,T2,T3,T4,T5の順序で順次に単スパッタする場合の第1シャッタ板61と第2シャッタ板62の回転移動位置が示されている。図15A〜図15Eのそれぞれでは、上段(A)にプリスパッタ中の状態が示され、下段(B)に本スパッタ中の状態が示されている。
図15Aは、図14Dで示した本スパッタの終了後に、ターゲットT1を単スパッタする状態を示す。この場合にはターゲットT1は放電状態になり、ターゲットT2〜T5は非放電状態になる。さらにこの場合において、プリスパッタ時には、第1シャッタ板61の回転動作は孔H11をターゲットT1,T2の間の位置に一致させ、孔H12をターゲットT3,T4の間の位置に一致させるように制御し、第2シャッタ板62の回転動作は孔H14をターゲットT1に一致させ、孔H13をターゲットT4に一致させるように制御する。
第1シャッタ板61の面に堆積した付着物T1a,T2a,T3a,T4aは、それぞれ、前述した通りプリスパッタ等の段階で放電状態のターゲットT1〜T4に基づき対向面箇所に付着したターゲットT1〜T4の物質である。また第2シャッタ板62の面に堆積した付着物T1a,T2a,T4a,T5aは、それぞれ、前述の各段階の放電で放電状態のターゲットT1,T2,T4,T5に基づき対向面箇所に付着したターゲットT1,T2,T4,T5の物質である。
図15Aに示すごとく、プリスパッタの時には第1シャッタ板61の回転動作は、付着物T1a〜T4aのそれぞれの箇所がターゲットT1〜T4に対向するような位置に制御される。またプリスパッタの時、第2シャッタ板62の回転動作は、孔H14をターゲットT1に一致させ、孔H13をターゲットT4に一致させるように制御される。
次にターゲットT1を本スパッタするときには、その後、付着物T1a〜T4aが堆積された第1シャッタ板61を、孔H11がターゲットT1に一致するように回転させる。これにより第1シャッタ板61の孔H11と第2シャッタ板62の孔H14が一致し、ターゲットT1が基板に対して露出して本スパッタが行われる。
上記において、放電を保って第1シャッタ板61がプリスパッタ状態から本スパッタ状態へ回転する時、ターゲットT1の正面対向位置を通過するのは付着物T1aのみであり、他のターゲット物質は通過しない。そのため、前述したクロスコンタミネーションの発生を防止することができる。
図15Bは、図15Aで示した本スパッタの終了の後に、次にターゲットT2を単スパッタする状態を示す。この場合にはターゲットT2は放電状態になり、ターゲットT1,T3〜T5は非放電状態になる。さらにこの場合、プリスパッタ時には、第1シャッタ板61の回転動作は孔H11をターゲットT1,T2の間の位置に一致させ、孔H12をターゲットT3,T4の間の位置に一致させるように制御し、第2シャッタ板62の回転動作は孔H14をターゲットT2に一致させ、孔H13をターゲットT5に一致させるように制御する。
第1シャッタ板61の面に堆積した付着物T1a,T2a,T3a,T4aは、前述の通り先のプリスパッタ等の段階で付着したターゲットT1〜T4の物質である。ターゲットT2を本スパッタするときには、付着物T1a〜T4aが堆積された第1シャッタ板61を、その孔H11がターゲットT2に一致するように回転させる。これにより第1シャッタ板61の孔H11と第2シャッタ板62の孔H14が一致し、ターゲットT2が基板に対して露出して本スパッタが行われる。
上記において、放電を保って第1シャッタ板61がプリスパッタ状態から本スパッタ状態へ回転する時、ターゲットT2の正面対向位置を通過するのは付着物T2aのみである。そのため、ターゲットT2で上記のクロスコンタミネーションの発生を防止することができる。
図15Cは、図15Bで示した本スパッタの終了の後に、次にターゲットT3を単スパッタする状態を示す。この場合にはターゲットT3は放電状態になり、ターゲットT1,T2,T4,T5は非放電状態になる。さらにこの場合、プリスパッタ時には、第1シャッタ板61の回転動作は孔H11をターゲットT1,T2の間の位置に一致させ、孔H12をターゲットT3,T4の間の位置に一致させるように制御し、第2シャッタ板62の回転動作は孔H13をターゲットT3に一致させ、孔H14をターゲットT5に一致させるように制御する。
第1シャッタ板61の面に堆積した付着物T1a,T2a,T3a,T4aのそれぞれは、その前のプリスパッタ等の段階で付着したターゲットT1〜T4の物質である。ターゲットT3を本スパッタするときには、付着物T1a〜T4aが堆積された第1シャッタ板61を、その孔H12がターゲットT3に一致するように回転させる。これにより第1シャッタ板61の孔H12と第2シャッタ板62の孔H13が一致し、ターゲットT3が基板に対して露出して本スパッタが行われる。
上記において、放電を保って第1シャッタ板61がプリスパッタ状態から本スパッタ状態へ回転する時、ターゲットT3の正面対向位置を通過するのは付着物T3aのみである。そのため、ターゲットT3で上記のクロスコンタミネーションの発生を防止することができる。
図15Dは、図15Cで示した本スパッタの終了の後、次にターゲットT4を本スパッタする状態を示す。この場合にはターゲットT4は放電状態になり、ターゲットT1〜T3,T5は非放電状態になる。さらにこの場合、プリスパッタ時には、第1シャッタ板61の回転動作は孔H11をターゲットT1,T2の間の位置に一致させ、孔H12をターゲットT3,T4の間の位置に一致させるように制御し、第2シャッタ板62の回転動作は孔H13をターゲットT3に一致させ、孔H14をターゲットT1に一致させるように制御する。
第1シャッタ板61の面に堆積した付着物T1a,T2a,T3a,T4aのそれぞれは、その前のプリスパッタの段階で付着したターゲットT1〜T4の物質である。ターゲットT4を本スパッタするときには、付着物T1a〜T4aが堆積された第1シャッタ板61を、その孔H12がターゲットT4に一致するように回転させる。これにより第1シャッタ板61の孔H12と第2シャッタ板62の孔H13が一致し、ターゲットT4が基板に対して露出して本スパッタが行われる。
上記において、放電を保って第1シャッタ板61がプリスパッタ状態から本スパッタ状態へ回転する時、ターゲットT4の正面対向位置を通過するのは付着物T4aのみである。そのため、ターゲットT4で上記のクロスコンタミネーションの発生を防止することができる。
図15Eは、図15Dで示した本スパッタの終了の後、次にターゲットT5を本スパッタする状態を示す。この場合にはターゲットT5は放電状態になり、ターゲットT1〜T4は非放電状態になる。さらにこの場合、プリスパッタ時には、第1シャッタ板61の回転動作は孔H11をターゲットT3に一致させ、孔H12をターゲットT5に一致させるように制御し、第2シャッタ板62の回転動作は孔H13をターゲットT4,T5の間の位置に一致させ、孔H14をターゲットT1,T2の間の位置に一致させるように制御する。
第1シャッタ板61の面に堆積した付着物T1a,T2a,T3a,T4aのそれぞれは、その前のプリスパッタ等の段階で付着したターゲットT1〜T4の物質である。ターゲットT5を本スパッタするときには、第2シャッタ板62をその孔H13がターゲットT5に一致するように回転させる。これにより第1シャッタ板61の孔H12と第2シャッタ板62の孔H13が一致し、ターゲットT5が基板に対して露出して本スパッタが行われる。
上記において、放電を保って第2シャッタ板62がプリスパッタ状態から本スパッタ状態へ回転する時、ターゲットT5の正面対向位置を通過するのは付着物T5aのみである。そのため、ターゲットT5で上記のクロスコンタミネーションの発生を防止することができる。
次に図16〜図18を参照して二重シャッタ制御方法の第4実施例を説明する。この実施例では、単スパッタでターゲットの数が5つである他の例を説明する。図16および図17で、5つのターゲットはT1〜T5、ターゲットに面する第1シャッタ板61の孔はH21,H22,H23、基板側のシャッタ板62の孔はH24で示されている。第1シャッタ板61における孔H21,H22,H23は時計回りで孔H21を基準にして144°および216°の角度で離れた位置に形成されている。また図16と図17において、円101は、2枚のシャッタ板61,62が回転したときの孔H21〜H24の移動軌跡を示す。
図18の(A)〜(E)に5つのターゲットT1〜T5をT1,T2,T3,T4,T5の順序で順次に本スパッタする場合のそれぞの場合の第1シャッタ板61と第2シャッタ板62の回転移動位置が示されている。下記の説明で、或るターゲットに関して本スパッタの工程が行われる前にはプリスパッタの工程が行われるものとする。
図18の(A)はターゲットT1を本スパッタする場合の状態を示す。第1シャッタ板61の面に堆積した付着物T1a,T2a,T3a,T4a,T5aのそれぞれは、その前のプリスパッタの段階で付着したターゲットT1〜T5の物質である。
図18の(A)に示すごとく、プリスパッタの時には第1シャッタ板61の回転動作は、付着物T1a〜T5aのそれぞれの箇所がターゲットT1〜T5に対向するような位置に制御される。
ターゲットT1を本スパッタするときにはプリスパッタの時点で第2シャッタ板62の孔H24をターゲットT1に一致させ、その後、付着物T1a〜T5aが堆積された第1シャッタ板61を、孔H21がターゲットT1に一致するように回転させる。これにより第1シャッタ板61の孔H21と第2シャッタ板62の孔H24が一致し、ターゲットT1が基板に対して露出して本スパッタが行われる。上記において、プリスパッタ状態から本スパッタ状態への第1シャッタ板61の回転動作でターゲットT1の正面対向位置を通過するのは付着物T1aのみである。そのため、前述したクロスコンタミネーションの発生を防止することができる。なおプリスパッタ状態から本スパッタ状態への第1シャッタ板61の回転動作で、他のターゲットT1,T3,T4,T5の正面対向位置を他のターゲット物質が通過することはない。
図18の(B)は、次に、ターゲットT2を本スパッタする場合の状態を示す。第1シャッタ板61の面に堆積した付着物T1a〜T5aのそれぞれは、その前のプリスパッタの段階で付着したターゲットT1〜T5の物質である。ターゲットT2を本スパッタするときにはプリスパッタの時点で第2シャッタ板62の孔H24をターゲットT2に一致させ、その後、付着物T1a〜T5aが堆積された第1シャッタ板61を、その孔H21がターゲットT2に一致するように回転させる。これにより第1シャッタ板61の孔H21と第2シャッタ板62の孔H24が一致し、ターゲットT2が基板に対して露出して本スパッタが行われる。上記において、プリスパッタ状態から本スパッタ状態への第1シャッタ板61の回転動作でターゲットT2の正面対向位置を通過するのは付着物T2aのみである。そのため、ターゲットT2で上記のクロスコンタミネーションの発生を防止することができる。
図18の(C)は、次に、ターゲットT3を本スパッタする場合の状態を示す。第1シャッタ板61の面に堆積した付着物T1a〜T5aのそれぞれは、その前のプリスパッタの段階で付着したターゲットT1〜T5の物質である。ターゲットT3を本スパッタするときにはプリスパッタの時点で第2シャッタ板62の孔H24をターゲットT3に一致させ、その後、付着物T1a〜T5aが堆積された第1シャッタ板61を、その孔H22がターゲットT3に一致するように回転させる。これにより第1シャッタ板61の孔H22と第2シャッタ板62の孔H24が一致し、ターゲットT3が基板に対して露出して本スパッタが行われる。上記において、プリスパッタ状態から本スパッタ状態への第1シャッタ板61の回転動作でターゲットT3の正面対向位置を通過するのは付着物T3aのみである。そのため、ターゲットT3で上記のクロスコンタミネーションの発生を防止することができる。
図18の(D)は、次に、ターゲットT4を本スパッタする場合の状態を示す。第1シャッタ板61の面に堆積した付着物T1a〜T5aのそれぞれは、その前のプリスパッタの段階で付着したターゲットT1〜T5の物質である。ターゲットT4を本スパッタするときにはプリスパッタの時点で第2シャッタ板62の孔H24をターゲットT4に一致させ、その後、付着物T1a〜T5aが堆積された第1シャッタ板61を、その孔H22がターゲットT4に一致するように回転させる。これにより第1シャッタ板61の孔H22と第2シャッタ板62の孔H24が一致し、ターゲットT4が基板に対して露出して本スパッタが行われる。上記において、プリスパッタ状態から本スパッタ状態への第1シャッタ板61の回転動作でターゲットT4の正面対向位置を通過するのは付着物T4aのみである。そのため、ターゲットT4で上記のクロスコンタミネーションの発生を防止することができる。
図18の(E)は、次に、ターゲットT5を本スパッタする場合の状態を示す。第1シャッタ板61の面に堆積した付着物T1a〜T5aのそれぞれは、その前のプリスパッタの段階で付着したターゲットT1〜T5の物質である。ターゲットT5を本スパッタするときにはプリスパッタの時点で第2シャッタ板62の孔H24をターゲットT5に一致させ、その後、付着物T1a〜T5aが堆積された第1シャッタ板61を、その孔H23がターゲットT5に一致するように回転させる。これにより第1シャッタ板61の孔H23と第2シャッタ板62の孔H24が一致し、ターゲットT5が基板に対して露出して本スパッタが行われる。上記において、プリスパッタ状態から本スパッタ状態への第1シャッタ板61の回転動作でターゲットT5の正面対向位置を通過するのは付着物T5aのみである。そのため、ターゲットT5で上記のクロスコンタミネーションの発生を防止することができる。
次に、図19〜図21を参照して二重シャッタ制御方法の第5実施例を説明する。この実施例では、ターゲットの数が4つであり、CO−スパッタする例を説明する。図19は上記図8に対応し、図20は上記図9に対応している。図19〜図21で、図8等で説明された要素と同一の要素には同一の符号を付している。4つのターゲットはT1〜T4、ターゲットに面する第1シャッタ板61の孔はH31,H32、基板側の第2シャッタ板62の孔はH33,34で示されている。第1シャッタ板61において2つの孔H31,H32は180°離れた位置に形成され、第2シャッタ板62において2つの孔H33,H34は180°離れた位置に形成される。
図21の(A),(B)に4つのターゲットT1〜T4を(T1,T3),(T2,T4)の組みの順序で順次に本スパッタする場合のそれぞの場合の第1シャッタ板61と第2シャッタ板62の回転移動位置が示されている。或るターゲットに関して本スパッタの工程が行われる前にはプリスパッタの工程が行われる。
図21の(A)はターゲットT1,T3を本スパッタする場合の状態を示す。第1シャッタ板61の面に堆積した付着物T1a,T2a,T3a,T4aのそれぞれは、その前のプリスパッタの段階で付着したターゲットT1〜T4の物質である。
図21の(A)に示すごとく、プリスパッタの時には第1シャッタ板61の回転動作は、付着物T1a〜T4aのそれぞれの箇所がターゲットT1〜T4に対向するような位置に制御される。ターゲットT1,T3を本スパッタするときにはプリスパッタの時点で第2シャッタ板62の孔H33,H34をターゲットT1,T3に一致させ、その後、付着物T1a〜T4aが堆積された第1シャッタ板61を、その孔H31,H32がターゲットT1,T3に一致するように回転させる。これにより第1シャッタ板61の孔H31,H32と第2シャッタ板62の孔H33,H34のそれぞれが一致し、ターゲットT1,T3が基板に対して露出して本スパッタが行われる。上記において、プリスパッタ状態から本スパッタ状態への第1シャッタ板61の回転動作でターゲットT1,T3の正面対向位置を通過するのはそれぞれ付着物T1a,T3aのみである。そのため、前述したクロスコンタミネーションの発生を防止することができる。
図21の(B)は、次に、ターゲットT2,T4を本スパッタする場合の状態を示す。第1シャッタ板61の面に堆積した付着物T1a〜T4aのそれぞれは、その前のプリスパッタの段階で付着したターゲットT1〜T4の物質である。ターゲットT2,T4を本スパッタするときにはプリスパッタの時点で第2シャッタ板62の孔H33,H34をターゲットT2,T4に一致させ、その後、付着物T1a〜T4aが堆積された第1シャッタ板61を、その孔H31,H32がターゲットT2,T4に一致するように回転させる。これにより、第1シャッタ板61の孔H31,H32と第2シャッタ板62の孔H33,H34が一致し、ターゲットT2,T4が基板に対して露出して本スパッタが行われる。上記において、プリスパッタ状態から本スパッタ状態への第1シャッタ板611の回転動作でターゲットT2,T4が正面対向位置を通過するのは付着物T2a,T4aのみである。そのため、ターゲットT2,T4で上記のクロスコンタミネーションの発生を防止することができる。
次に、図22〜図24を参照して二重シャッタ制御方法の第6実施例を説明する。この実施例は、ターゲットの数が5つでCO−スパッタする例である。図22〜図24で、先の実施例で説明された要素と同一の要素には同一の符号を付している。5つのターゲットはT1〜T5、ターゲットに面する第1シャッタ板61の孔はH51,H52,H53、基板側の第2シャッタ板62の孔はH54,H55で示されている。第1シャッタ板61において3つの孔H51,H52,H53のそれぞれの間は時計回りで144°、72°離れた位置に形成され、第2シャッタ板62において2つの孔H54,H55は時計回りで144°離れた位置に形成される。
図24に示すごとく、本実施例の場合にも5つのターゲットT1〜T5を(T1,T3),(T2,T4),(T1,T4),(T2,T5)の組みの順序で順次に本スパッタする。図24で、各本スパッタの場合の第1シャッタ板61と第2シャッタ板62の回転移動位置が示されている。或るターゲットに関して本スパッタの工程が行われる前にはプリスパッタの工程が行われる。
図24の(A)は2つのターゲットT1,T3を本スパッタする場合の状態を示す。第1シャッタ板61の面に堆積した付着物T1a,T2a,T3a,T4a,T5aのそれぞれはその前のプリスパッタの段階で付着したターゲットT1〜T5の物質である。
図24の(A)に示すごとく、プリスパッタの時には第1シャッタ板61の回転動作は、付着物T1a〜T5aのそれぞれの箇所がターゲットT1〜T5に対向するような位置に制御される。ターゲットT1,T3を本スパッタするときにはプリスパッタの時点で第2シャッタ板62の孔H54,H55をターゲットT1,T3に一致させ、その後、付着物T1a〜T5aが堆積された第1シャッタ板61を、その孔H51,H52がターゲットT1,T3に一致するように回転させる。これにより第1シャッタ板61の孔H51,H52と第2シャッタ板62の孔H54,H55が一致し、ターゲットT1,T3が基板に対して露出して本スパッタが行われる。上記において、プリスパッタ状態から本スパッタ状態への第1シャッタ板61の回転動作でターゲットT1,T3の正面対向位置を通過するのはそれぞれ付着物T1a,T3aのみである。そのため、前述したクロスコンタミネーションの発生を防止することができる。
図24の(B)は、次に、ターゲットT2,T4を本スパッタする場合の状態を示す。第1シャッタ板61の面に堆積した付着物T1a〜T5aのそれぞれは、その前のプリスパッタの段階で付着したターゲットT1〜T5の物質である。ターゲットT2,T4を本スパッタするときにはプリスパッタの時点で第2シャッタ板62の孔H54,H55をターゲットT2,T4に一致させ、その後、付着物T1a〜T5aが堆積された第1シャッタ板61を、その孔H51,H52がターゲットT2,T4に一致するように回転させる。これにより、第1シャッタ板61の孔H51,H52と第2シャッタ板62の孔H54,H55が一致し、ターゲットT2,T4が基板に対して露出して本スパッタが行われる。上記において、プリスパッタ状態から本スパッタ状態への第1シャッタ板61の回転動作でターゲットT2,T4が正面対向位置を通過するのは付着物T2a,T4aのみである。そのため、ターゲットT2,T4で上記のクロスコンタミネーションの発生を防止することができる。
図24の(C)は、次に、ターゲットT1,T4を本スパッタする場合の状態を示す。第1シャッタ板61の面に堆積した付着物T1a〜T5aのそれぞれは、その前のプリスパッタの段階で付着したターゲットT1〜T5の物質である。ターゲットT1,T4を本スパッタするときにはプリスパッタの時点で第1シャッタ板62の孔H51,H53をターゲットT1,T4に一致させ、その後、付着物T1a,T3a,T4a,T5aが堆積された第2シャッタ板62を、その孔H54,H55がターゲットT1,T4に一致するように回転させる。これにより、第1シャッタ板61の孔H51,H53と第2シャッタ板62の孔H54,H55が一致し、ターゲットT1,T4が基板に対して露出して本スパッタが行われる。上記において、プリスパッタ状態から本スパッタ状態への第1シャッタ板61の回転動作でターゲットT1,T4が正面対向位置を通過するのは付着物T1a,T4aのみである。そのため、ターゲットT1,T4で上記のクロスコンタミネーションの発生を防止することができる。
図24の(D)は、次に、ターゲットT2,T5を本スパッタする場合の状態を示す。第1シャッタ板61の面に堆積した付着物T1a〜T5aのそれぞれは、その前のプリスパッタの段階で付着したターゲットT1〜T5の物質である。ターゲットT2,T5を本スパッタするときにはプリスパッタの時点で第2シャッタ板62の孔H54,H55をターゲットT2,T5に一致させ、その後、付着物T1a〜T5aが堆積された第1シャッタ板61を、その孔H51,H53がターゲットT2,T5に一致するように回転させる。これにより、第1シャッタ板61の孔H51,H53と第2シャッタ板62の孔H54,H55が一致し、ターゲットT2,T5が基板に対して露出して本スパッタが行われる。上記において、プリスパッタ状態から本スパッタ状態への第1シャッタ板61の回転動作でターゲットT2,T5が正面対向位置を通過するのは付着物T2a,T5aのみである。そのため、ターゲットT2,T5で上記のクロスコンタミネーションの発生を防止することができる。
図24の(E)は、次に、ターゲットT3,T5を本スパッタする場合の状態を示す。第1シャッタ板61の面に堆積した付着物T1a〜T5aのそれぞれは、その前のプリスパッタの段階で付着したターゲットT1〜T5の物質である。ターゲットT3,T5を本スパッタするときにはプリスパッタの時点で第1シャッタ板61の孔H51,H53をターゲットT3,T5に一致させ、その後、付着物T1a,T3a,T4a,T5aが堆積された第2シャッタ板62を、その孔H54,H55がターゲットT3,T5に一致するように回転させる。これにより、ターゲットT3,T5が正面対向位置を通過するのは付着物T3a,T5aのみである。そのため、ターゲットT3,T5で上記のクロスコンタミネーションの発生を防止することができる。
以上の二重シャッタ制御方法において、ターゲット数(n)に応じた各シャッタ板に形成される孔の数、およびプリスパッタに使用されるシャッタについては図25に示した表のごとく分類することが可能である。
以上の実施形態(実施例)で説明された構成、形状、大きさおよび配置関係については本発明が理解・実施できる程度に概略的に示したものにすぎず、また数値および各構成の組成(材質)については例示にすぎない。従って本発明は、説明された実施形態(実施例)に限定されるものではなく、特許請求の範囲に示される技術的思想の範囲を逸脱しない限り様々な形態に変更することができる。
本発明は、複数のターゲットを1つのチャンバに設け、二重回転シャッタ機構でターゲットを適宜に選択して単スパッタまたはCO−スパッタを行うときにクロスコンタミネーションの発生を防止するのに利用される。
本発明が適用される磁性多層膜作製装置の平面図である。 磁性多層膜作製装置の1つのスパッタ成膜チャンバにおける複数のターゲットの配置状態を示す平面図(A)、およびスパッタ成膜チャンバの縦断面図である。 二重回転シャッタ機構の代表的な構成を示す分解構成図である。 二重回転シャッタ機構の回転動作を制御する制御装置の構成を示す構成図である。 本発明で問題とするクロスコンタミネーションを説明する図である。 本発明に係る二重シャッタ制御方法の基本的動作を説明する図である。 本発明に係る二重シャッタ制御方法のプリスパッタ時と本スパッタ時に基本的動作を説明する図である。 本発明に係る二重シャッタ制御方法の第1実施例のターゲットの配置図である。 二重シャッタ制御方法の第1実施例の第1および第2のシャッタ板の孔の配置図である。 二重シャッタ制御方法の第1実施例の本スパッタ時の第1および第2のシャッタ板の位置の変化を示す状態推移図である。 本スパッタ時のスパッタされるターゲットと第1および第2のシャッタ板の位置関係を示す状態推移図である。 本発明に係る二重シャッタ制御方法の第2実施例のターゲットの配置図である。 二重シャッタ制御方法の第2実施例の第1および第2のシャッタ板の孔の配置図である。 第2実施例でターゲットT1,T3をCO−スパッタするときの第1および第2のシャッタ板の位置の変化を示す状態推移図である。 第2実施例でターゲットT2,T4をCO−スパッタするときの第1および第2のシャッタ板の位置の変化を示す状態推移図である。 第2実施例でターゲットT1,T4をCO−スパッタするときの第1および第2のシャッタ板の位置の変化を示す状態推移図である。 第2実施例でターゲットT2,T5をCO−スパッタするときの第1および第2のシャッタ板の位置の変化を示す状態推移図である。 本発明に係る二重シャッタ制御方法の第3実施例においてターゲットT1を単スパッタするときの第1および第2のシャッタ板の位置の変化を示す状態推移図である。 第3実施例でターゲットT2を単スパッタするときの第1および第2のシャッタ板の位置の変化を示す状態推移図である。 第3実施例でターゲットT3を単スパッタするときの第1および第2のシャッタ板の位置の変化を示す状態推移図である。 第3実施例でターゲットT4を単スパッタするときの第1および第2のシャッタ板の位置の変化を示す状態推移図である。 第3実施例でターゲットT5を単スパッタするときの第1および第2のシャッタ板の位置の変化を示す状態推移図である。 本発明に係る二重シャッタ制御方法の第4実施例のターゲットの配置図である。 二重シャッタ制御方法の第4実施例の第1および第2のシャッタ板の孔の配置図である。 二重シャッタ制御方法の第4実施例の本スパッタ時の第1および第2のシャッタ板の位置の変化を示す状態推移図である。 本発明に係る二重シャッタ制御方法の第5実施例のターゲットの配置図である。 二重シャッタ制御方法の第5実施例の第1および第2のシャッタ板の孔の配置図である。 二重シャッタ制御方法の第5実施例の本スパッタ時の第1および第2のシャッタ板の位置の変化を示す状態推移図である。 本発明に係る二重シャッタ制御方法の第6実施例のターゲットの配置図である。 二重シャッタ制御方法の第6実施例の第1および第2のシャッタ板の孔の配置図である。 二重シャッタ制御方法の第6実施例の本スパッタ時の第1および第2のシャッタ板の位置の変化を示す状態推移図である。 ターゲット数、第1および第2のシャッタ板の孔の数の関係を示す表である。
符号の説明
10 磁性多層膜作製装置
17A〜17C 成膜チャンバ
35〜38 ターゲット
54 二重回転シャッタ機構
61 第1シャッタ板
62 第2シャッタ板
T1〜T5 ターゲット

Claims (4)

  1. スパッタリング用成膜チャンバ、
    前記スパッタリング用成膜チャンバ内に位置し、基板を載置するための基板ホルダ、
    前記スパッタリング用成膜チャンバ内に位置し、第1ターゲット及び該第1ターゲットと相違する物質からなる第2ターゲットを載置するためのターゲット載置手段、並びに、
    前記スパッタリング用成膜チャンバ内に位置したシャッタ機構であって、スパッタリング時のスパッタ粒子を通過させる通過箇所と、該スパッタ粒子を遮断する遮断箇所とからなる第1及び第2シャッタ板を有する二重シャッタ板、並びに、該第1シャッタ板と第2シャッタ板とを独立に回転駆動させる回転駆動手段を有するシャッタ機構を備え、
    前記シャッタ機構は、更に、
    前記第1シャッタ板を回転し、前記第1シャッタ板の遮断箇所で前記第1ターゲットと前記基板との間を遮断し、前記第1ターゲットをスパッタする第1のスパッタ工程を行い、その後に、前記第1および第2のシャッタ板の前記通過箇所を通して、前記第1ターゲットと前記基板とが位置合わせされた状態で前記第1ターゲットをスパッタする第2のスパッタ工程を行い、さらにその後、前記第1のスパッタ程を行う際、前記第1シャッタ板における前記第1ターゲットの材料が付着された箇所が前記第1ターゲットの対向位置になるように前記第1シャッタ板を回転するための、前記回転駆動手段の回転角度を制御する制御手段を有する、ことを特徴とするスパッタリング装置。
  2. スパッタリング用成膜チャンバ、
    前記スパッタリング用成膜チャンバ内に位置し、基板を載置するための基板ホルダ、
    前記スパッタリング用成膜チャンバ内に位置し、第1ターゲット及び該第1ターゲットと相違する物質からなる第2ターゲットを載置するためのターゲット載置手段、並びに、
    前記スパッタリング用成膜チャンバ内に位置したシャッタ機構であって、スパッタリング時のスパッタ粒子を通過させる通過箇所と、該スパッタ粒子を遮断する遮断箇所とからなる第1及び第2シャッタ板を有する二重シャッタ板、並びに、該第1シャッタ板と第2シャッタ板とを独立に回転駆動させる回転駆動手段を有するシャッタ機構を備え、
    前記シャッタ機構は、更に、
    前記第1シャッタ板を回転し、前記第1シャッタ板の遮断箇所で前記第1ターゲットと前記基板との間を遮断し、前記第1ターゲットをスパッタする第1のスパッタ工程を行い、その後に、前記第1および第2のシャッタ板の前記通過箇所を通して、前記第1ターゲットと前記基板とが位置合わせされた状態で前記第1ターゲットをスパッタする第2のスパッタ工程を行い、さらにその後、前記第1のスパッタ程を行う際、前記第1シャッタ板における前記第1ターゲットの材料が付着された箇所が前記第1ターゲットの対向位置になるように前記第1シャッタ板を回転し、さらにその後に、前記第1のスパッタ工程から前記第2のスパッタ工程へ移行するとき、前記第1シャッタ板における前記第1のターゲットの材料と異なる材料の付着箇所が前記第1のターゲットに対向して通過しないように前記第1シャッタ板を回転するための、前記回転駆動手段の回転角度を制御する制御手段を有する、ことを特徴とするスパッタリング装置。
  3. スパッタリング用成膜チャンバ、
    前記スパッタリング用成膜チャンバ内に位置し、基板を載置するための基板ホルダ、
    前記スパッタリング用成膜チャンバ内に位置し、第1ターゲット及び該第1ターゲットと相違する物質からなる第2ターゲットを載置するためのターゲット載置手段、並びに、
    前記スパッタリング用成膜チャンバ内に位置したシャッタ機構であって、スパッタリング時のスパッタ粒子を通過させる通過箇所と、該スパッタ粒子を遮断する遮断箇所とからなる第1及び第2シャッタ板を有する二重シャッタ板、並びに、該第1シャッタ板と第2シャッタ板とを独立に回転駆動させる回転駆動手段を有するシャッタ機構を備え、
    前記シャッタ機構は、更に、
    前記第1シャッタ板を回転し、前記第1シャッタ板の遮断箇所で前記第1ターゲットと前記基板との間を遮断し、前記第1ターゲットをスパッタする第1のスパッタ工程を行い、その後に、前記第1および第2のシャッタ板の前記通過箇所を通して、前記第1ターゲットと前記基板とが位置合わせされた状態で前記第1ターゲットをスパッタする第2のスパッタ工程を行い、さらにその後、前記第1シャッタ板の遮断箇所で前記第2ターゲットと前記基板との間を遮断し、前記第2ターゲットをスパッタする第3のスパッタ工程を行う際、前記第1シャッタ板における前記第1ターゲットの材料が付着された箇所が前記第2ターゲットの対向位置にならないように前記第1シャッタ板を回転するための、前記回転駆動手段の回転角度を制御する制御手段を有する、ことを特徴とするスパッタリング装置。
  4. スパッタリング用成膜チャンバ、
    前記スパッタリング用成膜チャンバ内に位置し、基板を載置するための基板ホルダ、
    前記スパッタリング用成膜チャンバ内に位置し、第1ターゲット及び該第1ターゲットと相違する物質からなる第2ターゲットを載置するためのターゲット載置手段、並びに、
    前記スパッタリング用成膜チャンバ内に位置したシャッタ機構であって、スパッタリング時のスパッタ粒子を通過させる通過箇所と、該スパッタ粒子を遮断する遮断箇所とからなる第1及び第2シャッタ板を有する二重シャッタ板、並びに、該第1シャッタ板と第2シャッタ板とを独立に回転駆動させる回転駆動手段を有するシャッタ機構を備え、
    前記シャッタ機構は、更に、
    前記第1シャッタ板を回転し、前記第1シャッタ板の遮断箇所で前記第1ターゲットと前記基板との間を遮断し、前記第1ターゲットをスパッタする第1のスパッタ工程を行い、その後に、前記第1および第2のシャッタ板の前記通過箇所を通して、前記第1ターゲットと前記基板とが位置合わせされた状態で前記第1ターゲットをスパッタする第2のスパッタ工程を行い、さらにその後、前記第1シャッタ板の遮断箇所で前記第2ターゲットと前記基板との間を遮断し、前記第2ターゲットをスパッタする第3のスパッタ工程を行う際、前記第1シャッタ板における前記第1ターゲットの材料が付着された箇所が前記第2ターゲットの対向位置にならないように前記第1シャッタ板を回転し、さらにその後に、前記第3のスパッタ工程から前記第1および第2のシャッタ板の前記通過箇所を通して、前記第2ターゲットと前記基板とが位置合わせされた状態で前記第2ターゲットをスパッタする第4のスパッタ工程へ移行するとき、前記第1シャッタ板における前記第2のターゲットの材料と異なる材料の付着箇所が前記第2のターゲットに対向して通過しないように前記第1シャッタ板を回転するための、前記回転駆動手段の回転角度を制御する制御手段を有する、ことを特徴とするスパッタリング装置。
JP2008252312A 2008-09-30 2008-09-30 スパッタリング装置 Expired - Lifetime JP4505032B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008252312A JP4505032B2 (ja) 2008-09-30 2008-09-30 スパッタリング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008252312A JP4505032B2 (ja) 2008-09-30 2008-09-30 スパッタリング装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004070929A Division JP4494047B2 (ja) 2004-03-12 2004-03-12 多元スパッタ成膜装置の二重シャッタ制御方法

Publications (2)

Publication Number Publication Date
JP2009041108A JP2009041108A (ja) 2009-02-26
JP4505032B2 true JP4505032B2 (ja) 2010-07-14

Family

ID=40442153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008252312A Expired - Lifetime JP4505032B2 (ja) 2008-09-30 2008-09-30 スパッタリング装置

Country Status (1)

Country Link
JP (1) JP4505032B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101583122B1 (ko) 2011-04-28 2016-01-07 캐논 아네르바 가부시키가이샤 성막 장치
KR20150088867A (ko) * 2012-11-30 2015-08-03 캐논 아네르바 가부시키가이샤 스퍼터링 장치 및 기판 처리 장치
KR102125603B1 (ko) * 2012-11-30 2020-06-22 캐논 아네르바 가부시키가이샤 스퍼터링 장치 및 기판 처리 장치
GB201713385D0 (en) * 2017-08-21 2017-10-04 Gencoa Ltd Ion-enhanced deposition
WO2019087390A1 (ja) 2017-11-06 2019-05-09 キヤノンアネルバ株式会社 構造体およびその製造方法
JP2020026575A (ja) * 2018-08-10 2020-02-20 東京エレクトロン株式会社 成膜装置、成膜システム、および成膜方法
CN112746254B (zh) * 2019-10-29 2022-10-18 中国电子科技集团公司第四十八研究所 一种磁控溅射靶挡板机构

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194454U (ja) * 1987-12-10 1989-06-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194454U (ja) * 1987-12-10 1989-06-21

Also Published As

Publication number Publication date
JP2009041108A (ja) 2009-02-26

Similar Documents

Publication Publication Date Title
JP4494047B2 (ja) 多元スパッタ成膜装置の二重シャッタ制御方法
JP4505032B2 (ja) スパッタリング装置
TWI444493B (zh) Film forming device
US6641703B2 (en) Magnetic multi-layer film manufacturing apparatus
JP5650760B2 (ja) 製造装置
JP4562764B2 (ja) スパッタ装置
CN107923037B (zh) 真空处理设备和用于真空处理基底的方法
US20100000855A1 (en) Film Forming Apparatus and Method of Forming Film
JP2005256112A5 (ja)
JP2017513221A (ja) 基板処理のためのシステム、基板処理のためのシステム用の真空回転モジュール、及び基板処理システムを操作する方法
JP5503905B2 (ja) スパッタ装置及びスパッタ方法
US20090134010A1 (en) Sputtering apparatus and sputtering method
WO2014122700A1 (ja) 成膜装置
JP4974582B2 (ja) 成膜装置
JP2009299156A (ja) スパッタリング装置
JP4465004B2 (ja) スパッタリング装置
JP6952523B2 (ja) スパッタ装置
JP2011168828A (ja) 基板処理装置及び半導体装置の製造方法
JP2008095154A (ja) ターゲット基台、ターゲット装置およびスパッタリング装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100423

R150 Certificate of patent or registration of utility model

Ref document number: 4505032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term