JP4498891B2 - Semiconductor power converter - Google Patents

Semiconductor power converter Download PDF

Info

Publication number
JP4498891B2
JP4498891B2 JP2004326452A JP2004326452A JP4498891B2 JP 4498891 B2 JP4498891 B2 JP 4498891B2 JP 2004326452 A JP2004326452 A JP 2004326452A JP 2004326452 A JP2004326452 A JP 2004326452A JP 4498891 B2 JP4498891 B2 JP 4498891B2
Authority
JP
Japan
Prior art keywords
voltage
positive
negative
semiconductor power
voltage deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004326452A
Other languages
Japanese (ja)
Other versions
JP2006141090A (en
Inventor
昌彦 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2004326452A priority Critical patent/JP4498891B2/en
Publication of JP2006141090A publication Critical patent/JP2006141090A/en
Application granted granted Critical
Publication of JP4498891B2 publication Critical patent/JP4498891B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Description

本発明は、複数の主回路電位を有する半導体電力変換装置に係り、特に中性点電位の変動を抑制するように改良した半導体電力変換装置に関する。   The present invention relates to a semiconductor power conversion device having a plurality of main circuit potentials, and more particularly to a semiconductor power conversion device improved to suppress fluctuations in neutral point potential.

従来、所謂PWM(パルス幅変調)制御方式によって出力電圧を制御する半導体電力変換装置、例えばインバータ装置は、その主回路にIGBT等の自己消弧型素子を使用し、変調周期毎に所定期間だけオン状態となるパルス状の電圧を出力し、その平均電圧を制御している。インバータ装置が3レベルになると、正電圧、負電圧に加え、零電圧を出力するモードが加わり、2レベルのインバータ装置に比較して倍となる1アーム当り4個の自己消弧型素子のPWM制御を行う必要があるが、基本的な制御の考え方は変わらない。   Conventionally, a semiconductor power conversion device that controls output voltage by a so-called PWM (pulse width modulation) control system, for example, an inverter device, uses a self-extinguishing element such as an IGBT in its main circuit, and only a predetermined period for each modulation period. It outputs a pulsed voltage that turns on and controls its average voltage. When the inverter device reaches the 3rd level, a mode for outputting a zero voltage is added in addition to the positive voltage and the negative voltage, and PWM of four self-extinguishing elements per arm which is doubled as compared with the 2 level inverter device. Although it is necessary to perform control, the basic concept of control remains the same.

3レベルインバータ装置において、その出力周波数が低く、従って出力電圧が低いとき、電圧基準と変調用キャリアとを比較してゲート制御用パルスを作る場合、そのパルスが自己消弧型素子の特性上許容できないパルス幅(以下最小オンパルス幅と言う。)以下となってしまうという問題があった。   In a three-level inverter device, when the output frequency is low and therefore the output voltage is low, when the voltage reference and the modulation carrier are compared to create a gate control pulse, the pulse is allowed due to the characteristics of the self-extinguishing element. There has been a problem that the pulse width cannot be reduced (hereinafter referred to as the minimum on-pulse width).

この問題を解決するために所謂矩形変調方式が提案されている。この矩形変調方式は、3相電圧基準に所定のバイアス値を加算して零電圧付近でのPWM変調を避け、3相電圧基準の極性を同一極性として制御し、この極性を所定の周期で切り替えるものである(例えば特許文献1参照。)。   In order to solve this problem, a so-called rectangular modulation system has been proposed. In this rectangular modulation method, a predetermined bias value is added to the three-phase voltage reference to avoid PWM modulation near zero voltage, and the polarity of the three-phase voltage reference is controlled as the same polarity, and this polarity is switched at a predetermined cycle. (For example, refer to Patent Document 1).

次に3レベルインバータ装置の中性点電圧変動について説明する。3レベルインバータ装置の直流中性点には交流周波数の3倍の周波数で変動する電流が流れ込むことが知られている。この電流は正側及び負側の直流コンデンサに分流し、結果として中性点電位の変動をもたらす。   Next, neutral point voltage fluctuations of the three-level inverter device will be described. It is known that a current that fluctuates at a frequency three times the AC frequency flows into the DC neutral point of the three-level inverter device. This current is shunted to the positive and negative DC capacitors, resulting in a change in neutral point potential.

上記の中性点電位の変動を抑制する手法として、正、負コンデンサ電圧の差を検出してその差分により電圧基準をシフト補正する方式が知られている。また近年、更に補正精度の向上を計るため、この方式に加え、3角波キャリア信号の特定の位相に応じて、3相の電圧基準にオフセットを加える方式が提案されている(例えば特許文献2参照。)。
特開平5−268773号公報(第4−6頁、図1) 特開2003−169480号公報(第4−5頁、図1)
As a technique for suppressing the fluctuation of the neutral point potential, there is known a system in which a difference between positive and negative capacitor voltages is detected and a voltage reference is shift-corrected based on the difference. In recent years, in order to further improve the correction accuracy, in addition to this method, a method of adding an offset to a three-phase voltage reference according to a specific phase of a triangular wave carrier signal has been proposed (for example, Patent Document 2). reference.).
JP-A-5-268773 (page 4-6, FIG. 1) JP 2003-169480 A (page 4-5, FIG. 1)

特許文献2で示されている中性点電位抑制方式は、通常の変調方式を行っているときには有効であるが、特許文献1に示されている矩形変調方式においては有効とはならないという問題があった。この理由は、矩形変調は基本的には同極性制御を行う制御方式であり、正負の切換は通電するデバイスのバランスを取るためであり、3相同時に正または負に常に固定された切換周期で切換えるようにしているためである。   The neutral point potential suppression method disclosed in Patent Document 2 is effective when a normal modulation method is performed, but is not effective in the rectangular modulation method disclosed in Patent Document 1. there were. The reason for this is that rectangular modulation is basically a control system that performs the same polarity control, and switching between positive and negative is to balance the devices that are energized, with a switching period that is always fixed to positive or negative simultaneously for the three phases. This is because they are switched.

この発明は上記のような課題を解決するためになされたものであり、どの運転モードにおいても中性点の電位変動を抑制することを可能とする半導体電力変換装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a semiconductor power conversion device that can suppress a potential fluctuation at a neutral point in any operation mode. .

上記の目的を達成するため、本発明の半導体電力変換装置は、3レベルの直流入力を交流電力に変換して負荷に供給する3レベル電力変換器と、電圧基準にもとづいて前記3レベル電力変換器の出力を制御する制御手段と、前記3レベルの直流入力の正側と負側の電圧偏差を検出する電圧検出器とを具備し、前記制御手段は、前記電圧基準が所定値以下のとき、この電圧基準に基準の周期で正負の極性を切り替えながら所定のバイアス値を加算する矩形変調手段と、前記電圧偏差に応じて前記電圧偏差を減少する方向に前記基準の周期の正側と負側の時間比率を調整する時間比率調整手段とを有することを特徴としている。   In order to achieve the above object, a semiconductor power conversion device according to the present invention converts a three-level DC input into an AC power and supplies it to a load, and the three-level power conversion based on a voltage reference. Control means for controlling the output of the voltage detector, and a voltage detector for detecting the voltage deviation between the positive side and the negative side of the three-level DC input, wherein the control means is configured such that the voltage reference is less than a predetermined value. A rectangular modulation means for adding a predetermined bias value while switching between positive and negative polarities at the reference period to the voltage reference, and negative and positive sides of the reference period in a direction to decrease the voltage deviation according to the voltage deviation. And a time ratio adjusting means for adjusting the time ratio on the side.

この発明によれば、どの運転モードにおいても中性点の電位変動を抑制することを可能とする半導体電力変換装置を提供することが出来る。   According to the present invention, it is possible to provide a semiconductor power conversion device that can suppress a potential fluctuation at a neutral point in any operation mode.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の実施例1に係る半導体電力変換装置について図1及び図2を参照して説明する。   A semiconductor power conversion device according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.

図1は本発明の実施例1に係る半導体電力変換装置のブロック構成図である。 1 is a block configuration diagram of a semiconductor power conversion device according to a first embodiment of the present invention.

直流電源11は中性点Nを挟んで正側の電圧+Eと負側の電圧−Eを3レベル電力変換器12に供給し、3レベル電力変換器12の交流出力は交流電動機13を駆動している。直流電源11は、通常は交流電源からの交流入力をコンバータ回路で直流に変換し、この変換された直流電圧をコンデンサ等による平滑フィルタ回路で平滑する構成とするが、他の直流発生手段を用いても良い。また、3レベル変換器12は、還流ダーオードを逆並列に接続したパワーデバイスを直列接続して変換アームを構成し、この変換アームをブリッジ接続すると共に、直列接続された夫々の変換アームの中点を中性点Nの電位にダイオードを用いてクランプするように構成している。   The DC power supply 11 supplies a positive voltage + E and a negative voltage −E across the neutral point N to the three-level power converter 12, and the AC output of the three-level power converter 12 drives the AC motor 13. ing. The DC power supply 11 normally has a configuration in which AC input from the AC power supply is converted into DC by a converter circuit, and the converted DC voltage is smoothed by a smoothing filter circuit such as a capacitor, but other DC generating means is used. May be. Further, the three-level converter 12 forms a conversion arm by connecting power devices having reflux diodes connected in antiparallel to form a conversion arm, bridges the conversion arm, and connects the midpoints of the serially connected conversion arms. Is clamped to the potential of the neutral point N using a diode.

3レベル電力変換器12の出力側には電流検出器21が設けられ、また直流電源11の出力側には正側及び負側の電圧を検出する電圧検出器22A、22Bが夫々設けられている。更に交流電動機13には速度検出器23が取り付けられている。これらの電流検出器21、電圧検出器22A、22B及び速度検出器23によって検出された信号は、フィードバック信号として制御部30に与えられている。以下、3レベル変換器12を制御するための制御部30の構成について説明する。   A current detector 21 is provided on the output side of the three-level power converter 12, and voltage detectors 22A and 22B for detecting positive and negative voltages are provided on the output side of the DC power supply 11, respectively. . Furthermore, a speed detector 23 is attached to the AC motor 13. The signals detected by the current detector 21, the voltage detectors 22A and 22B, and the speed detector 23 are given to the control unit 30 as a feedback signal. Hereinafter, the configuration of the control unit 30 for controlling the three-level converter 12 will be described.

速度検出器23によって検出された信号は速度制御器31によって速度基準と比較され、その差分を最小とするような電流基準を出力する。この電流基準は電流制御器32により、電流検出器21で検出された電流フィードバックと比較され、その差分を最小とするような電圧基準を出力する。この電圧基準と電圧検出器22A、22Bで検出された正側及び負側の直流フィードバック電圧を電圧変調器33に与え、後述する変調処理を行う。そして変調後の電圧基準をPWM変調器34によってPWM変調を行うことによって3レベル電力変換器12を構成する各パワーデバイスのゲート信号を得ている。以下電圧変調器33の内部構成について説明する。   The signal detected by the speed detector 23 is compared with the speed reference by the speed controller 31 and outputs a current reference that minimizes the difference. This current reference is compared with the current feedback detected by the current detector 21 by the current controller 32, and a voltage reference that minimizes the difference is output. The voltage reference 33 and positive and negative DC feedback voltages detected by the voltage detectors 22A and 22B are applied to the voltage modulator 33, and a modulation process described later is performed. Then, the modulated voltage reference is subjected to PWM modulation by the PWM modulator 34 to obtain the gate signal of each power device constituting the three-level power converter 12. Hereinafter, the internal configuration of the voltage modulator 33 will be described.

図1(b)は電圧変調器33の内部構成であり、特に電圧基準が所定値以下のとき矩形変調を行う場合の構成を示したものである。   FIG. 1B shows an internal configuration of the voltage modulator 33, and particularly shows a configuration in the case of performing rectangular modulation when the voltage reference is a predetermined value or less.

電圧検出器22Aで検出された正側直流電圧フィードバックから電圧検出器22Bで検出された負側直流電圧フィードバックとを減算器35で減算し、得られた偏差出力である直流電圧フィードバック偏差を正負通電時間調整器36に与える。正負通電時間調整器36はこの直流電圧フィードバック偏差に応じて、変調後の電圧基準の正側及び負側の通電時間比率を決定する。   The subtractor 35 subtracts the negative DC voltage feedback detected by the voltage detector 22B from the positive DC voltage feedback detected by the voltage detector 22A, and the DC voltage feedback deviation, which is the obtained deviation output, is positively and negatively energized. The time adjuster 36 is given. The positive / negative energization time adjuster 36 determines the energization time ratio between the positive side and the negative side of the modulated voltage reference according to the DC voltage feedback deviation.

上記の結果に基づいて、最小オンパルスを確保するためのバイアス(正)とバイアス(負)を正負バイアス切替え器38によって切替えるときの切替え周期を瞬時補償し、この補償信号を電流制御器32の出力である各相の三相電圧基準に加算器39A、39B及び39Cによって夫々加算して矩形変調後の電圧基準を得る。   Based on the above result, the switching period when the bias (positive) and the bias (negative) for ensuring the minimum on-pulse is switched by the positive / negative bias switch 38 is instantaneously compensated, and this compensation signal is output from the current controller 32. Are added to the three-phase voltage reference of each phase by the adders 39A, 39B and 39C to obtain a voltage reference after rectangular modulation.

図2は、電圧変調器33における補償信号の1周期分を示したものである。図2(a)は通常の矩形変調で直流フィードバック偏差がない場合の補償信号を、図2(b)は、直流電圧フィードバック偏差が正の場合の補償信号を、更に、図2(c)は、直流電圧フィードバック偏差が負の場合の補償信号を示す。図2(b)に示したように、直流電圧フィードバック偏差が正で力行の場合は、正側の電力を負側の電力より多く供給するように補償すれば、結果として直流電圧正電位が低下する。逆に図2(c)に示したように、直流電圧フィードバック偏差が負で力行の場合は負側の電力を正側の電力より多く供給するように補償すれば、結果として直流電圧正電位が低下する。尚、回生運転をしている場合は、上記とは逆の動作をするように回路を構成する。   FIG. 2 shows one period of the compensation signal in the voltage modulator 33. 2A shows a compensation signal when there is no DC feedback deviation in normal rectangular modulation, FIG. 2B shows a compensation signal when the DC voltage feedback deviation is positive, and FIG. The compensation signal when the DC voltage feedback deviation is negative is shown. As shown in FIG. 2B, when the DC voltage feedback deviation is positive and powering, if the compensation is made so that the positive power is supplied more than the negative power, the DC voltage positive potential decreases as a result. To do. On the other hand, as shown in FIG. 2C, when the DC voltage feedback deviation is negative and powering, if the compensation is made so that the negative power is supplied more than the positive power, the DC voltage positive potential is obtained as a result. descend. Note that when the regenerative operation is performed, the circuit is configured to perform the reverse operation to the above.

以上説明した効果によって、実施例1の半導体電力変換装置においては中性点の電位変動が抑制される。だだし、この実施例1は切替え周期を補償量としているため、制御における操作量が切替え時間で決定される離散値となり、補償量子量は比較的大きい。   Due to the effects described above, the potential fluctuation at the neutral point is suppressed in the semiconductor power conversion device according to the first embodiment. However, since the first embodiment uses the switching period as the compensation amount, the operation amount in the control becomes a discrete value determined by the switching time, and the compensation quantum amount is relatively large.

尚、上記図1の構成において本発明の重要な点は、電圧基準と直流電圧フィードバック偏差に応じて電圧変調器33を動作させていることにある。従って、速度制御器31、電流検出器21及び電流制御器32を省き、電圧制御を行う構成であっても本発明は適用可能である。また、3レベル電力変換器の負荷は必ずしも交流電動機13である必要はなく、無効電力などを調整するためのリアクトルであっても良い。   In the configuration shown in FIG. 1, the important point of the present invention is that the voltage modulator 33 is operated in accordance with the voltage reference and the DC voltage feedback deviation. Therefore, the present invention can be applied even to a configuration in which the speed controller 31, the current detector 21, and the current controller 32 are omitted and voltage control is performed. Further, the load of the three-level power converter is not necessarily the AC motor 13, and may be a reactor for adjusting reactive power or the like.

以下、本発明に係る半導体電力変換装置の実施例2について図3及び図4を参照して説明する。   Hereinafter, Example 2 of the semiconductor power conversion device according to the present invention will be described with reference to FIGS. 3 and 4.

図3は本発明の実施例2に係る半導体電力変換装置の電圧変調器の構成を示すブロック構成図である。この実施例2の各部について、図1(b)の実施例1に係る半導体電力変換装置の電圧変調器の各部と同一部分は同一符号で示し、その説明を省略する。この実施例2が実施例1と異なる点は、直流電圧フィードバック偏差を増幅器40で増幅し、この出力を加算器41により正負バイアス切替え器38の出力に加算して補償信号を得るように構成した点である。   FIG. 3 is a block diagram showing the configuration of the voltage modulator of the semiconductor power conversion device according to the second embodiment of the present invention. In each part of the second embodiment, the same parts as those of the voltage modulator of the semiconductor power conversion device according to the first embodiment of FIG. 1B are denoted by the same reference numerals, and the description thereof is omitted. The second embodiment is different from the first embodiment in that the DC voltage feedback deviation is amplified by the amplifier 40 and this output is added to the output of the positive / negative bias switch 38 by the adder 41 to obtain a compensation signal. Is a point.

図4に上記構成における出力電圧と中性点電位変動の波形を示す。前術の実施例1では矩形変調を行うときは通常変調の様に3相の電圧基準に対して中性点電位変動を抑制する変調補償量を加算する方式は採用していない。これは、切替えごとに異なるバイアス量が加算され、線間電圧に歪みが生じるのを防止するためである。   FIG. 4 shows waveforms of output voltage and neutral point potential fluctuation in the above configuration. In the first embodiment, when the rectangular modulation is performed, the method of adding the modulation compensation amount for suppressing the neutral point potential fluctuation with respect to the three-phase voltage reference as in the normal modulation is not adopted. This is for preventing a distortion in the line voltage by adding a different bias amount for each switching.

図4に示した波形において、図4(a)は「補償なし」の場合、図4(b)は正側に2%の補償を入れた場合、更に図4(c)は負側に2%の補償を入れた場合の波形である。ここで補償2%とは、バイアス量に対する増幅器40の出力の比が2%ということである。尚、図4においては3相電圧のうち代表としてU相の線間電圧を中性点電位の挙動と共に図示している。   In the waveform shown in FIG. 4, FIG. 4A shows “no compensation”, FIG. 4B shows 2% compensation on the positive side, and FIG. 4C shows 2 on the negative side. This is a waveform when% compensation is added. Here, 2% compensation means that the ratio of the output of the amplifier 40 to the bias amount is 2%. In FIG. 4, the U-phase line voltage as a representative of the three-phase voltages is shown together with the behavior of the neutral point potential.

「補償なし」のケースは中性点がバランスした状態を示しているが、逆にこれは中性点が変動してしまったとき、補償能力がないことを示している。一方、±2%の補償を入れたケースはゆっくりと中性点電位を補償しているが、線間電圧の歪みが若干発生している様子がわかる。この様に、矩形変調において、3相の電圧基準それぞれに補償値を加算する方式は、中性点電位変動補償効果が少ない割に線間電圧歪みが発生するため、一般には採用されない。しかしながら、実施例1の正負切替え周期を可変とする方法と併行して実施すると、前述したような制御量子量が大きい制御の中間を埋めることが出来る。従って本実施例によれば、線間電圧歪みが許容される範囲内で使用することにより、より現実に即した中性点電位変動補償が可能となる。   The case of “no compensation” indicates a state where the neutral points are balanced, but conversely, this indicates that there is no compensation capability when the neutral points change. On the other hand, the case where the compensation of ± 2% is added slowly compensates for the neutral point potential, but it can be seen that a slight distortion of the line voltage occurs. As described above, in the rectangular modulation, the method of adding the compensation value to each of the three-phase voltage references is not generally adopted because the line voltage distortion occurs although the neutral point potential fluctuation compensation effect is small. However, when implemented in parallel with the method of changing the positive / negative switching period of the first embodiment, the middle of the control with the large control quantum amount as described above can be filled. Therefore, according to the present embodiment, neutral point potential fluctuation compensation that is more realistic can be achieved by using the line voltage distortion within the allowable range.

図5は本発明の実施例3に係る半導体電力変換装置の電圧変調器の構成を示すブロック構成図である。この実施例3の各部について、図1(b)の実施例1に係る半導体電力変換装置の電圧変調器の各部と同一部分は同一符号で示し、その説明を省略する。この実施例3が実施例1と異なる点は、正負通電時間調整器36に代えて閾値付き正負通電時間調整器36Aを設けるようにした点である。   FIG. 5 is a block diagram showing the configuration of the voltage modulator of the semiconductor power conversion device according to the third embodiment of the present invention. About each part of this Example 3, the same part as each part of the voltage modulator of the semiconductor power converter device which concerns on Example 1 of FIG.1 (b) is shown with the same code | symbol, and the description is abbreviate | omitted. The third embodiment differs from the first embodiment in that a positive / negative energization time adjuster 36A with a threshold is provided in place of the positive / negative energization time adjuster 36.

閾値付き正負通電時間調整器36Aは、直流電圧フィードバック偏差の値が所定の閾値を越えたときだけ、切り替え周期の補正を行う。   The positive / negative energization time adjuster 36A with a threshold value corrects the switching cycle only when the value of the DC voltage feedback deviation exceeds a predetermined threshold value.

この実施例3の半導体電力変換装置によれば、中性点電位変動が所定値以上になったときに実施例1の補正を行う。通常の運転において、正負で一定の切替え周期で運転するようにしているため、中性点電位変動は発生しにくい。電流が過渡的に急変するなどの外乱が生じたとき、正負の直流電圧の電力消費が不平衡になるため、必要最小限の中性点電位変動補償を行うことは、安定した電動機駆動に有効である。   According to the semiconductor power conversion device of the third embodiment, the correction of the first embodiment is performed when the neutral point potential fluctuation becomes a predetermined value or more. In normal operation, since the operation is performed with a positive and negative switching cycle, neutral point potential fluctuations are unlikely to occur. When a disturbance such as a sudden change in current occurs, the power consumption of the positive and negative DC voltages becomes unbalanced, so performing the necessary neutral point potential fluctuation compensation is effective for stable motor drive. It is.

図6は本発明の実施例4に係る半導体電力変換装置の電圧変調器の構成を示すブロック構成図である。この実施例4の各部について、図1(b)の実施例1に係る半導体電力変換装置の電圧変調器の各部と同一部分は同一符号で示し、その説明を省略する。この実施例4が実施例1と異なる点は、正負通電時間調整器36に代えて平均値計算形正負通電時間調整器36Bを設けるようにした点である。   FIG. 6 is a block diagram showing the configuration of the voltage modulator of the semiconductor power conversion device according to the fourth embodiment of the present invention. In each part of the fourth embodiment, the same parts as those of the voltage modulator of the semiconductor power conversion device according to the first embodiment of FIG. 1B are denoted by the same reference numerals, and the description thereof is omitted. The fourth embodiment is different from the first embodiment in that an average value calculation type positive / negative energization time adjuster 36B is provided in place of the positive / negative energization time adjuster 36.

平均値計算形正負通電時間調整器36Aは変動する直流電圧フィードバック偏差の平均値をフィルタ演算または予測演算等により求め、この平均値に対して正負通電時間の調整信号を出力する。   The average value calculation type positive / negative energization time adjuster 36A calculates an average value of the fluctuating DC voltage feedback deviation by a filter operation or a prediction operation, and outputs a positive / negative energization time adjustment signal for this average value.

矩形変調においては直流電圧の正負偏差は、切替えが正負に入れ替わる度に周期的に変動する。この期間の平均値を計算することにより、より厳密な制御を行うことが出来る。これは不要な中性点電位変動補償を極力避けることとなりより安定した電動機駆動を実現できる。   In the rectangular modulation, the positive / negative deviation of the DC voltage periodically changes every time the switching is switched between positive and negative. Stricter control can be performed by calculating the average value of this period. This avoids unnecessary neutral point potential fluctuation compensation as much as possible, and a more stable motor drive can be realized.

尚、本実施例で使用する平均値は、上述した変動の1周期毎の平均値でも良いが、全変動の平均値であっても良い。   The average value used in the present embodiment may be the average value of the above-described fluctuations per cycle, or may be the average value of all fluctuations.

本発明の実施例1に係る半導体電力変換装置のブロック構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block block diagram of the semiconductor power converter device which concerns on Example 1 of this invention. 本発明の実施例1に係る半導体電力変換装置の電圧変調器の補償信号の1周期分を示す波形。The waveform which shows 1 period of the compensation signal of the voltage modulator of the semiconductor power converter device which concerns on Example 1 of this invention. 本発明の実施例2に係る半導体電力変換装置の電圧変調器の構成を示すブロック構成図。The block block diagram which shows the structure of the voltage modulator of the semiconductor power converter device which concerns on Example 2 of this invention. 本発明の実施例2に係る半導体電力変換装置の出力電圧と中性点電位波形。The output voltage and neutral point potential waveform of the semiconductor power converter device concerning Example 2 of the present invention. 本発明の実施例3に係る半導体電力変換装置の電圧変調器の構成を示すブロック構成図。The block block diagram which shows the structure of the voltage modulator of the semiconductor power converter device which concerns on Example 3 of this invention. 本発明の実施例4に係る半導体電力変換装置の電圧変調器の構成を示すブロック構成図。The block block diagram which shows the structure of the voltage modulator of the semiconductor power converter device which concerns on Example 4 of this invention.

符号の説明Explanation of symbols

11 直流電源
12 3レベル電力変換器
13 交流電動機
21 電流検出器
22A、22B 直流電圧検出器
23 速度検出器
30 制御部
31 速度制御器
32 電流制御器
33 電圧変調器
34 PWM変調器
35 減算器
36 正負通電時間調整器
36A 閾値付き正負通電時間調整器
36B 平均値計算形正負通電時間調整器
37 加算器
38 正負バイアス切替え器
39A、39B、39C 加算器
40 増幅器
41 加算器

11 DC power source 12 3-level power converter 13 AC motor 21 Current detector 22A, 22B DC voltage detector 23 Speed detector 30 Control unit 31 Speed controller 32 Current controller 33 Voltage modulator 34 PWM modulator 35 Subtractor 36 Positive / negative energization time adjuster 36A Threshold positive / negative energization time adjuster 36B Average value calculation type positive / negative energization time adjuster 37 Adder 38 Positive / negative bias switching device 39A, 39B, 39C Adder 40 Amplifier 41 Adder

Claims (4)

3レベルの直流入力を交流電力に変換して負荷に供給する3レベル電力変換器と、
電圧基準にもとづいて前記3レベル電力変換器の出力を制御する制御手段と、
前記3レベルの直流入力の正側と負側の電圧偏差を検出する電圧検出器と
を具備し、
前記制御手段は、
前記電圧基準が所定値以下のとき、この電圧基準に所定の切替え周期で正負の極性を切り替えながら所定のバイアス値を加算する矩形変調手段と
前記電圧偏差に応じて前記電圧偏差を減少する方向に前記切替え周期の正側と負側の時間比率を調整する時間比率調整手段と
を有することを特徴とする半導体電力変換装置。
A three-level power converter that converts a three-level DC input into AC power and supplies the load
Control means for controlling the output of the three-level power converter based on a voltage reference;
A voltage detector for detecting a voltage deviation between the positive side and the negative side of the three-level DC input;
The control means includes
When the voltage reference is less than or equal to a predetermined value, rectangular modulation means for adding a predetermined bias value while switching between positive and negative polarities at a predetermined switching period to the voltage reference and in a direction to decrease the voltage deviation according to the voltage deviation A semiconductor power conversion device comprising: a time ratio adjusting means for adjusting a time ratio between the positive side and the negative side of the switching cycle.
前記制御手段は、
更に前記電圧偏差に応じて前記電圧偏差を減少する方向に前記バイアス値を補正するようにしたことを特徴とする請求項1に記載の半導体電力変換装置。
The control means includes
The semiconductor power conversion device according to claim 1, wherein the bias value is corrected in a direction of decreasing the voltage deviation according to the voltage deviation.
前記時間比率調整手段は、
前記電圧偏差が所定の閾値を超えたとき、前記基準の周期の正側と負側の時間比率を調整するようにしたことを特徴とする請求項1または請求項2に記載の半導体電力変換装置。
The time ratio adjusting means is
3. The semiconductor power conversion device according to claim 1, wherein when the voltage deviation exceeds a predetermined threshold value, a time ratio between the positive side and the negative side of the reference period is adjusted. .
前記時間比率調整手段は、
変動する前記電圧偏差の平均値を求める機能を有し、
この電圧偏差の平均値に応じて前記基準の周期の正側と負側の時間比率を調整するようにしたことを特徴とする請求項1または請求項2に記載の半導体電力変換装置。


The time ratio adjusting means is
Having a function of obtaining an average value of the voltage deviation that fluctuates;
3. The semiconductor power conversion device according to claim 1, wherein a time ratio between the positive side and the negative side of the reference period is adjusted according to an average value of the voltage deviation.


JP2004326452A 2004-11-10 2004-11-10 Semiconductor power converter Active JP4498891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004326452A JP4498891B2 (en) 2004-11-10 2004-11-10 Semiconductor power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004326452A JP4498891B2 (en) 2004-11-10 2004-11-10 Semiconductor power converter

Publications (2)

Publication Number Publication Date
JP2006141090A JP2006141090A (en) 2006-06-01
JP4498891B2 true JP4498891B2 (en) 2010-07-07

Family

ID=36621487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004326452A Active JP4498891B2 (en) 2004-11-10 2004-11-10 Semiconductor power converter

Country Status (1)

Country Link
JP (1) JP4498891B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110815A (en) 2011-11-18 2013-06-06 Meidensha Corp Neutral point clamped multilevel power converter
CN103138591B (en) * 2011-11-24 2015-09-23 深圳古瑞瓦特新能源股份有限公司 A kind of three level conversion neutral balance control method, device and three-level converter
CN102969923A (en) * 2012-11-27 2013-03-13 上海电气集团股份有限公司 Neutral-point potential balance control method of three-level converter
CN103337962B (en) * 2013-06-20 2016-06-01 南京工程学院 Marine wind electric field direct current convergence three-level converter and control method thereof
CN103746585B (en) * 2014-01-10 2016-03-02 南京理工大学 Based on the multi-electrical level inverter neutral-point voltage balance method of hybrid modulation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05268773A (en) * 1992-01-24 1993-10-15 Toshiba Corp Pwm controller and control method for inverter
JPH0630564A (en) * 1992-04-24 1994-02-04 Hitachi Ltd Controller of power converter and controller of electric rolling stock using the same
JPH0974767A (en) * 1995-09-01 1997-03-18 Toshiba Corp Pwm control apparatus for npc inverter
JPH09331683A (en) * 1996-06-11 1997-12-22 Hitachi Ltd Controller of power converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05268773A (en) * 1992-01-24 1993-10-15 Toshiba Corp Pwm controller and control method for inverter
JPH0630564A (en) * 1992-04-24 1994-02-04 Hitachi Ltd Controller of power converter and controller of electric rolling stock using the same
JPH0974767A (en) * 1995-09-01 1997-03-18 Toshiba Corp Pwm control apparatus for npc inverter
JPH09331683A (en) * 1996-06-11 1997-12-22 Hitachi Ltd Controller of power converter

Also Published As

Publication number Publication date
JP2006141090A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
JP5822732B2 (en) 3-level power converter
JP6134733B2 (en) Polyphase converter system and method
JP5126550B2 (en) Matrix converter
JPWO2005088822A1 (en) MOTOR CONTROL DEVICE AND MODULATION WAVE COMMAND GENERATION METHOD FOR PWM INVERTER
RU2573825C2 (en) Multilevel power converter with fixed neutral point
JP2009201248A (en) Clamp power conversion apparatus
JP5247282B2 (en) Power converter
JP6131360B1 (en) Power converter
EP3853985A1 (en) Multi-level inverter
JP4498891B2 (en) Semiconductor power converter
JP5154359B2 (en) Power converter
JP4876600B2 (en) Control method of AC direct converter
JP2012130228A (en) Control device for three-phase v-connected three-level converter
JP4292787B2 (en) Neutral point clamp type PWM inverter device
JP4234082B2 (en) Power converter
JP2004064947A (en) Voltage controller for voltage-type pwm inverter
JPH10164856A (en) Controller for tri-level inverter/tri-level converter
JP5428744B2 (en) Power converter control method
JP2007097394A (en) Electric power transformer
JP2007089318A (en) Semiconductor power conversion device
JP6658111B2 (en) AC power supply device and control method thereof
JP6468046B2 (en) Parallel operation method and parallel operation apparatus for PWM power converter
JP2015126607A (en) Motor control system
JP2019201493A (en) Multilevel power conversion device and control method therefor
JP2005295625A (en) Power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4498891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250