JP2007097394A - Electric power transformer - Google Patents

Electric power transformer Download PDF

Info

Publication number
JP2007097394A
JP2007097394A JP2006306096A JP2006306096A JP2007097394A JP 2007097394 A JP2007097394 A JP 2007097394A JP 2006306096 A JP2006306096 A JP 2006306096A JP 2006306096 A JP2006306096 A JP 2006306096A JP 2007097394 A JP2007097394 A JP 2007097394A
Authority
JP
Japan
Prior art keywords
voltage
voltage command
current
phase
command signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006306096A
Other languages
Japanese (ja)
Inventor
Seiji Ishida
誠司 石田
Atsuhiko Nakamura
敦彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Ltd
Priority to JP2006306096A priority Critical patent/JP2007097394A/en
Publication of JP2007097394A publication Critical patent/JP2007097394A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide the electric power transformer which can make a current pulse width in a DC side to the width or more with a current detectable to convert electric power by pulse width modulation without generating mutual intervention of switching. <P>SOLUTION: The electric power transformer for variably speed controlling an electric motor comprises a current detection part detecting a current in a DC side of the electric power transformer to detect this detected current and an AC current of three phase part flowing in an electric motor from a gate signal, a motor control part outputting an AC voltage command signal of three phase part based on the detected AC current signal of three phase part and on a speed command signal given from outside, a voltage command correction part correcting the AC voltage command signal of three phase part with a pulse width of the current in the DC side as made in a width or more with a current detectable in a period with an interphase voltage of the AC current signal of three phase part smaller than a prescribed value, and a PWM control part outputting the gate signal by pulse width modulation based on the AC voltage command signal of three phase part corrected in the voltage command correction part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、パルス幅変調により電力変換を行う電力変換器に関する。   The present invention relates to a power converter that performs power conversion by pulse width modulation.

直流をパルス幅変調により交流に変換する電力変換器において、直流側の電流から交流
側の電流を検出する方法として、非特許文献1に記載の方法がある。また、この電流検出
方法に適したパルス幅変調方式としては、特許文献1及び特許文献2に記載の方法がある
。PWM制御部及び電流検出部の詳細は例えば、特許文献3に記載されている。
In a power converter that converts direct current into alternating current by pulse width modulation, there is a method described in Non-Patent Document 1 as a method of detecting an alternating current from a direct current. As pulse width modulation methods suitable for this current detection method, there are methods described in Patent Document 1 and Patent Document 2. Details of the PWM control unit and the current detection unit are described in Patent Document 3, for example.

特開2001-327173号公報JP 2001-327173 A 特開2002-119062号公報JP 2002-119062 JP 特開2002- 95263号公報JP 2002-95263 A Derivation of motor line-current waveforms from the DC-link current of an inverter”IEE PROCEEDING、Vol.136、Pt. B、JULY 1989、pp.196- 204Derivation of motor line-current waveforms from the DC-link current of an inverter ”IEE PROCEEDING, Vol.136, Pt.B, JULY 1989, pp.196-204

非特許文献1においては、交流電圧が低い場合、直流側の電流パルス幅が小さくなるた
め、直流側の電流を安定して検出することが難しい。これに対し、特許文献1では、パル
ス幅変調の搬送波の一周期前半では、直流側の電流パルス幅が電流を安定に検出するのに
十分な幅となるように補正し、後半で交流側電圧が所望の電圧となるように補正を行う。
このため、後半では電流検出に必要なパルス幅が確保されないこと、及び搬送波の周期の
2分の1の周期で変調波を演算する必要があり、演算には高性能なマイクロコンピュータ
が必要となる。また、特許文献1においても、電流を検出するのに必要な電流パルス幅が
確保できない場合がある。
In Non-Patent Document 1, when the AC voltage is low, the current pulse width on the DC side is small, so that it is difficult to stably detect the current on the DC side. On the other hand, in Patent Document 1, in the first half of one cycle of the pulse width modulation carrier wave, correction is made so that the current pulse width on the DC side is sufficient to stably detect the current, and in the latter half, the AC side voltage is corrected. Is corrected to a desired voltage.
For this reason, in the latter half, the pulse width necessary for current detection is not ensured, and it is necessary to calculate the modulated wave with a period that is half the period of the carrier wave, and a high-performance microcomputer is required for the calculation. . Also in Patent Document 1, the current pulse width necessary for detecting the current may not be ensured.

更に、特許文献1及び特許文献2に記載の方法では、ある相のスイッチングと他の相の
スイッチングが短時間で行われる場合が存在し、このときに発生する相互干渉により正常
なスイッチングができない現象を防止することはできない。
Further, in the methods described in Patent Document 1 and Patent Document 2, there is a case where switching of a certain phase and switching of another phase are performed in a short time, and normal switching cannot be performed due to mutual interference occurring at this time. Cannot be prevented.

以上のように、従来の直流を交流に変換するパルス幅変調を用いた電力変換器において
、直流電流Idcから電力変換器の出力電流を検出する場合、相間の電圧指令信号が小さい
場合、直流電流Idcのパルス幅が狭くなり、検出が困難である。
As described above, when detecting the output current of the power converter from the DC current Idc in the conventional power converter using pulse width modulation for converting DC to AC, if the voltage command signal between the phases is small, the DC current The pulse width of Idc becomes narrow and detection is difficult.

本発明の目的は、直流側の電流パルス幅を電流検出が可能な幅以上にすることができ、
スイッチングの相互干渉が発生しないパルス幅変調により電力変換を行う電力変換器を提供することにある。
The object of the present invention is to make the current pulse width on the DC side equal to or greater than the width capable of current detection,
An object of the present invention is to provide a power converter that performs power conversion by pulse width modulation that does not cause mutual interference of switching.

本発明は、複数のスイッチング素子をパルス幅変調手段で生成されるゲート信号でオンオフさせて直流電源に接続された直流電圧を3相の可変周波可変電圧に変換し、それを電動機に出力して該電動機を可変速制御する電力変換器において、電力変換器の直流側の電流を検出し、該検出した電流とゲート信号から電動機に流れる3相分の交流電流を検出する電流検出部と、該検出された3相分の交流電流信号と外部から与えられる速度指令信号に基づき3相分の交流電圧指令信号を出力するモータ制御部と、3相分の交流電流信号の相間電圧が所定値より小さい期間において直流側の電流のパルス幅を電流検出可能な幅以上にするように前記3相分の交流電圧指令信号を補正する電圧指令補正部と、該電圧指令補正部で補正された3相分の交流電圧指令信号に基づきパルス幅変調して前記ゲート信号を出力するPWM制御部と、を備えたことを特徴とする。   The present invention converts a DC voltage connected to a DC power source into a three-phase variable frequency variable voltage by turning on and off a plurality of switching elements with a gate signal generated by a pulse width modulation means, and outputs it to a motor. In the power converter that controls the electric motor at a variable speed, a current detection unit that detects a current on the DC side of the power converter and detects an AC current corresponding to three phases flowing to the motor from the detected current and the gate signal; A motor control unit that outputs an AC voltage command signal for three phases based on the detected AC current signal for three phases and a speed command signal given from the outside, and an interphase voltage of the AC current signal for three phases from a predetermined value A voltage command correction unit that corrects the AC voltage command signal for the three phases so that the pulse width of the current on the DC side is equal to or larger than the current detectable width in a small period, and the three phases corrected by the voltage command correction unit Exchange of minutes Characterized by comprising a PWM control section and pulse-width modulation based on the voltage command signal and outputs the gate signal.

本発明により、直流側の電流パルス幅を電流検出が可能な幅以上にするように 前記3相分の交流電圧指令信号を補正するパルス幅変調を行う交流電圧指令を補正することで、直流電流から3相分のモータ電流を常に検出できるので、その電流に基づく電力変換器によるモータ制御の安定化が図れる。また、パルスが変化する間隔が確保されるため、スイッチングの相互干渉を抑制することができる。   According to the present invention, by correcting the AC voltage command for performing the pulse width modulation for correcting the AC voltage command signal for the three phases so that the current pulse width on the DC side is equal to or larger than the current detection width, Since the motor current for three phases can always be detected, the motor control by the power converter based on the current can be stabilized. In addition, since the interval at which the pulse changes is secured, the mutual interference of switching can be suppressed.

(実施例1)
図1は、本発明のパルス幅変調方法を用いた電力変換器の一例を示す構成図である。図
1において、整流回路2、平滑コンデンサ3、電流検出器5、電流検出部7、外部から与
えられる速度指令に基づき第1の交流電圧指令信号を出力するモータ制御部8、第1の交流電圧指令信号に基づき第2の交流電圧指令信号に補正する電圧指令補正部9、第2の交流電圧指令信号に基づきパルス幅変調を行いゲート信号を出力するPWM制御部6、ゲート信号に基づき直流電圧をスイチングし交流電圧に変換するスイッチング素子Qu、Qv、Qw、Qx、Qy及びQz、を有する直流電圧を交流電圧に変換する電力変換器10と、交流電源1と、モータ4とを備えたものである。
Example 1
FIG. 1 is a configuration diagram showing an example of a power converter using the pulse width modulation method of the present invention. In FIG. 1, a rectifier circuit 2, a smoothing capacitor 3, a current detector 5, a current detector 7, a motor controller 8 for outputting a first AC voltage command signal based on a speed command given from the outside, a first AC voltage A voltage command correction unit 9 that corrects the second AC voltage command signal based on the command signal, a PWM control unit 6 that performs pulse width modulation based on the second AC voltage command signal and outputs a gate signal, and a DC voltage based on the gate signal A power converter 10 that converts a DC voltage having switching elements Qu, Qv, Qw, Qx, Qy, and Qz, which convert the AC voltage into an AC voltage, an AC power supply 1, and a motor 4 It is.

交流電源1から供給される電圧を整流回路2で整流し、さらに平滑コンデンサ3で平滑
し、直流電圧に変換する。変換された直流電圧をスイッチング素子Qu、Qv、Qw、Qx、Qy、
及びQzをスイッチングすることにより、モータ4に接続されたU相、V相及びW相の電圧
を制御する。
The voltage supplied from the AC power source 1 is rectified by the rectifier circuit 2, further smoothed by the smoothing capacitor 3, and converted into a DC voltage. Converted DC voltage into switching elements Qu, Qv, Qw, Qx, Qy,
And the voltage of U phase, V phase, and W phase connected to the motor 4 is controlled by switching Qz.

電流検出器5は、スイッチング素子Qx、Qy、及びQzから平滑コンデンサ3に流れる直流
電流Idcを検出し、電流検出部7では検出した直流電流IdcとPWM制御部6が出力するゲ
ート信号Gu、Gv、Gw、Gx、Gy、及びGzからモータ4に流れるU相モータ電流Iu、V相モー
タ電流Iv、及びW相モータ電流Iwを検出する。検出したモータ電流Iu、Iv、及びIwと外部
から与えられる速度指令Fr*に基づき、モータ制御部8は第1のU相交流電圧指令信号Eu
、第1のV相交流電圧指令信号Ev、及び第1のW相交流電圧指令信号Ewを出力する。
The current detector 5 detects the DC current Idc flowing through the smoothing capacitor 3 from the switching elements Qx, Qy, and Qz, and the current detection unit 7 detects the detected DC current Idc and the gate signals Gu, Gv output from the PWM control unit 6. , Gw, Gx, Gy, and Gz, a U-phase motor current Iu, a V-phase motor current Iv, and a W-phase motor current Iw flowing to the motor 4 are detected. Based on the detected motor currents Iu, Iv, and Iw and the speed command Fr * given from the outside, the motor control unit 8 performs the first U-phase AC voltage command signal Eu.
The first V-phase AC voltage command signal Ev and the first W-phase AC voltage command signal Ew are output.

電圧指令補正部9では、第1の交流電圧指令信号Eu、Ev、及びEwを補正することにより
、第2のU相交流電圧指令信号Eu'、第2のV相交流電圧指令信号Ev'及び第2のW相交流
電圧指令信号Ew'を出力し、PWM制御部6は第2の交流電圧指令信号Eu'、Ev'、及びEw'
に基づきパルス幅変調を行い、スイッチング素子Qu、Qv、Qw、Qx、Qy、及びQzのスイッチ
ングをそれぞれ指令するゲート信号Gu、Gv、Gw、Gx、Gy、及びGzを出力する。
The voltage command correction unit 9 corrects the first AC voltage command signals Eu, Ev, and Ew, thereby correcting the second U-phase AC voltage command signal Eu ′, the second V-phase AC voltage command signal Ev ′, and The second W-phase AC voltage command signal Ew ′ is output, and the PWM controller 6 outputs the second AC voltage command signals Eu ′, Ev ′, and Ew ′.
Based on the above, pulse width modulation is performed, and gate signals Gu, Gv, Gw, Gx, Gy, and Gz that respectively command switching of the switching elements Qu, Qv, Qw, Qx, Qy, and Qz are output.

尚、本実施例では、交流電源1から整流回路2及び平滑コンデンサ3から直流電圧を生
成しているが、これを直流電源に置き換えた場合には整流回路2及び平滑コンデンサ3は
不要である。
In this embodiment, a DC voltage is generated from the AC power source 1 from the rectifier circuit 2 and the smoothing capacitor 3. However, when this is replaced with a DC power source, the rectifier circuit 2 and the smoothing capacitor 3 are unnecessary.

電圧指令補正部9では、第2の交流電圧指令信号Eu'、Ev'、及びEw'のうちの任意の2
つの交流電圧指令信号の差が予め定められた値以上になるようするとともに、第1の交流
電圧指令信号Eu、Ev、及びEwと第2の交流電圧指令信号Eu'、Ev'、及びEw'とのそれぞれ
の差を積算した誤差積算値dEu、dEv、及びdEwの絶対値がある値以上にならないように第
2の交流電圧指令信号Eu'、Ev'、及びEw'を演算する。
In the voltage command correction unit 9, any two of the second AC voltage command signals Eu ′, Ev ′, and Ew ′ are selected.
The difference between the two AC voltage command signals is equal to or greater than a predetermined value, and the first AC voltage command signals Eu, Ev, and Ew and the second AC voltage command signals Eu ′, Ev ′, and Ew ′ The second AC voltage command signals Eu ′, Ev ′, and Ew ′ are calculated so that the absolute values of the error integrated values dEu, dEv, and dEw obtained by integrating the respective differences are not more than a certain value.

具体的には、電圧指令補正部9では、第1の交流電圧指令信号Eu、Ev、及びEwと第2の
交流電圧指令信号Eu'、Ev'、及びEw'とのそれぞれの差を積算した誤差積算値dEu、dEv、
及びdEwを求め、誤差積算値dEu、dEv、及びdEwと第1の交流電圧指令信号Eu、Ev、及びEw
をそれぞれ加算した値に基づき、第2の交流電圧指令信号Eu'、Ev'、及びEw'のうちの任
意の2つの交流電圧指令信号の差が予め定められた値以上になるよう処理を行う。
Specifically, the voltage command correction unit 9 accumulates the differences between the first AC voltage command signals Eu, Ev, and Ew and the second AC voltage command signals Eu ′, Ev ′, and Ew ′. Error accumulated value dEu, dEv,
And dEw, and the error integrated values dEu, dEv, and dEw and the first AC voltage command signals Eu, Ev, and Ew
Are processed so that the difference between any two AC voltage command signals of the second AC voltage command signals Eu ′, Ev ′, and Ew ′ becomes equal to or greater than a predetermined value based on the value obtained by adding .

電圧指令補正部9について、図2〜図5を用いてさらに詳細に説明する。図2は、電圧
指令補正部9が出力である第2の交流電圧指令信号Eu'、Ev'、及びEw'を更新するタイミ
ングを示す図である。図2において、201はPWM制御部6のパルス幅変調で用いる搬
送波、202〜208は電圧指令補正部9が出力を更新するタイミングである。電圧指令
補正部9は搬送波201の半周期毎に後述する処理を行い、第2の交流電圧指令信号Eu'
、Ev'、及びEw'を出力する。図3、4に示す処理がメインの処理であり、図5に示す処理
はサブルーチンである。
The voltage command correction unit 9 will be described in more detail with reference to FIGS. FIG. 2 is a diagram illustrating the timing at which the voltage command correction unit 9 updates the second AC voltage command signals Eu ′, Ev ′, and Ew ′ that are outputs. In FIG. 2, 201 is a carrier wave used for pulse width modulation of the PWM control unit 6, and 202 to 208 are timings at which the voltage command correction unit 9 updates the output. The voltage command correction unit 9 performs processing to be described later for each half cycle of the carrier wave 201 to generate a second AC voltage command signal Eu ′.
, Ev ′, and Ew ′. The process shown in FIGS. 3 and 4 is the main process, and the process shown in FIG. 5 is a subroutine.

図3は電圧指令補正部のメインの処理を行う流れを示す図である。電圧指令補正部9では、最初に処理300を実行する。処理300では、U相交流電圧指令信号EuとU相誤差積算値dEuの加算結果を第3のU相交流電圧指令信号Eu0に、V相交流電圧指令信号EvとV相誤差積算値dEvの加算結果を第3のV相交流電圧指令信号Ev0に、W相交流電圧指令信号Ewと相誤差積算値dEwの加算結果を第3のW相交流電圧指令信号Ew0に、それぞれ代入して、次に処理301を実行する。 FIG. 3 is a diagram showing a flow of performing the main processing of the voltage command correction unit. The voltage command correction unit 9 first executes the process 300. In the process 300, the addition result of the U-phase AC voltage command signal Eu and the U-phase error integrated value dEu is added to the third U-phase AC voltage command signal Eu0, and the V-phase AC voltage command signal Ev and the V-phase error integrated value dEv are added. The result is assigned to the third V-phase AC voltage command signal Ev0, and the addition result of the W-phase AC voltage command signal Ew and the W- phase error integrated value dEw is assigned to the third W-phase AC voltage command signal Ew0. The process 301 is executed.

処理301では、第3のU相交流電圧指令信号Eu0と第3のV相交流電圧指令信号Ev0を
比較し、Eu0がEv0以上である場合は、処理302を実行し、Eu0がEv0未満である場合は、
次に図4の処理401を実行する。
In the process 301, the third U-phase AC voltage command signal Eu0 and the third V-phase AC voltage command signal Ev0 are compared. If Eu0 is equal to or greater than Ev0, the process 302 is executed, and Eu0 is less than Ev0. If
Next, the process 401 of FIG. 4 is performed.

処理302では、第3のV相交流電圧指令信号Ev0と第3のW相交流電圧指令信号Ew0を
比較し、Ev0がEw0以上である場合は、処理303を実行し、Ev0がEw0未満である場合は、
処理306を実行する。
In process 302, the third V-phase AC voltage command signal Ev0 is compared with the third W-phase AC voltage command signal Ew0. If Ev0 is equal to or greater than Ew0, process 303 is executed, and Ev0 is less than Ew0. If
Processing 306 is executed.

処理303では、第3のU相交流電圧指令信号Eu0を第1の最大電圧Eaに、第3のV相
交流電圧指令信号Ev0を第1の中間電圧Ebに、第3のW相交流電圧指令信号Ew0を第1の最
小電圧Ecに、それぞれ代入して、処理304を実行する。処理304の補正処理の詳細は
後述する。
In the process 303, the third U-phase AC voltage command signal Eu0 is set to the first maximum voltage Ea, the third V-phase AC voltage command signal Ev0 is set to the first intermediate voltage Eb, and the third W-phase AC voltage command is set. The process 304 is executed by substituting the signal Ew0 for the first minimum voltage Ec. Details of the correction process of the process 304 will be described later.

処理304の後、処理305を実行し、第2の最大電圧Ea'を第2のU相交流電圧指令
信号Eu'に、第2の中間電圧Eb'を第2のV相交流電圧指令信号Ev'に、第2の最小電圧Ec'
を第2のW相交流電圧指令信号Ew'に、それぞれ代入して、次に処理313を実行する。
After the process 304, the process 305 is executed, the second maximum voltage Ea ′ is set to the second U-phase AC voltage command signal Eu ′, and the second intermediate voltage Eb ′ is set to the second V-phase AC voltage command signal Ev. 'To the second minimum voltage Ec'
Are substituted for the second W-phase AC voltage command signal Ew ′, respectively, and then processing 313 is executed.

処理313では、第3のU相交流電圧指令信号Eu0から第2のU相交流電圧指令信号Eu'
を減算した値で、U相誤差積算値dEuを、第3のV相交流電圧指令信号Ev0から第2のV相
交流電圧指令信号Ev'を減算した値で、V相誤差積算値dEvを、第3のW相交流電圧指令信
号Ew0から第2のW相交流電圧指令信号Ew'を減算した値で、W相誤差積算値dEwを、それ
ぞれ更新し、電圧指令補正部9の処理を終了する。
In process 313, the third U-phase AC voltage command signal Eu0 to the second U-phase AC voltage command signal Eu ′.
Is the value obtained by subtracting the second V-phase AC voltage command signal Ev 'from the third V-phase AC voltage command signal Ev0, and the V-phase error integrated value dEv is The W-phase error integrated value dEw is updated with the value obtained by subtracting the second W-phase AC voltage command signal Ew ′ from the third W-phase AC voltage command signal Ew0, and the processing of the voltage command correction unit 9 is finished. .

又、処理302の後、処理306を実行する場合、処理306では、第3のU相交流電
圧指令信号Eu0と第3のW相交流電圧指令信号Ew0を比較し、Eu0がEw0以上である場合は、
次に処理307を実行し、Eu0がEw0未満である場合は、処理310を実行する。
When the process 306 is executed after the process 302, the process 306 compares the third U-phase AC voltage command signal Eu0 with the third W-phase AC voltage command signal Ew0, and Eu0 is equal to or greater than Ew0. Is
Next, the process 307 is executed. If Eu0 is less than Ew0, the process 310 is executed.

処理306の後、処理307を実行する場合、処理307では、第3のU相交流電圧指
令信号Eu0を第1の最大電圧Eaに、第3のW相交流電圧指令信号Ew0を第1の中間電圧Ebに
、第3のV相交流電圧指令信号Ev0を第1の最小電圧Ecに、それぞれ代入して、処理308を
実行する。処理308の補正処理の詳細は後述する。
When the process 307 is executed after the process 306, in the process 307, the third U-phase AC voltage command signal Eu0 is set to the first maximum voltage Ea, and the third W-phase AC voltage command signal Ew0 is set to the first intermediate voltage. The third V-phase AC voltage command signal Ev0 is substituted for the first minimum voltage Ec for the voltage Eb, and the processing 308 is executed. Details of the correction processing of processing 308 will be described later.

処理308の後、処理309を実行し、第2の最大電圧Ea'を第2のU相交流電圧指令
信号Eu'に、第2の中間電圧Eb'を第2のW相交流電圧指令信号Ew'に、第2の最小電圧Ec'
を第2のV相交流電圧指令信号Ev'に、それぞれ代入して、処理313を実行し、電圧指
令補正部9の処理を終了する。
After the process 308, the process 309 is executed, the second maximum voltage Ea ′ is set to the second U-phase AC voltage command signal Eu ′, and the second intermediate voltage Eb ′ is set to the second W-phase AC voltage command signal Ew. 'To the second minimum voltage Ec'
Is substituted for the second V-phase AC voltage command signal Ev ′, the process 313 is executed, and the process of the voltage command correction unit 9 is terminated.

処理306の後、処理310を実行する場合、処理310では、第3のW相交流電圧指
令信号Ew0を第1の最大電圧Eaに、第3のU相交流電圧指令信号Eu0を第1の中間電圧Ebに
、第3のV相交流電圧指令信号Ev0を第1の最小電圧Ecに、それぞれ代入して、処理311を
実行する。処理311の補正処理の詳細は後述する。
When the process 310 is executed after the process 306, in the process 310, the third W-phase AC voltage command signal Ew0 is set to the first maximum voltage Ea, and the third U-phase AC voltage command signal Eu0 is set to the first intermediate voltage. The third V-phase AC voltage command signal Ev0 is substituted for the first minimum voltage Ec for the voltage Eb, and the processing 311 is executed. Details of the correction processing of processing 311 will be described later.

処理311の後、処理312を実行し、第2の最大電圧Ea'を第2のW相交流電圧指令
信号Ew'に、第2の中間電圧Eb'を第2のU相交流電圧指令信号Eu'に、第2の最小電圧Ec'
を第2のV相交流電圧指令信号Ev'に、それぞれ代入して、処理313を実行し、電圧指
令補正部9の処理を終了する。
After the process 311, the process 312 is executed, and the second maximum voltage Ea ′ is used as the second W-phase AC voltage command signal Ew ′, and the second intermediate voltage Eb ′ is used as the second U-phase AC voltage command signal Eu. 'To the second minimum voltage Ec'
Is substituted for the second V-phase AC voltage command signal Ev ′, the process 313 is executed, and the process of the voltage command correction unit 9 is terminated.

図4は、図3の電圧指令補正部9のメインの処理を行う流れの他の部分を示す図である
。図4に処理301においてEu0がEv0未満である場合は、処理401を実行する。処理
401では、第3のU相交流電圧指令信号Eu0と第3のW相交流電圧指令信号Ew0を比較し
、Eu0がEw0以上である場合は、次に処理402を実行し、Eu0がEw0未満である場合は、処
理405を実行する。
FIG. 4 is a diagram showing another part of the flow for performing the main processing of the voltage command correction unit 9 of FIG. If Eu0 is less than Ev0 in process 301 in FIG. 4, process 401 is executed. In the process 401, the third U-phase AC voltage command signal Eu0 is compared with the third W-phase AC voltage command signal Ew0. If Eu0 is equal to or higher than Ew0, the process 402 is executed next, and Eu0 is less than Ew0. If so, the process 405 is executed.

処理402では、第3のV相交流電圧指令信号Ev0を第1の最大電圧Eaに、第3のU相
交流電圧指令信号Eu0を第1の中間電圧Ebに、第3のW相交流電圧指令信号Ew0を第1の最
小電圧Ecに、それぞれ代入して、処理403を実行する。
In process 402, the third V-phase AC voltage command signal Ev0 is set to the first maximum voltage Ea, the third U-phase AC voltage command signal Eu0 is set to the first intermediate voltage Eb, and the third W-phase AC voltage command is set. The process E403 is executed by substituting the signal Ew0 for the first minimum voltage Ec.

処理403の後、処理404を実行し、第2の最大電圧Ea'を第2のV相交流電圧指令
信号Ev'に、第2の中間電圧Eb'を第2のU相交流電圧指令信号Eu'に、第2の最小電圧Ec'
を第2のW相交流電圧指令信号Ew'に、それぞれ代入して、処理313を実行して、電圧
指令補正部9の処理を終了する。
After the process 403, the process 404 is executed, the second maximum voltage Ea ′ is set to the second V-phase AC voltage command signal Ev ′, and the second intermediate voltage Eb ′ is set to the second U-phase AC voltage command signal Eu. 'To the second minimum voltage Ec'
Are substituted into the second W-phase AC voltage command signal Ew ′, and the process 313 is executed to finish the process of the voltage command correction unit 9.

処理405では、第3のV相交流電圧指令信号Ev0と第3のW相交流電圧指令信号Ew0を
比較し、Ev0がEw0以上である場合は、処理406を実行し、Ev0がEw0未満である場合は、
次に処理409を実行する。
In process 405, the third V-phase AC voltage command signal Ev0 is compared with the third W-phase AC voltage command signal Ew0. If Ev0 is equal to or greater than Ew0, process 406 is executed and Ev0 is less than Ew0. If
Next, processing 409 is executed.

処理406では、第3のV相交流電圧指令信号Ev0を第1の最大電圧Eaに、第3のW相
交流電圧指令信号Ew0を第1の中間電圧Ebに、第3のU相交流電圧指令信号Eu0を第1の最
小電圧Ecに、それぞれ代入して、処理407を実行する。
In process 406, the third V-phase AC voltage command signal Ev0 is set to the first maximum voltage Ea, the third W-phase AC voltage command signal Ew0 is set to the first intermediate voltage Eb, and the third U-phase AC voltage command is set. The signal Eu0 is substituted for the first minimum voltage Ec, and the process 407 is executed.

処理407の後、処理408を実行し、第2の最大電圧Ea'を第2のV相交流電圧指令
信号Ev'に、第2の中間電圧Eb'を第2のW相交流電圧指令信号Ew'に、第2の最小電圧Ec'
を第2のU相交流電圧指令信号Eu'に、それぞれ代入して、処理313を実行し、電圧指
令補正部9の処理を終了する。
After the process 407, the process 408 is executed, the second maximum voltage Ea ′ is set to the second V-phase AC voltage command signal Ev ′, and the second intermediate voltage Eb ′ is set to the second W-phase AC voltage command signal Ew. 'To the second minimum voltage Ec'
Are substituted into the second U-phase AC voltage command signal Eu ′, respectively, processing 313 is executed, and the processing of the voltage command correction unit 9 is terminated.

処理409では、第3のW相交流電圧指令信号Ew0を第1の最大電圧Eaに、第3のV相
交流電圧指令信号Ev0を第1の中間電圧Ebに、第3のU相交流電圧指令信号Eu0を第1の最
小電圧Ecに、それぞれ代入して、処理410を実行する。
In process 409, the third W-phase AC voltage command signal Ew0 is set to the first maximum voltage Ea, the third V-phase AC voltage command signal Ev0 is set to the first intermediate voltage Eb, and the third U-phase AC voltage command is set. The process 410 is executed by substituting the signal Eu0 for the first minimum voltage Ec.

処理410の後、処理411を実行し、第2の最大電圧Ea'を第2のW相交流電圧指令
信号Ew'に、第2の中間電圧Eb'を第2のV相交流電圧指令信号Ev'に、第2の最小電圧Ec'
を第2のU相交流電圧指令信号Eu'に、それぞれ代入して、処理313を実行し、電圧指
令補正部9の処理を終了する。
After the process 410, the process 411 is executed, and the second maximum voltage Ea ′ is used as the second W-phase AC voltage command signal Ew ′, and the second intermediate voltage Eb ′ is used as the second V-phase AC voltage command signal Ev. 'To the second minimum voltage Ec'
Are substituted into the second U-phase AC voltage command signal Eu ′, respectively, processing 313 is executed, and the processing of the voltage command correction unit 9 is terminated.

以上の処理により、第3の交流電圧指令信号Eu0、Ev0、及びEw0の内、最大の値を第1
の最大電圧Eaに、真ん中の値を第1の中間電圧Ebに、最小の値を第1の最小電圧Ecにそれ
ぞれ代入し、補正処理を実行する。補正処理の実行結果である第2の最大電圧Ea'、第2
の中間電圧Eb'、及び第2の最小電圧Ec'を第3の交流電圧指令信号Eu0、Ev0、及びEw0の
大小関係に従い、第2の交流電圧指令信号Eu'、Ev'、及びEw'に代入する。また、補正を
行うことによる第1の交流電圧指令信号Eu、Ev、及びEwと第2の交流電圧指令信号Eu'、
Ev'、及びEw'との誤差は誤差積算値dEu、dEv、及びdEwで管理され、誤差積算値dEu、dEv
、及びdEwを加算した第3の交流電圧指令信号Eu0、Ev0、及びEw0で処理を行うことにより
、前回までの誤差を含めて演算するため、誤差積算値が増加し続けることはない。
With the above processing, the maximum value of the third AC voltage command signals Eu0, Ev0, and Ew0 is set to the first value.
Then, the middle value is substituted for the first intermediate voltage Eb, the minimum value is substituted for the first minimum voltage Ec, and the correction processing is executed. The second maximum voltage Ea ′, which is the execution result of the correction process, the second
Intermediate voltage Eb ′ and second minimum voltage Ec ′ to second AC voltage command signals Eu ′, Ev ′, and Ew ′ according to the magnitude relationship of third AC voltage command signals Eu0, Ev0, and Ew0. substitute. Further, the first AC voltage command signals Eu, Ev, and Ew and the second AC voltage command signal Eu ′,
The errors from Ev 'and Ew' are managed by error accumulated values dEu, dEv, and dEw, and error accumulated values dEu, dEv
, And the third AC voltage command signals Eu0, Ev0, and Ew0 obtained by adding dEw, the calculation including the error up to the previous time is performed, and the error integrated value does not continue to increase.

図5は、図3の処理304、処理308、処理311、及び図4の処理403、処理
407、処理410で実行する補正処理の流れを示す図である。補正処理では、直流電流
のパルス幅を決める最大電圧と中間電圧の差、及び最小電圧と中間電圧の差が直流電流を
検出するために必要なパルス幅に相当する最低電圧Emin以上となるように補正を行う。
FIG. 5 is a diagram showing the flow of correction processing executed in the processing 304, processing 308, and processing 311 in FIG. 3 and the processing 403, processing 407, and processing 410 in FIG. In the correction process, the difference between the maximum voltage and the intermediate voltage that determines the pulse width of the DC current, and the difference between the minimum voltage and the intermediate voltage are equal to or greater than the minimum voltage Emin corresponding to the pulse width necessary to detect the DC current. Make corrections.

補正処理では、初めの処理501では、第1の最大電圧Eaと第1の中間電圧Ebの差と最
低電圧Eminを比較し、EaとEbの差がEmin以上である場合、次に処理502を実行し、Eaと
Ebの差がEmin未満である場合、次に処理503を実行する。処理502では、補正の必要
がないため、第1の最大電圧Eaを第2の最大電圧Ea'にそのまま代入し、処理504を実
行する。
In the correction process, in the first process 501, the difference between the first maximum voltage Ea and the first intermediate voltage Eb is compared with the minimum voltage Emin. If the difference between Ea and Eb is equal to or greater than Emin, then the process 502 is performed. Run and Ea
If the difference in Eb is less than Emin, the process 503 is executed next. In the process 502, since correction is not necessary, the first maximum voltage Ea is directly substituted for the second maximum voltage Ea ′, and the process 504 is executed.

処理503では、補正が必要であるため、第1の中間電圧Ebに最低電圧Eminを加算した
値を第2の最大電圧Ea'に代入し、処理504を実行する。これにより、第2の最大電圧
Eaと第1の中間電圧Eb(第2の中間電圧Ebと同じ)の差は、最低電圧Eminになり、また大
小関係も変わらない。
In the process 503, since correction is necessary, a value obtained by adding the minimum voltage Emin to the first intermediate voltage Eb is substituted into the second maximum voltage Ea ′, and the process 504 is executed. As a result, the second maximum voltage
The difference between Ea and the first intermediate voltage Eb (same as the second intermediate voltage Eb) is the minimum voltage Emin, and the magnitude relationship does not change.

処理504では、第1の中間電圧Ebと第1の最小電圧Ecの差と最低電圧Eminを比較し、
EbとEcの差がEmin以上である場合、処理505を実行し、EbとEcの差がEmin未満である場
合、次に処理506を実行する。
In the process 504, the difference between the first intermediate voltage Eb and the first minimum voltage Ec is compared with the minimum voltage Emin.
If the difference between Eb and Ec is equal to or greater than Emin, process 505 is executed. If the difference between Eb and Ec is less than Emin, process 506 is executed next.

処理505では、補正の必要がないため、第1の最小電圧Ecを第2の最小電圧Ec'にそ
のまま代入し、処理507を実行する。
In the process 505, since correction is not necessary, the first minimum voltage Ec is directly substituted for the second minimum voltage Ec ′, and the process 507 is executed.

処理506では、補正が必要であるため、第1の中間電圧Ebから最低電圧Eminを減算し
た値を第2の最小電圧Eb'に代入し、処理507を実行する。これにより、第2の最小電
圧Ecと第1の中間電圧Eb(第2の中間電圧Ebと同じ)の差は、最低電圧Eminになり、また
大小関係も変わらない。処理507では、第1の中間電圧Ebを第2の中間電圧Eb'に代入
する。
In the process 506, since correction is necessary, a value obtained by subtracting the minimum voltage Emin from the first intermediate voltage Eb is substituted for the second minimum voltage Eb ′, and the process 507 is executed. Thus, the difference between the second minimum voltage Ec and the first intermediate voltage Eb (same as the second intermediate voltage Eb) becomes the minimum voltage Emin, and the magnitude relationship does not change. In process 507, the first intermediate voltage Eb is substituted into the second intermediate voltage Eb ′.

以上説明した補正処理により、第2の最大電圧Ea'と第2の中間電圧Eb'の差及び第2の
中間電圧Eb'と第2の最小電圧Ec'の差は最低電圧Emin以上となる。また、補正の前後で大
小関係が変化しないことから、第2の最大電圧Ea'≧第2の中間電圧Eb'≧第2の最小電圧
Ec'である。なお、処理503で第1の中間電圧Ebに加算する値及び処理506でEbから
減算する値に最低電圧Eminを用いているが、最低電圧Eminに変えて、最低電圧Eminより大
きい値を用いても、補正の目的を達成することはできる。ただし、このときには補正量が
大きくなるため、補正前後での電圧の誤差が大きくなる。
By the correction processing described above, the difference between the second maximum voltage Ea ′ and the second intermediate voltage Eb ′ and the difference between the second intermediate voltage Eb ′ and the second minimum voltage Ec ′ become equal to or greater than the minimum voltage Emin. Since the magnitude relationship does not change before and after the correction, the second maximum voltage Ea ′ ≧ the second intermediate voltage Eb ′ ≧ the second minimum voltage.
Ec '. Note that the minimum voltage Emin is used as the value added to the first intermediate voltage Eb in the process 503 and the value subtracted from Eb in the process 506, but a value larger than the minimum voltage Emin is used instead of the minimum voltage Emin. However, the purpose of correction can be achieved. However, since the correction amount becomes large at this time, the voltage error before and after the correction becomes large.

又、最大値(Ea)と中間値(Eb)の差をある値(Emin)以上、中間値(Eb)と最小値(Ec)の差を
ある値(Emin)以上であり、従って最大値(Ea)と最小値(Ec)の差はある値(Emin)以上になり
、本実施例において、第1交流電圧指令信号における各々3つの指令信号差はいずれも予
め定められた値以上である。
Also, the difference between the maximum value (Ea) and the intermediate value (Eb) is not less than a certain value (Emin), and the difference between the intermediate value (Eb) and the minimum value (Ec) is not less than a certain value (Emin). The difference between Ea) and the minimum value (Ec) is not less than a certain value (Emin), and in this embodiment, each of the three command signal differences in the first AC voltage command signal is not less than a predetermined value.

図6は、PWM制御部6の構成を示す回路図である。搬送波発生部601、U相比較部602
、V相比較部603、W相比較部604および反転部605、606、607を有する。搬送波発生部601
は、搬送波周波数指令Fcに基づいて、周波数Fcの三角波である搬送波Cを出力する。ゲー
ト信号Guを出力するU相比較部602は、U相交流電圧指令信号Euと搬送波Cを比較して、U
相交流電圧指令信号Euが大きいときはHレベルを出力し、小さいときはLレベルを出力す
る。また、ゲート信号Gxを出力する反転部605は、ゲート信号GuがLレベルのときHレベ
ルを出力し、ゲート信号GuがHレベルのときLレベルを出力する。
FIG. 6 is a circuit diagram showing a configuration of the PWM control unit 6. Carrier wave generation unit 601 and U phase comparison unit 602
, V phase comparison unit 603, W phase comparison unit 604 and inversion units 605, 606, 607. Carrier wave generator 601
Outputs a carrier wave C that is a triangular wave of frequency Fc based on the carrier frequency command Fc. The U-phase comparison unit 602 that outputs the gate signal Gu compares the U-phase AC voltage command signal Eu with the carrier C,
When the phase AC voltage command signal Eu is large, the H level is output, and when it is small, the L level is output. The inversion unit 605 that outputs the gate signal Gx outputs the H level when the gate signal Gu is at the L level, and outputs the L level when the gate signal Gu is at the H level.

同様に、ゲート信号Gvを出力するV相比較部603は、V相交流電圧指令信号Evと搬送波C
を比較して、又、ゲート信号Gwを出力するW相比較部604は、W相交流電圧指令信号Ewと
搬送波Cを比較して、U相比較部602と同様に出力する。また、ゲート信号Gyを出力する反
転部606及びゲート信号Gzを出力する反転部607は、ゲート信号Gxと同様に出力する。
Similarly, the V-phase comparison unit 603 that outputs the gate signal Gv receives the V-phase AC voltage command signal Ev and the carrier wave C.
The W-phase comparison unit 604 that outputs the gate signal Gw compares the W-phase AC voltage command signal Ew with the carrier C and outputs the same as the U-phase comparison unit 602. Further, the inverting unit 606 that outputs the gate signal Gy and the inverting unit 607 that outputs the gate signal Gz output the same as the gate signal Gx.

図7は、本実施例の具体的動作を説明する図である。図7に示すグラフは横軸は時間で
、縦軸は各々第1の交流電圧指令信号Eu、Ev、及びEw、第2の交流電圧指令信号Eu'、Ev'
及びEw'とパルス幅変調の搬送波C、誤差積算値dEu、dEv及びdEw、ゲート信号Gu、Gv、及
びGw、直流電流Idcである。
FIG. 7 is a diagram for explaining a specific operation of the present embodiment. In the graph shown in FIG. 7, the horizontal axis represents time, and the vertical axis represents the first AC voltage command signals Eu, Ev, and Ew, and the second AC voltage command signals Eu ′ and Ev ′, respectively.
Ew ′, pulse width modulation carrier wave C, error integrated values dEu, dEv and dEw, gate signals Gu, Gv and Gw, and DC current Idc.

第1の交流電圧指令信号Eu、Ev、及びEwは、図1に示す電圧指令補正部6の入力信号で
あり、それらの値はそれぞれ0.3、-0.1及び-0.3である。第2の交流電圧指令信号Eu'、
Ev'及びEw'は第1の交流電圧指令信号Eu、Ev、及びEwに基づいて各々の差を予め定められ
た値(0.3)以上に補正されたものであり、図に示すように各信号ともに逐次変化してい
る。
The first AC voltage command signals Eu, Ev, and Ew are input signals of the voltage command correction unit 6 shown in FIG. 1, and their values are 0.3, −0.1, and −0.3, respectively. Second AC voltage command signal Eu ′,
Ev ′ and Ew ′ are obtained by correcting each difference to a predetermined value (0.3) or more based on the first AC voltage command signals Eu, Ev, and Ew. Both are changing sequentially.

誤差積算値dEu、dEv及びdEwは、第1の交流電圧指令信号Eu、Ev、及びEwと第2の交流
電圧指令信号Eu'、Ev'及びEw'との差の積算値であり、その初期値はそれぞれ0.0、0.0、
及び0.1である場合を示している。また、最低電圧Eminは0.3であり、誤差積算値dEu、dEv
及びdEwの絶対値はいずれも所定値以上である。
The error integrated values dEu, dEv, and dEw are integrated values of differences between the first AC voltage command signals Eu, Ev, and Ew and the second AC voltage command signals Eu ′, Ev ′, and Ew ′. The values are 0.0, 0.0,
And 0.1. The minimum voltage Emin is 0.3, and the error integrated values dEu, dEv
And the absolute value of dEw are both equal to or greater than a predetermined value.

例として、時刻T1における電圧指令補正部9の動作は以下の通りである。図3の処理
300において、第3の交流電圧指令信号Eu0、Ev0、及びEw0には、それぞれ0.3、-0.1、
-0.2を代入する。このとき、Eu0>Ev0>Ew0であるから図3の処理301、処理302を経
て処理303を実行する。処理303において、第1の最大電圧Eaには0.3、第1の中間
電圧Ebには-0.1、第1の最小電圧Ecには-0.2を代入する。次に、図3の補正処理304、
即ち図5に示す補正処理を実行する。
As an example, the operation of the voltage command correction unit 9 at time T1 is as follows. In the process 300 of FIG. 3, the third AC voltage command signals Eu0, Ev0, and Ew0 are 0.3, −0.1,
Substitute -0.2. At this time, since Eu0>Ev0> Ew0, the process 303 is executed through the process 301 and the process 302 in FIG. In the process 303, 0.3 is substituted for the first maximum voltage Ea, -0.1 is substituted for the first intermediate voltage Eb, and -0.2 is substituted for the first minimum voltage Ec. Next, the correction process 304 in FIG.
That is, the correction process shown in FIG. 5 is executed.

補正処理304では、図5の処理501において、Ea-Eb=0.4と最低電圧Emin=0.3を比
較する。Ea-EbがEmin以上であるから、処理502を実行し、第2の最大電圧Ea'には0.3
を代入する。次の処理504では、Eb-Ec=0.1と最低電圧Emin=0.3を比較して、Eb-Ecが
Emin未満であるから、処理506を実行する。処理506では、第2の最小電圧Ec'に
-0.4を代入する。処理507では、第2の中間電圧Eb'に-0.1を代入し、補正処理が終了
する。
In the correction process 304, Ea-Eb = 0.4 is compared with the minimum voltage Emin = 0.3 in the process 501 of FIG. Since Ea-Eb is equal to or higher than Emin, the process 502 is executed, and the second maximum voltage Ea ′ is set to 0.3.
Is assigned. In the next process 504, Eb-Ec = 0.1 is compared with the minimum voltage Emin = 0.3.
Since it is less than Emin, processing 506 is executed. In process 506, the second minimum voltage Ec ′ is set.
Substitute -0.4. In process 507, -0.1 is substituted for the second intermediate voltage Eb ', and the correction process ends.

次に図3の処理305を実行し、第2の交流電圧指令信号Eu'、Ev'及びEw'に、それぞ
れ0.3、-0.1、-0.4を代入する。次の処理313において、誤差積算値dEu、dEv及びdEwは
それぞれ0.0、0.0、-0.2に更新される。
Next, the process 305 in FIG. 3 is executed, and 0.3, −0.1, and −0.4 are assigned to the second AC voltage command signals Eu ′, Ev ′, and Ew ′, respectively. In the next process 313, the error integrated values dEu, dEv, and dEw are updated to 0.0, 0.0, and -0.2, respectively.

以上説明した電圧指令補正部9の出力する第2の交流電圧指令信号Eu'、Ev'及びEw'と
、搬送波Cに基づき、PWM制御部6においてパルス幅変調を行う。PWM制御部6では
、搬送波Cと変調波である第2の交流電圧指令信号Eu'、Ev'及びEw'の大きさをそれぞれ
比較し、変調波の方が大きい場合は対応するゲート信号にHレベルを、小さい場合はLレ
ベルを出力する。
Based on the second AC voltage command signals Eu ′, Ev ′ and Ew ′ output from the voltage command correction unit 9 described above and the carrier wave C, the PWM control unit 6 performs pulse width modulation. The PWM control unit 6 compares the magnitudes of the carrier wave C and the second AC voltage command signals Eu ′, Ev ′, and Ew ′ that are the modulated waves, respectively. If the modulated wave is larger, the corresponding gate signal is set to H. If the level is small, the L level is output.

よって、時刻T1〜T2の期間では、ゲート信号Gu、Gv及びGwがすべてLレベルの状態
から、はじめにU相ゲート信号GuがHレベルに変わり、第2のU相交流電圧指令信号Eu'
と第2のV相交流電流指令Ev'の差に相当する時間だけ遅れて、V相ゲート信号GvがHレ
ベルに変わる。その後、第2のV相交流電圧指令信号Ev'と第2のW相交流電流指令Ew'の
差に相当する時間だけ遅れて、W相ゲート信号GwがHレベルに変わる。よって、第2の交
流電圧指令信号Eu'、Ev'、及びEw'の相互の差が最低電圧Emin以上であることから、任意
のゲート信号が変化した後、他のゲート信号が変化するまでには、少なくとも最低電圧
Eminに相当する時間が確保される。
Therefore, during the period from time T1 to time T2, the U-phase gate signal Gu first changes to the H level from the state where the gate signals Gu, Gv and Gw are all at the L level, and the second U-phase AC voltage command signal Eu ′.
And the V-phase gate signal Gv changes to the H level with a delay corresponding to the difference between the second V-phase AC current command Ev ′ and the second V-phase AC current command Ev ′. Thereafter, the W-phase gate signal Gw changes to the H level with a delay corresponding to the difference between the second V-phase AC voltage command signal Ev ′ and the second W-phase AC current command Ew ′. Therefore, since the difference between the second AC voltage command signals Eu ′, Ev ′, and Ew ′ is equal to or higher than the minimum voltage Emin, after any gate signal changes, until another gate signal changes. At least the lowest voltage
Time corresponding to Emin is secured.

次に時刻T1〜T2の期間における、直流電流Idcとゲート信号の関係を説明する。図
7では、U相モータ電流Iu及びV相モータ電流Ivが正、W相モータ電流Iwが負の場合を示
している。ゲート信号Gu、Gv、及びGwがすべてLレベルの状態では、ゲート信号Gx、Gy、
GzはすべてHである。このとき、スイッチング素子Qu、Qv、QwがOFF状態、スイッチン
グ素子Qx、Qy、QzがON状態であるから、電流はスイッチング素子Qx及びQyからモータ4
に流れ、モータ4からスイッチング素子Qzに流れ、再びスイッチング素子Qu及びQyに戻っ
てくる。このため、直流側には電流が流れず、直流電流Idcは0である。
Next, the relationship between the direct current Idc and the gate signal in the period from time T1 to T2 will be described. FIG. 7 shows a case where the U-phase motor current Iu and the V-phase motor current Iv are positive and the W-phase motor current Iw is negative. When the gate signals Gu, Gv, and Gw are all at the L level, the gate signals Gx, Gy,
All Gz are H. At this time, since the switching elements Qu, Qv, and Qw are in the OFF state and the switching elements Qx, Qy, and Qz are in the ON state, the current is supplied from the switching elements Qx and Qy to the motor 4.
, Flows from the motor 4 to the switching element Qz, and returns to the switching elements Qu and Qy again. For this reason, no current flows on the DC side, and the DC current Idc is zero.

次に、U相ゲート信号GuがHレベルに変わると、X相ゲート信号GxはLレベルに変わり
、スイチング素子QuがON状態、スイッチング素子QxがOFF状態になる。このとき、電
流は平滑コンデンサ3の正極から、スイッチング素子Quを経てモータ4に流れ、モータ4
からスイッチング素子Qy、Qzを経て平滑コンデンサ3の負極に流れる。よって、直流電流
IdcにはU相モータ電流Iuと同じ電流が流れる。よって、この期間に直流電流を検出する
とU相モータ電流Iuが検出できる。
Next, when the U-phase gate signal Gu changes to the H level, the X-phase gate signal Gx changes to the L level, the switching element Qu is turned on, and the switching element Qx is turned off. At this time, current flows from the positive electrode of the smoothing capacitor 3 to the motor 4 through the switching element Qu, and the motor 4
To the negative electrode of the smoothing capacitor 3 through the switching elements Qy and Qz. Therefore, direct current
The same current as U-phase motor current Iu flows through Idc. Therefore, if the DC current is detected during this period, the U-phase motor current Iu can be detected.

次に、V相ゲート信号GvがHレベルに変わると、Y相ゲート信号GyはLレベルに変わり
、スイチング素子QvがON状態、スイッチング素子QyがOFF状態になる。このとき、電
流は平滑コンデンサ3の正極から、スイッチング素子Qu、Qvを経てモータ4に流れ、モー
タ4からスイッチング素子Qzを経て平滑コンデンサ3の負極に流れる。よって、直流電流
IdcにはW相モータ電流Iwと大きさが同じで極性が反転した電流が流れる。よって、この
期間に直流電流を検出するとW相モータ電流Iwが検出できる。
Next, when the V-phase gate signal Gv changes to the H level, the Y-phase gate signal Gy changes to the L level, the switching element Qv is turned on, and the switching element Qy is turned off. At this time, the current flows from the positive electrode of the smoothing capacitor 3 to the motor 4 through the switching elements Qu and Qv, and flows from the motor 4 to the negative electrode of the smoothing capacitor 3 through the switching element Qz. Therefore, direct current
A current having the same magnitude and reverse polarity as the W-phase motor current Iw flows through Idc. Therefore, if a direct current is detected during this period, the W-phase motor current Iw can be detected.

次に、W相ゲート信号GwがHレベルに変わると、Z相ゲート信号GzはLレベルに変わり
、スイチング素子QwがON状態、スイッチング素子QzがOFF状態になる。このときは、
ゲート信号Gu、Gv、及びGwがすべてLレベルの時と同様、直流電流Idcは0である。
Next, when the W-phase gate signal Gw changes to the H level, the Z-phase gate signal Gz changes to the L level, the switching element Qw is turned on, and the switching element Qz is turned off. At this time,
The DC current Idc is 0 as in the case where the gate signals Gu, Gv, and Gw are all at the L level.

よって、ゲート信号GuがLレベルからHレベルに変化してから、ゲート信号GvがLレベ
ルからHレベルに変化するまでの期間及びゲート信号GvがLレベルからHレベルに変化し
てから、ゲート信号GwがLレベルからHレベルに変化するまでの期間が、直流電流Idcを
検出するのに十分な時間だけ確保される必要がある。この期間は、第2のU相交流電圧指
令信号Eu'と第2のV相交流電圧指令信号Ev'の差及び第2のV相交流電圧指令信号Ev'と
第2のW相交流電圧指令信号Ew'の差により決まるため、これらの差が最低電圧Emin以上
になるように補正される場合、最低電圧Eminを直流電流Idcを検出するのに十分な時間に
相当する値に設定することにより、直流電流Idcを検出する期間が確保できる。
Therefore, after the gate signal Gu changes from the L level to the H level, the period from when the gate signal Gv changes from the L level to the H level and after the gate signal Gv changes from the L level to the H level, The period until Gw changes from the L level to the H level needs to be secured for a sufficient time to detect the DC current Idc. During this period, the difference between the second U-phase AC voltage command signal Eu ′ and the second V-phase AC voltage command signal Ev ′ and the second V-phase AC voltage command signal Ev ′ and the second W-phase AC voltage command Since it is determined by the difference in signal Ew ', when these differences are corrected to be equal to or higher than the minimum voltage Emin, the minimum voltage Emin is set to a value corresponding to a time sufficient to detect the DC current Idc. A period for detecting the DC current Idc can be secured.

また、時刻T1〜8の期間での第2の交流電圧指令信号Eu'、Ev'、及びEw'の平均はそ
れぞれ0.33、-0.10、-0.29であり、第1の交流電圧指令信号Eu、Ev、Ewとほぼ等しくなる
。また、第2の交流電圧指令信号Eu'、Ev'、及びEw'の平均と第1の交流電圧指令信号Eu
、Ev、Ewの間の誤差は、W相誤差積算値dEuが0.1であること、時刻T7〜T8でのU相誤
差積算値dEuが0.2であることにより管理されている。
In addition, the averages of the second AC voltage command signals Eu ′, Ev ′, and Ew ′ during the period of time T1 to T8 are 0.33, −0.10, and −0.29, respectively, and the first AC voltage command signals Eu, Ev , Almost equal to Ew. Further, the average of the second AC voltage command signals Eu ′, Ev ′, and Ew ′ and the first AC voltage command signal Eu.
, Ev, Ew are managed by the fact that the W-phase error integrated value dEu is 0.1 and the U-phase error integrated value dEu at time T7 to T8 is 0.2.

更に、図7からも明らかなように誤差積算値dEu、dEv、及びdEwの絶対値はある値以下
になる。
Further, as is clear from FIG. 7, the absolute values of the error integrated values dEu, dEv, and dEw are less than a certain value.

本実施例では、補正による電圧誤差を抑制するため誤差積算値を用いているが、電圧誤
差に対する要求が厳しくない用途においては、誤差積算値に関する処理を省略できる。具
体的には、図3の処理300における誤差積算値dEu、dEv、及びdEwを0として、第3の
交流電圧指令信号Eu0、Ev0、及びEw0として第1の交流電圧指令信号Eu、Ev、及びEwを用
い、処理313を省略することにより実現される。これにより、処理を削減することがで
きる。この場合、電圧指令補正部9では、第1の交流電圧指令信号Eu、Ev、及びEwに基づ
き、第2の交流電圧指令信号Eu'、Ev'、及びEw'のうちの任意の2つの交流電圧指令信号
の差が予め定められた値以上になるよう処理を行うことになる。
In this embodiment, the error integrated value is used to suppress the voltage error due to correction. However, in applications where the requirement for the voltage error is not strict, the process related to the error integrated value can be omitted. Specifically, the error integrated values dEu, dEv, and dEw in the process 300 of FIG. 3 are set to 0, and the first AC voltage command signals Eu, Ev, and E3 are set as third AC voltage command signals Eu0, Ev0, and Ew0. This is realized by using Ew and omitting the processing 313. Thereby, processing can be reduced. In this case, in the voltage command correction unit 9, any two alternating currents among the second alternating voltage command signals Eu ′, Ev ′, and Ew ′ are based on the first alternating voltage command signals Eu, Ev, and Ew. Processing is performed so that the difference between the voltage command signals is equal to or greater than a predetermined value.

本実施例によれば、直流電流Idcのパルス幅は必ず電流検出が可能な幅が確保され、任
意スイッチングと任意スイッチングの間に必要な期間が確保されるため、スイッチングの
相互干渉は発生しない。又、本実施例においては、小容量インバータのモータ電流のCT
レス化とその電流検出の高性能化、汎用化、大容量でのスイッチング素子の保護が得られ
、低速での電流検出を安定に行うことができる。
According to the present embodiment, the pulse width of the direct current Idc is always secured so that a current can be detected, and a necessary period is ensured between the arbitrary switching and the switching, so that no mutual interference occurs. In this embodiment, the CT of the motor current of the small capacity inverter
This makes it possible to achieve high performance, versatility, and protection of switching elements with a large capacity, and to stably detect current at low speed.

更に、本実施例においては、低電圧、高キャリアでも直流電流をサンプルしホールドで
き、他相スイッチングに伴う狭幅リカバリを防止することができる。
Furthermore, in the present embodiment, a direct current can be sampled and held even with a low voltage and a high carrier, and narrow recovery associated with other phase switching can be prevented.

又、本実施例によれば、任意の2相の変調波の差を最低値以上にすることができるため
、パルス幅変調した結果であるパルス出力において、任意の2つのパルスが変化する間隔
を最低値に相当する時間以上にできる。また、このパルス幅変調方式を電力変換器に適用
することにより、直流電流のパルス幅も最低値に相当する時間以上となるため、直流電流
の検出が可能になる。
In addition, according to the present embodiment, the difference between any two-phase modulated waves can be made the minimum value or more, and therefore, in the pulse output as a result of pulse width modulation, the interval at which any two pulses change can be set. Can be more than the time corresponding to the minimum value. Further, by applying this pulse width modulation method to the power converter, the pulse width of the direct current becomes longer than the time corresponding to the minimum value, so that the direct current can be detected.

更に、直流電流の電流パルス幅が必ず電流検出が可能な幅以上に確保されることから、
補正結果の更新を搬送波の半周期の整数倍にしても、電流検出に支障は来さないため、演
算周期を大きくすることができ、パルス幅変調方法の単位時間あたりの演算量を低減でき
、又パルスが変化する間隔が確保されるため、スイッチングの相互干渉が発生しないパル
ス幅変調が得られる。
Furthermore, since the current pulse width of the direct current is always ensured to be greater than the width that allows current detection,
Even if the update of the correction result is an integral multiple of the half cycle of the carrier wave, current detection will not be hindered, so the calculation cycle can be increased, the amount of calculation per unit time of the pulse width modulation method can be reduced, In addition, since the interval at which the pulses change is secured, pulse width modulation that does not cause mutual interference of switching can be obtained.

(実施例2)
図8は、電圧指令補正部が出力である第2の交流電圧指令信号Eu'、Ev'、及びEw'を更
新するタイミングを変更した例を示す図である。図8において、201はPWM制御部6
のパルス幅変調で用いる搬送波、801〜804は電圧指令補正部9が出力を更新するタ
イミングである。電圧指令補正部9は搬送波201の1周期毎に第2の交流電圧指令信号
Eu'、Ev'、及びEw'を出力する。本実施例では、直流電流Idcのパルス幅は必ず確保される
ことから、搬送波の半周期で必ず電流検出を行うことができる。このため、図8に示すよ
うに出力タイミングを1周期に一度にした場合においても、電流検出には何ら問題はない
。さらに、電圧指令信号の更新周期が長くなることが問題にならない範囲で、出力タイミ
ングの周期を搬送波の半周期の整数倍で伸ばすことが可能である。これにより、電圧指令
補正部9の演算周期も長くすることが可能となり、単位時間あたりの演算量の低減を図る
ことができる。他、実施例1と同様の効果が得られる。
(Example 2)
FIG. 8 is a diagram illustrating an example in which the timing at which the voltage command correction unit updates the second AC voltage command signals Eu ′, Ev ′, and Ew ′ that are outputs is changed. In FIG. 8, reference numeral 201 denotes a PWM control unit 6.
801 to 804 are timings when the voltage command correction unit 9 updates the output. The voltage command correction unit 9 generates a second AC voltage command signal for each cycle of the carrier wave 201.
Eu ', Ev', and Ew 'are output. In this embodiment, since the pulse width of the direct current Idc is always ensured, current detection can always be performed in a half cycle of the carrier wave. For this reason, there is no problem in current detection even when the output timing is once in one cycle as shown in FIG. Further, the output timing cycle can be extended by an integral multiple of the half cycle of the carrier wave as long as the update cycle of the voltage command signal does not become a problem. As a result, the calculation cycle of the voltage command correction unit 9 can be lengthened, and the amount of calculation per unit time can be reduced. Other effects similar to those of the first embodiment can be obtained.

本発明のパルス幅変調装置の構成図。The block diagram of the pulse width modulation apparatus of this invention. 電圧指令補正部の第2の交流電圧指令信号を更新するタイミングを示す図。The figure which shows the timing which updates the 2nd alternating voltage command signal of a voltage command correction | amendment part. 電圧指令補正部の処理手順を示すフロー図。The flowchart which shows the process sequence of a voltage command correction | amendment part. 電圧指令補正部の処理手順を示すフロー図。The flowchart which shows the process sequence of a voltage command correction | amendment part. 図3及び図4の補正処理部の処理手順を示すフロー図。The flowchart which shows the process sequence of the correction | amendment process part of FIG.3 and FIG.4. 本発明に係るPWM制御部の構成を示す回路図。The circuit diagram which shows the structure of the PWM control part which concerns on this invention. 本発明のパルス幅変調方法の動作例を示す図。The figure which shows the operation example of the pulse width modulation method of this invention. 電圧指令補正部の第2の交流電圧指令信号を更新するタイミングを示す図。The figure which shows the timing which updates the 2nd alternating voltage command signal of a voltage command correction | amendment part.

符号の説明Explanation of symbols

1…交流電源、2…整流回路、3…平滑コンデンサ、4…モータ、5…電流検出器、6
…PWM制御部、7…電流検出部、8…モータ制御部、9…電圧指令補正部、10…電力
変換器、Qu、Qv、Qw、Qx、Qy及びQz…スイッチング素子。
DESCRIPTION OF SYMBOLS 1 ... AC power source, 2 ... Rectifier circuit, 3 ... Smoothing capacitor, 4 ... Motor, 5 ... Current detector, 6
DESCRIPTION OF SYMBOLS ... PWM control part, 7 ... Current detection part, 8 ... Motor control part, 9 ... Voltage command correction part, 10 ... Power converter, Qu, Qv, Qw, Qx, Qy, and Qz ... Switching element.

Claims (1)

複数のスイッチング素子をパルス幅変調手段で生成されるゲート信号でオンオフさせて直流電源に接続された直流電圧を3相の可変周波可変電圧に変換し、それを電動機に出力して該電動機を可変速制御する電力変換器において、
前記電力変換器の直流側の電流を検出し、該検出した電流と前記ゲート信号から前記電動機に流れる3相分の交流電流を検出する電流検出部と、
該検出された3相分の交流電流信号と外部から与えられる速度指令信号に基づき3相分の交流電圧指令信号を出力するモータ制御部と、
前記3相分の交流電流信号の相間電圧が所定値より小さい期間において前記直流側の電流のパルス幅を電流検出可能な幅以上にするように前記3相分の交流電圧指令信号を補正する電圧指令補正部と、
該電圧指令補正部で補正された3相分の交流電圧指令信号に基づきパルス幅変調して前記ゲート信号を出力するPWM制御部と、
を備えたことを特徴とする電力変換器。
A plurality of switching elements are turned on / off by a gate signal generated by a pulse width modulation means to convert a DC voltage connected to a DC power source into a three-phase variable frequency variable voltage, which is output to an electric motor to enable the electric motor. In a power converter that performs shift control,
A current detection unit for detecting a current on a DC side of the power converter, and detecting an AC current corresponding to three phases flowing from the detected current and the gate signal to the motor;
A motor control unit that outputs an AC voltage command signal for three phases based on the detected AC current signal for three phases and a speed command signal given from the outside;
Voltage for correcting the AC voltage command signal for the three phases so that the pulse width of the DC current is equal to or greater than the current detectable width during a period when the interphase voltage of the AC current signal for the three phases is smaller than a predetermined value. A command correction unit;
A PWM control unit that performs pulse width modulation based on the AC voltage command signal for three phases corrected by the voltage command correction unit and outputs the gate signal;
A power converter comprising:
JP2006306096A 2006-11-13 2006-11-13 Electric power transformer Pending JP2007097394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006306096A JP2007097394A (en) 2006-11-13 2006-11-13 Electric power transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006306096A JP2007097394A (en) 2006-11-13 2006-11-13 Electric power transformer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006279403A Division JP2007006700A (en) 2006-10-13 2006-10-13 Power conversion apparatus

Publications (1)

Publication Number Publication Date
JP2007097394A true JP2007097394A (en) 2007-04-12

Family

ID=37982376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006306096A Pending JP2007097394A (en) 2006-11-13 2006-11-13 Electric power transformer

Country Status (1)

Country Link
JP (1) JP2007097394A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219288A (en) * 2008-03-11 2009-09-24 Ricoh Co Ltd Motor driving device
WO2012124223A1 (en) * 2011-03-16 2012-09-20 三洋電機株式会社 Power conversion control device and utility interconnection device
JP2015061381A (en) * 2013-09-18 2015-03-30 株式会社デンソー Power conversion apparatus, and electric power steering device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219288A (en) * 2008-03-11 2009-09-24 Ricoh Co Ltd Motor driving device
WO2012124223A1 (en) * 2011-03-16 2012-09-20 三洋電機株式会社 Power conversion control device and utility interconnection device
JP2015061381A (en) * 2013-09-18 2015-03-30 株式会社デンソー Power conversion apparatus, and electric power steering device using the same

Similar Documents

Publication Publication Date Title
US7920395B2 (en) Pulse width modulation method for a power converter
JP6503277B2 (en) Controller and AC motor drive
US9130481B2 (en) Power converting appartatus
JP6134733B2 (en) Polyphase converter system and method
JP6369517B2 (en) Control device for power converter
KR20160122923A (en) Apparatus and method for generating offset voltage of 3-phase inverter
JP6178433B2 (en) Power converter
JP2009100505A (en) 3-level power converter
JP2014011944A (en) Power conversion system and power conversion method
JP2015144551A (en) inverter device
JP6176495B2 (en) 3-level inverter control method and control apparatus
JP5270272B2 (en) Inverter control circuit, grid-connected inverter system provided with this inverter control circuit, program for realizing this inverter control circuit, and recording medium recording this program
JP2017118643A (en) Self-excited reactive power compensator
JP6270696B2 (en) Power converter
JP2008312372A (en) Power conversion apparatus
JP2007097394A (en) Electric power transformer
JP5494618B2 (en) Power converter
JP2017135764A (en) Pwm control method for three-phase multilevel inverter, and control device
JP2006074951A (en) Controller for ac motor
JP2017153277A (en) Self-excited reactive power compensation apparatus
JP2007006700A (en) Power conversion apparatus
JP6440067B2 (en) Power converter
JP2009089555A (en) Ac-dc converter
JP5887853B2 (en) Power converter
JP5894031B2 (en) Power converter

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091020

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091026

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100108