JP2004064947A - Voltage controller for voltage-type pwm inverter - Google Patents

Voltage controller for voltage-type pwm inverter Download PDF

Info

Publication number
JP2004064947A
JP2004064947A JP2002222448A JP2002222448A JP2004064947A JP 2004064947 A JP2004064947 A JP 2004064947A JP 2002222448 A JP2002222448 A JP 2002222448A JP 2002222448 A JP2002222448 A JP 2002222448A JP 2004064947 A JP2004064947 A JP 2004064947A
Authority
JP
Japan
Prior art keywords
inverter
voltage
output
dead time
output current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002222448A
Other languages
Japanese (ja)
Inventor
Naoyoshi Takamatsu
高松 直義
Atsushi Nakada
中田 篤史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2002222448A priority Critical patent/JP2004064947A/en
Publication of JP2004064947A publication Critical patent/JP2004064947A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent direct current component correction and dead time compensation from being carried out and thus prevent eccentric magnetization from being caused in a transformer due to excessive response to abrupt change in load in a voltage-type PWM inverter having an output transformer. <P>SOLUTION: If inverter output current abruptly changes, that is detected by a computing portion 10 for the effective value of inverter output current, a differentiator 11, and a comparator 12. As the result of this detection, a delay control portion 13 generates a coefficient 0 only for a certain time period. This coefficient is supplied to a multiplier 14, and thereby direct current component correction is prevented. A lamp voltage computing portion 15 gradually increases output. The output is supplied to a multiplier 16, and thereby dead time compensating operation is prevented. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電圧形PWMインバータの電圧制御装置に係り、特にインバータの出力変圧器の偏磁防止方式に関する。
【0002】
【従来の技術】
電圧形インバータは、コンピュータ負荷等に供給する電圧および周波数を一定にする電圧補償装置(CVCF)、系統と連系して直流発電電源から負荷に電力供給するためのDC−AC変換器、負荷で発生する高調波抑制や力率調整をするアクティブフィルタ、さらには交流電動機等に供給する電圧および周波数を可変(VVVF)にする可変速装置として採用される。これら装置のうち、周波数が一定になる電圧補償装置やDC−AC変換器、アクティブフィルタは、出力変圧器を通して負荷に電力を供給する。
【0003】
また、電圧形インバータは、その制御方式として、高調波成分を低減するためにPWM制御するものが多い。また、インバータの制御装置には主回路の上下素子の短絡を防止するデッドタイム補償機能や出力変圧器の偏磁防止機能が設けられる。
【0004】
図3は、従来の電圧形PWMインバータの要部ブロック図である。インバータ主回路1は、整流器等になる順変換部と、半導体スイッチのブリッジ構成になる逆変換部とで構成され、逆変換部の出力電流は出力変圧器2を通して負荷3に電力供給する。PWM制御装置は、一定周波数で振幅制御した正弦波信号を電圧指令とし、この正弦波信号をコンパレータ4で三角波(キャリア信号)とレベル比較することでPWM波形のゲート信号を発生し、このゲート信号でインバータ主回路1の逆変換部の半導体スイッチのゲート制御を行う。
【0005】
ここで、制御装置には、変圧器2の偏磁防止装置として、直流分補正機能を設ける。この機能は、インバータの出力電流からそれがもつ直流分を直流分検出部5で検出し、これに係数部6でゲインを乗じ、これをオフセット調節部7で電圧指令のオフセット値として加算または減算することで直流分を補正し、インバータ出力電流に含まれる直流分を打ち消し、変圧器が偏磁しないようにする。
【0006】
コンパレータ8と係数部9は、デッドタイム補償機能を実現するものであり、直流分補正と同様に、インバータ出力電流の正負方向への偏りをコンパレータ8で検出し、これを係数部9でゲインを乗じ、これをオフセット調節部7で電圧指令のオフセット値として加算または減算することでPWM波形の正負の変調率を均等にしたデッドタイム補償を得る。
【0007】
図4は、図3の各部波形を示し、同図の(a)の正弦波の電圧指令に対して、初期には(b)のインバータの出力電流が正側に偏倚しているとき、(c)の直流分が正、および(d)のPWM波形の正負が非対称になっている。これらの偏倚に対して、(e)の直流分補正および(f)のデッドタイム補償で変圧器磁束を補償側に増加させるよう電圧指令にフィードバック制御することで、後期には変圧器の偏磁を防止する。
【0008】
【発明が解決しようとする課題】
従来の変圧器の偏磁防止方式では、負荷急変によってインバータ出力電流が急変した場合、直流分補正機能やデッドタイム補償機能が過大に作用して変圧器を偏磁させてしまう問題があった。
【0009】
例えば、負荷3の等価回路として抵抗RとインダクタンスLの直列回路とする場合、この負荷に時刻tで正弦波電圧e=Esin(ωt+θ)を印加すると、回路方程式は下記の(1)式で表現され、このときの電流iは下記の(2)式になり、図5の(a)のようになる。また、負荷急変による過渡電流iは下記の(3)式となり、負荷電流が急変した場合に図5の(b)のように過渡的に直流分が含まれることになる。
【0010】
【数1】

Figure 2004064947
【0011】
図3の構成で上記の過渡電流iが流れた場合、制御回路に過大なオフセット分が加わり、PWM出力電圧に直流分を含ませてしまうために、変圧器を偏磁させてしまう。また、負荷電流による出力電圧の変化を抑えるためのデッドタイム補償の制御も(3)式の過渡電流が流れている期間、正負が非対称の直流分が重畳した波形になるため、変圧器を偏磁させてしまう。
【0012】
これらの課題を解決するには、係数部6、9のゲインを下げることが考えられるが、この場合には直流分補正やデッドタイム補償の遅れが大きくなる。
【0013】
本発明の目的は、直流分補正およびデッドタイム補償の応答性を高めながら、インバータの出力電流急変にも変圧器の偏磁を防止できる電圧形PWMインバータの電圧制御装置を提供することにある。
【0014】
【課題を解決するための手段】
本発明は、前記の課題を解決するため、インバータの直流分補正およびデッドタイム補償のゲインを大きくしておくことでそれらの応答性を上げておき、インバータ出力電流が過渡的に一定値以上変化したときに直流分補正動作を一定時間だけ抑止、およびデッドタイム補償動作を徐々に大きくするようにしたもので、以下の構成を特徴とする。
【0015】
(1)PWMインバータから出力変圧器を通して負荷に電力を供給し、インバータ出力電流を基にインバータの電圧指令をオフセット調節して直流分補正やデッドタイム補償を行う電圧形PWMインバータの電圧制御装置において、
負荷急変によってインバータ出力電流が過渡的に一定値以上変化したことを検出する手段と、
前記検出があったときに前記直流分補正動作を一定時間だけ抑止する手段と、
前記検出があったときに前記デッドタイム補償動作を徐々に大きくする手段とを備えたことを特徴とする。
【0016】
【発明の実施の形態】
図1は、本発明の実施形態を示す要部制御ブロック図であり、図3と同等の部分は同一符号で示す。
【0017】
図1において、実効値計算部10はインバータ出力電流の実効値を求める。微分器11は実効値の変化率を求める。コンパレータ12は変化率がある設定値を越えたか否かを判定する。これら回路要素10〜12により、負荷急変によりインバータ出力電流が過渡的に一定値以上変化したこと、つまりインバータ出力電流が急変したことを検出する。
【0018】
直流分補正遅れ制御部13は、インバータ出力電流が急変したとき、該時点から一定時間だけ係数0を発生し、その後に係数1を発生する。乗算器14は、インバータ出力電流を被乗数とし、遅れ制御部13の出力を乗数とした乗算を行い、この出力を直流分検出部5の入力とする。
【0019】
これら回路要素10〜14により、インバータ出力電流が急変したときに直流分検出部5への入力を一定時間だけ零にし、直流分補正動作を抑止する。
【0020】
次に、ランプ電圧演算部15は、出力電流が急変したときに、該時点から一定の時定数で係数1まで上昇するランプ電圧波形を発生する。乗算器16は、係数部9の出力を被乗数とし、ランプ電圧演算部15の出力を乗数とした乗算を行い、この出力をオフセット調節部7の入力とする。
【0021】
これら回路要素10〜12と15、16により、インバータ出力電流が急変したときにデッドタイム補償ゲインを徐々に大きくし、デッドタイム補償動作を抑制する。
【0022】
図2は、図1における各部波形を示し、インバータ出力電流が急変したとき、(c)の時刻「3」のタイミングで遅れ補正制御部13の直流分補正抑止出力が1に切り替わり、同時に(d)のランプ電圧演算部15の出力が徐々に立ち上がり、(g)の直流分補正の積分値および(h)のデッドタイム補償の積分値が0に保持され、インバータ出力電流の急変による過大応答で変圧器2を偏磁させるのを防止する。
【0023】
【発明の効果】
以上のとおり、本発明によれば、インバータの直流分補正およびデッドタイム補償のゲインを大きくしておくことでそれらの応答性を上げておき、インバータ出力電流が過渡的に一定値以上変化したときに直流分補正動作を一定時間だけ抑止、およびデッドタイム補償動作を徐々に大きくするようにしたため、負荷急変によりインバータ出力電流が急変した場合においても過渡電流の影響による変圧器の偏磁を確実に防止できる。
【0024】
また、インバータの出力電圧指令をステップ的に変化させた場合、これには即座に応答して高速な電圧可変が可能となる。
【図面の簡単な説明】
【図1】本発明の実施形態を示す電圧PWMインバータの要部制御ブロック図。
【図2】実施形態における各部の波形図。
【図3】従来の要部制御ブロック図。
【図4】図3の各部波形図。
【図5】負荷急変による負荷電流波形図。
【符号の説明】
1…インバータ主回路
2…出力変圧器
3…負荷
4、8、12…コンパレータ
5…直流分検出部
6、9…係数部
7…オフセット調節部
10…実効値計算部
11…微分器
13…調節部補正遅れ制御部
14、16…乗算器
15…ランプ電圧演算部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a voltage control device for a voltage-type PWM inverter, and more particularly, to a method for preventing demagnetization of an output transformer of the inverter.
[0002]
[Prior art]
The voltage type inverter includes a voltage compensating device (CVCF) for making the voltage and frequency supplied to a computer load or the like constant, a DC-AC converter for supplying power from a DC power supply to the load in connection with a system, and a load. It is employed as an active filter for suppressing generated harmonics and adjusting the power factor, and as a variable speed device for changing the voltage and frequency (VVVF) supplied to an AC motor or the like. Among these devices, a voltage compensating device, a DC-AC converter, and an active filter that provide a constant frequency supply power to a load through an output transformer.
[0003]
In addition, many voltage-source inverters perform PWM control as a control method to reduce harmonic components. In addition, the inverter control device is provided with a dead time compensation function for preventing a short circuit between upper and lower elements of the main circuit and a function for preventing demagnetization of the output transformer.
[0004]
FIG. 3 is a main block diagram of a conventional voltage-type PWM inverter. The inverter main circuit 1 is composed of a forward converter that becomes a rectifier and the like, and an inverse converter that becomes a bridge configuration of semiconductor switches. The output current of the inverse converter supplies power to the load 3 through the output transformer 2. The PWM control device generates a PWM waveform gate signal by comparing the level of the sine wave signal with a triangular wave (carrier signal) by the comparator 4 with a sine wave signal whose amplitude is controlled at a constant frequency as a voltage command. Performs gate control of the semiconductor switch of the inverse converter of the inverter main circuit 1.
[0005]
Here, the control device is provided with a DC component correction function as an anti-magnetization device of the transformer 2. In this function, the DC component of the inverter is detected from the output current of the inverter by a DC component detection unit 5, multiplied by a gain by a coefficient unit 6, and added or subtracted as an offset value of a voltage command by an offset adjustment unit 7. By doing so, the DC component is corrected, the DC component included in the inverter output current is canceled, and the transformer is not demagnetized.
[0006]
The comparator 8 and the coefficient unit 9 realize a dead time compensation function. As in the case of the DC component correction, the comparator 8 detects the bias of the inverter output current in the positive / negative direction, and detects the gain in the coefficient unit 9. By multiplying and multiplying this by the offset adjusting unit 7 to add or subtract as an offset value of the voltage command, dead time compensation in which the positive and negative modulation rates of the PWM waveform are equalized is obtained.
[0007]
FIG. 4 shows the waveforms of the respective parts of FIG. 3. When the output current of the inverter shown in FIG. 4B initially deviates to the positive side in response to the sine wave voltage command shown in FIG. The DC component of (c) is positive, and the positive and negative of the PWM waveform of (d) are asymmetric. In response to these deviations, feedback control is performed on the voltage command so as to increase the transformer magnetic flux to the compensation side by the DC component correction of (e) and the dead time compensation of (f). To prevent
[0008]
[Problems to be solved by the invention]
In the conventional transformer demagnetization prevention method, when the inverter output current suddenly changes due to a sudden change in load, there has been a problem that the DC component correcting function and the dead time compensating function act excessively to cause the transformer to be demagnetized.
[0009]
For example, when a series circuit of a resistor R and an inductance L is used as an equivalent circuit of the load 3, when a sine wave voltage e = E m sin (ωt + θ) is applied to the load at time t 0 , the circuit equation is as follows: The current i at this time is expressed by the following equation (2), as shown in FIG. Also, the transient current it due to a sudden change in load is expressed by the following equation (3). When the load current suddenly changes, a DC component is transiently included as shown in FIG. 5B.
[0010]
(Equation 1)
Figure 2004064947
[0011]
If the transient current i t consists of the above FIG. 3 flows, imposes great offset to the control circuit, in order thus to include a DC component in the PWM output voltage, thereby to magnetic deflection of the transformer. In addition, the dead time compensation control for suppressing the change in the output voltage due to the load current also has a waveform in which the positive and negative asymmetrical DC components are superimposed during the period when the transient current of equation (3) is flowing. I will magnetize it.
[0012]
In order to solve these problems, it is conceivable to lower the gain of the coefficient units 6 and 9, but in this case, the delay of DC component correction and dead time compensation increases.
[0013]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a voltage control device for a voltage-type PWM inverter capable of preventing the transformer from being demagnetized even when the output current of the inverter changes suddenly, while improving the responsiveness of DC component correction and dead time compensation.
[0014]
[Means for Solving the Problems]
The present invention solves the above problem by increasing the DC component correction and dead time compensation gains of the inverter to increase their responsiveness, and the inverter output current transiently changes by a certain value or more. In this case, the DC component correction operation is suppressed for a certain period of time, and the dead time compensation operation is gradually increased, and is characterized by the following configuration.
[0015]
(1) In a voltage control device of a voltage type PWM inverter for supplying power from a PWM inverter to a load through an output transformer and offset-controlling a voltage command of the inverter based on the inverter output current to perform DC component correction and dead time compensation. ,
Means for detecting that the inverter output current has transiently changed by a certain value or more due to a sudden change in load;
Means for suppressing the DC component correction operation for a certain time when the detection is performed,
Means for gradually increasing the dead time compensation operation when the detection is performed.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a main part control block diagram showing an embodiment of the present invention, and portions equivalent to FIG. 3 are denoted by the same reference numerals.
[0017]
In FIG. 1, an effective value calculation unit 10 obtains an effective value of an inverter output current. The differentiator 11 obtains the rate of change of the effective value. The comparator 12 determines whether the rate of change has exceeded a certain set value. These circuit elements 10 to 12 detect that the inverter output current has transiently changed by a certain value or more due to a sudden change in load, that is, that the inverter output current has suddenly changed.
[0018]
When the inverter output current suddenly changes, the DC component correction delay control unit 13 generates a coefficient 0 for a certain period of time from that time, and thereafter generates a coefficient 1. The multiplier 14 performs multiplication using the inverter output current as a multiplicand and the output of the delay control unit 13 as a multiplier, and uses this output as an input to the DC component detection unit 5.
[0019]
These circuit elements 10 to 14 make the input to the DC component detection unit 5 zero for a certain period of time when the inverter output current changes suddenly, thereby suppressing the DC component correction operation.
[0020]
Next, when the output current suddenly changes, the lamp voltage calculation unit 15 generates a lamp voltage waveform that rises to a coefficient 1 with a constant time constant from the time. The multiplier 16 performs multiplication using the output of the coefficient unit 9 as a multiplicand and the output of the ramp voltage calculation unit 15 as a multiplier, and uses this output as the input of the offset adjustment unit 7.
[0021]
These circuit elements 10 to 12, 15 and 16 gradually increase the dead time compensation gain when the inverter output current changes suddenly, thereby suppressing the dead time compensation operation.
[0022]
FIG. 2 shows waveforms at various points in FIG. 1. When the inverter output current changes abruptly, the DC component correction suppression output of the delay correction control unit 13 switches to 1 at the timing of time “3” in FIG. ), The output of the ramp voltage calculator 15 gradually rises, and the integrated value of the DC component correction of (g) and the integrated value of the dead time compensation of (h) are held at 0, resulting in an excessive response due to a sudden change in the inverter output current. The transformer 2 is prevented from being magnetized.
[0023]
【The invention's effect】
As described above, according to the present invention, the responsiveness of the inverter is increased by increasing the DC component correction and the dead time compensation gain of the inverter, and when the inverter output current transiently changes by a certain value or more. In addition, the DC component correction operation is suppressed for a certain period of time, and the dead time compensation operation is gradually increased, so that even if the inverter output current changes suddenly due to a sudden change in load, the transformer's magnetization due to the effect of the transient current is surely prevented. Can be prevented.
[0024]
Also, when the output voltage command of the inverter is changed stepwise, the voltage can be changed at high speed by responding immediately to the change.
[Brief description of the drawings]
FIG. 1 is a main part control block diagram of a voltage PWM inverter showing an embodiment of the present invention.
FIG. 2 is a waveform chart of each part in the embodiment.
FIG. 3 is a conventional control block diagram of a main part.
FIG. 4 is a waveform chart of each part in FIG. 3;
FIG. 5 is a load current waveform diagram due to a sudden change in load.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Inverter main circuit 2 ... Output transformer 3 ... Loads 4, 8, 12 ... Comparator 5 ... DC component detection part 6, 9 ... Coefficient part 7 ... Offset adjustment part 10 ... Effective value calculation part 11 ... Differentiator 13 ... Adjustment Section correction delay control sections 14, 16 ... multiplier 15 ... lamp voltage calculation section

Claims (1)

PWMインバータから出力変圧器を通して負荷に電力を供給し、インバータ出力電流を基にインバータの電圧指令をオフセット調節して直流分補正やデッドタイム補償を行う電圧形PWMインバータの電圧制御装置において、
負荷急変によってインバータ出力電流が過渡的に一定値以上変化したことを検出する手段と、
前記検出があったときに前記直流分補正動作を一定時間だけ抑止する手段と、
前記検出があったときに前記デッドタイム補償動作を徐々に大きくする手段とを備えたことを特徴とする電圧形PWMインバータの電圧制御装置。
In a voltage control device of a voltage type PWM inverter for supplying power from a PWM inverter to a load through an output transformer, offset-controlling a voltage command of the inverter based on the inverter output current and performing DC component correction and dead time compensation,
Means for detecting that the inverter output current has transiently changed by a certain value or more due to a sudden change in load;
Means for suppressing the DC component correction operation for a certain time when the detection is performed,
Means for gradually increasing the dead time compensation operation when the detection is performed.
JP2002222448A 2002-07-31 2002-07-31 Voltage controller for voltage-type pwm inverter Pending JP2004064947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002222448A JP2004064947A (en) 2002-07-31 2002-07-31 Voltage controller for voltage-type pwm inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002222448A JP2004064947A (en) 2002-07-31 2002-07-31 Voltage controller for voltage-type pwm inverter

Publications (1)

Publication Number Publication Date
JP2004064947A true JP2004064947A (en) 2004-02-26

Family

ID=31942468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002222448A Pending JP2004064947A (en) 2002-07-31 2002-07-31 Voltage controller for voltage-type pwm inverter

Country Status (1)

Country Link
JP (1) JP2004064947A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189850A (en) * 2006-01-16 2007-07-26 Fuji Electric Systems Co Ltd System for preventing over-current in power converter
JP2008167524A (en) * 2006-12-27 2008-07-17 Tokyo Electric Power Co Inc:The Inverter controller
JP2010273489A (en) * 2009-05-25 2010-12-02 Hitachi Industrial Equipment Systems Co Ltd Power conditioner
JP2011072075A (en) * 2009-09-24 2011-04-07 Nissan Motor Co Ltd Power semiconductor drive
WO2016154910A1 (en) * 2015-03-31 2016-10-06 深圳市英威腾电气股份有限公司 Igbt parameter identification method, dead-zone compensation method and inverter apparatus
US9658436B2 (en) 2007-12-04 2017-05-23 Blackeye Optics, Llc. Liquid optics in a zoom lens system and imaging apparatus
US11601041B2 (en) * 2016-12-31 2023-03-07 Orris Dent System for preventing transformer saturation

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189850A (en) * 2006-01-16 2007-07-26 Fuji Electric Systems Co Ltd System for preventing over-current in power converter
JP2008167524A (en) * 2006-12-27 2008-07-17 Tokyo Electric Power Co Inc:The Inverter controller
US9658436B2 (en) 2007-12-04 2017-05-23 Blackeye Optics, Llc. Liquid optics in a zoom lens system and imaging apparatus
JP2010273489A (en) * 2009-05-25 2010-12-02 Hitachi Industrial Equipment Systems Co Ltd Power conditioner
JP2011072075A (en) * 2009-09-24 2011-04-07 Nissan Motor Co Ltd Power semiconductor drive
WO2016154910A1 (en) * 2015-03-31 2016-10-06 深圳市英威腾电气股份有限公司 Igbt parameter identification method, dead-zone compensation method and inverter apparatus
US11601041B2 (en) * 2016-12-31 2023-03-07 Orris Dent System for preventing transformer saturation
US20230179087A1 (en) * 2016-12-31 2023-06-08 Orris Dent System for Preventing Transformer Saturation
US11824439B2 (en) * 2016-12-31 2023-11-21 Orris Dent System for preventing transformer saturation
US20230402913A1 (en) * 2016-12-31 2023-12-14 Orris Dent System for Preventing Transformer Saturation

Similar Documents

Publication Publication Date Title
JP4971750B2 (en) Power supply circuit and control circuit used therefor
KR20110123165A (en) Compensation apparatus and method for output current distortion of inverter
JP4599694B2 (en) Voltage type PWM inverter dead time compensation method
JP2008048550A (en) Matrix converter
US7450407B2 (en) Control method of AC/DC power converter for input current harmonic suppression
JP2004248383A (en) Parallel type ac-dc conversion device
JP2004064947A (en) Voltage controller for voltage-type pwm inverter
JP4614439B2 (en) Uninterruptible power supply and input current control method thereof
JP6443652B2 (en) Power converter
WO2019097835A1 (en) Power conversion device
JP2020043716A (en) Multilevel power conversion device and cross current suppression control method of multilevel power conversion device
JP4498891B2 (en) Semiconductor power converter
JP4370946B2 (en) Three-phase rectifier
JP5955644B2 (en) Inverter gate control circuit and inverter power supply device having the inverter gate control circuit
JPH066978A (en) Power converter
JP2006136107A (en) Semiconductor power converter and its magnetic asymmetry control method
JPH0646568A (en) Power converter
JPH0767286B2 (en) Constant voltage, constant frequency power supply
JP4455121B2 (en) Power circuit
JPH03164071A (en) Control of pulse width modulation inverter
JP2017212869A (en) Control method for power conversion device, and power conversion device
JP2023107489A (en) Harmonic suppression system
JP3394529B2 (en) Power converter
JP3309761B2 (en) Three-level inverter device
JPH08340679A (en) Biased magnetization preventing circuit in high-frequency transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408